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Abstract: Electroencephalogram (EEG) signal identification based on intelligent models is an 
important means in epilepsy detection. In the recognition of epileptic EEG signal, traditional 
intelligent recognition methods usually assume that the training and the testing dataset have the 
same distributions, and that adequate training data are available. However, these two conditions are 
not always met in practice, which degenerates the recognition abilities of the intelligent epilepsy 
detection model. In order to overcome this challenge, an effective strategy is the introduction of 
transfer learning for the construction of the intelligent models, where transfer learning is effectively 
used to learn from the knowledge of related scenes to enhance the performance of the model trained 
in the current scene. Although transfer learning has been used in EEG signal identification, many 
existing techniques are only designed for specific intelligent models and cannot be extensively 
applied to other models. To tackle this limitation, a more generalizable transductive transfer learning 
approach, namely, generalized hidden-mapping transductive learning method, is proposed to realize 
transfer learning for several classic intelligent models, including feedforward neural networks, fuzzy 
systems and kernelized linear models. A large number experiments on epileptic EEG recognition 
are carried out to demonstrate the effectiveness of the proposed method. 

 

I Introduction 

Epilepsy is a common brain functional disease caused by the abnormal brain neurons [1]. 
Electroencephalogram (EEG) is an important means to detect epilepsy. In recent years, intelligent 
modeling techniques have been studied widely in the detection and recognition of epileptic EEG 
signals because of their strong learning ability [2]. 

There have been a variety of intelligent identification methods that are applied to detect 
epileptic EEG signals, such as Naive Bayes method (NB), K nearest neighbor (KNN), linear 
discriminant analysis (LDA), decision tree algorithm (DT) and support vector machine (SVM) [3]. 
For the traditional intelligent epileptic EEG identification methods, it is usually to first train a 
prediction model with abundant training data, and then use the trained model to predict the classes 
that the testing data belong to. All these traditional intelligent methods assume that the source 
domain (the training dataset) and the target domain (the testing  dataset) have the same distribution. 
However, the epileptic EEG data collected for training and testing do not necessarily satisfy this 
assumption and thus the performance of traditional identification methods is degenerated seriously 
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when there is a drifting in the data distribution between the source and the target. Transfer learning 
is a promising mechanism to deal with this challenge. It can transfer the relevant knowledge from 
the related tasks to facilitate the learning of the current one [4], without the need to assume that the 
training and testing data have the same distribution. [5]. 

Transfer learning is an effective adaptive learning strategy. The existing methods can be 
divided into three main categories: (1) inductive transfer learning, (2) transductive transfer learning 
and (3) unsupervised transfer learning [6]. In inductive transfer learning, both the source domain 
and target domain must contain labeled data for model training, while labeled data are only needed 
in the source domain for transductive learning. For unsupervised learning, data in both domains are 
unlabeled. For epileptic EEG recognition, inductive and transductive learning can be used to train a 
recognition model. Since the applicability of transductive transfer learning is superior to that of 
inductive transfer learning [7], we focus our work on the former in the paper for epileptic EEG 
recognition. 

Transfer learning based methods have been proposed for epileptic EEG recognition, e.g.  
transfer learning based SVM [8] and transfer learning based fuzzy systems [9]. Although these 
existing methods have shown promising performance, they have a common shortcoming that they 
can only be used to a specific intelligent model. When a new intelligent model is developed and is 
to be trained using the transfer learning mechanism, the existing methods will not be applicable 
anymore. In this study, we investigate into transfer learning based methods that are more generally 
applicable for the training of different models. 

The main contributions of this paper are as follows: (1) generalized hidden-mapping model is 
introduced to unify the representation of several classical intelligent models, including feedforward 
neural networks, fuzzy systems and kernel regression models; and (2) the generalized hidden-
mapping transductive transfer learning method is proposed to realize the transfer learning of 
different classical intelligent models. Experimental studies on epileptic EEG recognition are 
conducted extensively to confirm the effectiveness of the proposed method. 

The rest of the paper is organized as follows: Section II describes the generalized hidden-
mapping model and the relationships between this model and the feedforward neural networks, 
fuzzy system and kernel methods respectively. Section III presents the transductive transfer learning 
based generalized hidden-mapping model construction method. Section IV presents the experiments 
conducted to evaluate the performance of the proposed method. Conclusions and future work are 
given in the final section. 
 

II Generalized Hidden-mapping Model 
A Hidden-mapping Linear Model 

Most existing transductive transfer learning algorithms are only applicable to a specific 

intelligent model. For example, the large margin transductive transfer learning method (LMPROJ), 

developed based on SVM, cannot be used for the training of fuzzy rules based model when fuzzy 

systems are preferred for better interpretability. Therefore, it is significant to propose a generalized 

model based on which the general learning algorithm can be developed for different classical 

intelligent models. For this purpose, we introduced the generalized hidden-mapping model (GHMM) 

[10]. A variety of classical intelligent models such as fuzzy systems, neural networks and kernel 

methods, can be considered as the special cases of GHMM. Based on GHMM, the general 



transductive transfer learning algorithm was proposed for several classical intelligent models and 

applied to epileptic EEG recognition. The mathematical expression of GHMM is as follows: 

  
T

g g( ) y f x p x ,            (1) 

where gp  and gx  denote the parameters of the linear model and the input vector in a hidden-

mapping space respectively. This model is very general and encompasses many classical intelligent 

models. The relationships between this model and the classical intelligent models are briefly 

described below. 

 

B Relationship with Feedforward Neural Networks  

Feedforward neural networks (FNN) [11] are a class of neural network models that have been 

applied extensively in many areas, e.g. speech recognition [12], signal processing [13] and robotics 

control [14]. In general, an FNN contains an input layer, one or more hidden layers and an output 

layer. 

According to the number of hidden layers, FNNs can be divided into single hidden layer FNNs 

and multi-hidden layer FNNs. Since the multiple hidden layers can be regarded as a hidden layer 

that is more complicated, multi-hidden layer FNN can be expressed as a special single hidden layer 

FNN [15]. For clarity and convenience, we only discuss single hidden layer FNN here. For a single 

hidden layer FNN, its output can be expressed as follows: 

 
1

( ) ( , )
N

i i i

i

y f g w


 x x , (2) 

where ( , )
i i

g x  is the output of the i th node in the hidden layer and 
i
  denotes the parameters 

of this node. According to the general approximation theorem, FNNs with a finite number of 

neurons can be trained to approximate an arbitrary continuous function [16]. In particular, according 

to the learning theory in [17], even if the hidden parameters are randomly generated for the 

activation function in hidden layer and the function is continuous, bounded, and non-constant, the 

FNNs can still approximate it with an arbitrary continuous function. Therefore, once the hidden 

layer is fixed, the outputs of the hidden layer can be expressed as the following vector 

 1 1 1 2 1[ ( , ), ( , ), , ( , )]
M

N

N
g g g R   T

gx x x x . (3) 

N
Rgx  can be viewed as a vector in the new space which are mapped by the hidden layer of FNNs 

from the vector 
d

Rx  in the original feature space of samples. Thus, the output of a FNN can be 

written as 

 
T

g g( ) y f x p x ， (4) 

where T

g 1[ ,..., ] M

M

N

N
w w R p . Hence, it is obvious that FNNs can be considered as a special case 

of GHMM. 
 

C Relationship with TSK Fuzzy system 

Fuzzy systems are a kind of intelligent models based on fuzzy logic rules. They feature good 



interpretability that are advantageous over the black-box of neural networks [18]. Besides, fuzzy 

systems are more robust as they exhibit strong abilities in modeling uncertainty [19]. Data-driven 

fuzzy systems are becoming popular modelling methods since the parameters of the systems can be 

easily optimized using the available training data, whereas TSK fuzzy systems (TSK FS) are also t 

widely used for fuzzy system modeling because of the strong learning ability [20]. The relationship 

between TSK FS and GHMM is discussed below. TSK FS consists of a group of "If-then" inference 

rules as follows [21], 

 1 1 2 2 k k

k k k k k k

m m
x A x A x A  If   is  is  is ， (5) 

 0 1 1( )k k k k

d d
f p p x p x   xThen   ， 1,2, ,k K . 

In (5), 
k

i
A  is the fuzzy set; ( )k

f x  (1 k K  ) represents the output of the kth rule of the TSK 

FS, where K  is the number of rules in the rule base; and 
k

i
p  is the parameters of the output 

function ( )k
f x   [22]. For TSK FS, when multiplication is implemented by the conjunction and 

implication operators, addition by the combination operator [23], and the center of gravity by the 
defuzziness operation, the output of TSK FS can be expressed as 

 
1 1 1

( ) ( ). ( ) ( ) ( ) ( )x x x x x x
K K Kk k k k k

k k k
f f f  

  
    . (6) 

In (6), ( )x
k  and ( )x

k  are the fuzzy membership and the normalized fuzzy membership, which 

can be computed below 

  

1
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d
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iA
i

x 


x ， (7) 
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( ) ( ) ( ).
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k k k

k

x x   



 x  (8) 

In (7), ( )xk
i

iA
  is the membership degree of the ith dimension 

ix  in input vector x  to the fuzzy 

set 
k

i
A  [24]. 

There are several ways to estimate the antecedent parameters of TSK FS. One of the classical 

method is to divide the input space by clustering techniques, e.g. classical fuzzy c-means (FCM) 

[25] algorithm, and then estimate the antecedent parameters according to the space partition results. 

For example, if the following Gaussian membership function is adopted as the fuzzy membership 

function in the fuzzy rules, 

 

2( )
( ) exp( )

2
k
i

k

i i

i kA

i

x c
x


 

 ， (9) 

then the parameter 
k

i  and 
k

ic  in the membership function can be estimated by the clustering 

results of FCM on the input data of the training dataset as follows, 
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Here, jk
u  is the membership degree of the input vector j

x  in jth sample to the kth cluster; h  is 

adjustable parameters, which can be determined manually or by learning strategies such as cross-

validation strategy [25].  

Once the antecedent parameters of the TSK FS are evaluated, the output of a TSK FS can be 

expressed as follows, 

 
T

g g( ) ,x p xy f   (12) 

where 
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R
 gx x x x  (13a) 
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e
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e
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d
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In (13), gx represents the data in the mapping feature space with the fuzzy rules from the input 

vector x  in the original space maps; gp  is the combined vector of the consequent parameters of 

all the fuzzy rules in the rule base of the trained TSK FS. It can be seen from (12) that TSK FS can 

be regarded as a special case of GHMM. 

 

D Relationship with Kernelized Linear Regression 

Kernel technique is very effective approach for solving nonlinear problems. In kernel based 

methods, a sample x  is usually mapped into gx  in an unknown feature space as follows [26], 

 ( )gx x , (14) 

where ( )   is the mapping function that satisfies the Mercer kernel conditions [27]. A 

representative kernel based methods is the kernelized linear regression model,  

 ( )y  T

gp x , (15) 

which can be effectively used for classification and regression. Comparing (15) with (1), we can see 

that kernelized linear regression model is just a special case of GHMM. 

 

III Transductive Transfer learning for GHMM 

The relationships between GHMM and FNN, TSK FS and kernalized linear regression as 

discussed above show that the leaning algorithm of GHMM is a general algorithm that is applicable 

to many existing intelligent models. Therefore, a transductive transfer learning algorithm based on 

GHMM, called generalized hidden-mapping transductive transfer learning, is proposed in the paper 



for the training of different intelligent models in order to overcome the issue due to distribution 

drifting between the source and the target domain.  

 

A The Maximum Mean Distance and Projective Maximum Mean Distance 

Maximum mean distance (MMD) and projected maximum mean distance (PMMD) have 
shown to be effective metrics for transductive transfer learning [28]. For the datasets in the source 
domain: 

1 2{ , , , }x x xs ND  and datasets in the target domain: 
1 2{ , , , }z z zt MD  , the distance 

between the distributions of source domain and the target domain, i.e., 
Dsp   and 

Dtp  , can be 
approximated with MMD as follows, 
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   x z , (16) 

where ( )   is a mapping function. Furthermore, given the projection vector gp , the projective 

maximum mean distance (PMMD) under gp  can be expressed as: 
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  (17) 

In transfer learning algorithms, the above measure is often used to estimate the difference between 
two distributions, and have been effectively used in some transfer learning methods, e.g. LMPROJ 
[29]. 
  

B Generalized Hidden-mapping Transductive Transfer Learning 

Based on the GHMM, the input data of the training set: 
1 2{ , , , }x x x

s N
D   and the input 

data of the testing set: 
1 2{ , , , }z z z

t M
D   can be mapped to the new feature space as follows, 

 ( )
i i gi

 x x x , (18) 

 ( )
i i gi

 z z z . (19) 

Here, gi
x  and gi

z , are the data in the new feature space. For example, if GHMM is used for TSK 

FS and FNN, the new feature space is constructed by the fuzzy rules and hidden layers respectively. 
For GHMM, the following objective function is defined by introducing the PMMD, 
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Refer to (17), 2( , )gp
Ds Dt

d p p  can be calculated as follows,   



 

2

2 2

1 1

2 2
1 1 1 1

1 1

1 1
( , )

1 1

2
.

T T

g g g

T T T T

g g g g g g

T T

g g g

p PMMD p x p z

                = p x x p p z z p

                  p x z p

N M

Ds Dt gj gj

j j

N N M M

gi j gi j

i j i j

N M

gi j

i j

d p p
N M

N M

NM

 

   

 

  

 



 

 



  (21) 

In (21), x
gi  and z

gi  can be explicitly expressed when the hidden-mapping is realized by 

using fuzzy system or neural network, and hence we can obtain the solution for gp  in an explicit 

form. However, the explicit expression is not known in some cases, e.g. when the mapping in the 

kernel methods is unknown, and the gp   cannot be solved directly. In order to solve for the 

objective function in (20) uniformity for different cases, gp  is expressed as follows according to 

the generated theory of Hilbert space, 
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substituting (22) into (21), we have 
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Here, Ω  is a ( ) ( )  N M N M  matrix and can be expressed in compact form as follows, 
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Let 
1X=[x , ,x ]

N
 , 

M
Z=[z, ,z ]  and S=[X, Z]  . In (24), Train(i,j)K =K(S,X)   is a ( ) N M N

kernel matrix of the training data and Test(i,j)K =K(S,Z)  is a ( ) N M M  kernel matrix of the 

testing data. Furthermore, Eq.(20) can be expressed as follows, 
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By substituting (22) into (25), the objective function in (25) can be written as 
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Based on optimization theory, the dual problem of (26) can is a quadratic programming 
problem, i.e., 
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 and H  is given by Eq. (A17). The details of the 

derivation of (27) is given in Appendix A. Compared with (26), the corresponding dual problem 

(27) can be solved more easily. According to the dual theory and the results obtained in Appendix 
A, the optimal solution of β  in the original optimization problem (26) can be expressed as follows 
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Furthermore, the solution of gp   in GHMM or the decision function of GHMM can be 

obtained based on (22) and (28). 
 

C Decision Function 

When the hidden-mapping model is trained, the decision function can take different forms of 
expressions depending on whether the hidding-mapping is explicit or unknown. 

(1) Case1: the hidden-mapping is explicit 

The form of hidden-mapping is known in this case. The solution of gp   can be expressed 

explicitly based on (22) and (28). Accordingly, the decision function can be expression as  

   ( ) T

g g

T

gp xx Φ s β xy f    (29) 

        1

1

2
( 2 )

Τ Τβ Φ s Φ s + Ω Φ s x
N

i i gi

i

  


  



   . (30) 

 

(2) Case2: the hidden-mapping is unknown 

As the exact form of the hidden-mapping is unknown, the explicit form of gp   cannot be 

determined. However, by introducing kernel trick, the decision function can be written as follows. 
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D Algorithm of the Generalized Hidden-mapping Transductive Transfer Learning 

Based on the discussion above, the algorithm of the proposed Generalized Hidden-mapping 
Transductive Transfer Learning, called GHM-TTL, is detailed in Table I. 
 

Table I Algorithm of GHM-TTL 

Algorithm of GHM-TTL 

Stage1：Construction of data in the hidden-mapping feature space 

Step1： Construct the datasets of the source and the target domain domains in the 

hidden-mapping feature space, i.e., 1 2{ , , , }
s g g gN

D  x x x   and 

1 2{ , , , }
t g g gM

D  z z z   based on the source dataset 
1 2{ , , , }

s N
D  x x x  , 

the target dataset 
1 2{ , , , }

t M
D  z z z  in the original feature space and the 

intelligent model adopted. 
Stage 2：Transfer learning of model parameters 

Step2： Set the parameter  and   in the objective function for transfer learning 

Step3： 
Compute β  using (28) and compute gp  using (22) if the hidden-mapping 

is explicit. 
Step4: Obtain the decision function using (29) or (31) 

 

E Strategy for Multi-class Classification using Regression Model 
Although the generalized hidden-mapping model is developed based on regression model, it is 

also suitable for multi-class classification problems, which can be achieved using simple strategies. 
One strategy is to use the output of the regression model to approximate the class labels in the 
corresponding classification task [30]. Once the regression model is trained, testing is performed 
such that the label that is closest to the model output is taken as the label of the test sample. A 
common strategy is to transform the multi-classification problem as a multiple-output regression 
problem. The procedure is described in brief as follows. Given a dataset with m classes: { , },

i i
x y

{1,2, , }, 1,2, ,
i

m i N y ，an m-output regression dataset { , }
i i

x y  is firstly constructed. If the 
class label of the ith training sample in { , }x y

i i
 is (1 )p p m  , the corresponding output vector 

in the constructed m-output regression dataset is defined as [0, ,1,0, ,0]Ty
p

i
 , where only the 

pth element of y
i
 is one and the rest of the elements are set to zero. An m-output regression model 

can be regarded as m single-output regression models. Once the m regression models are obtained, 

the output vector can be expressed as mod mod

1[ , , ]model T
y

el el

i i im
y y  for a given testing sample. Then 

the predicted class label of the testing sample is the index of the element containing the maximum 

value in the output vector. For example, if the value of mod el

il
y  is the largest element in the vector 



( 1,..., )model
y

i
i m , then the final predicted class label of the test sample is l . 

 

IV Experiments 

A Dataset 
The epileptic EEG data used in this study are publicly available on the web from the University 

of Bonn, Germany, (http://www.meb.uni-bonn.de/epileptologie/science/physik/eegdata.html). EEG 
signal measurement and complete description can be found in [31]. The epileptic EEG database 
contains 5 groups of data (denoted by groups A to E), each containing 100 samples. Groups A and 
B consist of segments acquired from surface EEG recording performed on five healthy volunteers 
using standardized electrode placement scheme. Recording was made when the subjects were 
relaxed in awaken state with eyes open (group A) and eyes closed (group B) respectively. Groups 
C, D and E are data obtained from volunteers with epilepsy. EEG signals in group C were recorded 
from the hippocampal formation of the opposite hemisphere of brain, while those in group D were 
measured from within the epileptogenic zone. Group E contains EEG signals recorded during 
seizure activity. Table II gives a brief description of the five groups of the EEG database. 

 

Table II Description of EEG data base 

Subject Group description of datasets 

Healthy 
people 

A EEG signals measured from healthy people with eyes open 

B EEG signals measured from healthy people with eyes closed 

Patients with 
epilepsy  

C 
EEG signals obtained in hippocampal formation of the 
opposite hemisphere of brain during seizure free intervals 

D 
EEG signals obtained from within epileptogenic zone during 
seizure free intervals 

E EEG signals measured during seizure activity 

 

B Experiment Setup 

Two datasets with no drifting between the distribution of the training and testing data were 
constructed. In addition, six datasets with certain differences in distribution between the of training 
and the testing data were also constructed. The details of these eight datasets are shown in Table III. 
Datasets 1 and 2 have the same distribution, whereas difference in distribution exists in datasets 3 
to 8. Among them, datasets 1, 3-6 are all binary classification datasets, i.e., healthy subjects versus 
epileptic subjects. Datasets 2, 7 and 8 are multi-class datasets where the classes are healthy and 
epileptic subjects in different states. 
  

http://www.meb.uni-bonn.de/epileptologie/science/physik/eegdata.html


 

Table III Datasets used in the experiments 

Distribution Dataset Composition of the 
training dataset  

Composition of the 
testing dataset 

Number of classes 

Identical 1 

2 

B, E (75) 
B, D, E (75) 

B, E (25) 
B, D, E (25) 

2 

3 

Different 3 

4 

5 

6 

7 

8 

A, E (50) 
A, E (50) 
B, E (50) 
B, E (50) 
A, C, E (50) 
A, D, E (50) 

A, C (50) 
A, D (50) 
B, C (50) 
B, D (50) 
B, CE (50) 
B, D, E (50) 

2 

2 

2 

2 

3 

3 

The number in bracket gives the number of samples taken from the groups of data involved. 
 

D Algorithms, Parameter Setting and Evaluation Index 

Listed in Table IV are the ten algorithms involved the experiments. The grids for searching the 
optimal hyper-parameters based on five-fold cross-validation strategy are provided in detail. In 
particular, the proposed GHM-TTL is applied to TSK FS, single hidden-layer neural network (Sig-
NN) and radial bias function with kernelized linear regression using radial basis function (RBF). 
Correspondingly, the three algorithms are denoted in the paper as TGHM(TSK FS), TGHM(Sig-
NN) and TGHM(RBF-Ker). (TGHM is not defined in the texts, please define it?? I try to relate 
GHM-TTL with the three TGHM methods as highlighted in green above) For each of the ten 
algorithms, the experiments are repeated 10 times with the data sampled randomly from the five 
groups of data, and in proportion based on the composition given in Table III. The mean and standard 
deviation of classification accuracies of 10 runs are then evaluated for performance evaluation. 
  



Table IV Parameter setup for the algorithms used in this study 

Algorithm and description Parameter setting 

SVM [32]: a classical method based on 
kernel trick and margin maximization 

Penalty factor: 12 11 10 10 11 12{2 ,2 ,2 ,...,2 ,2 ,2 }c
   ; 

Kernel parameter： 
12 11 10 10 11 12{2 ,2 ,2 ,...,2 ,2 ,2 }    . 

TSK FS [33]: a classical fuzzy 
modeling method with good 
interpretability and strong learning 
abilities 

Fuzzy rules：M{10,20,…200}； 

Regularization parameters： 
12 11 10 10 11 12{2 ,2 ,2 ,...,2 ,2 ,2 }    ， 
12 11 10 10 11 12{2 ,2 ,2 ,...,2 ,2 ,2 }     

Sig-NN [34]: a popular single hidden-
layer neural network 

Parameters in Sigmoid function： 
12 11 10 10 11 12{2 ,2 ,2 ,...,2 ,2 ,2 }     

  12 11 10 10 11 12{ 2 , 2 , 2 ,...,2 ,2 ,2 }      

LMPROJ [29]: large margin 
transductive SVM based on the 
maximum mean difference 

Regularization parameters： 
12 11 10 10 11 12{2 ,2 ,2 ,...,2 ,2 ,2 }    ， 
12 11 10 10 11 12{2 ,2 ,2 ,...,2 ,2 ,2 }     

Kernel parameter： 10 9 8 8 9 10{ 2 , 2 , 2 ,...,2 ,2 ,2 }     . 
TSVM [35]: An SVM based transfer 
learning algorithm 

Upper bound for Lagrange multiplier： 
12 11 10 10 11 12{2 ,2 ,2 ,...,2 ,2 ,2 }c
   ; 

Kernel parameter： 12 11 10 10 11 12{2 ,2 ,2 ,...,2 ,2 ,2 }    . 
Regularization parameter in transfer learning：

6 5 4 4 5 6{2 ,2 ,2 ,...,2 ,2 ,2 }     

GTL2 and GTL3 [36]: two graph co-
regularization transfer learning 
algorithms based on non-negative 
matrix factorization 

Neighbor parameter： 

p 12 11 10 10 11 12{2 ,2 ,2 ,...,2 ,2 ,2 }    

Regularization parameters： 
6 5 4 4 5 6{2 ,2 ,2 ,...,2 ,2 ,2 },     

12 11 10 10 11 12{2 ,2 ,2 ,...,2 ,2 ,2 }     

6 5 4 4 5 6{2 ,2 ,2 ,...,2 ,2 ,2 }    . 
TGHM (TSK FS): the proposed method 
for TSK FS transfer learning 

 

Fuzzy rules：M{10,20,…,200}； 

Adjustable parameters：h{0.1,0.2,…10}; 
Insensitive coefficient：  6 5 4 4 5 6{2 ,2 ,2 ,...,2 ,2 ,2 }   ; 
Regularization parameter in transfer learning： 

6 5 4 4 5 6{2 ,2 ,2 ,...,2 ,2 ,2 },      (change the comma to 
full stop, I cannot edit) 

TGHM (Sig-NN): the proposed method 
for Sig-NN transfer learning. 

Parameters in Sigmoid function： 
12 11 10 10 11 12{2 ,2 ,2 ,...,2 ,2 ,2 }    ; 

 12 11 10 10 11 12{ 2 , 2 , 2 ,...,2 ,2 ,2 }     . 
TGHM (RBF-Ker): the proposed 
method for transfer learning of 
kernelized linear regression with RBF 

Parameters in Gauss function: 
6 5 4 4 5 6{2 ,2 ,2 ,...,2 ,2 ,2 }    ; 

Width in Gauss function: 
 10 9 8 8 9 10{ 2 , 2 , 2 ,...,2 ,2 ,2 }     . 

 

  



E Comparing with Classical Intelligent Modeling Methods 

In this subsection, the performance of the proposed methods is compared with 3 classical non-
transfer learning algorithms, i.e., SVM, TSK FS, and Sig-NN. The classification accuracies of are 
reported in Table V. 

 

Table V Comparing of the classification accuracies between the proposed methods and several 
classical non-transfer methods 

Dataset Non-transfer learning methods The proposed methods 
SVM TSK FS Sig-NN TGHM 

(TSK FS) 
TGHM 

(Sig-NN) 
TGHM  

(RBF-Ker) 
1 0.9200 

(0.0227) 

0.9800 

(0.1065) 

0.9900 

(0.0215) 

0.9530 

(0.0365) 

0.9700 

(0.0354) 

0.9670 

(0.0183) 

2 0.9200 

(0.0213) 

0.9530 

(0.0305) 

0.9500 

(0.0187) 

0.9800 

(0.0183) 

0.9400 

(0.0380) 

0.9805 

(0.0137) 

3 0.8800 

(0.0123) 

0.8800 

(0.0215) 

0.8900 

(0.0278) 

0.9670 

(0.0430) 

0.9500 

(0.0447) 

0.9330 

(0.0279) 

4 0.8000 

(0.0275) 

0.8900 

(0.0165) 

0.8500 

(0.0370) 

0.9400 

(0.0245) 

0.9500 

(0.0218) 

0.9330 

(0.0380) 

5 0.8500 

(0.0365) 

0.9700 

(0.0367) 

0.9200 

(0.0165) 

0.9467 

(0.0558) 

0.9500 

(0.0418) 

0.9467 

(0.0471) 

6 0.8200 

(0.0360) 

0.9600 

(0.0195) 

0.9500 

(0.0395) 

0.9670 

(0.0333) 

0.9600 

(0.0354) 

0.9330 

(0.0548) 

7 0.8130 

(0.1005) 

0.8500 

(0.0065) 

0.8500 

(0.1270) 

0.9200 

(0.0135) 

0.9333 

(0.0380) 

0.9600 

(0.0224) 

8 0.8130 

(0.0165) 

0.8500 

(0.0167) 

0.8200 

(0.1300) 

0.9200 

(0.0162) 

0.9133 

(0.0435) 

0.9600 

(0.0224) 

Average 0.8520 

(0.0341) 

0.9166 

(0.0318) 

0.9025 

(0.0523) 

0.9492 

(0.0301) 

0.9458 

(0.0373) 

0.9517 

(0.0306) 

 

Based on the results in Table V, it can be seen that while the proposed methods have comparable 
performance with the three classical non-transfer learning methods on datasets 1 and 2, their 
performance is obviously better on datasets 3-7. This indicates that when drifting exits in the 
distribution between the training and the testing data, transfer learning is necessary to improve the 
classification performance. 
  



F Comparing with related transfer learning methods 

To further evaluate the performance of the proposed methods, four existing transfer learning 
methods, i.e., LMPROJ, TSVM, GTL2 and GTL3, are used for performance comparison. The results 
are presented in Table VI. 

 

Table VI Comparing with transfer learning methods 

Dataset Transfer learning methods 
Existing transfer learning methods The proposed methods 

LMPROJ TSVM GTL2 GTL3 TGHM 

(TSK FS) 

TGHM 

(SigNN) 

TGHM 

(RBF-Ker) 

1 0.9480 

(0.0235) 

0.9267 

(0.0346) 

0.6787 

(0.0831) 

0.5907 

(0.1006) 

0.9530 

(0.0365) 

0.9700 

(0.0354) 

0.9670 

(0.0183) 

2 0.9370 

(0.0258) 

0.9500 

(0.0593) 

0.6424 

(0.0713) 

0.5536 

(0.0623) 

0.9800 

(0.0183) 

0.9400 

(0.0380) 

0.9805 

(0.0137) 

3 0.9410 

(0.0717) 

0.8700 

(0.0715) 

0.5787 

(0.1167) 

0.5320 

(0.2413) 

0.9670 

(0.0430) 

0.9500 

(0.0447) 

0.9330 

(0.0279) 

4 0.9500 

(0.0232) 

0.9300 

(0.0789) 

0.5600 

(0.1261) 

0.5293 

(0.2289) 

0.9400 

(0.0245) 

0.9500 

(0.0218) 

0.9330 

(0.0380) 

5 0.9380 

(0.1740) 

0.8900 

(0.0994) 

0.6013 

(0.0687) 

0.7213 

(0.1547) 

0.9467 

(0.0558) 

0.9500 

(0.0418) 

0.9467 

(0.0471) 

6 0.9590 

(0.0354) 

0.9200 

(0.0919) 

0.6067 

(0.1360) 

0.5773 

(0.1223) 

0.9670 

(0.0333) 

0.9600 

(0.0354) 

0.9330 

(0.0548) 

7 0.9470 

(0.0532) 

0.7344 

(0.0752) 

0.6856 

(0.0522) 

0.5024 

(0.1104) 

0.9200 

(0.0135) 

0.9333 

(0.0380) 

0.9600 

(0.0224) 

8 0.9380 

(0.0355) 

0.7500 

(0.0572) 

0.6704 

(0.0659) 

0.5568 

(0.1255) 

0.9200 

(0.0162) 

0.9133 

(0.0435) 

0.9600 

(0.0224) 

Average 0.9447 

(0.0553) 

0.8714 

(0.0710) 

0.62798 

(0.0900) 

0.57043 

(0.1436) 

0.9492 

(0.0302) 

0.9458 

(0.0373) 

0.9517 

(0.0306) 

 

It can be seen from the results in Table VI that the proposed transfer learning based methods 
outperform, or are at least competitive with the four existing transfer learning methods. Moreover, 
the proposed methods have the following distinctive advantages: (1) the proposed methods are more 
general in that they can be used to train different classical intelligent models, e.g. feedforward neural 
networks, fuzzy systems and kernel methods; (2) the proposed transfer learning approach can be 
used in a more flexible way and provides more choices depending on the application scenario and 
requirements. For example, if a model having a good interpretability is desired, fuzzy system can 
be selected for modeling and trained using the proposed transfer learning method.  

 

G Statistical analysis 

In this subsection, the proposed methods are further evaluated by statistical analysis. The 
Friedman test [37], a nonparametric test method, is adopted to evaluate whether significant 
difference in performance exists among the different methods. The procedure is as follows. First, 
the original data which accepts K experiment process from the same object (this sentence, marked 
in green, is not clear to me, please rephrase) are ranked. After analyzing the optimal algorithm based 



on the rankings, post-hoc test [37] is conducted to verify the algorithm. The rankings of all the 
algorithms adopted in this study based on the experiments are given in Table VII. The lower the 
ranking, the better the algorithm. (Maybe use other term, e.g. score, instead of ranking, since it is 
generally understood that the higher the raking the better. This is reversed in Table IV, for your 
consideration. For example, you may say the lower the score, the higher the ranking and the better 
the performance) 
 

Table VII Friedman Test on all algorithms 

Algorithms Ranking (Score??) 
SVM 7.5625 

TSK FS 3.9375 

Sig-NN 5 

LMPROJ 3.6875 

TSVM 6.8125 

GTL2 9.125 

GTL3 9.875 

TGHM (TSK FS) 2.75 

TGHM (Sig-NN) 3 

TGHM (RBF-Ker) 3.25 

 

It can be seen from Table VII that that the proposed three algorithms TGHM (TSK FS), TGHM 
(Sig-NN) and TGHM (RBF-Ker) are ranked top three, outperforming the other algorithms. Based 
on the results of Friedman test, post-hoc test is implemented to compare the optimal algorithm 
TGHM (TSK FS) with the other 9 algorithms to further verify the optimality of the TGHM (TSK 
FS) algorithm. The results are shown in Table VIII. 

Table VIII Post-hoc Test on all algorithms 

Algorithms 0( ) /iz R R SE   p Holm=/i Hypothesis 

GTL3 4.665334 0.000003 0.005556 Rejected 

GTL2 4.1699 0.000003 0.00625 Rejected 

SVM 3.137747 0.001703 0.007143 Rejected 

TSVM 2.642313 0.008234 0.008333 Rejected 

Sig-NN 1.445015 0.148454 0.01 Not rejected 

TSK FS 0.743151 0.457391 0.0125 Not rejected 

LMPROJ 0.660578 0.508883 0.016667 Not rejected 

TGHM(RBF-Ker) 0.165145 0.86883 0.025 Not rejected 

TGHM (Sig-NN) 0.123858 0.901427 0.05 Not rejected 

 

The p-values in the table are derived from the corresponding post-hoc test and the significance 
level is set to 0.05. If the p-value is smaller than the Holm value (the threshold for comparison), the 
null hypothesis is rejected and it indicates that TGHM (TSK FS) is superior to the corresponding 
algorithm. Otherwise, the null hypothesis is not rejected and no significant difference exist between 
TGHM (TSK FS) and the algorithm under comparison. It can be seen from Table VIII that TGHM 
(TSK FS) is highly competitive to TGHM (RBF-Ker), TGHM (Sig-NN) and LMPROJ for the 
epileptic EEG recognition in terms of accuracy, and that it is also advantageous over GTL3, GTL2, 



SVM and TSVM. The results show that the group of transfer learning based algorithms – TGHM 
(TSK FS), TGHM (RBF-Ker), TGHM (Sig-NN) and LMPROJ – have demonstrated promising 
performance for epileptic EEG recognition, an appropriate algorithm can be selected depending on 
the nature of the model and the application requirements. For example, the fuzzy rules based TGHM 
(TSK FS) can be used if an interpretable recognition model is desired.  

 

V Conclusions 

In this study, a generalized transductive transfer learning method TGHM is proposed for 

epileptic EEG recognition. It can be used to implement transductive transfer learning for several 

classical intelligent models, e.g. feedforward neural networks, fuzzy systems and kernel methods. 

The experimental studies have proved that the proposed method is superior to or at least competitive 

with the existing transductive learning methods. The proposed approach has the distinctive 

advantage that it can be generally and flexibly applied to different types of epileptic EEG 
recognition models. To further exploit and enhance the transfer learning abilities, future work will 
be conducted to develop more effective learning mechanism. 

 

Appendix A: 
The Lagrange function corresponding to (26) can be expressed as follows, 
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According to the optimization theory, the conditions of the optimal solution are given by 
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Furthermore, let 
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By substituting (A8)-(A13), the dual problem of the primal problem is given by 
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where 
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