GENERALIZED HELICAL IMMERSIONS

By
Naoyuki Koike

Introduction.

In this paper, we assume that all geodesics are parametrized by the arclength. Let f be an isometric immersion of a Riemannian manifold M into a Riemannian manifold \tilde{M}. If geodesics in M are viewed as specific curves in \tilde{M}, what are the shape of $f(M)$? Several geometricians studied this problem. K. Sakamoto characterized an isometric immersion f of a complete connected Riemannian manifold M into a Euclidean space or a sphere such that every geodesic in M is viewed as a helix in the ambient space and that the order and the Frenet curvatures of the helix are independent of the choice of the geodesic (cf. [15], [16]). In [5], D. Ferus and S. Schirrmacher investigated an isometric immersion f of a compact connected Riemannian manifold M into a Euclidean space \boldsymbol{R}^{m} satisfying the following condition:
(A) Almost every geodesic in M is viewed as a generic helix in \boldsymbol{R}^{m}.

Here "almost every geodesic" means that the tangent vectors of such geodesics fill the unit tangent bundle of M up to a closed set of measure zero and a generic helix means a helix of even order such that the closure of the image coincides with the lowest dimensional Clifford torus containing it. In [4] and [5], they showed that the condition (A) is equivalent to the following two conditions, respectively:
(B) f is extrinsic symmetric in the sense of [4].
(C) The second fundamental form of f is parallel.

In this paper, we consider an isometric immersion f of a Riemannian manifold M into a Riemannian manifold \tilde{M} such that every geodesic in M is viewed as a helix in \tilde{M}, where the order of the helix may depend on the choice of the geodesic. We call such a immersion a generalized helical immersion and the highest order of those helices the order of f. First, we show that all isometric immersions with parallel second fundamental form are generalized helical. Conversely, it is very interesting to investigate in what case a generalized helical immersion has the
parallel second fundamental form. We tackle this problem for a generalized helical immersion of a compact Riemannian manifold into a Euclidean space. Concretely, we can obtain the following result.

Theorem. Let f be a generalized helical immersion of order $2 d$ of a compact connected Riemannian manifold M into a Euclidean space \boldsymbol{R}^{m}. Assume that the following condition (*) hold:
(*) For each $p \in M$, there is at least one geodesic in M through p which is viewed as a generic helix of order $2 d$ in \boldsymbol{R}^{m}.
Then f has the parallel second fundamental form and hence f is congruent to the composition of the standard isometric embedding of a symmetric R-space M_{0} and a totally geodesic embedding.

Furthermore, we can show that the symmetric R-space M_{0} is of rank d. Note that this condition $(*)$ is very weaker than the above condition (A) in a sense.

In Sect. 1 and 2, we prepare basic notations, definitions and lemmas. In Sect. 3, we show that all isometric immersions with parallel second fundamental form are generalized helical, where the ambient space may be a general Riemannian manifold. In Sect. 4, we investigate the order of the standard isometric embedding of a symmetric R-space into a Euclidean space. In Sect. 5, we characterize a generalized helical immersion f of a compact connected Riemannian manifold M into a Euclidean space satisfying the above condition (*), where we use results in Sect. 2 and 4. In Sect. 6, we obtain results analogous to those of Sect. 5 in the case where the ambient space is a sphere. In Sect. 7, in the case where M is a Riemannian homogeneous space G / K and f is a G-equivariant, we state results deduced from those in Sect. 5 and 6.

Throughout this paper, unless otherwise mentioned, we assume that all geometric objects are of class C^{∞} and all manifolds are connected ones without boundary.

1. Notations and definitions.

In this section, we shall state basic notations and definitions. Let $\sigma: I \rightarrow M$ be a curve in a Riemannian manifold M parametrized by the arclength s, where I is an open interval of the real line \boldsymbol{R}. Denote by v_{0} the velocity vector field $\dot{\sigma}$ of σ. Set $\lambda_{1}:=\left\|\nabla_{v_{0}} v_{0}\right\|$, where ∇ is the Levi-Civita connection of M. If λ_{1} is not identically zero, then we define v_{1} by $\nabla_{v_{0}} v_{0}=\lambda_{1} v_{1}$ on $I_{1}:=\left\{s \in I \mid \lambda_{1}(s) \neq 0\right\}$. Set $\lambda_{2}:=\left\|\nabla_{v_{0}} v_{1}+\lambda_{1} v_{0}\right\|$. If λ_{2} is not identically zero, then we define v_{2} by $\nabla_{v_{0}} v_{1}+$
$\lambda_{1} v_{0}=\lambda_{2} v_{2}$ on $I_{2}:=\left\{s \in I_{1} \mid \lambda_{2}(s) \neq 0\right\}$. Inductively, we define λ_{i}, I_{i} and $v_{i}(i \geq 3)$. If λ_{1} is identically zero on I, that is, σ is a geodesic, then σ is said to be of order 1. If λ_{d-1} is not identically zero on I_{d-2} and λ_{d} is identically zero on I_{d-1}, then σ is said to be of order d, where $d \geq 2$. If σ is of order d, then we have a matrix equation

$$
\begin{equation*}
\nabla_{v_{0}}\left(v_{0}, v_{1}, \ldots, v_{d-1}\right)=\left(v_{0}, v_{1}, \ldots, v_{d-1}\right) \Lambda \tag{1.1}
\end{equation*}
$$

on I_{d-1}, where Λ is a matrix of type (d, d) defined by

$$
\Lambda=\left(\begin{array}{cccccc}
0 & -\lambda_{1} & 0 & \cdots & \cdots & 0 \\
\lambda_{1} & 0 & -\lambda_{2} & \ddots & & \vdots \\
0 & \lambda_{2} & 0 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & \ddots & 0 \\
\vdots & & \ddots & \ddots & \ddots & -\lambda_{d-1} \\
0 & \cdots & \cdots & 0 & \lambda_{d-1} & 0
\end{array}\right)
$$

Let I_{d-1}^{0} be a component of I_{d-1}. Then the restriction of the relation (1.1) to I_{d-1}^{0}, $\left.\lambda_{i}\right|_{I_{-1}^{0}}$ and $\left.v_{i}\right|_{I_{d-1}^{0}}(1 \leq i \leq d-1)$ are called the Frenet formula, the i-th Frenet curvature and the i-th Frenet normal vector of $\left.\sigma\right|_{I_{d-1}^{0}}$, respectively. Also, if $\left.\lambda_{i}\right|_{I_{d-1}^{0}}$ $(1 \leq i \leq d-1)$ are constant along $\left.\sigma\right|_{I_{d-1}^{0}}$, then $\left.\sigma\right|_{I_{d-1}^{0}} ^{d-1}$ is called a helix of order d. Then we note that $I_{i}^{0}=I(1 \leq i \leq d-1)$. In particular, a helix σ_{1} (resp. σ_{2}) of order $2 d$ (resp. $2 d+1$) in an m-dimensional Euclidean space \boldsymbol{R}^{m} is expressed as follows:

$$
\begin{gather*}
\sigma_{1}(s)=c_{0}+\sum_{i=1}^{d} r_{i}\left(e_{2 i-1} \cos a_{i} s+e_{2 i} \sin a_{i} s\right) \tag{1.2}\\
\left(\operatorname{resp} . \sigma_{2}(s)=c_{0}+\sum_{i=1}^{d} r_{i}\left(e_{2 i-1} \cos a_{i} s+e_{2 i} \sin a_{i} s\right)+b s e_{2 d+1}\right),
\end{gather*}
$$

where c_{0} is a constant vector of $\boldsymbol{R}^{m}, e_{1}, \ldots, e_{2 d+1}$ is an orthonormal system of $\boldsymbol{R}^{\boldsymbol{m}}$, $r_{i}(1 \leq i \leq d)$ and b are positive constants and $a_{i}(1 \leq i \leq d)$ are mutually distinct positive constant. Thus $\operatorname{Im} \sigma_{1}$ is contained in the d-dimensional Clifford torus

$$
T:=\left\{c_{0}+\sum_{i=1}^{d} r_{i}\left(e_{2 i-1} \cos \theta_{i}+e_{2 i} \sin \theta_{i}\right) \mid 0 \leq \theta_{i}<2 \pi(i=1, \ldots, d)\right\} .
$$

If $\overline{\operatorname{Im} \sigma_{1}}=T$ holds, then σ_{1} is said to be generic, where $\overline{\operatorname{Im} \sigma_{1}}$ is the closure of the image of σ_{1}. Note that σ_{1} is generic if and only if a_{1}, \ldots, a_{d} are linearly in-
dependent over the rational number field \boldsymbol{Q}. Let σ be a helix in an m-dimensional sphere S^{m} and l a totally umbilical embedding of S^{m} into R^{m+1}. Then, since l is extrinsic spherical, $l \circ \sigma$ is a helix in R^{m+1} by Corollary 3.3 of [17]. Furthermore, since $\operatorname{Im}(l \circ \sigma)$ is contained in a compact set $l\left(S^{m}\right)$, the order of $l \circ \sigma$ is even. Let $2 d$ be the order of $l \circ \sigma$. It is shown that the order of σ is $2 d-1$ (resp. $2 d$) if the centroid of the d-dimensional Clifford torus T containing $\operatorname{Im}(l \circ \sigma)$ coincides (resp. does not coincide) with the center of S^{m}. If $i \circ \sigma$ is generic, then we shall call σ a generic helix (in S^{m}).

Let f be an isometric immersion of an n-dimensional Riemannian manifold M^{n} into an m-dimensional Riemannian manifold \tilde{M}^{m}. We shall identify the tangent space $T_{p} M$ of M at p with the subspace $f_{*}\left(T_{p} M\right)$ of $T_{f(p)} \tilde{M}$, where f_{*} is the differential of f. Denote by ∇ (resp. $\tilde{\nabla}$) the Levi-Civita connection on M (resp. $\tilde{M})$ and A, h and ∇^{\perp} the shape operator, the second fundamental form and the normal connection of f, respectively. Denote by $\bar{\nabla}$ both $\nabla^{*} \otimes \cdots \otimes \nabla^{*} \otimes \nabla^{\perp}$ and $\nabla^{\perp^{*}} \otimes \nabla^{*} \otimes \cdots \otimes \nabla^{*} \otimes \nabla$, where ∇^{*} is the dual connection of ∇. Also, we shall denote the i-th order derivative of h (resp. A) with respect to $\bar{\nabla}$ by $\bar{\nabla}^{i} h$ (resp. $\bar{\nabla}^{i} A$). If, for every geodesic σ in $M, f \circ \sigma$ is a helix of order d and the Frenet curvatures of $f \circ \sigma$ do not depend on the choice of σ, then f is called a helical immersion of order d. In this paper, if, for every geodesic σ in $M, f \circ \sigma$ is a helix of order at most d and there is at least one geodesic σ_{0} in M such that $f \circ \sigma_{0}$ is a helix of order d, then we shall call f a generalized helical immersion of order d.

2. Basic lemmas.

In this section, we prepare basic lemmas which are used in Sect. 5. Let f be an isometric immersion of an n-dimensional Riemannian manifold $M^{\boldsymbol{n}}$ into an m-dimensional Riemannian manifold \tilde{M}^{m}. Take a geodesic $\sigma: I \rightarrow M^{n}$. Denote by v_{0} the velocity vector field $\dot{\sigma}$ of σ. Assume that $\tilde{\sigma}:=f \circ \sigma$ is a helix of order d in \tilde{M}^{m}. Let λ_{i} (resp. v_{i}) be the i-th Frenet curvature (resp. the i-th Frenet normal vector) of $\tilde{\sigma}(i=1, \ldots, d-1)$. For convenience, let $\lambda_{i}=0$ and $v_{i}=0(i \geq d)$. In terms of the Gauss formula and the Weingarten formula of f and the Frenet formula of $\tilde{\sigma}$, we can deduce the following relations.

Lemma 2.1. The vector fields $\lambda_{1} \cdots \lambda_{i} v_{i}(i \geq 1)$ along σ are expressed as follows:

$$
\left(\mathrm{F}_{1}\right) \quad \lambda_{1} v_{1}=h\left(v_{0}, v_{0}\right)
$$

$$
\begin{aligned}
\left(\mathrm{F}_{\mathrm{i}}\right) \quad \lambda_{1} \cdots \lambda_{i} v_{i}= & \alpha_{i} v_{0}+\sum_{j=0}^{i-2}\left(\bar{\nabla}^{j} A\right)_{\xi_{i j}}\left(v_{0}, \ldots, v_{0}\right) \\
& +\sum_{j=0}^{i-1}\left(\bar{\nabla}^{j} h\right)\left(v_{0}, \ldots, v_{0}, w_{i j}\right) \quad(i \geq 2),
\end{aligned}
$$

where $\alpha_{i}(i \geq 2), \xi_{i j}(i \geq 2,0 \leq j \leq i-2)$ and $w_{i j}(i \geq 2,0 \leq j \leq i-1)$ are given by

$$
\left\{\begin{array}{l}
\alpha_{2}=\lambda_{1}^{2}, \alpha_{3}=0, \alpha_{i}=\lambda_{i-1}^{2} \alpha_{i-2} \quad(i \geq 4), \\
w_{20}=0, w_{21}=v_{0}, \xi_{20}=-h\left(v_{0}, v_{0}\right) \\
\xi_{i j}=\lambda_{i-1}^{2} \xi_{i-2, j}+\xi_{i-1, j-1}+\nabla_{v_{0}}^{\perp} \xi_{i-1, j} \quad(i \geq 3,1 \leq j \leq i-2) \\
\xi_{i 0}= \\
\lambda_{i-1}^{2} \xi_{i-2,0}+\nabla_{v_{0}}^{\perp} \xi_{i-1,0}-\sum_{j=0}^{i-2}\left(\bar{\nabla}^{j} h\right)\left(v_{0}, \ldots, v_{0}, w_{i-1, j}\right) \quad(i \geq 3) \\
w_{i j}= \\
\lambda_{i-1}^{2} w_{i-2, j}+w_{i-1, j-1}+\nabla_{v_{0}} w_{i-1, j} \quad(i \geq 3,1 \leq j \leq i-1) \\
w_{i 0}= \\
\quad \alpha_{i-1} v_{0}+\lambda_{i-1}^{2} w_{i-2,0}+\nabla_{v_{0}} w_{i-1,0} \\
\\
\quad+\sum_{j=0}^{i-3}\left(\bar{\nabla}^{j} A\right)_{\xi_{i-1, j}}\left(v_{0}, \ldots, v_{0}\right) \quad(i \geq 3) .
\end{array}\right.
$$

Here let $\xi_{i i}=\xi_{i, i-1}=0, w_{i i}=w_{i, i+1}=0(i \geq 1)$ and $w_{10}=v_{0}$.
For each unit tangent vector w of M, we denote the maximal geodesic in M parametrized by the arclength s whose velocity vector field at $s=0$ is equal to w by σ_{w} and the osculating order of $f \circ \sigma_{w}$ at $s=0$ by $o(w)$. For each $p \in M$, set $V_{p, i}:=\left\{w \in S_{p} M \mid o(w)=i\right\}(i \geq 1)$, where $S_{p} M$ is the unit tangent sphere of M at p. We define a function $\hat{\lambda}_{i}(i \geq 1)$ on the unit tangent bundle $S M$ of M by

$$
\hat{\lambda}_{i}(w):= \begin{cases}\lambda_{i}^{w}(0) & \left(w \in \bigcup_{i+1 \leq j} \bigcup_{p \in M} V_{p, j}\right) \\ 0 & \left(w \in \bigcup_{1 \leq j \leq i} \bigcup_{p \in M} V_{p, j}\right)\end{cases}
$$

where λ_{i}^{w} is the i-th Frenet curvature of the restriction $\left.f \circ \sigma_{w}\right|_{I^{0}}$ of $f \circ \sigma_{w}$ to a sufficiently small neighbourhood I^{0} of $0\left(w \in \bigcup_{i+1 \leq j} \bigcup_{p \in M} V_{p, j}\right)$. Also, we define a map $\hat{v}_{i}: S M \rightarrow T \tilde{M}(i \geq 1)$ by

$$
\hat{v}_{i}(w):= \begin{cases}v_{i}^{w}(0) & \left(w \in \bigcup_{i+1 \leq j} \bigcup_{p \in M} V_{p, j}\right) \\ 0 & \left(w \in \bigcup_{1 \leq j \leq i} \bigcup_{p \in M} V_{p, j}\right)\end{cases}
$$

where v_{i}^{w} is the i-th Frenet normal vector of the restriction $\left.f \circ \sigma_{w}\right|_{I^{0}}$ of $f \circ \sigma_{w}$ to a sufficiently small neighbourhood I^{0} of $0\left(w \in \bigcup_{i+1 \leq j} \bigcup_{p \in M} V_{p, j}\right)$. It is easy to show that $\hat{\lambda}_{i}$ is continuous on $\bigcup_{i \leq j} \bigcup_{p \in M} V_{p, j}(i \geq 1)$. Here we shall give datas of $V_{p, i}$ and $\hat{\lambda}_{i}$ for the Clifford embedding $f_{0}: S^{1}(1) \times S^{1}(1) \hookrightarrow \boldsymbol{R}^{4}$. The sets $V_{p, i}$ are as follows:

$$
\begin{aligned}
& V_{p, 1}=\emptyset, V_{p, 2}=\left\{ \pm e_{1}, \pm e_{2}, \pm \frac{e_{1}+e_{2}}{\sqrt{2}}, \pm \frac{e_{1}-e_{2}}{\sqrt{2}}\right\} \\
& V_{p, 3}=\emptyset, V_{p, 4}=S_{p} M \backslash V_{p, 2}, V_{p, i}=\emptyset(i \geq 5)
\end{aligned}
$$

and the functions $\hat{\lambda}_{i}$ are as follows:

$$
\begin{gathered}
\hat{\lambda}_{1}\left(e_{1} \cos \theta+e_{2} \sin \theta\right)=\sqrt{\cos ^{4} \theta+\sin ^{4} \theta} \\
\hat{\lambda}_{2}\left(e_{1} \cos \theta+e_{2} \sin \theta\right)=\frac{|\sin 4 \theta|}{4 \sqrt{\cos ^{4} \theta+\sin ^{4} \theta}} \\
\hat{\lambda}_{3}\left(e_{1} \cos \theta+e_{2} \sin \theta\right)= \begin{cases}\frac{|\sin 2 \theta|}{2 \sqrt{\cos ^{4} \theta+\sin ^{4} \theta}} & \left(\theta \neq \frac{\pi}{4}, \frac{3 \pi}{4}, \frac{5 \pi}{4}, \frac{7 \pi}{4}\right) \\
0 & \left(\theta=\frac{\pi}{4}, \frac{3 \pi}{4}, \frac{5 \pi}{4}, \frac{7 \pi}{4}\right), \\
\hat{\lambda}_{i}\left(e_{1} \cos \theta+e_{2} \sin \theta\right)=0 & (i \geq 4),\end{cases}
\end{gathered}
$$

where (e_{1}, e_{2}) is an orthonormal tangent frame at p such that e_{1} (resp. e_{2}) is tangent to the fibre of the projection of $S^{1}(1) \times S^{1}(1)$ onto the first (resp. the second) component and $0 \leq \theta<2 \pi$. This implies that f_{0} is a generalized helical embedding of order 4. Also, we see that $\hat{\lambda}_{3}$ is contionuos on $\bigcup_{j \geq 3} V_{p, j}\left(=V_{p, 4}\right)$ but so is not on $\bigcup_{j \leq 2} V_{p, j}\left(=V_{p, 2} \cup V_{p, 4}\right)$.

From Lemma 2.1, we can prove the following lemma.

Lemma 2.2. Assume that f is a generalized helical and $V_{p, d} \neq \emptyset$ and $V_{p, i}=\emptyset$ $(i \geq d+1)$ for $p \in M$. Then the set $V_{p, i}(1 \leq i \leq d-1)$ are closed sets of measure zero in $S_{p} M$ and $V_{p, d}$ is a dense open set is $S_{p} M$.

Proof. According to Lemma 2.1, for each $i(\leq d-1)$, there exist non-zero polynomial functions P_{i} and Q_{i} on $T_{p} M$ such that $P_{i} \hat{\lambda}_{1}^{2} \cdots \hat{\lambda}_{i}^{2}=Q_{i}$ on $S_{p} M$ and that P_{i} has no zero point on $\bigcup_{i-1 \leq j \leq d} V_{p, j}$. Hence we have

$$
\begin{aligned}
& V_{p, 1}=\left\{v \in S_{p} M \mid \hat{\lambda}_{1}(v)=0\right\}=\left\{v \in S_{p} M \mid Q_{1}(v)=0\right\} \\
& V_{p, 2}=\left\{v \in S_{p} M \backslash V_{p, 1} \mid \hat{\lambda}_{2}(v)=0\right\}=\left\{v \in S_{p} M \backslash V_{p, 1} \mid Q_{2}(v)=0\right\} \\
& \vdots \\
& V_{p, d-1}=\left\{v \in S_{p} M \backslash\left(\bigcup_{1 \leq i \leq d-2} V_{p, i}\right) \mid \hat{\lambda}_{d-1}(v)=0\right\} \\
&=\left\{v \in S_{p} M \backslash\left(\bigcup_{1 \leq i \leq d-2} V_{p, i}\right) \mid Q_{d-1}(v)=0\right\}
\end{aligned}
$$

Thus we see that $V_{p, i}(1 \leq i \leq d-1)$ are closed sets of measure zero in $S_{p} M$. Therefore, $V_{p, d}$ is a dense open set in $S_{p} M$.

3. Isometric immersions with parallel second fundamental form.

In this section, we shall show that all isometric immersions with parallel second fundamental form are generalized helical. Let f be an isometric immersion of an n-dimensional Riemannian manifold M^{n} into an m-dimensional Riemannian manifold \tilde{M}^{m} with parallel second fundamental form and $\sigma: I \rightarrow M$ a geodesic in M. Assume that the osculating order of $f \circ \sigma$ at each point is d. Set $v_{0}:=\dot{\sigma}$ and denote by λ_{i} (resp. v_{i}) the i-th Frenet curvature (resp. the i-th Frenet normal vector) of $f \circ \sigma(1 \leq i \leq d-1)$. Then we can obtain the following fact.

Lemma 3.1. The Frenet curvatures $\lambda_{i}(1 \leq i \leq d-1)$ are constant along σ (i.e., $f \circ \sigma$ is a helix) and the following relations hold:

$$
\left(F_{i}^{\prime}\right) \quad \lambda_{1} \cdots \lambda_{i} v_{i}=\alpha_{i} v_{0}+A_{\xi_{i}} v_{0}+h\left(w_{i}, v_{0}\right) \quad(1 \leq i \leq d-1)
$$

where α_{i}, ξ_{i} and $w_{i}(1 \leq i \leq d-1)$ are given by

$$
\left\{\begin{aligned}
& \alpha_{1}=0, \alpha_{2}=\lambda_{1}^{2}, \alpha_{i}=\lambda_{i-1}^{2} \alpha_{i-2}(3 \leq i \leq d-1) \\
& w_{1}=v_{0}, w_{2}=0, \xi_{1}=0, \xi_{2}=-h\left(v_{0}, v_{0}\right) \\
& w_{i}=\alpha_{i-1} v_{0}+\lambda_{i-1}{ }^{2} w_{i-2}+A_{\xi_{i-1}} v_{0}(3 \leq i \leq d-1) \\
& \xi_{i}=\lambda_{i-1}{ }^{2} \xi_{i-2}-h\left(w_{i-1}, v_{0}\right)(3 \leq i \leq d-1)
\end{aligned}\right.
$$

Proof. We shall prove in case of $d \geq 4$. First, by using the Gauss formula and the Frenet formula, we have

$$
\lambda_{1} v_{1}=\tilde{\nabla}_{v_{0}} v_{0}=h\left(v_{0}, v_{0}\right),
$$

which implies $\left(F_{1}^{\prime}\right)$. Also, from this relation, we have $\lambda_{1}^{2}=\left\langle h\left(v_{0}, v_{0}\right), h\left(v_{0}, v_{0}\right)\right\rangle$. Differentiating this relation in the direction v_{0} and using $\bar{\nabla} h=0$, we have $v_{0}\left(\lambda_{1}^{2}\right)=0$. Thus λ_{1} is constant along σ. By operating $\tilde{\nabla}_{v_{0}}$ to $\left(F_{1}^{\prime}\right)$ and using $\bar{\nabla} h=0$, we have

$$
\lambda_{1} \lambda_{2} v_{2}=\lambda_{1}^{2} v_{0}-A_{h\left(v_{0}, v_{0}\right)} v_{0}
$$

which implies $\left(F_{2}^{\prime}\right)$. From this relation, we have

$$
\lambda_{1}^{2} \lambda_{2}^{2}=-\lambda_{1}^{4}+\left\langle A_{h\left(v_{0}, v_{0}\right)} v_{0}, A_{h\left(v_{0}, v_{0}\right)} v_{0}\right\rangle .
$$

Differentiating this relation in the direction v_{0}, we have $\lambda_{1}^{2} v_{0}\left(\lambda_{2}^{2}\right)=0$, where we use $\bar{\nabla} A=0$ and $\bar{\nabla} h=0$. Thus λ_{2} is constant along σ. Assume that (F_{i-1}^{\prime}) and (F_{i}^{\prime}) hold and $\lambda_{1}, \ldots, \lambda_{i}$ are constant along σ, where $2 \leq i \leq d-2$. By operating $\tilde{\nabla}_{v_{0}}$ to $\left(F_{i}^{\prime}\right)$, we have

$$
\begin{align*}
\lambda_{1} \cdots \lambda_{i+1} v_{i+1}= & \lambda_{i}^{2}\left(\lambda_{1} \cdots \lambda_{i-1} v_{i-1}\right)+A_{\left(\nabla_{v_{0}}^{\perp} \xi_{i}-h\left(w_{i}, v_{0}\right)\right)} v_{0} \tag{3.1}\\
& +h\left(\alpha_{i} v_{0}+A_{\xi_{i}} v_{0}+\nabla_{v_{0}} w_{i}, v_{0}\right) .
\end{align*}
$$

On the other hand, it follows from $\bar{\nabla} A=0$ and $\bar{\nabla} h=0$ that $\nabla_{v_{0}}^{\perp} \xi_{i}=0$ and $\nabla_{v_{0}} w_{i}=0$. Hence, by substituting (F_{i-1}^{\prime}) in (3.1), we can obtain

$$
\lambda_{1} \cdots \lambda_{i+1} v_{i+1}=\lambda_{i}^{2} \alpha_{i-1} v_{0}+A_{\left(\lambda_{i}^{2} \xi_{i-1}-h\left(w_{i}, v_{0}\right)\right)} v_{0}+h\left(\alpha_{i} v_{0}+\lambda_{i}^{2} w_{i-1}+A_{\xi_{i}} v_{0}, v_{0}\right)
$$

which implies $\left(F_{i+1}^{\prime}\right)$. From this relation, we have

$$
\lambda_{1}^{2} \cdots \lambda_{i+1}^{2}=\alpha_{i}^{2}+2 \alpha_{i}\left\langle A_{\xi_{i}} v_{0}, v_{0}\right\rangle+\left\langle A_{\xi_{i}} v_{0}, A_{\xi_{i}} v_{0}\right\rangle+\left\langle h\left(w_{i}, v_{0}\right), h\left(w_{i}, v_{0}\right)\right\rangle .
$$

Differentiating this relation in the direction v_{0}, we can obtain $\lambda_{1}{ }^{2} \cdots \lambda_{i}{ }^{2}$ $\left(v_{0} \lambda_{i+1}{ }^{2}\right)=0$. Thus λ_{i+1} is constant along σ. Therefore, by the induction, the proof is completed.

Remark. It is clear that $\alpha_{2 i+1}=0, \xi_{2 i+1}=0(1 \leq i \leq[d / 2]-1)$ and $w_{2 j}=0$ $(1 \leq j \leq[(d-1) / 2])$, where [] is the Gauss symbol. Hence we have $v_{2 i} \in T M$ $(0 \leq i \leq[(d-1) / 2])$ and $v_{2 j+1} \in T^{\perp} M(0 \leq j \leq[d / 2]-1)$.

From this lemma, we can obtain the following result.
Proposition 3.2. Let $f: M^{n} \hookrightarrow \tilde{M}^{m}$ be an isometric immersion with parallel second fundamental form. Then f is generalized helical immersion of order at most $\min \{2 n, 2(m-n)+1\}$.

Proof. Let $\sigma: I \rightarrow M$ be a geodesic in M parametrized by the arclength s. Denote by $d(s)$ the osculating order of $f \circ \sigma$ at $(f \circ \sigma)(s)$ and set $d_{0}:=$ $\max _{s \in I} d(s)$. Also, set $I_{k}:=\{s \in I \mid d(s)=k\}\left(1 \leq k \leq d_{0}\right)$. It is clear that $I_{d_{0}}$ is open. By the previous lemma, $\hat{\lambda}_{i}\left(1 \leq i \leq d_{0}-1\right)$ are constant on $\dot{\sigma}\left(I_{d_{0}}\right)$, where $\hat{\lambda}_{i}$ ($1 \leq i \leq d_{0}-1$) are functions on $S M$ defined in Sect. 2. Hence, it follows from the continuity of $\hat{\lambda}_{i}$ on $\bigcup_{i \leq j} \bigcup_{p \in M} V_{p, j}\left(1 \leq i \leq d_{0}-1\right)$ that $I=I_{d_{0}}$ holds, that is, $f \circ \sigma$ is a helix of order d_{0}. Therefore, by the arbitrarity of σ, f is generalized helical. Furthermore, by the above remark, we see that f is of order at most $\min \{2 n, 2(m-n)+1\}$.

4. The order of the standard isometric embedding of a symmetric \boldsymbol{R}-space.

At the beginning of this section, we shall recall the characterizing theorems of isometric immersions into a Euclidean space and a sphere with parallel second fundamental form, which are used in Sect. 5 and 6.

Theorem 4.1 ([3]). Let f be a full isometric immersion of a complete Riemannian manifold M into a Euclidean space with parallel second fundamental form. Then f is congruent to $\phi \circ \pi$ or ($\phi \times$ id) $\circ \pi$, where ϕ is the standard isometric embedding of a symmetric R-space M_{0}, id is the identity map of an l-dimensional Euclidean space \boldsymbol{R}^{l} and π is a Riemannian covering of M onto M_{0} or $M_{0} \times \boldsymbol{R}^{l}$.

Theorem 4.2 ([18]). Let f be a full isometric immersion of an n-dimensional complete Riemannian manifold M into a sphere with parallel second fundamental form. Then the following statements (i) and (ii) hold:
(i) If f is minimal, then f is congruent to $\bar{\phi} \circ \pi$, where $\bar{\phi}$ is the umbilical reduction of the standard isometric embedding ϕ of a symmetric R-space M_{0} to a hypersphere containing $\phi\left(M_{0}\right)$ and π is a Riemannian covering of M onto M_{0},
(ii) If f is not minimal, then f is congruent to $\psi \circ \bar{\phi} \circ \pi$, where $\bar{\phi}$ and π are as in the above and ψ is a totally umbilical (but non-totally geodesic) embedding of codimension- 1 into a sphere and π is a Riemannian covering of M onto M_{0}.

Since the standard isometric embedding of a symmetric R-space and the umbilical reduction of one to hypersphere containing the image have the parallel second fundamental form, they are generalized helical by Proposition 3.2. Now we shall investigate the orders of those embeddings. Let $\phi: M_{0} \hookrightarrow \boldsymbol{R}^{m}$ be the standard isometric embedding of a symmetric R-space M_{0} of rank d, where the rank of M_{0} is the maximal dimension of a flat totally geodesic submanifold in M_{0}. Take an arbitrary unit tangent vector v of M_{0}. Since M_{0} is of rank d, there is
a d-dimensional flat torus T tangent to v totally geodesically embedded into M_{0} (see [6, Chapter V, Theorem 6.2]). Let σ_{v} be a maximal geodesic in M_{0} with $\dot{\sigma}_{v}(0)=v$. Since T is totally geodesic in M_{0}, σ_{v} is a geodesic in T, that is, $\phi \circ \sigma_{v}$ is a curve in $\phi(T)$. On the other hand, since the second fundamental form of ϕ is parallel, for almost every geodesic σ in $M_{0}, \phi \circ \sigma$ is a generic helix. From this fact, we can show that, for almost every geodesic σ in $T, \phi \circ \sigma$ is a generic helix. So, $\left.\phi\right|_{T}$ is extrinsic symmetric. Hence, by Theorem 3 of [4], $\phi(T)$ is a Clifford torus. Therefore, since helices in \boldsymbol{R}^{m} are given as (1.2), the order of a helix $\phi \circ \sigma_{v}$ is at most $2 d$. Also, we see that, for almost every geodesic σ in $T, \sigma \circ \sigma$ is a helix of order $2 d$. This implies that ϕ is of order $2 d$. Furthermore, this fact implies that the umbilical reduction $\bar{\phi}$ of ϕ to the hypersphere S^{m-1} containing $\phi\left(M_{0}\right)$ is of order $2 d-1$ or $2 d$. Let ψ be a totally umbilical (but non-totally geodesic) embedding of S^{m-1} into an m-dimensional sphere S^{m} and l a totally umbilical embedding of S^{m} into \boldsymbol{R}^{m+1}. Set $\tilde{\phi}:=\psi \circ \bar{\phi}$. It is clear that $\tilde{\phi}$ is generalized helical. Let σ_{0} be a geodesic in M_{0} such that $\bar{\phi} \circ \sigma_{0}$ is a helix of order $2 d-1$ or $2 d$ and T_{0} be the d-dimensional flat torus tangent to $\dot{\sigma}_{0}(0)$ totally geodesically embedded into M_{0}. It is clear that the centroid of the Clifford torus $(\imath \circ \tilde{\phi})\left(T_{0}\right)$ does not coincide with the center of S^{m}. Hence the order of $\tilde{\phi} \circ \sigma_{0}$ is $2 d$. This implies that $\tilde{\phi}$ is of order $2 d$.

5. Generalized helical immersions into a Euclidean space.

In this section, we shall characterize a generalized helical immersion of a compact Riemannian manifold into a Euclidean space satisfying the condition (*) stated in Introduction. In the sequel, we assume that all geodesics are maximal and denote the maximal geodesic in M parametrized by the arclength s whose velocity vector at $s=0$ is $v(E S M)$ by σ_{v}. First we shall prepare the following lemma.

Lemma 5.1. Let f be an isometric immersion of an $n(\geq 2)$-dimensional compact Riemannian manifold M into a Euclidean space. Assume that $f_{*}\left(T_{q} M\right)=$ $f_{*}\left(T_{p} M\right)$ holds for every $q \in f^{-1}(f(p))$ and furthermore, for every great circle C in $S_{p} M$ through a point v_{0} of $S_{p} M$, there are four unit tangent vectors $u_{1}, \ldots, u_{4} \in C$ with $u_{i} \neq \pm u_{j}(1 \leq i \neq j \leq 4)$ such that $f \circ \sigma_{u_{i}}$ is a generic helix $(1 \leq i \leq 4)$. Then $\bar{\nabla} h_{p}=0$ holds.

Proof. Take an arbitrary $w_{0} \in S_{p} M \backslash\left\{ \pm v_{0}\right\}$. Let C be a great circle in $S_{p} M$ through v_{0} and w_{0}. From the assumption, there exist unit tangent vectors $u_{1}, \ldots, u_{4} \in C$ with $u_{i} \neq \pm u_{j}(1 \leq i \neq j \leq 4)$ such that $f \circ \sigma_{u_{i}}$ is a generic helix
$(1 \leq i \leq 4)$. Then, we can show $\bar{\nabla} h\left(u_{i}, u_{i}, u_{i}\right)=0(1 \leq i \leq 4)$ because $f_{*}\left(T_{q} M\right)=$ $f_{*}\left(T_{p} M\right)$ holds for every $q \in f^{-1}(f(p))$ and M is compact (see [5, the proof of Theorem]). Hence, since $\bar{\nabla} h$ is symmetric by the Codazzi equation, we see that $\bar{\nabla} h=0$ on C^{3}. In particular, we have $(\bar{\nabla} h)\left(v_{0}, v_{0}, v_{0}\right)=(\bar{\nabla} h)\left(w_{0}, w_{0}, w_{0}\right)=0$. Thus, from the arbitrarity of w_{0}, we see that $\bar{\nabla} h(w, w, w)=0$ holds for every $w \in S_{p} M$. Therefore, we obtain $\bar{\nabla} h_{p}=0$.

For simplicity, we shall denote the fact that two isometric immersions f_{1} and f_{2} are congruent by $f_{1} \approx f_{2}$.

In case of $\operatorname{dim} M=2$, we can show the following result in terms of the previous lemma.

Proposition 5.2. Let f be a full isometric immersion of a 2-dimensional compact Riemannian manifold M into a Euclidean space. Assume that, for each $p \in M$, there are at least four geodesics in M through p which are viewed as generic helices in the ambient Euclidean space. Then the following (i), (ii) or (iii) holds:
(i) $f \approx \phi_{1}$, where ϕ_{1} is a totally umbilical embedding of a 2-dimensional sphere into a 3-dimensional Euclidean space R^{3},
(ii) $f \approx \phi_{2} \circ \pi$, where ϕ_{2} is the Veronese embedding of a 2-dimensional real projective space $\boldsymbol{R} P^{2}$ into a 5 -dimensional Euclidean space \boldsymbol{R}^{5} and π is a Riemannian covering of M onto $\boldsymbol{R} P^{2}$,
(iii) $f \approx \phi_{3} \circ \pi^{\prime}$, where ϕ_{3} is the Clifford embedding of a 2-dimensional flat torus T into a 4-dimensional Euclidean space \boldsymbol{R}^{4} and π^{\prime} is a Riemannian covering of M onto T.

Proof. Let $U:=\left\{p \in M \mid\left(\forall q \in f^{-1}(f(p))\right)\left[f_{*}\left(T_{q} M\right)=f_{*}\left(T_{p} M\right)\right]\right\}$. From Lemma 5.1, we have $\bar{\nabla} h=0$ on U. It is clear that U is dense in M. Therefore, $\bar{\nabla} h=0$ holds on M. Hence, according to Theorem 4.1, f is congruent to the composition $\phi \circ \pi$ of the standard isometric embedding ϕ of a 2-dimensional symmetric R-space M_{0} and a Riemannian covering π of M onto M_{0}. It follows from $\operatorname{dim} M_{0}=2$ that M_{0} is of rank 1 or 2 . If M_{0} is of rank 1 , then M_{0} is a 2-dimensional sphere or a 2 -dimensional real projective space. Also, if M_{0} is of rank 2 , then M_{0} is a 2 -dimensional flat torus. Hence we can obtain the conclusion.

In the sequel, we assume that f is generalized helical. For each geodesic σ in $M, f \circ \sigma$ is contained in a compact set $f(M)$. Hence, $f \circ \sigma$ is a helix of even order. Thus f is of even order. Let the order of f be $2 d$. As in Sect. 2, we define
$V_{p, i}, \hat{\lambda}_{i}$ and \hat{v}_{i}, where $i \geq 1$ and $p \in M$. Also, we define a matrix-valued function $\hat{\Lambda}$ on $S M$ by

$$
\hat{\Lambda}:=\left(\begin{array}{cccccc}
0 & -\hat{\lambda}_{1} & 0 & \cdots & \cdots & 0 \\
\hat{\lambda}_{1} & 0 & -\hat{\lambda}_{2} & \ddots & & \vdots \\
0 & \hat{\lambda}_{2} & 0 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & \ddots & 0 \\
\vdots & & \ddots & \ddots & \ddots & -\hat{\lambda}_{2 d-1} \\
0 & \cdots & \cdots & 0 & \hat{\lambda}_{2 d-1} & 0
\end{array}\right)
$$

Let ${ }^{t}\left(\eta_{0}(v, s), \ldots, \eta_{2 d-1}(v, s)\right)$ be the first column of the matrix $\int_{0}^{s} \exp s \hat{\Lambda}(v) d s$, where $v \in S M$ and $s>0$. Since f is of order $2 d$, there is $p \in M$ with $V_{p, 2 d} \neq \emptyset$. In the sequel, we assume that $v \in V_{p, 2 d}$. From the Frenet formula (1.1), we can obtain the following expression of $f \circ \sigma_{v}$:

$$
\begin{equation*}
f\left(\sigma_{v}(s)\right)=f(p)+\sum_{i=0}^{2 d-1} \eta_{i}(v, s) \hat{v}_{i}(v) \tag{5.1}
\end{equation*}
$$

for $s>0$. By the straightforward computation,

$$
\operatorname{det} \hat{\Lambda}(v)=\hat{\lambda}_{1}(v)^{2} \hat{\lambda}_{3}(v)^{2} \cdots \hat{\lambda}_{2 d-1}(v)^{2} \neq 0
$$

is shown. Hence, since $\hat{\Lambda}(v)$ is skew-symmetric and non-singular, the normal form of $\hat{\Lambda}(v)$ is given by

$$
T(v)^{-1} \hat{\Lambda}(v) T(v)=\bigoplus_{i=1}^{d} B\left(a_{i}(v)\right)
$$

with some orthogonal matrix $T(v)$, where

$$
B\left(a_{i}(v)\right)=\left(\begin{array}{cc}
0 & a_{i}(v) \\
-a_{i}(v) & 0
\end{array}\right) \quad\left(0<a_{1}(v) \leq \cdots \leq a_{d}(v)\right) .
$$

In the same method as the proof of Lemma 3.1 in [16], we can show that $a_{1}(v), \ldots, a_{d}(v)$ are mutually distinct and that the following relations hold:

$$
\begin{array}{ll}
\eta_{2 i}(v, s)=\sum_{k=1}^{d} b_{2 i, k}(v)\left(1-\cos \left(a_{k}(v) s\right)\right) & (0 \leq i \leq d-1), \tag{5.2}\\
\eta_{2 i+1}(v, s)=\sum_{k=1}^{d} b_{2 i+1, k}(v) \sin \left(a_{k}(v) s\right) & (0 \leq i \leq d-1)
\end{array}
$$

where $b_{i, k}(0 \leq i \leq 2 d-1,1 \leq k \leq d)$ are functions on $V_{p, 2 d}$ determined by $\hat{\lambda}_{1}, \ldots, \hat{\lambda}_{2 d-1}$. From (5.1) and (5.2), we can obtain the following expression of $f \circ \sigma_{v}:$

$$
\begin{align*}
f\left(\sigma_{v}(s)\right)= & f(p)+\sum_{i=0}^{d-1}\left(\sum_{k=1}^{d} b_{2 i, k}(v)\right) \hat{v}_{2 i}(v) \tag{5.3}\\
+ & \sum_{k=1}^{d}\left\{\left(-\sum_{i=0}^{d-1} b_{2 i, k}(v) \hat{v}_{2 i}(v)\right) \cos \left(a_{k}(v) s\right)\right. \\
& \left.+\left(\sum_{i=0}^{d-1} b_{2 i+1, k}(v) \hat{v}_{2 i+1}(v)\right) \sin \left(a_{k}(v) s\right)\right\} .
\end{align*}
$$

On the other hand, we can prove the following lemma.

Lemma 5.3. The functions $a_{i}(1 \leq i \leq d)$ on $V_{p, 2 d}$ are analytic.

Proof. Denote by $\rho(z, v)$ the characteristic polynomial $\operatorname{det}(z E-\hat{\Lambda}(v))$ of $\hat{\Lambda}(v)$, where $v \in V_{p, 2 d}$ and E is the identity matrix. Since $\left.\hat{\lambda}_{i}\right|_{V_{p, 2 d}}(1 \leq i \leq 2 d-1)$ are analytic by Lemma 2.1, $\rho(z, v)$ is analytic with respect to v on $V_{p, 2 d}$. Also, we have

$$
\begin{equation*}
\rho(z, v)=\left(z^{2}+a_{1}(v)^{2}\right) \cdots\left(z^{2}+a_{d}(v)^{2}\right) \tag{5.4}
\end{equation*}
$$

for every $v \in V_{p, 2 d}$. Hence, we see that $a_{i}(1 \leq i \leq d)$ are continuous on $V_{p, 2 d}$. Fix $v_{0} \in V_{p, 2 d}$ and $i_{0} \in\{1, \ldots, d\}$. Since $a_{1}\left(v_{0}\right), \ldots, a_{d}\left(v_{0}\right)$ are mutually distinct, we can take a closed curve K in the complex plane such that $a_{i_{0}}\left(v_{0}\right) \sqrt{-1}$ positions inside K and $a_{i}\left(v_{0}\right) \sqrt{-1}\left(i \neq i_{0}\right)$ position outside K. It follows from the continuity of a_{i} $(1 \leq i \leq d)$ that there is a neighbourhood U of v_{0} in $V_{p, 2 d}$ such that, for every $v \in U, a_{i_{0}}(v) \sqrt{-1}$ positions inside K and $a_{i}(v) \sqrt{-1}\left(i \neq i_{0}\right)$ position outside K. From (5.4), we have

$$
a_{i_{0}}(v) \sqrt{-1}=\frac{1}{2 \pi \sqrt{-1}} \int_{K} z \frac{d \rho(z, v) / d z}{\rho(z, v)} d z
$$

for every $v \in U$. Hence, it follows from the analyticity of $\rho(z, v)$ with respect to v that $a_{i_{0}}$ is analytic on U. Therefore, from the arbitrarity of v_{0}, we see that so is $a_{i_{0}}$ on $V_{p, 2 d}$.

From Lemma 5.1, 5.3 and (5.3), we can prove the following characterizing theorem.

Theorem 5.4. Let f be a full generalized helical immersion of order $2 d$ of an $n(\geq 2)$-dimensional compact Riemannian manifold M into a Euclidean space. Assume that the following condition (*) holds:
(*) For each $p \in M$, there is at least one geodesic in M through p which is viewed as a generic helix of order $2 d$ in the ambient Euclidean space.
Then $f \approx \phi \circ \pi$, where ϕ is the standard isometric embedding of a symmetric R-space M_{0} of rank d and π is a Riemannian covering of M onto M_{0}.

Proof. In case of $d=1, f$ is a planar geodesic immersion. Hence, by [14], $f \approx \phi \circ \pi$, where ϕ is the standard isometric embedding of a symmetric R -space M_{0} of rank 1 and π is a Riemannian covering of M onto M_{0}. Assume that $d \geq 2$. Set $U:=\left\{p \in M \mid\left(\forall q \in f^{-1}(f(p))\right)\left[f_{*}\left(T_{q} M\right)=f_{*}\left(T_{p} M\right)\right]\right\}$. Fix $p_{0} \in U$. From the assumption, there exists $v_{0} \in V_{p_{0}, 2 d}$ such that $f \circ \sigma_{\nu_{0}}$ is generic. Since $V_{p_{0}, 2 d}$ is a dense open set in $S_{p_{0}} M$ by Lemma 2.2, there is a convex neighbourhood W of v_{0} in $S_{p_{0}} M$ contained in $V_{p_{0}, 2 d}$. Take an arbitrary $w_{0} \in W \backslash\left\{ \pm v_{0}\right\}$. Let $C_{w_{0}}$ be the great circle in $S_{p_{0}} M$ through v_{0} and w_{0}. Let $F:[0, \pi / 2] \rightarrow \boldsymbol{R}^{d}$ be a curve in \boldsymbol{R}^{d} defined by $F(\theta):=\left(a_{1}\left(\left(v_{0} \cos \theta+w_{0} \sin \theta\right) /\left(\left\|v_{0} \cos \theta+w_{0} \sin \theta\right\|\right)\right), \ldots, a_{d}\left(\left(v_{0} \cos \theta+\right.\right.\right.$ $\left.\left.w_{0} \sin \theta\right) /\left(\left\|v_{0} \cos \theta+w_{0} \sin \theta\right\|\right)\right)$) for $\theta \in[0, \pi / 2]$, where $a_{i}(1 \leq i \leq d)$ are the above functions on $V_{p_{0}, 2 d}$. This curve F is an analytic curve by Lemma 5.3. Let $P_{r_{1} \cdots r_{d}}$ be the hyperplane in \boldsymbol{R}^{d} through the origin and with the normal vector $\left(r_{1}, \ldots, r_{d}\right)$. Since $f \circ \sigma_{v_{0}}$ is generic, $F(0) \in \boldsymbol{R}^{d} \backslash \bigcup_{\left(r_{1}, \ldots, r_{d}\right) \in Q^{d} \backslash\{(0, \ldots, 0)\}} P_{r_{1} \ldots r_{d}}$ by (5.3). Suppose that $J:=\left\{\theta \in(0, \pi / 2] \mid \boldsymbol{F}(\theta) \in \boldsymbol{R}^{d} \backslash \bigcup_{\left(r_{1}, \ldots, r_{d}\right) \in Q^{d} \backslash\{(0, \ldots, 0)\}} P_{r_{1} \cdots r_{d}}\right\}$ is finite. Set $\theta_{0}:=\min J$. Since $F\left(\left(0, \theta_{0}\right)\right) \subset \bigcup_{\left(r_{1}, \ldots, r_{d}\right) \in Q^{d} \backslash\{(0, \ldots, 0)\}} P_{r_{1} \ldots r_{d}}$, there is $\left(r_{1}^{0}, \ldots, r_{d}^{0}\right)$ $\in \underline{Q}^{d} \backslash\{(0, \ldots, 0)\}$ such that $F\left(\left[\theta_{1}, \theta_{1}+\varepsilon\right]\right) \subset P_{r_{1}^{0} \ldots r_{d}^{0}}$ for some $\theta_{1} \in\left(0, \theta_{0}\right)$ and a sufficiently small positive number ε. Hence, since F is an analytic curve, we have $F([0, \pi / 2]) \subset P_{r_{1}^{0} \ldots r_{d}^{0}}$. In particular, we have $F(0) \in P_{r_{1}^{0} \ldots r_{d}^{0}}$. This contradicts $F(0) \in$ $\boldsymbol{R}^{d} \backslash \bigcup_{\left(r_{1}, \ldots, r_{d}\right) \in Q^{d} \backslash\{(0, \ldots, 0)\}} P_{r_{1} \cdots r_{d}}$. Therefore, J is infinite. This implies that

$$
\left\{v \in C_{w_{0}} \mid f \circ \sigma_{v}: \text { a generic helix }\right\}
$$

is infinite. Hence, from the arbitrarity of $w_{0} \in W \backslash\left\{ \pm v_{0}\right\}$, we can obtain $\bar{\nabla} h_{p_{0}}=0$ in terms of Lemma 5.1. Thus, by the arbitrarity of $p_{0}, \bar{\nabla} h=0$ holds on U. Furthermore, since U is dense in $M, \bar{\nabla} h=0$ holds on M. Hence, from Theorem 4.1, we have $f \approx \phi \circ \pi$, where ϕ is the standard isometric embedding of a symmetric R-space M_{0} and π is a Riemannian covering of M onto M_{0}. Furthermore, since f is of order $2 d, M_{0}$ is of rank d (see Sect. 4).

Here we shall construct an example of a generalized helical immersion of a flat torus into a Euclidean space. Let $u_{t}=(1 / \sqrt{m-1}, \ldots, 1 / \sqrt{m-1},-1 / \sqrt{m-1}$,
$\ldots,-1 / \sqrt{m-1})$, where $m=2^{k}+1(k \geq 1)$ and the numbers of $1 / \sqrt{m-1}$ and $-1 / \sqrt{m-1}$ are $t(t \geq 1)$. Let f be a map from an $n(=k+1)$-dimensional Euclidean space \boldsymbol{R}^{n} to a $2 m$-dimensional Euclidean space $\boldsymbol{R}^{2 m}$ defined by

$$
\begin{aligned}
f\left(x_{1}, \ldots, x_{n}\right):= & \left(\cos \left(\sum_{i=1}^{n} a_{i 1} x_{i}\right), \sin \left(\sum_{i=1}^{n} a_{i 1} x_{i}\right), \ldots\right. \\
& \left.\cos \left(\sum_{i=1}^{n} a_{i m} x_{i}\right), \sin \left(\sum_{i=1}^{n} a_{i m} x_{i}\right)\right)
\end{aligned}
$$

where $\left(x_{1}, \ldots, x_{n}\right)$ is a Euclidean coordinate system of \boldsymbol{R}^{n} and $a_{i j}(1 \leq i \leq n$, $1 \leq j \leq m)$ are constants defined by

$$
\begin{aligned}
& \left(a_{11}, \ldots, a_{1 m}\right)=\left(\frac{1}{\sqrt{m(m-1)}}, \ldots, \frac{1}{\sqrt{m(m-1)}}, \sqrt{\frac{m-1}{m}}\right) \\
& \left(a_{i 1}, \ldots, a_{i m}\right)=\left(u_{2^{i-2}}, \ldots, u_{2^{i-2}}, 0\right) \quad(2 \leq i \leq n)
\end{aligned}
$$

It is clear that $\sum_{j=1}^{m} a_{i_{1} j} a_{i_{2} j}=\delta_{i_{1} i_{2}}\left(1 \leq i_{1}, i_{2} \leq n\right)$, which assures that f is an isometric immersion. Clearly f deduces an isometric immersion \bar{f} of an n dimensional flat torus $T^{n}=S^{1}(\sqrt{m(m-1)}) \times S^{1}(\sqrt{m-1}) \times \cdots \times S^{1}(\sqrt{m-1})$ into $R^{2 m}$, where $S^{1}(\sqrt{m(m-1})$) (resp. $S^{1}(\sqrt{m-1})$) is a 1 -dimensional sphere of radius $\sqrt{m(m-1)}$ (resp. $\sqrt{m-1})$. Let G be the transformation group of T^{n} induced from that of all parallel translations of R^{n} and H the isotropy group of G at a point of T^{n}. It is easy to show that \bar{f} is G-equivariant, where we note that the definition of a G-equivariant immersion will be stated in Sect. 7. Denote by π the covering map of R^{n} onto $T^{n}=G / H$. Take an arbitrary geodesic $\sigma(s):=$ $\pi\left(b_{1} s, \ldots, b_{n} s\right)$ in T^{n}, where $\sum_{i=1}^{n} b_{i}^{2}=1$. Then we have

$$
\begin{array}{r}
(\bar{f} \circ \sigma)(s)=\left(\cos \left(s \sum_{i=1}^{n} a_{i 1} b_{i}\right), \sin \left(s \sum_{i=1}^{n} a_{i 1} b_{i}\right), \ldots\right. \\
\\
\left.\cos \left(s \sum_{i=1}^{n} a_{i m} b_{i}\right), \sin \left(s \sum_{i=1}^{n} a_{i m} b_{i}\right)\right)
\end{array}
$$

which implies that $\bar{f} \circ \sigma$ is a helix of order at most $2 m$ in $R^{2 m}$. Let p_{i} ($1 \leq i \leq n-1$) be prime numbers with $3 \leq p_{1}<p_{2}<\cdots<p_{n-1}$. In particular, if $\left(b_{1}, \ldots, b_{n}\right)=\left(1, \sqrt{p_{1}}, \sqrt{p_{2}}, \ldots, \sqrt{p_{n-1}}\right)$, then $\left|\sum_{i=1}^{n} a_{i j} b_{i}\right|(1 \leq j \leq m)$ are mutually distinct and hence $\bar{f} \circ \sigma$ is of order $2 m$. Thus \bar{f} is a generalized helical immersion of order $2 m$. On the other hand, since $1 \cdot \sum_{i=1}^{n} a_{i 1} b_{i}+\cdots+1 \cdot \sum_{i=1}^{n} a_{i, m-1} b_{i}+$
$(-1) \cdot \sum_{i=1}^{n} a_{i m} b_{i}=0, \bar{f} \circ \sigma$ cannot be a generic helix of order $2 m$. This fact implies together with Lemma 2.2 that almost every geodesic in T^{n} is not viewed as a generic helix in $\boldsymbol{R}^{2 m}$. Namely, the second fundamental form of \bar{f} is not parallel. In particular, if $\left(b_{1}, \ldots, b_{n}\right)=(0, \sqrt{3}, \sqrt{5}, 0, \ldots, 0)$, then we have

$$
\left|\sum_{i=1}^{n} a_{i j} b_{i}\right|= \begin{cases}\frac{\sqrt{5}+\sqrt{3}}{\sqrt{m-1}} & (j \equiv 0,1(\bmod 4), j<m) \\ \frac{\sqrt{5}-\sqrt{3}}{\sqrt{m-1}} & (j \equiv 2,3(\bmod 4), j<m)\end{cases}
$$

and $\sum_{i=1}^{n} a_{i m} b_{i}=0$ and hence $\bar{f} \circ \sigma$ is a generic helix of order 4. Therefore, since \bar{f} is G-equivariant, we see that, for each $p \in T^{n}$, there is at least one geodesic in T^{n} through p which is viewed as a generic helix in $\boldsymbol{R}^{2 m}$. From this example, we see that the condition (*) in Theorem 5.4 cannot be replaced by the following condition:

For each $p \in M$, there is at least one geodesic in M through p which is viewed as a generic helix in the ambient Euclidean space.

From Theorem 5.4, we can obtain the following result in the case where f is of order 4.

Corollary 5.5. Let f be a full generalized helical immersion of order 4 of an $n(\geq 2)$-dimensional compact Riemannian manifold M into a Euclidean space. Assume that, for each $p \in M$, there is at least one non-periodic geodesic in M through p. Then $f \approx \phi \circ \pi$, where ϕ is the standard isometric embedding of a symmetric R-space M_{0} of rank 2 and π is a Riemannian covering of M onto M_{0}.

Proof. Let σ be a non-periodic geodesic in M. From the assumption, $f \circ \sigma$ is a helix of order 2 or 4 . Since σ is non-periodic, so is also $f \circ \sigma$ (see Proof of Theorem 2 of [5]]. Hence $f \circ \sigma$ is a generic helix of order 4. Therefore, the conclusion is deduced from Theorem 5.4.

6. Generalized helical immersions into a sphere.

In this section, we shall deduce some results for an isometric immersion into a sphere.

Proposition 6.1. Let f be a full isometric immersion of a 2-dimensional compact Riemannian manifold M into a sphere. Assume that, for each $p \in M$, there are at least four geodesics in M through p which are viewed as generic helices in the ambient sphere. Then, if f is minimal, then the following (i), (ii) or (iii) holds:
(i) $f \approx$ id, where id is the identity transformation of a 2-dimensional sphere,
(ii) $f \approx \bar{\phi}_{1} \circ \pi$, where $\bar{\phi}_{1}$ is the umbilical reduction of the Veronese embedding ϕ_{1} of a 2-dimensional real projective space $R P^{2}$ into a 5-dimensional Euclidean space to a hypersphere, π is a Riemannian covering of M onto $\boldsymbol{R} P^{2}$,
(iii) $f \approx \bar{\phi}_{2} \circ \pi^{\prime}$, where $\bar{\phi}_{2}$ is the Clifford embedding of a 2-dimensional flat torus T into a 3-dimensional sphere S^{3}, π^{\prime} is a Riemannian covering of M onto T. Also, if f is not minimal, then $f \approx \psi \circ \bar{\phi}$, where $\bar{\phi}$ is the above immersion id, $\bar{\phi}_{1} \circ \pi$ or $\bar{\phi}_{2} \circ \pi^{\prime}$ and ψ is a totally umbilical (but non-totally geodesic) embedding of codimension-1 into a sphere.

Proof. Let t be a totally umbilical embedding of codimension-1 of the ambient sphere into a Euclidean space. It is easy to show that $i \circ f$ satisfies the conditions (other than the fullness) of Proposition 5.2, Hence, we can obtain the conclusion in terms of Proposition 5.2.

Also, we can obtain the following characterizing theorem in terms of Theorem 5.4

Theorem 6.2. Let f be a full generalized helical immersion of order $2 d-1$ or $2 d(d \geq 2)$ of an $n(\geq 2)$-dimensional compact Riemannian manifold M into a sphere. Assume that, for each $p \in M$, there is at least one geodesic in M through p which is viewed as a generic helix of order $2 d-1$ or $2 d$ in the ambient sphere. Then the following statements (i) and (ii) hold:
(i) If f is minimal, then $f \approx \bar{\phi} \circ \pi$, where $\bar{\phi}$ is the umbilical reduction of the standard isometric embedding ϕ of a symmetric R-space M_{0} of rank d to a hypersphere and π is a Riemannian covering of M onto M_{0}.
(ii) If f is not minimal, then f is of order $2 d$ and $f \approx \psi \circ \bar{\phi} \circ \pi$, where $\bar{\phi}$ and π are as in the above and ψ is a totally umbilical (but non-totally geodesic) embedding of codimension- 1 into a sphere.

Proof. Let l be a totally umbilical embedding of codimension- 1 of the ambient sphere into a Euclidean space. It is clear that $l \circ f$ is a (not necessarily full) generalized helical immersion of order $2 d$. Also, it follows from the assumption that, for each $p \in M$, there is at least one geodesic in M through p which is viewed as a generic helix of order $2 d$ in the Euclidean space. Hence, we can obtain the conclusion in terms of Theorem 5.4.

In particular, we can obtain the following result in the case where f is of order 3 or 4.

Corollary 6.3. Let f be a full generalized helical immersion of order 3 or 4 of an $n(\geq 2)$-dimensional compact Riemannian manifold M into a sphere. Assume that, for each $p \in M$, there is at least one non-periodic geodesic in M through p. Then the following statements (i) and (ii) hold:
(i) If f is minimal, then $f \approx \bar{\phi} \circ \pi$, where $\bar{\phi}$ is the umbilical reduction of the standard isometric embedding ϕ of a symmetric R-space M_{0} of rank 2 to a hypersphere and π is a Riemannian covering of M onto M_{0}.
(ii) If f is not minimal, then f is of order 4 and $f \approx \psi \circ \bar{\phi} \circ \pi$, where $\bar{\phi}$ and π are as in the above and ψ is a totally umbilical (but non-totally geodesic) embedding of codimension- 1 into a sphere.

Proof. Let σ be a non-periodic geodesic in M. From the assumption, $f \circ \sigma$ is a helix of order at most 4. Since σ is non-periodic, $f \circ \sigma$ is a generic helix of order 3 or 4. Therefore, the conclusion is deduced from Theorem 6.2.

7. Concluding remarks.

In this section, we shall state results deduced from those in Sect. 5 and 6 in the case where M is a Riemannian homogeneous space and f is equivariant. Let f be an isometric immersion of a Riemannian homogeneous space $M=G / K$ into a Riemannian manifold \tilde{M}. If there is a continuous homomorphism ρ of G into the isometry group of \tilde{M} such that $f(g \cdot p)=\rho(g)(f(p))$ for every $p \in M$ and every $g \in G$, then f is said to be G-equivariant. The following result is deduced from Theorem 5.4

Theorem 7.1. Let f be a G-equivariant full generalized helical immersion of order $2 d$ of an $n(\geq 2)$-dimensional compact Riemannian homogeneous space $M=$ G / K into a Euclidean space. Assume that there is at least one geodesic in M which is viewed as a generic helix of order $2 d$ in the ambient Euclidean space. Then $f \approx \phi \circ \pi$, where ϕ is the standard isometric embedding of a symmetric R-space M_{0} of rank d and π is a Riemannian covering of M onto M_{0}.

Also, the following result is deduced from Theorem 6.2.

Theorem 7.2. Let f be a G-equivariant full generalized helical immersion of order $2 d-1$ or $2 d$ of an $n(\geq 2)$-dimensional compact Riemannian homogeneous space $M=G / K$ into a sphere. Assume that there is at least one geodesic in M which is viewed as a generic helix of order $2 d-1$ or $2 d$ in the ambient sphere. Then the statement (i) and (ii) in Theorem 6.2 hold.

References

[1] Besse, A. L.: Manifolds all of whose geodesics are closed. Berlin, Heidelberg, New York: Springer 1978
[2] Ferus, D.: Immersionen mit paralleler zweiter Fundamentalform. Beispiele and Nicht-Beispiele. Manuscripta Math. 12, 153-162 (1974)
[3] Ferus, D.: Immersions with parallel second fundamental form. Math. Z. 140, $87-93$ (1974)
[4] Ferus, D.: Symmetric submanifolds of Euclidean space. Math. Ann. 247, 81-93 (1980)
[5] Ferus, D., Schirrmacher, S.: Submanifolds in Euclidean space with simple geodesics. Math. Ann. 260, 57-62 (1982)
[6] Helgason, S.: Differential geometry, Lie groups and symmetric spaces, Academic Press, New York, 1978
[7] Hong, S. L.: Isometric immersions of manifolds with plane geodesics into a Euclidean space. J. Differential Geometry 8, 259-278 (1973)
[8] Ki, U. H., Kim, Y. H.: Surfaces with simple geodesics through a point. J. of Geometry 51, 67-78 (1994)
[9] Kobayashi, S., Nagano, T.: On filtered algebras and geometric structures. J. Math. Mech. 13, 875-907 (1964)
[10] Kobayashi, S.: Isometric imbeddings of compact symmetric spaces. Tôhoku Math. J. 20, 21-25 (1968)
[11] Little, J. A.: Manifolds with planar geodesics. J. Differential Geometry 11, 265-285 (1976)
[12] Nagano, T.: Transformation groups on compact symmetric spaces. Trans. Amer. Math. Soc.
118, 428-453 (1965)
[13] Nakagawa, H.: On a certain minimal immersion of a Riemannian manifold into a sphere. Kōdai Math. J. 3, 321-340 (1980)
[14] Sakamoto, K.: Planar geodesic immersions. Tôhoku Math. J. 29, 25-56 (1977)
[15] Sakamoto, K.: Helical immersions into a unit sphere. Math. Ann. 261, 63-80 (1982)
[16] Sakamoto, K.: Helical immersions into a Euclidean space. Michigan Math. J. 33, 353-364 (1986)
[17] Song, H. H., Kimura, T., Koike, N.: On proper helices and extrinsic spheres in pseudoRiemannian geometry. Tsukuba J. of Math. 20, 263-280 (1996)
[18] Takeuchi, M.: Parallel submanifolds of space forms. Manifolds and Lie groups: Papers in honor of Yôzô Matsushima, Birkhäuser 1981, 429-447
[19] Takeuchi, M., Kobayashi, S.: Minimal imbeddings of R-spaces. J. Differential Geometry 2, 203-215 (1968)
[20] Tsukada, K.: Helical geodesic immersions of compact rank one symmetric spaces into spheres. Tokyo J. Math. 6, 267-285 (1983)
[21] Walden, R.: Untermannigfaltigkeiten mit paralleler zweiter Fundamentalform in euklidischen Räumen und Sphären. Manuscripta Math. 10, 91-102 (1973)

Naoyuki Koikie

Department of Mathematics
Faculty of Science
Science University of Tokyo
Tokyo 162-0827
Japan

