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GENERALIZED HELICAL IMMERSIONS

By

Naoyuki KOIKE

Introduction.

In this paper, we assume that all geodesics are parametrized by the arclength.
Let $f$ be an isometric immersion of a Riemannian manifold $M$ into a Riemannian
manifold $\tilde{M}$ . If geodesics in $M$ are viewed as specific curves in $\tilde{M}$, what are the
shape of $f(M)$? Several geometricians studied this problem. K. Sakamoto

characterized an isometric immersion $f$ of a complete connected Riemannian
manifold $M$ into a Euclidean space or a sphere such that every geodesic in $M$ is
viewed as a helix in the ambient space and that the order and the Frenet

curvatures of the helix are independent of the choice of the geodesic (cf. [15],

[16]). In [5], D. Fems and S. Schirrmacher investigated an isometric immersion $f$

of a compact connected Riemannian manifold $M$ into a Euclidean space $R^{m}$

satisfying the following condition:
(A) Almost every geodesic in $M$ is viewed as a generic helix in $R^{m}$ .

Here “almost every geodesic” means that the tangent vectors of such geodesics fill
the unit tangent bundle of $M$ up to a closed set of measure zero and a generic
helix means a helix of even order such that the closure of the image coincides
with the lowest dimensional Clifford toms containing it. $\ln[4]$ and [5], they
showed that the condition (A) is equivalent to the following two conditions,

respectively:
(B) $f$ is extrinsic symmetric in the sense of [4].

(C) The second fundamental form of $f$ is parallel.

In this paper, we consider an isometric immersion $f$ of a Riemannian manifold $M$

into a Riemannian manifold $\tilde{M}$ such that every geodesic in $M$ is viewed as a helix
in $\tilde{M}$, where the order of the helix may depend on the choice of the geodesic. We
call such a immersion a generalized helical immersion and the highest order of
those helices the order of $f$ First, we show that all isometric immersions with
parallel second fundamental form are generalized helical. Conversely, it is very
interesting to investigate in what case a generalized helical immersion has the
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parallel second fundamental form. We tackle this problem for a generalized

helical immersion of a compact Riemannian manifold into a Euclidean space.
Concretely, we can obtain the following result.

THEOREM. Let $f$ be a generalized helical immersion of order $2d$ of a compact

connected Riemannian manifold $M$ into $a$ Euclidean space $R^{m}$ . Assume that the
following condition $(*)$ hold:

$(*)$ For each $p\in M$, there is at least one geodesic in $M$ through $p$ which is

viewed as a generic helix of order $2d$ in $R^{m}$ .
Then $f$ has the parallel second fundamental form and hence $f$ is congruent to the

composition of the standard isometric embedding of a symmetric R-space $M_{0}$ and a

totally geodesic embedding.

Furthermore, we can show that the symmetric R-space $M_{0}$ is of rank $d$. Note

that this condition $(*)$ is very weaker than the above condition $(A)$ in a sense.
In Sect. 1 and 2, we prepare basic notations, definitions and lemmas. In Sect.

3, we show that all isometric immersions with parallel second fundamental form

are generalized helical, where the ambient space may be a general Riemannian

manifold. In Sect. 4, we investigate the order of the standard isometric embedding

of a symmetric R-space into a Euclidean space. In Sect. 5, we characterize a
generalized helical immersion $f$ of a compact connected Riemannian manifold $M$

into a Euclidean space satisfying the above condition $(*)$ , where we use results in

Sect. 2 and 4. In Sect. 6, we obtain results analogous to those of Sect. 5 in the

case where the ambient space is a sphere. In Sect. 7, in the case where $M$ is a
Riemannian homogeneous space $G/K$ and $f$ is a G-equivariant, we state results

deduced from those in Sect. 5 and 6.
Throughout this paper, unless otherwise mentioned, we assume that all

geometric objects are of class $C^{\infty}$ and all manifolds are connected ones without

boundary.

1. Notations and defimitions.

In this section, we shall state basic notations and definitions. Let $\sigma:I\rightarrow M$

be a curve in a Riemannian manifold $M$ parametrized by the arclength $s$, where $I$

is an open interval of the real line $R$ . Denote by $v_{0}$ the velocity vector field $\dot{\sigma}$ of
$\sigma$ . Set $\lambda_{1};=\Vert\nabla_{v_{0}}v_{0}\Vert$ , where $\nabla$ is the Levi-Civita connection of $M$. If $\lambda_{1}$ is not

identically zero, then we define $v_{1}$ by $\nabla_{v_{0}}v_{0}=\lambda_{1}v_{1}$ on $I_{1}:=\{s\in I|\lambda_{1}(s)\neq 0\}$ . Set
$\lambda_{2}:=\Vert\nabla_{v_{0}}v_{1}+\lambda_{1}v_{0}\Vert$ . If $\lambda_{2}$ is not identically zero, then we define $v_{2}$ by $\nabla_{v_{0}}v_{1}+$
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$\lambda_{1}v_{0}=\lambda_{2}v_{2}$ on $I_{2}$ $:=\{s\in I_{1}|\lambda_{2}(s)\neq 0\}$ . Inductively, we define $\lambda_{i},$ $I_{i}$ and $v_{i}(i\geq 3)$ .
If $\lambda_{1}$ is identically zero on $I$, that is, $\sigma$ is a geodesic, then $\sigma$ is said to be of order
1. If $\lambda_{d-1}$ is not identically zero on $I_{d-2}$ and $\lambda_{d}$ is identically zero on $I_{d-1}$ , then $\sigma$

is said to be of order $d$, where $d\geq 2$ . lf $\sigma$ is of order $d$, then we have a matrix
equation

(1.1) $\nabla_{v_{0}}(v_{0}, v_{1}, \ldots , v_{d-1})=(v_{0}, v_{1}, \ldots, v_{d-1})\Lambda$

on $I_{d-1}$ , where $\Lambda$ is a matrix of type $(d, d)$ defined by

$\Lambda=(\lambda_{0^{1}}00$

$-\lambda_{1}\lambda^{0_{2}}$

.

$-\lambda_{2}00.$

.
$0$ $\lambda_{d-1}$

$-\lambda_{0^{d-1}}^{0}0$

Let $I_{d-1}^{0}$ be a component of $I_{d-1}$ . Then the restriction of the relation (1.1) to $I_{d^{0}-1}$ ,

$\lambda_{j}|_{I_{d^{0}- 1}}$ and $v_{j}|_{I_{d^{0}- 1}}(1\leq i\leq d-1)$ are called the Frenet formula, the i-th Frenet

curvature and the i-th Frenet normal vector of $\sigma|_{I_{d^{0}- 1}}$ , respectively. Also, if $\lambda_{i}|_{I_{d^{0}- 1}}$

$(1\leq i\leq d-1)$ are constant along $\sigma|_{I_{d^{0}- 1}}$ , then $\sigma|_{I_{d^{0}- 1}}$ is called a helix of order $d$.
Then we note that $I_{i}^{0}=I(1\leq i\leq d-1)$ . In particular, a helix $\sigma_{1}$ (resp. $\sigma_{2}$ ) of

order $2d$ (resp. $2d+1$ ) in an m-dimensional Euclidean space $R^{m}$ is expressed as
follows:

(1.2) $\sigma_{1}(s)=c_{0}+\sum_{i=1}^{d}r_{i}(e_{2i-1}\cos a_{i}s+e_{2i}\sin a_{i}s)$

(resp. $\sigma_{2}(s)=c_{0}+\sum_{i=1}^{d}r_{i}(e_{2i-1}\cos a_{i}s+e_{2i}\sin a_{i}s)+bse_{2d+1}$ ),

where $c_{0}$ is a constant vector of $R^{m},$ $e_{1},$
$\ldots,$ $e_{2d+1}$ is an orthonormal system of $R^{m}$ ,

$r_{i}(1\leq i\leq d)$ and $b$ are positive constants and $a_{i}(1\leq i\leq d)$ are mutually distinct
positive constant. Thus ${\rm Im}\sigma_{1}$ is contained in the d-dimensional Clifford toms

$T$ $:=\{c_{0}+\sum_{i=1}^{d}r_{i}(e_{2i-1}\cos\theta_{t}+e_{2i}\sin\theta_{i})|0\leq\theta_{j}<2\pi(i=1, \ldots , d)\}$ .

If $\overline{1m\sigma_{1}}=T$ holds, then $\sigma_{1}$ is said to be generic, where $\overline{{\rm Im}\sigma_{1}}$ is the closure of the

image of $\sigma_{1}$ . Note that $\sigma_{1}$ is generic if and only if $a_{1},$
$\ldots,$

$a_{d}$ are linearly in-
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dependent over the rational number field $Q$ . Let $\sigma$ be a helix in an m-dimensional
sphere $S^{m}$ and $\iota$ a totally umbilical embedding of $S^{m}$ into $R^{m+1}$ . Then, since $\iota$ is

extrinsic spherical, $\iota\circ\sigma$ is a helix in $R^{m+1}$ by Corollary 3.3 of [17]. Furthermore,

since ${\rm Im}(\iota 0\sigma)$ is contained in a compact set $l(S^{m})$ , the order of $\iota\circ\sigma$ is even. Let
$2d$ be the order of $\iota 0\sigma$ . It is shown that the order of $\sigma$ is $2d-1$ (resp. $2d$) if the

centroid of the d-dimensional Clifford toms $T$ containing ${\rm Im}(\iota\circ\sigma)$ coincides
(resp. does not coincide) with the center of $S^{m}$ . If $\iota\circ\sigma$ is generic, then we shall

call $\sigma$ a generic helix (in $S^{m}$ ).

Let $f$ be an isometric immersion of an n-dimensional Riemannian manifold
$M^{n}$ into an m-dimensional Riemannian manifold $\tilde{M}^{m}$ . We shall identify the

tangent space $T_{p}M$ of $M$ at $p$ with the subspace $f_{*}(T_{p}M)$ of $T_{f(p)}\tilde{M}$, where $f_{*}$ is
the differential of $f$ Denote by $\nabla$ (resp. $\tilde{\nabla}$ ) the Levi-Civita connection on $M$ (resp.
$\tilde{M})$ and $A,$ $h$ and $\nabla^{\perp}$ the shape operator, the second fundamental form and the

normal connection of $f$, respectively. Denote by V both $\nabla^{*}\otimes\cdots\otimes\nabla^{*}\otimes\nabla^{\perp}$ and
$\nabla^{\perp}*\otimes\nabla^{*}\otimes\cdots\otimes\nabla^{*}\otimes\nabla$ , where $\nabla^{*}$ is the dual connection of $\nabla$ . Also, we shall

denote the i-th order derivative of $h$ (resp. $A$ ) with respect to V by $\overline{\nabla}^{i}h$ (resp.

V ${}^{t}A$ ). If, for every geodesic $\sigma$ in $M,$ $ f\circ\sigma$ is a helix of order $d$ and the Frenet

curvatures of $ f\circ\sigma$ do not depend on the choice of $\sigma$, then $f$ is called a helical

immersion of order $d$. In this paper, if, for every geodesic $\sigma$ in $M,$ $ f\circ\sigma$ is a
helix of order at most $d$ and there is at least one geodesic $\sigma_{0}$ in $M$ such that
$fo\sigma_{0}$ is a helix of order $d$, then we shall call $f$ a generalized helical immersion of
order $d$.

2. Basic lemmas.

In this section, we prepare basic lemmas which are used in Sect. 5. Let $f$

be an isometric immersion of an n-dimensional Riemannian manifold $M^{n}$ into an
m-dimensional Riemannian manifold $\tilde{M}^{m}$ . Take a geodesic $\sigma:I\rightarrow M^{n}$ . Denote

by $v_{0}$ the velocity vector field $\dot{\sigma}$ of $\sigma$ . Assume that $\tilde{\sigma}$ $:=f\circ\sigma$ is a helix of order $d$

in $\tilde{M}^{m}$ . Let $\lambda_{i}$ (resp. $v_{i}$ ) be the i-th Frenet curvature (resp. the i-th Frenet normal

vector) of $\tilde{\sigma}(i=1, \ldots, d-1)$ . For convenience, let $\lambda_{j}=0$ and $v_{i}=0(i\geq d)$ . In

terms of the Gauss formula and the Weingarten formula of $f$ and the Frenet

formula of $\tilde{\sigma}$, we can deduce the following relations.

LEMMA 2.1. The vector fields $\lambda_{1}\cdots\lambda_{j}v_{i}(i\geq 1)$ along $\sigma$ are expressed as

follows:

(F) $\lambda_{1}v_{1}=h(v_{0}, v_{0})$ ,
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$(F_{i})$ $\lambda_{1}\cdots\lambda_{i}v_{i}=\alpha_{i}v_{0}+\sum_{j=0}^{i-2}(\overline{\nabla}^{j}A)_{\xi_{ij}}(v_{0}, \ldots, v_{0})$

$+\sum_{j=0}^{i-1}(\overline{\nabla}^{j}h)(v_{0}, \ldots, v_{0}, w_{ij})$ $(i\geq 2)$ ,

where $\alpha_{i}(i\geq 2),$ $\xi_{ij}(i\geq 2,0\leq j\leq i-2)$ and $w_{ij}(i\geq 2,0\leq j\leq i-1)$ are given
$by$

Here let $\xi_{\pi}=\xi_{i,i-1}=0,$ $w_{ii}=w_{i,i+1}=0(i\geq 1)$ and $w_{10}=v_{0}$ .

For each unit tangent vector $w$ of $M$, we denote the maximal geodesic in $M$

parametrized by the arclength $s$ whose velocity vector field at $s=0$ is equal to
$w$ by $\sigma_{w}$ and the osculating order of $fo\sigma_{w}$ at $s=0$ by $o(w)$ . For each $p\in M$,

$ofMatp.Wedefineafunction\hat{\lambda}(i\geq l)ontheunittangentbundleSMofsetV_{p,i}:=\{w\in S_{p}M|o(w)=i\}(i\geq_{i}1),whereS_{p}Mstheunittangentsphere$

$M$ by

$\hat{\lambda}_{i}(w)$
$;=\left\{\begin{array}{l}\lambda_{i}^{w}(0) (w\in\bigcup_{i+1\leq j}\bigcup_{p\in M}V_{p,j})\\0 (w\in\bigcup_{1\leq j\leq i}\bigcup_{p\in M}V_{p,j}),\end{array}\right.$

where $\lambda_{i}^{w}$ is the i-th Frenet curvature of the restriction $f\circ\sigma_{w}|_{I^{0}}$ of $f\circ\sigma_{w}$ to a
sufficiently small neighbourhood $I^{0}$ of $0(w\in\bigcup_{i+1\leq j}\bigcup_{p\in M}V_{p,j})$ . Also, we define
a map $\hat{v}_{i}$ : $SM\rightarrow T\tilde{M}(i\geq 1)$ by
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$\hat{v}_{j}(w)$ $:=\left\{\begin{array}{l}v_{i}^{w}(0) (w\in\bigcup_{i+1\leq j}\bigcup_{p\in M}V_{p,j})\\0 (w\in\bigcup_{l\leq j\leq i}\bigcup_{p\in M}V_{p,j}),\end{array}\right.$

where $v_{i}^{w}$ is the i-th Frenet normal vector of the restriction $fo\sigma_{w}|_{I^{0}}$ of $fo\sigma_{w}$ to a
sufficiently small neighbourhood $I^{0}$ of $0(w\in\bigcup_{i+1\leq j}\bigcup_{p\in M}V_{p,j})$ . It is easy to

show that $\hat{\lambda}_{i}$ is continuous on $\bigcup_{i\leq j}\bigcup_{p\in M}V_{p,j}(i\geq 1)$ . Here we shall give datas
of $V_{p,i}$ and $\hat{\lambda}_{i}$ for the Clifford embedding $f_{0}$ : $S^{1}(1)\times S^{1}(1)\rightarrow R^{4}$ . The sets $V_{p,i}$

are as follows:

$V_{p,1}=\emptyset,$ $V_{p,2}=\{\pm e_{1},$ $\pm e_{2},$ $\pm\frac{e_{1}+e_{2}}{\sqrt{2}},$ $\pm\frac{e_{1}-e_{2}}{\sqrt{2}}\}$ ,

$V_{p,3}=\phi,$ $V_{p,4}=S_{p}M\backslash V_{p,2},$ $V_{p,i}=\emptyset(i\geq 5)$

and the functions $\hat{\lambda}_{i}$ are as follows:

$\hat{\lambda}_{1}(e_{1}\cos\theta+e_{2}\sin\theta)=\sqrt{\cos^{4}\theta+\sin^{4}\theta}$

$\hat{\lambda}_{2}(e_{1}\cos\theta+e_{2}\sin\theta)=\frac{|\sin 4\theta|}{4\sqrt{\cos^{4}\theta+\sin^{4}\theta}}$

$\hat{\lambda}_{3}(e_{1}\cos\theta+e_{2}\sin\theta)=\left\{\begin{array}{l}\frac{|sin2\theta|}{2\sqrt{cos^{4}\theta+sin^{4}\theta}} (\theta\neq\frac{\pi}{4},\frac{3\pi}{4},\frac{5\pi}{4},\frac{7\pi}{4})\\0 (\theta=\frac{\pi}{4},\frac{3\pi}{4},\frac{5\pi}{4},\frac{7\pi}{4}),\end{array}\right.$

$\hat{\lambda}_{i}(e_{1}\cos\theta+e_{2}\sin\theta)=0$ $(i\geq 4)$ ,

where $(e_{1}, e_{2})$ is an orthonormal tangent frame at $p$ such that $e_{1}$ (resp. $e_{2}$ ) is
tangent to the fibre of the projection of $S^{1}(1)\times S^{1}(1)$ onto the first (resp. the
second) component and $ 0\leq\theta<2\pi$ . This implies that $f_{0}$ is a generalized helical
embedding of order 4. Also, we see that $\hat{\lambda}_{3}$ is contionuos on $\bigcup_{j\geq 3}V_{p,j}(=V_{p,4})$

but so is not on $\bigcup_{j\leq 2}V_{p,j}(=V_{p,2}\cup V_{p,4})$ .
From Lemma 2.1, we can prove the following lemma.

LEMMA 2.2. Assume that $f$ is a generalized helical and $ V_{p,d}\neq\emptyset$ and $ V_{p,i}=\emptyset$

$(i\geq d+1)$ for $p\in M.$ Then the set $V_{p,i}(1\leq i\leq d-1)$ are closed sets of measure
zero in $S_{p}M$ and $V_{p,d}$ is a dense open set is $S_{p}M$ .

PROOF. According to Lemma 2.1, for each $i(\leq d-1)$ , there exist non-zero
polynomial functions $P_{i}$ and $Q_{i}$ on $T_{p}M$ such that $P_{i}\hat{\lambda}_{1}^{2}\cdots\hat{\lambda}_{i}^{2}=Q_{i}$ on $S_{p}M$ and

that $P_{i}$ has no zero point on $\bigcup_{i-1\leq j\leq d}V_{p,j}$ . Hence we have
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$V_{p,1}=\{v\in S_{p}M|\hat{\lambda}_{1}(v)=0\}=\{v\in S_{p}M|Q_{1}(v)=0\}$ ,

$V_{p,2}=\{v\in S_{p}M\backslash V_{p,1}|\hat{\lambda}_{2}(v)=0\}=\{v\in S_{p}M\backslash V_{p,1}|Q_{2}(v)=0\}$ ,

.

$V_{p,d-1}=\{v\in S_{p}M\backslash (\bigcup_{1\leq i\leq d-2}V_{p,i)}\hat{\lambda}_{d-1}(v)=0\}$

$=\{v\in S_{p}M\backslash (\bigcup_{1\leq i\leq d-2}V_{p,i)}$ $Q_{d-1}(v)=0\}$ .

Thus we see that $V_{p,i}(1\leq i\leq d-1)$ are closed sets of measure zero in $S_{p}M$ .
Therefore, $V_{p,d}$ is a dense open set in $S_{p}M$ . $\square $

3. Isometric immersions with parallel second fundamental form.

In this section, we shall show that all isometric immersions with parallel

second fundamental form are generalized helical. Let $f$ be an isometric immer-

sion of an n-dimensional Riemannian manifold $M^{n}$ into an m-dimensional

Riemannian manifold $\tilde{M}^{m}$ with parallel second fundamental form and $\sigma:I\rightarrow M$

a geodesic in $M$. Assume that the osculating order of $ f\circ\sigma$ at each point is $d$. Set
$v_{0}$

$:=\dot{\sigma}$ and denote by $\lambda_{j}$ (resp. $v_{j}$ ) the i-th Frenet curvature (resp. the i-th Frenet

normal vector) of $f\circ\sigma(1\leq i\leq d-1)$ . Then we can obtain the following fact.

LEMMA 3.1. The Frenet curvatures $\lambda_{i}(1\leq i\leq d-1)$ are constant along $\sigma$

(i.e., $ f\circ\sigma$ is a helix) and the following relations hold:

$(F_{i}^{\prime})$ $\lambda_{1}\cdots\lambda_{i}v_{i}=\alpha_{i}v_{0}+A_{\xi_{i}}v_{0}+h(w_{i}, v_{0})$ $(1 \leq i\leq d-1)$ ,

where $\alpha_{i},$
$\xi_{j}$ and $w_{i}(1\leq i\leq d-1)$ are given by

$\left\{\begin{array}{l}\alpha_{1}=0,\alpha_{2}=\lambda_{1}^{2},\alpha_{i}=\lambda_{i-1^{2}}\alpha_{i-2}(3\leq i\leq d-1),\\w_{1}=v_{0},w_{2}=0,\xi_{1}=0,\xi_{2}=-h(v_{0},v_{0})\\w_{i}=\alpha_{i-1}v_{0}+\lambda_{i-1^{2}}w_{i-2}+A_{\xi_{i- l}}v_{0}(3\leq i\leq d-1),\\\xi_{i}=\lambda_{i-1^{2}}\xi_{i-2}-h(w_{i-1},v_{0})(3\leq i\leq d-1).\end{array}\right.$

$PR\infty F$ . We shall prove in case of $d\geq 4$ . First, by using the Gauss formula

and the Frenet formula, we have

$\lambda_{1}v_{1}=\tilde{\nabla}_{v_{0}}v_{0}=h(v_{0}, v_{0})$ ,
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which implies $(F_{1}^{\prime})$ . Also, from this relation, we have $\lambda_{1}^{2}=\langle h(v_{0}, v_{0}), h(v_{0}, v_{0})\rangle$ .
Differentiating this relation in the direction $v_{0}$ and using $\overline{\nabla}h=0$ , we have
$v_{0}(\lambda_{1}^{2})=0$ . Thus $\lambda_{1}$ is constant along $\sigma$ . By operating $\tilde{\nabla}_{v_{0}}$ to $(F_{1}^{\prime})$ and using
$\overline{\nabla}h=0$ , we have

$\lambda_{1}\lambda_{2}v_{2}=\lambda_{1}^{2}v_{0}-A_{h(v_{0},v_{0})}v_{0}$ ,

which implies $(F_{2}^{\prime})$ . From this relation, we have

$\lambda_{1}^{2}\lambda_{2}^{2}=-\lambda_{1}^{4}+\langle A_{h(v_{0},v_{0})}v_{0},A_{h(v_{0},v_{0})}v_{0}\rangle$ .

Differentiating this relation in the direction $v_{0}$ , we have $\lambda_{1}^{2}v_{0}(\lambda_{2}^{2})=0$, where we
use $\overline{\nabla}A=0$ and $\overline{\nabla}h=0$ . Thus $\lambda_{2}$ is constant along $\sigma$ . Assume that $(F_{i-1}^{f})$ and $(F_{i}^{\prime})$

hold and $\lambda_{1},$

$\ldots,$

$\lambda_{j}$ are constant along $\sigma$, where $2\leq i\leq d-2$ . By operating $\tilde{\nabla}_{v_{0}}$ to
$(F_{l}^{\prime})$ , we have

(3.1) $\lambda_{1}\cdots\lambda_{i+1}v_{i+1}=\lambda_{i}^{2}(\lambda_{1}\cdots\lambda_{i-1}v_{i-1})+A_{(\nabla_{v_{0}}^{\perp}\xi_{l}-h(w_{l},v_{0}))}v_{0}$

$+h(\alpha_{i}v_{0}+A_{\xi_{l}}v_{0}+\nabla_{v_{0}}w_{i}, v_{0})$ .

On the other hand, it follows from $\overline{\nabla}A=0$ and $\overline{\nabla}h=0$ that $\nabla_{v}^{\perp_{0}}\xi_{j}=0$ and
$\nabla_{v_{0}}w_{j}=0$ . Hence, by substituting $(F_{i-1}^{\prime})$ in (3.1), we can obtain

$\lambda_{1}\cdots\lambda_{i+1}v_{i+1}=\lambda_{j}^{2}\alpha_{i-1}v_{0}+A_{(\lambda_{j}^{2}\xi_{i-1}-h(w_{l},v_{0}))}v_{0}+h(\alpha_{j}v_{0}+\lambda_{i}^{2}w_{i-1}+A_{\xi_{l}}v_{0}, v_{0})$ ,

which implies $(F_{i+1}^{\prime})$ . From this relation, we have

$\lambda_{1^{2}}\cdots\lambda_{i+1^{2}}=\alpha_{t^{2}}+2\alpha_{i}\langle A_{\xi_{l}}v_{0}, v_{0}\rangle+\langle A_{\xi_{l}}v_{0},A_{\xi_{j}}v_{0}\rangle+\langle h(w_{i}, v_{0}),h(w_{i}, v_{0})\rangle$ .

Differentiating this relation in the direction $v_{0}$ , we can obtain $\lambda_{1^{2}}\cdots\lambda_{i}^{2}$

$(v_{0}\lambda_{i+1^{2}})=0$ . Thus $\lambda_{i+1}$ is constant along $\sigma$ . Therefore, by the induction, the

proof is completed. $\square $

REMARK. It is clear that $\alpha_{2i+1}=0,$ $\xi_{2i+1}=0(1\leq i\leq[d/2]-1)$ and $w_{2j}=0$

$(1\leq j\leq[(d-1)/2])$ , where $[]$ is the Gauss symbol. Hence we have $v_{2i}\in TM$

$(0\leq i\leq[(d-1)/2])$ and $v_{2j+1}\in T^{\perp}M(0\leq j\leq[d/2]-1)$ .

From this lemma, we can obtain the following result.

PROPOSmON 3.2. Let $f:M^{n}\rightarrow\tilde{M}^{m}$ be an isometric immersion with parallel

second fundamental form. Then $f$ is generalized helical immersion of order at most

$\min\{2n, 2(m-n)+1\}$ .
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PROOF. Let $\sigma:I\rightarrow M$ be a geodesic in $M$ parametrized by the arclength $s$ .
Denote by $d(s)$ the osculating order of $ f\circ\sigma$ at $(f\circ\sigma)(s)$ and set $d_{0}:=$

$\max_{s\in I}d(s)$ . Also, set $I_{k}$ $:=\{s\in I|d(s)=k\}(1\leq k\leq d_{0})$ . It is clear that $I_{d_{0}}$ is

open. By the previous lemma, $\hat{\lambda}_{j}(1\leq i\leq d_{0}-1)$ are constant on $\dot{\sigma}(I_{d_{0}})$ , where $\hat{\lambda}_{i}$

$(1\leq i\leq d_{0}-1)$ are functions on $SM$ defined in Sect. 2. Hence, it follows from

the continuity of $\hat{\lambda}_{i}$ on $\bigcup_{i\leq j}\bigcup_{p\in M}V_{p,j}(1\leq i\leq d_{0}-1)$ that $I=I_{d_{0}}$ holds, that

is, $ f\circ\sigma$ is a helix of order $d_{0}$ . Therefore, by the arbitrarity of $\sigma,$ $f$ is generalized

helical. Furthermore, by the above remark, we see that $f$ is of order at most

$\min\{2n, 2(m-n)+1\}$ . $\square $

4. The order of the standard isometHc embeddIng of a symmetric R-space.

At the beginning of this section, we shall recall the characterizing theorems of

isometric immersions into a Euclidean space and a sphere with parallel second

fundamental form, which are used in Sect. 5 and 6.

THEOREM 4.1 ([3]). Let $f$ be a full isometric immersion of a complete Rie-

mannian manifold $M$ into $a$ Euclidean space with parallel second fundamental form.
Then $f$ is congruent to $\phi\circ\pi$ or $(\phi\times id)\circ\pi$, where $\phi$ is the standard isometric

embedding of a symmetric R-space $M_{0},$ $id$ is the identity map of an l-dimensional

Euclidean space $R^{l}$ and $\pi$ is a Riemannian covering of $M$ onlo $M_{0}$ or $M_{0}\times R^{l}$ .

TrEOREM 4.2 ([18]). Let $f$ be a full isometric immersion of an n-dimensional

complete Riemannian mamfold $M$ into a sphere with parallel second fundamental
form. Then the following statements (i) and (ii) hold:

(i) If $f$ is minimal, then $f$ is congruent to $\overline{\phi}\circ\pi$, where $\overline{\phi}$ is the umbilical

reduction of the standard isometric embedding $\phi$ of a symmetric R-space $M_{0}$ to a
hypersphere containing $\phi(M_{0})$ and $\pi$ is a Riemannian covering of $M$ onto $M_{0}$ ,

(ii) If $f$ is not minimal, then $f$ is congruent to $\psi 0\overline{\phi}0\pi$ , where $\overline{\phi}$ and $\pi$ are as
in the above and $\psi$ is a totally umbilical (but non-totally geodesic) embedding of
codimension-l into a sphere and $\pi$ is a Riemannian covering of $M$ onto $M_{0}$ .

Since the standard isometric embedding of a symmetric R-space and the

umbilical reduction of one to hypersphere containing the image have the parallel

second fundamental form, they are generalized helical by Proposition 3.2. Now

we shall investigate the orders of those embeddings. Let $\phi:M_{0}\rightarrow R^{m}$ be the

standard isometric embedding of a symmetric R-space $M_{0}$ of rank $d$, where the

rank of $M_{0}$ is the maximal dimension of a flat totally geodesic submanifold in
$M_{0}$ . Take an arbitrary unit tangent vector $v$ of $M_{0}$ . Since $M_{0}$ is of rank $d$, there is
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a d-dimensional flat toms $T$ tangent to $v$ totally geodesically embedded into $M_{0}$

(see [6, Chapter V, Theorem 6.2]). Let $\sigma_{v}$ be a maximal geodesic in $M_{0}$ with
$\dot{\sigma}_{v}(0)=v$ . Since $T$ is totally geodesic in $M_{0},$ $\sigma_{v}$ is a geodesic in $T$, that is, $\phi\circ\sigma_{v}$ is

a curve in $\phi(T)$ . On the other hand, since the second fundamental form of $\phi$ is

parallel, for almost every geodesic $\sigma$ in $M_{0},$ $\phi\circ\sigma$ is a generic helix. From this

fact, we can show that, for almost every geodesic $\sigma$ in $T,$ $\phi\circ\sigma$ is a generic helix.

So, $\phi|_{T}$ is extrinsic symmetric. Hence, by Theorem 3 of [4], $\phi(T)$ is a Clifford

toms. Therefore, since helices in $R^{m}$ are given as (1.2), the order of a helix $\phi\circ\sigma_{v}$

is at most $2d$ . Also, we see that, for almost every geodesic $\sigma$ in $T,$ $\sigma 0\sigma$ is a helix

of order $2d$ . This implies that $\phi$ is of order $2d$ . Furthermore, this fact implies that

the umbilical reduction $\overline{\phi}$ of $\phi$ to the hypersphere $S^{m-1}$ containing $\phi(M_{0})$ is of

order $2d-1$ or $2d$ . Let $\psi$ be a totally umbilical (but non-totally geodesic)

embedding of $S^{m-1}$ into an m-dimensional sphere $S^{m}$ and $\iota$ a totally umbilical
embedding of $S^{m}$ into $R^{m+1}$ . Set $\tilde{\phi}:=\psi\circ\overline{\phi}$. It is clear that $\tilde{\phi}$ is generalized

helical. Let $\sigma_{0}$ be a geodesic in $M_{0}$ such that $\overline{\phi}\circ\sigma_{0}$ is a helix of order $2d-1$ or
$2d$ and $T_{0}$ be the d-dimensional flat toms tangent to $\dot{\sigma}_{0}(0)$ totally geodesically

embedded into $M_{0}$ . It is clear that the centroid of the Clifford toms $(\iota\circ\tilde{\phi})(T_{0})$

does not coincide with the center of $S^{m}$ . Henoe the order of $\tilde{\phi}\circ\sigma_{0}$ is $2d$ . This

implies that $\tilde{\phi}$ is of order $2d$ .

5. Generalized helical immersions into a Euclidean space.

In this section, we shall characterize a generalized helical immersion of a
compact Riemannian manifold into a Euclidean spaoe satisfying the condition $(*)$

stated in Introduction. In the sequel, we assume that all geodesics are maximal

and denote the maximal geodesic in $M$ parametrized by the arclength $s$ whose

velocity vector at $s=0$ is $v(\in SM)$ by $\sigma_{v}$ . First we shall prepare the following

lemma.

LEMMA 5.1. Let $f$ be an isometric immersion of an $n(\geq 2)$ -dimensional

compact Riemannian manifold $M$ into $a$ Euclidean space. Assume that $f_{*}(T_{q}M)=$

$f_{*}(T_{p}M)$ holds for every $q\in f^{-1}(f(p))$ and furthermore, for every great circle $C$ in

$S_{p}M$ through a point $v_{0}$ of $S_{p}M$ , there are four unit tangent vectors $u_{1},$
$\ldots,$

$u_{4}\in C$

with $u_{i}\neq\pm u_{j}(1\leq i\neq j\leq 4)$ such that $f\circ\sigma_{u_{j}}$ is a generic helix $(1 \leq i\leq 4)$ . Then
$\overline{\nabla}h_{p}=0$ holds.

$PR\infty F$ . Take an arbitrary $w_{0}\in S_{p}M\backslash \{\pm v_{0}\}$ . Let $C$ be a great circle in
$S_{p}M$ through $v_{0}$ and $w_{0}$ . From the assumption, there exist unit tangent vectors

$u_{1},$
$\ldots,$

$u_{4}\in C$ with $u_{j}\neq\pm u_{j}(1\leq i\neq j\leq 4)$ such that $fo\sigma_{u_{j}}$ is a generic helix
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$(1 \leq i\leq 4)$ . Then, we can show $\overline{\nabla}h(u_{i}, u_{i}, u_{i})=0(1\leq i\leq 4)$ because $f_{*}(T_{q}M)=$

$f_{*}(T_{p}M)$ holds for every $q\in f^{-1}(f(p))$ and $M$ is compact (see [5, the proof of

Theorem]). Hence, since $\overline{\nabla}h$ is symmetric by the Codazzi equation, we see that
$\overline{\nabla}h=0$ on $C^{3}$ . In particular, we have $(\overline{\nabla}h)(v_{0}, v_{0}, v_{0})=(\overline{\nabla}h)(w_{0}, w_{0}, w_{0})=0$ . Thus,

from the arbitrarity of $w_{0}$ , we see that $\overline{\nabla}h(w, w, w)=0$ holds for every $w\in S_{p}M$ .
Therefore, we obtain $\overline{\nabla}h_{p}=0$ . $\square $

For simplicity, we shall denote the fact that two isometric immersions $f_{1}$ and
$f_{2}$ are congment by $f_{1}\approx f_{2}$ .

In case of $\dim M=2$ , we can show the following result in terms of the

previous lemma.

PROPOSITION 5.2. Let $f$ be a full isometric immersion of a 2-dimensional

compact Riemannian mamfold $M$ into $a$ Euclidean space. Assume that, for each

$p\in M$, there are at least four geodesics in $M$ through $p$ which are viewed as generic

helices in the ambient Euclidean space. Then the following (i), (ii) or (iii) holds:
(i) $f\approx\phi_{1}$ , where $\phi_{1}$ is a totally umbilical embedding of a 2-dimensional sphere

into a 3-dimensional Euclidean space $R^{3}$ ,

(ii) $ f\approx\phi_{2}\circ\pi$ , where $\phi_{2}$ is the Veronese embedding of a 2-dimensional real

projective space $RP^{2}$ into a 5-dimensional Euclidean space $R^{5}$ and $\pi$ is a Riemannian

covering of $M$ onto $RP^{2}$ ,

(iii) $f\approx\phi_{3}\circ\pi^{\prime}$ , where $\phi_{3}$ is the $Cl_{l}fford$ embedding of a 2-dimensional flat
torus $T$ into a 4-dimensional Euclidean space $R^{4}$ and $\pi^{\prime}$ is a Riemannian covering of
$M$ onto $T$.

$Lemma5^{F}1p_{R\infty}.\cdot wehave\overline{\nabla}h=0onU.1tisc1earthatUisdenseinM.ThereforeLetU:=\{p\in M|(\forall q\in f^{-1}(f(p)))[f_{*}(T_{q}M)=f_{*}(T_{p}M)]\}From$

$\overline{\nabla}h=0$ holds on $M$. Hence, according to Theorem 4.1, $f$ is congment to the

composition $\phi 0\pi$ of the standard isometric embedding $\phi$ of a 2-dimensional

symmetric R-space $M_{0}$ and a Riemannian covering $\pi$ of $M$ onto $M_{0}$ . It follows

from $\dim M_{0}=2$ that $M_{0}$ is of rank 1 or 2. If $M_{0}$ is of rank 1, then $M_{0}$ is a
2-dimensional sphere or a 2-dimensional real projective space. Also, if $M_{0}$ is

of rank 2, then $M_{0}$ is a 2-dimensional flat toms. Hence we can obtain the

conclusion. $\square $

In the sequel, we assume that $f$ is generalized helical. For each geodesic $\sigma$ in
$M,$ $ fo\sigma$ is contained in a compact set $f(M)$ . Hence, $ f\circ\sigma$ is a helix of even
order. Thus $f$ is of even order. Let the order of $f$ be $2d$ . As in Sect. 2, we define
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$V_{p,l},\hat{\lambda}_{i}$ and $\hat{v}_{i}$ , where $i\geq 1$ and $p\in M$ . Also, we define a matrix-valued function
$\hat{\Lambda}$ on $SM$ by

$\hat{\Lambda}$

$:=[\hat{\lambda_{0^{1}}^{0}}0$

$-\hat{\lambda}_{1}\hat{\lambda^{0_{2}}}$ $-\hat{\lambda}_{2}00$

.

$0$ $\hat{\lambda}_{u-1}$

$-\hat{\lambda}_{2d-1}^{0}00$

Let ${}^{t}(\eta_{0}(v,s),$
$\ldots,$

$\eta_{2d-1}(v,s))$ be the first column of the matrix $\int_{0^{s}}\exp s\hat{\Lambda}(v)ds$,

where $v\in SM$ and $s>0$ . Since $f$ is of order $2d$, there is $p\in M$ with $ V_{p,2d}\neq\emptyset$ . In
the sequel, we assume that $v\in V_{p,2d}$ . From the Frenet formula (1.1), we can
obtain the following expression of $f\circ\sigma_{v}$ :

(5.1) $f(\sigma_{v}(s))=f(p)+\sum_{i=0}^{2d-1}\eta_{j}(v,s)\hat{v}_{j}(v)$

for $s>0$ . By the straightforward computation,

$\det\hat{\Lambda}(v)=\hat{\lambda}_{1}(v)^{2}\hat{\lambda}_{3}(v)^{2}\cdots\hat{\lambda}_{2d-1}(v)^{2}\neq 0$

is shown. Hence, since $\hat{\Lambda}(v)$ is skew-symmetric and non-singular, the normal form
of $\hat{\Lambda}(v)$ is given by

$T(v)^{-1}\hat{\Lambda}(v)T(v)=\bigoplus_{i=1}^{d}B(a_{i}(v))$

with some orthogonal matrix $T(v)$ , where

$B(a_{i}(v))=\left(\begin{array}{ll}0 & a_{i}(v)\\-a_{i}(v) & 0\end{array}\right)$ $(0<a_{1}(v)\leq\cdots\leq a_{d}(v))$ .

In the same method as the proof of Lemma 3.1 in [16], we can show that
$a_{1}(v),$

$\ldots,$
$a_{d}(v)$ are mutually distinct and that the following relations hold:

(5.2) $\eta_{2i}(v,s)=\sum_{k=1}^{d}b_{2i,k}(v)(1-\cos(a_{k}(v)s))$ $(0\leq i\leq d-1)$ ,

$\eta_{2i+1}(v,s)=\sum_{k=1}^{d}b_{2i+1,k}(v)\sin(a_{k}(v)s)$ $(0\leq i\leq d-1)$ ,
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where $b_{i,k}(0\leq i\leq 2d-1,1\leq k\leq d)$ are functions on $V_{p,2d}$ determined by
$\hat{\lambda}_{1},$ $\ldots,\hat{\lambda}_{2d-1}$ . From (5.1) and (5.2), we can obtain the following expression of
$f\circ\sigma_{v}$ ;

(5.3) $f(\sigma_{v}(s))=f(p)+\sum_{i=0}^{d-1}(\sum_{k=1}^{d}b_{2i,k}(v))\hat{v}_{2i}(v)$

$+\sum_{k=1}^{d}\{(-\sum_{i=0}^{d-1}b_{2i,k}(v)\hat{v}_{2i}(v))\cos(a_{k}(v)s)$

$+(\sum_{i=0}^{d-1}b_{2i+1,k}(v)\hat{v}_{2i+1}(v))\sin(a_{k}(v)s)\}$ .

On the other hand, we can prove the following lemma.

LEMMA 5.3. The functions $a_{i}(1\leq j\leq d)$ on $V_{p,2d}$ are analytic.

$PR\infty F$ . Denote by $\rho(z, v)$ the characteristic polynomial $\det(zE-\hat{\Lambda}(v))$ of
$\hat{\Lambda}(v)$ , where $v\in V_{p,2d}$ and $E$ is the identity matrix. Since $\hat{\lambda}_{j}|_{V_{p,2d}}(1\leq i\leq 2d-1)$

are analytic by Lemma 2.1, $\rho(z, v)$ is analytic with respect to $v$ on $V_{p,2d}$ . Also, we
have

(5.4) $\rho(z, v)=(z^{2}+a_{1}(v)^{2})\cdots(z^{2}+a_{d}(v)^{2})$

for every $v\in V_{p,2d}$ . Hence, we see that $a_{i}(1\leq j\leq d)$ are continuous on $V_{p},u$ . Fix
$v_{0}\in V_{p,2d}$ and $i_{0}\in\{1, \ldots, d\}$ . Since $a_{1}(v_{0}),$ $\ldots,a_{d}(v_{0})$ are mutually distinct, we can
take a closed curve $K$ in the complex plane such that $a_{i_{0}}(v_{0})\sqrt{-1}$ positions inside
$K$ and $a_{i}(v_{0})\sqrt{-1}(i\neq i_{0})$ position outside $K$. It follows from the continuity of $a_{j}$

$(1\leq i\leq d)$ that there is a neighbourhood $U$ of $v_{0}$ in $V_{p,2d}$ such that, for every
$v\in U,$ $a_{i_{0}}(v)\sqrt{-1}$ positions inside $K$ and $a_{i}(v)\sqrt{-1}(i\neq i_{0})$ position outside $K$.
From (5.4), we have

$a_{i_{0}}(v)\sqrt{-1}=\frac{1}{2\pi\sqrt{-1}}\int_{K}z\frac{dp(z,v)/dz}{p(z,v)}dz$

for every $v\in U$ . Hence, it follows from the analyticity of $\rho(z, v)$ with respect to $v$

that $a_{i_{0}}$ is analytic on $U$. Therefore, from the arbitrarity of $v_{0}$ , we see that so is $a_{i_{0}}$

on $V_{p,2d}$ . $\square $

From Lemma 5.1, 5.3 and (5.3), we can prove the following characterizing

theorem.
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THEOREM 5.4. Let $f$ be a full generalized helical immersion of order $2d$ of
an $n(\geq 2)$ -dimensional compact Riemannian mamfold $M$ into $a$ Euclidean space.
Assume that the following condition $(*)holds$ :

$(*)$ For each $p\in M$, there is at least one geodesic in $M$ through $p$ which is

viewed as a generic helix of order $2d$ in the ambient Euclidean space.
Then $ f\approx\phi 0\pi$ , where $\phi$ is the standard isometric embedding of a symmetric

R-space $M_{0}$ of rank $d$ and $\pi$ is a Riemannian covering of $M$ onto $M_{0}$ .

$PR\infty F$ . In case of $d=1,$ $f$ is a planar geodesic immersion. Hence, by [14],
$ f\approx\phi\circ\pi$ , where $\phi$ is the standard isometric embedding of a symmetric R-space
$M_{0}$ of rank 1 and $\pi$ is a Riemannian covering of $M$ onto $M_{0}$ . Assume that $d\geq 2$ .
Set $U$ $:=\{p\in M|(\forall q\in f^{-1}(f(p)))[f_{*}(T_{q}M)=f_{*}(T_{p}M)]\}$ . Fix $p0\in U$ . From the
assumption, there exists $v_{0}\in V_{p0,2d}$ such that $f\circ\sigma_{v_{0}}$ is generic. Since $V_{p0,2d}$ is a
dense open set in $S_{F0}M$ by Lemma 2.2, there is a convex neighbourhood $W$ of $v_{0}$

in $S_{p0}M$ contained in $V_{p0,2d}$ . Take an arbitrary $w_{0}\in W\backslash \{\pm v_{0}\}$ . Let $C_{w_{0}}$ be the
great circle in $S_{p0}M$ through $v_{0}$ and $w_{0}$ . Let $F:[0, \pi/2]\rightarrow R^{d}$ be a curve in $R^{d}$

defined by $F(\theta)$ $:=(a_{1}((v_{0}\cos\theta+w_{0}\sin\theta)/(\Vert v_{0}\cos\theta+w_{0}\sin\theta\Vert)),$
$\ldots,$

$a_{d}((v_{0}\cos\theta+$

$w_{0}\sin\theta)/(\Vert v_{0}\cos\theta+w_{0}\sin\theta\Vert)))$ for $\theta\in[0, \pi/2]$ , where $a_{i}(1\leq i\leq d)$ are the

above functions on $V_{p0,2d}$ . This curve $F$ is an analytic curve by Lemma 5.3. Let
$P_{r_{1}\cdots r_{d}}$ be the hyperplane in $R^{d}$ through the origin and with the normal vector
$(r_{1}, \ldots, r_{d})$ . Since $f\circ\sigma_{v_{0}}$ is generic, $F(0)\in R^{d}\backslash \bigcup_{(r_{1},\ldots,r_{d})\in Q^{d}\backslash \{(0,\ldots,0)\}}P_{r_{1}\cdots r_{d}}$ by (5.3).

Suppose that $J:=\{\theta\in(0, \pi/2]|F(\theta)\in R^{d}\backslash \bigcup_{(r_{1},\ldots,r_{d})\in Q^{d}\backslash \{(0,\ldots,0)\}}P_{r_{1}\cdots r_{d}}\}$ is finite.
Set $\theta_{0}$ $:=\min J$ . Since $F((O, \theta_{0}))\subset\bigcup_{(r_{1},\ldots,r_{d})\in Q^{d}\backslash \{(0,\ldots,0)\}}P_{r_{1}\cdots r_{d}}$ , there is $(r_{1}^{0}, \ldots, r_{d}^{0})$

$\in Q^{d}\backslash \{(0, \ldots, 0)\}$ such that $F([\theta_{1}, \theta_{1}+\epsilon])\subset P_{r_{1}^{0}\cdots r_{d}^{0}}$ for some $\theta_{1}\in(0, \theta_{0})$ and a
sufficiently small positive number $\epsilon$ . Hence, since $F$ is an analytic curve, we have
$F([0, \pi/2])\subset P_{r_{1}^{0}\cdots r_{d}^{0}}$ . In particular, we have $F(0)\in P_{r_{1}^{0}\cdots r_{d}^{0}}$ . This contradicts $ F(O)\in$

$R^{d}\backslash \bigcup_{(r_{1},\ldots,r_{d})\in Q^{d}\backslash \{(0,\ldots,0)\}}P_{r_{1}\cdots r_{d}}$ . Therefore, $J$ is infinite. This implies that

{ $v\in C_{w_{0}}|f\circ\sigma_{v}$ : a generic helix}

is infinite. Hence, from the arbitrarity of $w_{0}\in W\backslash \{\pm v_{0}\}$ , we can obtain $\overline{\nabla}h_{p_{0}}=0$

in terms of Lemma 5.1. Thus, by the arbitrarity of $p0,\overline{\nabla}h=0$ holds on $U$.
Furthermore, since $U$ is dense in $M,\overline{\nabla}h=0$ holds on $M$. Hence, from Theorem
4.1, we have $ f\approx\phi 0\pi$ , where $\phi$ is the standard isometric embedding of a
symmetric R-space $M_{0}$ and $\pi$ is a Riemannian covering of $M$ onto $M_{0}$ . Fur-
thermore, since $f$ is of order $2d,$ $M_{0}$ is of rank $d$ (see Sect. 4). $\square $

Here we shall constmct an example of a generalized helical immersion of a
flat toms into a Euclidean space. Let $u_{t}=(1/\sqrt{m-1},$

$\ldots,$
$1/\sqrt{m-1},$ $-1/\sqrt{m-1}$ ,
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. . .
$,$

$-1/\sqrt{m-1}$), where $m=2^{k}+1(k\geq 1)$ and the numbers of $1/\sqrt{m-1}$ and
$-1/\sqrt{m-1}$ are $t(t\geq 1)$ . Let $f$ be a map from an $n(=k+1)$ -dimensional

Euclidean space $R^{n}$ to a $2m$-dimensional Euclidean space $R^{2m}$ defined by

$f(x_{1}, \ldots, x_{n})$ $:=(\cos(\sum_{i=1}^{n}a_{i1}x_{i}),$ $\sin(\sum_{i=1}^{n}a_{i1}x_{i}),$
$\ldots$

$\cos(\sum_{i=1}^{n}a_{im}x_{i}),$ $\sin(\sum_{i=1}^{n}a_{im}x_{j}))$ ,

where $(x_{1}, \ldots, x_{n})$ is a Euclidean coordinate system of $R^{n}$ and $a_{ij}(1\leq i\leq n$ ,

$1\leq j\leq m)$ are constants defined by

$(a_{11}, \ldots,a_{1m})=(\frac{1}{\sqrt{m(m-1)}}$ , $\frac{1}{\sqrt{m(m-1)}},$ $\sqrt{\frac{m-1}{m}})$ ,

$(a_{i1}, \ldots , a_{im})=(u_{2^{i-2}}, \ldots, u_{2^{i-2}},0)$ $(2\leq i\leq n)$ .

It is clear that $\sum_{j=1}^{m}a_{i_{1}j}a_{i_{2}j}=\delta_{i_{1}i_{2}}(1\leq i_{1}, i_{2}\leq n)$ , which assures that $f$ is an
isometric immersion. Clearly $f$ deduces an isometric immersion $\overline{f}$ of an n-

dimensional flat toms $T^{n}=S^{1}(\sqrt{m(m-1)})\times S^{1}(\sqrt{m-1})\times\cdots\times S^{1}(\sqrt{m-1})$

into $R^{2m}$ , where $S^{1}(\sqrt{m(m-1}))$ (resp. $S^{1}(\sqrt{m-1})$ ) is a l-dimensional sphere of

radius $\sqrt{m(m-1)}$ (resp. $\sqrt{m-1}$). Let $G$ be the transformation group of $T^{n}$

induced from that of all parallel translations of $R^{n}$ and $H$ the isotropy group of $G$

at a point of $T^{n}$ . It is easy to show that $\overline{f}$ is G-equivariant, where we note that

the definition of a G-equivariant immersion will be stated in Sect. 7. Denote by $\pi$

the covering map of $R^{n}$ onto $T^{n}=G/H$ . Take an arbitrary geodesic $\sigma(s):=$

$\pi(b_{1}s, \ldots, b_{n}s)$ in $T^{n}$ , where $\sum_{i=1}^{n}b_{i}^{2}=1$ . Then we have

$(\overline{f}0\sigma)(s)=(\cos(s\sum_{i=1}^{n}a_{i1}b_{j}),$ $\sin(s\sum_{i=1}^{n}a_{i1}b_{i}),$
$\ldots$ ,

$\cos(s\sum_{i=1}^{n}a_{im}b_{i}),$ $\sin(s\sum_{i=1}^{n}a_{im}b_{i}))$ ,

which implies that $\overline{f}\circ\sigma$ is a helix of order at most $2m$ in $R^{2m}$ . Let $p_{i}$

$(1\leq i\leq n-1)$ be prime numbers with $3\leq p1<p2<\cdots<p_{n-1}$ . In particular, if
$(b_{1}, \ldots, b_{n})=(1, \sqrt{p1}, \sqrt{p2}, \ldots, \sqrt{p_{n-1}})$ , then $|\sum_{i=1}^{n}a_{ij}b_{i}|(1\leq j\leq m)$ are mutually

distinct and hence $\overline{f}\circ\sigma$ is of order $2m$ . Thus $\overline{f}$ is a generalized helical immersion
of order $2m$ . On the other hand, since 1. $\sum_{i=1}^{n}a_{i1}b_{i}+\cdots+1\cdot\sum_{i=1}^{n}a_{i,m-1}b_{i}+$
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$(-1)\cdot\sum_{i=1}^{n}a_{im}b_{i}=0,\overline{f}\circ\sigma$ cannot be a generic helix of order $2m$ . This fact
implies together with Lemma 2.2 that almost every geodesic in $T^{n}$ is not viewed

as a generic helix in $R^{2m}$ . Namely, the second fundamental form of $\overline{f}$ is not

parallel. In particular, if $(b_{1}, \ldots, b_{n})=(0, \sqrt{3}, \sqrt{5},0, \ldots, 0)$ , then we have

$\sum_{i=1}^{n}a_{ij}b_{i}|=\left\{\begin{array}{l}\frac{\sqrt{5}+\sqrt{3}}{\sqrt{m-1}}\\\frac{\sqrt{5}-\sqrt{3}}{\sqrt{m-1}}\end{array}\right.$ $(j\equiv 2,3(j\equiv 0,1(mod 4),j<m)(mod 4),j<m)$

and $\sum_{i=1}^{n}a_{im}b_{i}=0$ and hence $\overline{f}\circ\sigma$ is a generic helix of order 4. Therefore, since $\overline{f}$

is G-equivariant, we see that, for each $p\in T^{n}$ , there is at least one geodesic in $T^{n}$

through $p$ which is viewed as a generic helix in $R^{2m}$ . From this example, we see that

the condition $(*)$ in Theorem 5.4 cannot be replaced by the following condition:

For each $p\in M$ , there is at least one geodesic in $M$ through $p$ which is

viewed as a generic helix in the ambient Euclidean space.
From Theorem 5.4, we can obtain the following result in the case where $f$ is

of order 4.

COROLLARY 5.5. Let $f$ be a full generalized helical immersion of order 4 of
an $n(\geq 2)$ -dimensional compact Riemannian manifold $M$ into $a$ Euclidean space.
Assume that, for each $p\in M$ , there is at least one non-periodic geodesic in $M$

through $p$ . Then $ f\approx\phi\circ\pi$ , where $\phi$ is the standard isometric embedding of a
symmetric R-space $M_{0}$ of rank 2 and $\pi$ is a Riemannian covering of $M$ onto $M_{0}$ .

$PR\infty F$ . Let $\sigma$ be a non-periodic geodesic in $M$. From the assumption, $ f\circ\sigma$

is a helix of order 2 or 4. Since $\sigma$ is non-periodic, so is also $ fo\sigma$ (see Proof of

Theorem 2 of [5]). Hence $ f\circ\sigma$ is a generic helix of order 4. Therefore, the

conclusion is deduced from Theorem 5.4. $\square $

6. Generalzed helical immersions into a sphere.

In this section, we shall deduce some results for an isometric immersion into
a sphere.

PROPOSITION 6.1. Let $f$ be a full isometric immersion of a 2-dimensional

compact Riemannian manifold $M$ into a sphere. Assume that, for each $p\in M$ , there

are at least four geodesics in $M$ through $p$ which are viewed as generic helices in

the ambient sphere. Then, $lff$ is minimal, then the following (i), (ii) or (iii) holds:
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(i) $f\approx id$, where $id$ is the identity transformation of a 2-dimensional sphere,

(ii) $ f\approx\overline{\phi}_{1}0\pi$, where $\overline{\phi}_{1}$ is the umbilical reduction of the Veronese embedding
$\phi_{1}$ of a 2-dimensional real projective space $RP^{2}$ into a 5-dimensional Euclidean

space to a hypersphere, $\pi$ is a Riemannian covering of $M$ onto $RP^{2}$ ,

(iii) $f\approx\overline{\phi}_{2}0\pi^{\prime}$ , where $\overline{\phi}_{2}$ is the $Cl\iota fford$ embedding of a 2-dimensional flat
torus $T$ into a 3-dimensional sphere $S^{3},$ $\pi^{\prime}$ is a Riemannian covering of $M$ onto $T$.
Also, $\iota ff$ is not minimal, then $f\approx\psi\circ\overline{\phi}$, where $\overline{\phi}$ is the above immersion $ id,\overline{\phi}_{1}0\pi$

or $\overline{\phi}_{2}\circ\pi^{\prime}$ and $\psi$ is a totally umbilical (but non-totally geodesic) embedding of
codimension-l into a sphere.

$PR\infty F$ . Let $\iota$ be a totally umbilical embedding of codimension-l of the

ambient sphere into a Euclidean space. It is easy to show that $\iota$ of satisfies the
conditions (other than the fullness) of Proposition 5.2. Hence, we can obtain

the conclusion in terms of Proposition 5.2. $\square $

Also, we can obtain the following characterizing theorem in terms of
Theorem 5.4.

THEOREM 6.2. Let $f$ be a full generalized helical immersion of order $2d-1$

or $2d(d\geq 2)$ of an $n(\geq 2)$ -dimensional compact Riemannian manifold $M$ into a
sphere. Assume that, for each $p\in M$, there is at least one geodesic in $M$ through $p$

which is viewed as a generic helix of order $2d-1$ or $2d$ in the ambient sphere.

Then the following statements (i) and (ii) hold:
(i) If $f$ is minimal, then $ f\approx\overline{\phi}0\pi$ , where $\overline{\phi}$ is the umbilical reduction of the

standard isometric embedding $\phi$ of a symmetric R-space $M_{0}$ of rank $d$ to a
hypersphere and $\pi$ is a Riemannian covering of $M$ onto $M_{0}$ .

(ii) If $f$ is not minimal, then $f$ is of order $2d$ and $ f\approx\psi\circ\overline{\phi}\circ\pi$, where $\overline{\phi}$ and
$\pi$ are as in the above and $\psi$ is a totally umbilical (but non-totally geodesic)

embedding of codimension-l into a sphere.

$PR\infty F$ . Let $\iota$ be a totally umbilical embedding of codimension-l of the
ambient sphere into a Euclidean space. It is clear that $\iota\circ f$ is a (not necessarily
full) generalized helical immersion of order $2d$ . Also, it follows from the
assumption that, for each $p\in M$, there is at least one geodesic in $M$ through $p$

which is viewed as a generic helix of order $2d$ in the Euclidean space. Hence, we
can obtain the conclusion in terms of Theorem 5.4.

In particular, we can obtain the following result in the case where $f$ is of
order 3 or 4.
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COROLLARY 6.3. Let $f$ be a full generalized helical immersion of order 3 or 4

of an $n(\geq 2)$ -dimensional compact Riemannian manifold $M$ into a sphere. Assume
that, for each $p\in M$ , there is at least one non-periodic geodesic in $M$ through $p$ .
Then the following statements (i) and (ii) hold:

(i) If $f$ is minimal, then $ f\approx\overline{\phi}\circ\pi$ , where $\overline{\phi}$ is the umbilical reduction of
the standard isometric embedding $\phi$ of a symmetric R-space $M_{0}$ of rank 2 to a
hypersphere and $\pi$ is a Riemannian covering of $M$ onto $M_{0}$ .

(ii) If $f$ is not minimal, then $f$ is of order 4 and $ f\approx\psi\circ\overline{\phi}0\pi$, where $\overline{\phi}$ and
$\pi$ are as in the above and $\psi$ is a totally umbilical (but non-totally geodesic)

embedding of codimension-l into a sphere.

$PR\infty F$ . Let $\sigma$ be a non-periodic geodesic in $M$. From the assumption, $ fo\sigma$

is a helix of order at most 4. Since $\sigma$ is non-periodic, $ f\circ\sigma$ is a generic helix of
order 3 or 4. Therefore, the conclusion is deduced from Theorem 6.2. $\square $

7. $Conclu4\dot{m}g$ remarks.

In this section, we shall state results deduced from those in Sect. 5 and 6 in
the case where $M$ is a Riemannian homogeneous space and $f$ is equivariant. Let $f$

be an isometric immersion of a Riemannian homogeneous space $M=G/K$ into a
Riemannian manifold $\tilde{M}$ . If there is a continuous homomorphism $p$ of $G$ into the

isometry group of $\tilde{M}$ such that $f(g\cdot p)=\rho(g)(f(p))$ for every $p\in M$ and every
$g\in G$, then $f$ is said to be G-equivariant. The following result is deduced from

Theorem 5.4.

THEOREM 7.1. Let $f$ be a G-equivariant full generalized helical immersion of
order $2d$ of an $n(\geq 2)$ -dimensional compact Riemannian homogeneous space $M=$

$G/K$ into $a$ Euclidean space. Assume that there is at least one geodesic in $M$ which

is viewed as a generic helix of order $2d$ in the ambient Euclidean space. Then
$ f\approx\phi\circ\pi$, where $\phi$ is the standard isometric embedding of a symmetric R-space $M_{0}$

of rank $d$ and $\pi$ is a Riemannian covering of $M$ onto $M_{0}$ .

Also, the following result is deduced from Theorem 6.2.

THEOREM 7.2. Let $f$ be a G-equivariant full generalized helical immersion of
order $2d-1$ or $2d$ of an $n(\geq 2)$ -dimensional compact Riemannian homogeneous

space $M=G/K$ into a sphere. Assume that there is at least one geodesic in $M$

which is viewed as a generic helix of order $2d-1$ or $2d$ in the ambient sphere.

Then the statement (i) and (ii) in Theorem 6.2 hold.
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