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In the electromagnetic theory, the Hertz vector reduces the number of potentials

in the free fields. The further advantage of this potential is that it is much easier

to solve some radiation processes. It indicates that the related method is sometimes

more effective than the scalar and vector potential-based relations. Finally, the

measurable field variables, the electric and magnetic fields, can be deduced by direct

calculation from the Hertz vector. However, right now, the introduction of the

Hertz vector operates if the conductive currents j = σE are neglected. We suggest

a generalization for the case of conductive currents, i.e., for such cases when the

electromagnetic field dissipates irreversibly into Joule heat. The presented procedure

enables us to introduce also the Lagrangian formulation of the discussed dissipated

electromagnetic waves. It opens a new way for future studies.
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I. INTRODUCTION: REVERSIBLE ELECTROMAGNETIC FIELD

Certain mathematical operators, such as the first derivatives, can bring irreversible

and dissipative behavior in theory, as in the case of thermal conduction and damped

oscillator [1–6]. This minor change in the structure of equations causes a particular

challenge in the Lagrangian construction [7–9]. Historically it was a long time to find

the mathematically consequent steps to the formulation method. Now, we will see that

the Joule heat brings another twist to the theory.

In the case of free electrodynamic fields, the introduction of vector potential is nec-

essary to deduce from Lagrangian formulation since the Maxwell equations contain

non-selfadjoint operators (first-time derivative and divergence). The vector and scalar

potentials generate the measurable physical variables. Mathematically these potentials

are similarly applied, such as in the previous dissipative processes [1, 4, 5]. In general,

we can recognize that the introduction of the potentials is independent of dissipation.

(See a detailed comparative study about these requirements [10].)

We aim to achieve the Hamiltonian structure of dissipative electrodynamics. For this

reason, we shortly summarize the concepts of the reversible case that can be consid-

ered classical theory. The complete system of the Maxwell equations [11] - applying

the usual notations – is

rotH = j + Ḋ,

rotE = −Ḃ,

divD = ̺,

divB = 0. (1)

If we restrict our examination for the free electromagnetic field, than the relation

between the field quantities are D = ε0E, B = µ0H, and both the current density

and the charge density will be j = 0 and ̺ = 0. The ”dot” denotes the partial time
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derivative. The measurable field variables E and B can be expressed by introducing

the vector potential A and the scalar potential ϕ

E = −Ȧ− gradϕ,

B = rotA. (2)

It is worth mentioning, that originally the term −Ȧ was introduced by Faraday as an

electrostatic force relating to the so-called ”electrotonic state” [12, 13]. Fortunately,

the usage of the scalar and vector potential is also possible in the case of existence of

charges and currents [14, 15]. Now, we can write the Lagrange density function L

L =
1

2
ε0

(

−Ȧ− gradϕ
)2

−
1

2µ0
(rotA)2 (3)

We calculate the equations of motion of the problem varying concerning A and ϕ

ε0µ0Ä−∆A = 0 (4)

and

ε0div(−Ȧ− gradϕ) = divE = 0, (5)

where we have to take into account the Lorentz condition

divA+ ε0µ0ϕ̇ = 0. (6)

We can understand from Eq. (4) why the free field equations with the first order

derivatives do not mean an irreversible process. The derived Eq. (4) is a non-dissipative

wave equation for free propagation. So, in general, a careful examination is needed

before the Lagrangian elaboration of different theories. Instead of the two potentials,

Hertz introduced a vector Π with the definitions

A = ε0µ0Π̇,

ϕ = −divΠ (7)

to apply only one vector (potential) field. The fields E and B are by the Hertz vector

E = −ε0µ0Π̈+ grad divΠ,

B = ε0µ0rotΠ̇. (8)
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This fact shows that we can deduce the free electromagnetic field from one generator

field [11, 16]. There are electromagnetic problems that cannot be solved or are compli-

cated to solve without the Hertz vector [17]. The symmetry of the Maxwell equations

allow an alternative introduction of the Hertz vector involving its gauge symmetries

[18–20]. Ornigotti et al. have shown that due to the transversality of the electromag-

netic wave, the Hertz vector can be expressed as a product of a constant polarization

vector and a scalar potential [21]. It may give a next physical conception to the Hertz

vector formulations.

II. GENERALIZED VECTOR POTENTIAL, HERTZ VECTOR AND

MODIFIED LORENZ CONDITION

In the presence of electrically conductive materials, the currents influence the elec-

tromagnetic field. So, we take into account the conductive current density by the

differential Ohm’s law j = σE, thus the Maxwell equations are

1

µ0

rotB = σE+ ε0Ė,

rotE = −Ḃ,

divE = 0,

divB = 0. (9)

From a thermodynamical viewpoint, its importance of it is unquestionable. The dif-

ficult question is how to generalize the above formalism for the present case [16]. It

can be seen that the new term σE causes difficulties. Let us introduce a generalized

definition of the vector potential Am and the Hertz vector Πm involving the current

related term

Am = ε0µ0Π̇m + σµ0Πm,

ϕ = −divΠm, (10)

and the modified Lorenz condition

divAm + ε0µ0ϕ̇+ σµ0ϕ = 0. (11)
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Here, we can point out the role of Hertz vector Πm. We formulate the field quantities

E and B are similar to Eqs. (8), but now we add a new term in each equation

E = −ε0µ0Π̈m − σµ0Π̇m + grad divΠm,

B = ε0µ0rotΠ̇m + σµ0rotΠm. (12)

We can conclude that a single generator space is still sufficient to produce gauge spaces.

The connections between the measurable field quantities E, B and the potentials Am

and ϕ remain the same physical meaning

E = −Ȧm − gradϕ,

B = rotAm. (13)

One can prove that all of the field quantities complete the requirement of damping

wave (telegrapher) equation

0 = ε0µ0G̈+ σµ0Ġ−△G, (14)

where G can be E, B, Am, ϕ and Πm. By the first equation of Eq. (12), the electronic

field E can be expressed in an alternative form

E = rotrotΠm. (15)

III. THE LAGRANGIAN FORMULATION

We need to find a suitable Lagrange density function if we would like to deduce the

field equation and exploit the Hamiltonian principle. The construction is not self-

explanatory. However, if it is possible, the existence of Lagrangian is of fundamental

importance. Now, the formulated Lagrangian is

L =
1

2
ε0

(

−Ȧm − gradϕ
)2

−
1

2µ0
(rotAm)

2 + σrotΠmrotAm

−
1

2
σ2µ0 (rotΠm)

2
−

1

2
ε0Πmrotrot∆Πm −

1

2
ε20µ0

(

rotΠ̇m

)2

, (16)

which pertains to a dissipative process in electrodynamics. The eleboration of variation

is necessary for each field function as variables Am, ϕ and Πm. The exactness of
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Lagrangian is complete if we obtain the relevant equations of motion or field equations.

For the easy following, the details of the calculation are also displayed.

a, With respect to Am:

0 = −
∂

∂t

∂L

∂Ȧm

+ rot
∂L

∂rotAm

= ε0
∂

∂t

(

−Ȧm − gradϕ
)

−
1

µ0

rotrotAm + σrotrotΠm

= ε0Ė−
1

µ0
rotB+ σE. (17)

This is exactly the first equation in the Maxwell equations in Eqs. (9).

b, With respect to ϕ:

0 = −div
∂L

∂gradϕ
= ε0div

(

−Ȧm − gradϕ
)

= ε0divE, (18)

which is the third equation in Eqs. (9).

c, With respect to Πm:

0 =
∂L

∂Πm

+ rot
∂L

∂rotΠm

+ rotrot∆
∂L

∂rotrot∆Πm

− rot
∂

∂t

∂L

∂rotΠ̇m

= −
1

2
ε0rotrot∆Πm + σrotrotAm − σ2µ0rotrotΠm −

1

2
ε0rotrot∆Πm + ε20µ0rotrotΠ̈m

= −ε0rotrot∆Πm + σrotrotAm − σ2µ0rotrotΠm + ε20µ0rotrotΠ̈m (19)

Applying the definition of generalized vector potential Am in Eq. (10), we obtain

0 = −ε0rotrot∆Πm+σε0µ0rotrot
∂Πm

∂t
+
✭
✭
✭
✭
✭
✭
✭✭

σ2µ0rotrotΠm−
✭

✭
✭
✭
✭
✭
✭✭

σ2µ0rotrotΠm+ε20µ0rotrotΠ̈m

After the above simplification, dropping the rotrot operator and dividing by ε0, the

telegrapher’s equation appears for the generalized Hertz vector Πm:

0 = ε0µ0Π̈m + σµ0Π̇m −∆Πm, (20)

that is the expected telegrapher equation. We can conclude that the Lagrangian in Eq.

(16) involves and describes well the Joule dissipation. Now, the irreversible behavior

of the electromagnetic theory is within the frame of the Hamilton’s principle.
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IV. THE ELECTROMAGNETIC ENERGY LOSS

The canonical momenta pertain to the field quantities that exist as pure time derivatives

in the Lagrangian. Thus, we can define the canonical momentum just for Am as it is

usual in the Hamiltonian formulation

PAm
=

∂L

∂Ȧm

= −ε0

(

−Ȧm − gradϕ
)

. (21)

Thus the Hamiltonian of the dissipative electromagnetic field is

H = PAm
Ȧm − L

= −ε0

(

−Ȧm − gradϕ
)

Ȧm −
1

2
ε0

(

−Ȧm − gradϕ
)2

︸ ︷︷ ︸

1

2
ε0E

2+ε0Egradϕ
︸ ︷︷ ︸

1

+
1

2µ0

(rotAm)
2

︸ ︷︷ ︸
1

2µ0
B2

−σrotΠm · rotAm
︸ ︷︷ ︸

σrotΠm·B

.

+
1

2
σ2µ0 (rotΠm)

2 +
1

2
ε0Πmrotrot∆Πm

︸ ︷︷ ︸

2

+
1

2
ε20µ0

(

rotΠ̇m

)2

︸ ︷︷ ︸

3

, (22)

Since the Hamiltonian does not depend on time explicitly, thus volume integral of it is

constant, i.e., the energy conservation is valid.

We obtain from the underbraced term 1:

ε0Egradϕ = ε0div(Eϕ)− ε0ϕdivE
︸ ︷︷ ︸

=0

. (23)

The Hamiltonian is invariant against the divergence and time derivate terms. So, here,

the term ε0div(Eϕ) can be dropped from the Hamiltonian density function. We can

reformulate the underbraced terms 2 and 3 as

1

2
ε0Πmrotrot∆Πm =

1

2
ε0ΠmrotḂ, (24)

1

2
ε20µ0

(

rotΠ̇m

)2

=
1

2
ε0rotΠ̇m (B− σµ0rotΠm) . (25)

Thus, the Hamiltonian has an almost final form:

H =
1

2
ε0E

2 +
1

2µ0
B2 +

1

2
σ2µ0 (rotΠm)

2
−σrotΠm ·B
︸ ︷︷ ︸

4
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+
1

2
ε0ΠmrotḂ+

1

2
ε0rotΠ̇m (B− σµ0rotΠm)

︸ ︷︷ ︸

5

(26)

We need to discuss and reformulate these underbraced expressions. By the substitution

of B from Eq. (12), the underbraced term 4 is

−σrotΠm ·B = −
1

2
ε0µ0σ

∂

∂t
(rotΠm)

2
− σ2µ0(rotΠm)

2. (27)

The underbraced 5 is:

1

2
ε0

∂

∂t
(ΠmrotB)−

1

2
ε0Π̇mrotB+

1

2
ε0rotΠ̇m ·B

︸ ︷︷ ︸
1

2
ε0div(Π̇m×B)

−
1

4
ε0µ0σ

∂

∂t
(rotΠm)

2
. (28)

Since the total time derivatives and the divergences can be dropped from the Hamil-

tonian thus the

H =
1

2
ε0E

2 +
1

2µ0
B2

−
1

2
σ2µ0 (rotΠm)

2 (29)

can be deduced. Here, the third term pertains to the dissipative Joule heat loss caused

by the conductive current. If an electric conductor does not take place in space, then

the electromagnetic energy remains constant.

V. SUMMARY

We pointed out that the Hertz vector can have a generalized form by which the Maxwell

equations, involving the conductive currents, can be successfully produced. In this way,

the Joule dissipation appears on a potential level. This generalization of the Hertz

vector enables us to create the Lagrangian description of such an electromagnetic field

in which we can handle the loss of electromagnetic energy. The calculated Hamilto-

nian of the process clearly shows that the electromagnetic field energy dissipates into

Joule heat. If there is no conductive current in the space, the electromagnetic energy

is conserved during the process. We hope that based on the presented Lagrangian

formulation, the electromagnetic and the thermal fields can couple, by which further

studies may be possible in the case of electromagnetic radiation in media.
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