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Generalized Hartmann-Shack array of dielectric
metalens sub-arrays for polarimetric beam profiling
Zhenyu Yang1, Zhaokun Wang1, Yuxi Wang1, Xing Feng1, Ming Zhao1, Zhujun Wan1, Liangqiu Zhu1, Jun Liu1,

Yi Huang 1, Jinsong Xia1 & Martin Wegener2

To define and characterize optical systems, obtaining the amplitude, phase, and polarization

profile of optical beams is of utmost importance. Traditional polarimetry is well established to

characterize the polarization state. Recently, metasurfaces have successfully been introduced

as compact optical components. Here, we take the metasurface concept to the system level

by realizing arrays of metalenses, allowing the determination of the polarization profile of an

optical beam. We use silicon-based metalenses with a numerical aperture of 0.32 and a mean

measured focusing efficiency in transmission mode of 28% at a wavelength of 1550 nm. Our

system is extremely compact and allows for real-time beam diagnostics by inspecting the foci

amplitudes. By further analyzing the foci displacements in the spirit of a Hartmann-Shack

wavefront sensor, we can simultaneously detect phase-gradient profiles. As application

examples, we diagnose the profiles of a radially polarized beam, an azimuthally polarized

beam, and of a vortex beam.
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A
mplitude, phase, polarization, and wavelength are basic
parameters of any light wave. Of course, all of these
parameters can be characterized experimentally by exist-

ing bulk optics. However, miniaturization often makes a big
difference concerning usefulness. For example, established
Hartmann–Shack wavefront sensors based on arrays of refractive
microlenses, which focus the light onto a standard camera system,
can simply be placed into a laser beam to analyze its phase and
amplitude profile in real time1. Clearly, the same task can be
performed by yet more compact metalenses. Metasurfaces and
flat lenses based thereupon have recently attracted considerable
attention. For example, compact polarimeters2–4, polarization-
sensitive elements5–10, holograms11–13, couplers14,15, and meta-
lenses16–26 have been demonstrated. Metasurfaces can be based
on metals27–31 or dielectrics32–37. The former exhibit larger
material contrast, the latter lower losses. Metalenses can be
polarization independent38–40 and broadband41–44.

Importantly, metalenses can do more than just copying what
refractive microlenses can do. Metalenses can, e.g., be designed to
exhibit a tailored polarization dependence45–50. On this basis, we
generalize the idea of a Hartmann–Shack lens array to not only
measure phase profiles but simultaneously map polarization
profiles as well. Here, we propose a generalized Hartmann–Shack
array based on 2 × 3 sub-arrays of all-dielectric transmission-
mode metalenses, and realize it experimentally. The six different
metalenses in each sub-array allow to fully determine the Stokes
parameters in each pixel of the array. To validate the concept of
this generalized “meta-Hartmann–Shack” array, we use it to
characterize a radially polarized beam, an azimuthally polarized
beam, and a vortex beam.

Results
Principle of metalens array design. Our system shown in Fig. 1
consists of two main parts: The metalens array and a standard
camera, onto which the common focal plane of all metalenses is
imaged. Each pixel of the metalens array is composed of one sub-
array of six different metalenses (Supplementary Fig. 1). Each one
of these metalenses focuses one particular polarization state
(Supplementary Fig. 2). Six different polarizations are needed to
fully and generally reconstruct the four Stokes parameters s0, s1,
s2, and s3 We chose as the basis horizontal linear polarization
(“x”), vertical linear polarization (“y”), diagonal linear polariza-
tion (“a”), 90 degrees rotated diagonal polarization (“b”), as well

as left-handed circular polarization (“l”) and right-handed cir-
cular polarization (“r”).

The unit elements of all metalenses shown in Fig. 2a are
elliptical silicon pillars, with height H= 340 nm and major and
minor axis lengths Dx and Dy, respectively, placed on a layer of
silicon dioxide. They are arranged onto a square lattice with
lattice constant a= 1500 nm. To get an overview, we first
consider a simple periodic lattice. Its intensity transmission and
phase shift φ versus Dx and Dy, numerically computed using a
finite-difference time-domain (FDTD) approach (Supplementary
Note 1), are shown in Fig. 2b, c, respectively. Here we consider
normal incidence and linear polarization of light along the x-
direction.

A lens in the xy-plane made from these elliptical elements
needs to satisfy the equation18

φ x; yð Þ ¼ �
2π

λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2 þ f 2
p

� f
� �

þ const: ð1Þ

Here, λ is the free-space wavelength and f is the metalens focal
length. In this work, we choose λ= 1550 nm and f= 30 μm. The
metalens arrays for “y”, “a”, and “b” polarization are simply
rotated versions of that for the “x” polarization. For all of these
linear incident polarizations, we obtain a theoretical (measured)
focusing efficiency of 62% (30%). (We define the focusing
efficiency by the ratio of the optical power in the focal spot and
that impinging onto the metalens.) The design of the “l” and “r”
metalenses is described below.

Figure 2d shows an optical image of a fabricated metalens
array. The standard sample processing starts from a silicon-on-
insulator (SOI) substrate (Supplementary Note 2 and Supple-
mentary Fig. 3). Scanning electron micrographs of increasing
magnification are shown in Fig. 2e–g, evidencing the high quality
of the structures. Each metalens has a footprint of (22.5 μm)2.
Together with the focal length f, this footprint leads to a
numerical aperture of 0.32.

With the above metalenses alone, one cannot distinguish
between left-handed and right-handed circularly polarized light.
To eliminate this shortcoming, the “l” and “r” metalenses for
circularly polarized light are designed by using the geometric
phase shift also known as Pancharatnam-Berry phase shift51–53.
Here, all silicon elliptical pillars have the same sizes Dx and Dy.
The phase variation φ(x,y) of the metalens is exclusively achieved
by the ellipse orientation angle θ0 (see Fig. 2a). Equations 2 and 3
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Fig. 1 Scheme of the generalized Hartmann–Shack beam profiler. To measure not only phase gradients but also allow for complete polarimetric beam

profiling, each pixel of the array shown on the left consists of six different polarization-sensitive metalenses. A camera records a magnification of the

common plane of the metalens foci (magnification not depicted, see Supplementary Figs. 4 and 6). The dotted crosses on the camera plane in the right

panel show the projections of the corresponding metalens centers
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describe the complex transmission vectors for incident right-
handed and left-handed circularly polarized light (see subscripts),
respectively19,52,
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Here to and te are the complex transmission coefficients for
incident light polarized linearly along the major and minor axes
of the ellipse, respectively. The first terms correspond to the same
handedness as the incident light, the second terms to the opposite
handedness. We let the first terms vanish by choosing t0+ t0= 0
(see white circle at (1350 nm, 480 nm) in Fig. 2b, c). In this case,
the incident wave is fully converted into the opposite circular
handedness, which can be modulated by the geometric phase
shift49. This additional geometric phase shift covers the required
range of 0...2π if θ0 varies from 0 to π (see Fig. 2a). In this
manner, all phases needed according to the metalens Eq. 1 are
obtained, both for left-handed and right-handed circularly

polarized light, respectively. For the circular incident polariza-
tions, we obtain a theoretical (measured) focusing efficiency of
60% (26%).

For each pixel of the array, the Stokes parameters are
connected to the focal intensities, I (with corresponding sub-
scripts), of the six types of metalenses in the sub-array of this
pixel through the Eqs. 4–72,54,55

s0 ¼ Ix þ Iy ð4Þ

s1 ¼ Ix � Iy ð5Þ

s2 ¼ Ia � Ib ð6Þ

s3 ¼ Ir � Il ð7Þ

For local linear polarization of light, the Stokes parameters can be
reduced to the polarization angle θp given by

θp ¼
1

2
tan�1 Ia � Ib

Ix � Iy
: ð8Þ
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Fig. 2 Design and manufactured metalens array. a Scheme of one unit element of a metalens. b, c Calculated intensity transmittance and phase shifts of a

simple periodic array of these unit elements for linearly x-polarized incident light under normal incidence. The white circle at (Dx= 1350 nm, Dy= 480 nm)

highlights the structural parameters used for the metalenses for circular polarization of light in our work. d Optical micrograph of a fabricated metalens

array. Scale bar: 50 μm. The white rectangle indicates one pixel or one sub-array of the array. Each pixel is composed of six different metalenses.

e Corresponding magnified electron micrograph. Scale bar: 5 μm. f, g Oblique-view and further magnified views onto selected parts of the metalenses,

showing the individual high-quality silicon elliptical pillars (compare panel a). Scale bar: 500 nm
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Fig. 4 Profiling of vector beams by the metalens array. a, b Intensity distributions of focal spots for a radially polarized incident beam and an azimuthally

polarized beam, respectively. The blue arrows qualitatively indicate the local polarization states. Scale bar: 50 μm. c, d Images of focal spots from the

metalens array for the radially polarized and the azimuthally polarized beam, respectively. e, f Polarization profiles. The black arrows correspond to the

measured local polarization vectors, the red arrows to the calculated ones. The dashed gray lines highlight the individual pixels of the metalens array
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Fig. 3 Experimental validation of polarimetry with only one pixel of the metalens array. a–f Measured images of the resulting focal spots for incident

horizontal or vertical linear polarization (“x” and “y”), diagonal linear polarization (“a” and “b”), and circular polarization (“l” and “r”). Scale bars: 10 μm.

g Poincaré sphere comparing the theoretical (small circles) and the experimentally reconstructed (stars) Stokes parameters s1, s2, and s3. For each of the

three different colors (red, blue, black), one Stokes parameter is zero
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Finally, as in any ordinary Hartmann–Shack wavefront sensor,
the local phase gradients along the x-direction and the y-direction
are obtained via the expressions

∂ϕ

∂x
¼

2π

λ
�

dx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f 2 þ d2x
p ð9Þ

∂ϕ

∂y
¼

2π

λ
�

dy
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f 2 þ d2y

q ð10Þ

where dx and dy are the displacements of the focal spot positions
from the optical axis within the focal plane (see Fig. 1).

State of polarization detection. To validate the polarimetric
beam profiling approach, we have performed experiments with 18
different incident polarizations (Supplementary Note 3, Supple-
mentary Figs. 4 and 5). In this first set of polarimetric experi-
ments, the polarization is constant throughout each incident
beam profile. In order to ensure the accuracy of the measurement,
we used “x”, “y”, “a”, “b”, “l”, and “r” polarized light to calibrate
the system. The details of the algorithm for the calibration are
described in Supplementary Note 4. Figure 3a–f shows the raw
data of the intensity distributions of one pixel of the metalens
array for six selected different polarizations. The Stokes para-
meters of all 18 different polarizations are retrieved from the
measurements and Eqs. 4–7. The input and the reconstructed
Stokes parameters are compared on the Poincaré sphere in
Fig. 3g. The average relative deviation between input and
reconstruction is as small as 4.83%. Further experimental results
are listed in Supplementary Table 1. Altogether, these results
demonstrate that each pixel of the metalens array allows for

reliably determining the polarization state of light at the spatial
position of this pixel.

In the second set of polarimetric experiments, we test the
generalized Hartmann–Shack-array approach with two common
beam profiles with non-constant polarization, namely with a
radially polarized beam and with an azimuthally polarized beam.
Figure 4a, b shows the beam intensity profiles for these incident
two beams impinging directly onto the camera (i.e., no metalens
array present). Inserting the metalens array in front of the
camera, we obtain the raw arrays of focal spots shown in Fig. 4c,
d, respectively. This particular metalens array is composed of 5 ×
10 pixels. From these raw data, we derive the angle profile θp(x, y)
according to Eq. 8. Clearly, we cannot derive polarimetric
information near the center of the beams, where the intensity is
close to zero. The results are depicted by the black arrows in
Fig. 4e, f, respectively. The red arrows shown in these figures
correspond to the theoretical values. The black and red arrows
agree very well.

Wavefront measurement. The discussed polarimetric informa-
tion goes beyond the usual Hartmann–Shack phase profiling. To
validate this usual phase-profiling aspect as well, we have per-
formed a first set of experiments with simple titled wave fronts
with angles ranging from 0 to 18 degrees with respect to the
surface normal. Resulting raw data are depicted in Fig. 5a–c. The
displacements of the spot centers from the optical axis (indicated
by the dashed crosses) are clearly visible. Through Eqs. 9 and 10,
the phase-gradient profiles are retrieved. These values are com-
pared with the calculated ones in Fig. 5d. It becomes clear that if
the incident angle is less than 5°, the measurement agrees well
with the theoretical value (relative error: ~1.05%); otherwise, the
error increases (relative error of 18° incident angle: ~16.0%). This
behavior is due to the fact that the metalens aberrations increase
with increasing incidence angle.

In a second set of experiments, we further demonstrate the
operation of the system for a more complex wavefront
(Supplementary Fig. 6), namely for a vortex beam with a twisted
wavefront and a topological charge of 356. In this example, the
metalens array consists of 7 × 4 pixels. Figure 6a shows the beam
intensity profiles for the incident beam impinging directly onto
the camera without passing through the metalens array. Figure 6b
shows the raw data of metalens focal spots, and Fig. 6c the phase-
gradient profile (see the arrows) derived from Eqs. 9 and 10. By
integration, the phase profile is obtained (see false-color scale).
We find a topological charge of the vortex beam of 3.25, which
deviates by only about 8% from the input value of 3.

Discussion
Since the data used in polarization and phase measurement are
completely independent, the system can measure both polariza-
tion state and wavefront state at the same time, which is
demonstrated in Supplementary Figs. 7 and 8. In addition, since
the degree of polarization can be calculated via the Stokes para-
meters, it is clear that our system will also work for partially
polarized beams. We demonstrate this aspect explicitly in Sup-
plementary Figs. 9 and 10, and in the Supplementary Table 2.

In summary, we have demonstrated a dielectric metalens sys-
tem not only allowing for measuring phase and phase-gradient
profiles of optical beams (as a conventional Hartmann–Shack
array), but also for measuring spatial polarization profiles at the
same time. It is straightforward to mass fabricate these arrays of
silicon-based sub-arrays, composed of six different metalenses, in
a complementary metal oxide semiconductor (CMOS) compa-
tible manner. Along these lines, it is also straightforward to
substantially increase the numbers of pixels in the array, thereby
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increasing the beam profiling resolution. The only other main
component needed for complete polarimetric beam profiling is a
standard camera connected to a computer. The system could even
be integrated with a standard camera. In addition, the spatial
resolution of the system can be further improved by reducing the
diameter of the metalenses, the spacing of the unit cell, and the
size of the sub-arrays. By replacing silicon with another dielectric,
the operation principle can be transferred to other operation
wavelengths. In our demonstration, we have used 1550 nm.

Methods
Metalens array design. The characteristics of the unit cell in controlling the
amplitude and the phase of the wavefront is analyzed using the FDTD method
(Lumerical Inc. FDTD Solutions). In these calculations, the free-space wavelength
of the incident light is set to 1550 nm and the linear polarization axis is parallel to
the x-axis. We use periodic boundary conditions along the x-direction and the y-
direction and perfectly matched layers (PMLs) along the z-direction. The geome-
trical parameters are given in the main text. Each pixel of the metalens array
consists of six different metalenses, which are designed for “x”, “y”, “a”, “b”, “l”,
and “r” polarization. Through the data from Fig. 2b, c and by applying Eqs. 1–3,
the different metalenses are designed. The result is shown in Supplementary Fig. 1.
It serves as the blueprint for the fabricated samples, examples of which are depicted
in Fig. 2d–g.

Fabrication process. Prior to fabricating the metalens array, a double-polished
SOI wafer is prepared by cleaning. Subsequently, a 430 nm thick ZEP520A
electron-beam resist layer is spin-coated onto the wafer and subsequently baked for
3 min on a hot plate at 180 degrees Celsius to complete the curing of the photo-
resist. Next, to define the patterns, the sample is exposed by electron-beam litho-
graphy (EBL, Vistec: EBPG-5000+) at an acceleration voltage of 100 kV and at a
beam current of 300 pA, followed by development in xylene and fixation by iso-
propanol. Afterwards, the sample with the patterned photoresist layers are etched
by an inductively-coupled plasma system (Oxford Plasmalab: System100-ICP-180),
using C4F8/SF6 gas. The procedure is completed by removal of the patterned
residual photoresist in an oxygen plasma (Diener electronic: PICO plasma
stripper).

Data availability
The data that support the findings of this study are available from the authors on
reasonable request, see author contributions for specific data sets.
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