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1 Introduction

Strong interactions of realistic finite-density systems have provided an arena for a wealth

of techniques, geared to assess in most cases the qualitative physics. The remaining lot

of unsolved problems especially in the realm of strange metals (which are a subset of

condensed matter systems at the border with magnetism) indicates that new techniques

may be welcome. One such technique is the gauge-gravity correspondence, abstracted from

the correspondence between non-abelian gauge theories and string theories. So far it has

been explored in several directions, and seems to provide a novel perspective both in the

modeling as well as solution of some strongly coupled QFTs. The hope behind potential

applications to condensed matter physics is that IR strong interactions of the Kondo type

in materials where spins can interact with electrons, may provide bound states that behave

in a range of energies as non-abelian gauge degrees of freedom that may also be coupled

to other fields. The gauge interactions are characterized by a number of charges Nc that

are conventionally called “colors”. Their actual number depends on the problem at hand

but it is typically small.

If this is the case, then in terms of the electrons and spins the YM fields are composite.

However, in the regime where the effective YM interaction is strong, the physical degrees of

freedom are expected to be colorless bound states. Their residual interactions, analogous

to nuclear forces in high-energy physics, are still strong. On the other hand, in the limit

of a large number of colors Nc → ∞, although the original interaction of colored sources

is strong, the effective interaction between colorless bound states can be made arbitrarily

weak, as it is controlled by 1/Nc → 0. In this limit, the theory simplifies, and may be

calculable. Of course, typically, the original problem has a finite and sometimes small

number of effective colors. The question then is: how reliable are the large Nc estimates

for the real physics of the system? The answer to this varies, and we know many examples

in both classes of answers. A good example on one side is the fundamental theory of strong

interactions, Quantum Chromodynamics, based on a the gauge group SU(3), indicating

Nc = 3 colors. It is by now well-known that for many aspects of this theory, 3 ≃ ∞, the

accuracy varying between 3 − 10%. It is also known that the analogous theory with two

colors, SU(2), has some significant differences from its Nc ≥ 3 counterparts. There are

other theories where the behavior at finite Nc is separated from the 1/Nc expansion by

phase transitions, making large-Nc techniques essentially useless.
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Of course, large Nc techniques have been applied to strongly coupled systems for

decades, so what is new here? In adjoint theories in more than two dimensions, it is well-

known that until recently, even the leading order in 1/Nc could not be computed. Although

some qualitative statements could be made in this limit, the amount of quantitative results

was scarce, to put it mildly. On the other hand, ’t Hooft observed that the leading order in

1/Nc is captured by the classical limit of a quantum string theory, [1]. Finding and solving

this classical string theory was therefore equivalent to calculating the leading order result

in 1/Nc in the gauge theory. Unfortunately, such string theories, dual to gauge theories,

remained elusive until 1997, when Maldacena [2] made a rather radical proposal: (a) This

string theory lives in more dimensions than the gauge theory;1 (b) At strong coupling, it

can be approximated by supergravity, a tractable problem. The concrete example proposed

contained on one hand a very symmetric, scale invariant, four-dimensional gauge theory

(N=4 super Yang-Mills), and on the other a ten-dimensional IIB string theory compactified

on the highly symmetric constant curvature space AdS5×S5. Therefore this correspondence

became known as the AdS/CFT, or holographic, correspondence.

Although this claim is a conjecture, it has amassed sufficient evidence to spark a large

amount of theoretical work exploring the ramifications of the correspondence, on one hand

for the dynamics of strongly coupled gauge theories and on the other hand of strongly

curved string theories.

In the context of holographically dual string theories, many issues are still not fully

understood. First and foremost is that the classical string theories, dual to gauge theories,

cannot yet be solved. The only approximation that makes them tractable is the (bulk2)

derivative expansion. This reflects the effect of the string oscillations on the dynamics of

the low-lying string modes.

It is known in many cases and it is widely expected that such an expansion is controlled

by the strength of the QFT interactions. In the limit of infinite strength, the string becomes

stiff and the effects of string modes can be completely neglected. The theory then collapses

to a gravitational theory coupled to a finite set of fields. Since we are working to leading

order in 1/Nc, the treatment of this theory is purely classical. Observables (typically

boundary observables corresponding to correlators of the dual CFT) are computed by

solving second-order non-linear differential equations.

The effects of finite but large coupling are then captured by adding in the gravitational

action higher-derivative interactions. Note that this derivative expansion is not directly

related to the IR expansion of the dual QFT.

The bulk theory, as mentioned earlier, has at least one, and usually more than one

dimensions that are extra compared to those of the dual QFT. One of them is however

special: it is known as the “holographic” or “radial” dimension, and controls the approach

1This unexpected (see however [3]) fact can be intuitively understood in analogy with simpler adjoint

theories in 0 or 1 dimensions. There it turns out that the eigenvalues of the adjoint matrix in the relevant

saddle point become continuous in the large-Nc limit, and appear as an extra dimension. In general how

many new dimensions are going to emerge in a given QFT in the large-Nc limit is not a straightforward

question to answer, although exceptions exist.
2We refer to as the “bulk”, the spacetime in which strings propagate. This is always a spacetime with a

single boundary. The boundary is isomorphic to the space on which the dual quantum field theory (gauge

theory) lives.

– 2 –



J
H
E
P
1
2
(
2
0
1
1
)
0
3
6

to the boundary of the bulk spacetime. Moreover, it can be interpreted as an “energy” or

renormalization scale in the dual QFT.

The second order equations of motion of the bulk gravitational theory, viewed as

evolution equations in the radial direction, can be thought of as Wilsonian RG evolution

equations, [5]. The boundary of the bulk spacetime corresponds to the UV limit of the

QFT. Although the equations are second order, they need only one boundary condition in

order to be solved, as the second condition is supplied by the “regularity” requirement of

the solution at the interior of spacetime. Here gravitational physics comes to the rescue:

a gravitational evolution equation with arbitrary boundary data leads to a singularity.

Demanding regular solutions gives a unique, or a small number of options. The notion

of “regularity” can however vary, and may include runaway behavior as in the case of

holographic open string tachyon condensation relevant for chiral symmetry breaking, [6–8].

An important evolution of the holographic correspondence is the advent of the concept

of Effective Holographic Theories (EHTs), [4], in analogy with the analogous concept of

Effective Field Theories (EFTs) in the context of QFT.3 The rules more or less follow those

of EFTs with some obvious changes, and most importantly, with much less intuition.

In standard EFTs, there are several issues that are relevant: (a) Derivation of the

low energy EFT from a higher energy theory; (b) Parametrization of the interactions of

an EFT, and their ordering in terms of IR relevance; (c) Physical Constraints that an

EFT must satisfy. Although we know many things about EFTs thanks to the Wilsonian

approach, there are still general questions which can not be answered with our tools, like

whether a given EFT can arise as the IR limit of a UV complete QFT.

What are the ingredients of an EHT? As in EFTs, we need to select a collection of

fields, and an action principle that will determine the equations of motion. Of course a

string theory has an infinite number of fields, corresponding to all the (single trace) gauge

invariant operators of the QFT.

In a strongly coupled theory, an infinite number of operators are expected to have

non-zero vevs in the vacuum (except if they are forbidden by symmetries as in CFTs).

All the dual fields would have non-trivial solutions profiles in the gravitational theory.

However, at strong coupling, this (gauge-invariant) spectrum can be truncated, and only

a few important fields (dual to important, low-dimension QFT operators) may be kept.

In UV or IR perturbation theory near a fixed point, this selection is clear, and forms the

basis of the truncation of the Wilsonian flows to a small number of relevant couplings.

Once the appropriate QFT operators are selected, a dual gravity two-derivative diffeo-

morphism4 invariant action can be written down. Its interactions capture the dynamics of

the theory at infinite coupling. Finite coupling corrections can be subsequently added as

higher-derivative corrections to the gravitational action.

3There are several works that contain a version or elements of the idea of the EHT, [9–11], although

they vary in the focus or philosophy.
4The diffeomorphism invariance of the gravitational/string theory is an avatar of the translational in-

variance of the dual CFT. It is simple to show that, coupling the stress tensor of a d-dimensional QFTd

to a spin-two source (metric), the effective functional of the source is diffeomorphism invariant. However

the source (metric) is d-dimensional. The holographic gravitational theory contains a higher-dimensional

metric, and is invariant under a higher-dimensional diffeomorphism invariance. How this emerges seems

still a mystery.
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After this is done, we may revisit the questions posed earlier for the EFTs. The first

one was to derive the low energy EFT from a higher-energy theory. The analogous question

here would be to determine low-energy correlation functions, from the knowledge of the

UV theory, which on the gravitational side is captured by the boundary conditions (at the

AdS boundary) of the bulk equations of motion. The process of integrating out degrees of

freedom à la Wilson, here amounts to running the RG-like equations of motion from the

AdS boundary to the deep IR. There are many subtleties with this interpretation as RG

flow, and they have been discussed by several authors, [5, 9–11]. Despite this, the main

conceptual point made here remains valid.

There is a related issue however that needs to be examined. Consider an RG evolution

from the ultimate UV, to an intermediate scale Λ that is the defining cutoff scale for an

EHT. This is done by solving the second order equations, supplied by two boundary con-

ditions, in order to obtain the values of the fields and their derivatives at the intermediate

scale Λ. This is the analogue of the calculation of the effective couplings in terms of the

UV ones with a caveat: the effective couplings at E = Λ now depend not only on the UV

values of the couplings but also on their derivatives.5

These values can be the UV values of the EHT, that can be used to solve further the

equations of motion in the interior of the space (corresponding to energies smaller than

Λ). However, it is only in this last evolution that a regularity condition may be imposed,

reducing the boundary conditions from two to one. This can be translated back into the

relation of the fields at E = Λ and those at the boundary, fixing eventually one of the two

boundary conditions, and restoring the Wilsonian intuition.

However, according to the Wilsonian intuition, the RG flow of a fixed set of couplings

in a QFT is an irreversible process, as short distance information is integrated out. It can

therefore run only in one sense: from the UV to the IR. In the holographic context however,

using local operators, it seems that this evolution is reversible as it relies in the solution

of standard second order differential equations. This impression is in fact misleading as

it does answer the proper question. In QFT, the reason that the RG flow is irreversible

is the following: Starting with a theory and a finite set of couplings at scale E1, and

integrating out to obtain the theory at scale E2 < E1, we will obtain an infinite number

of couplings for all possible operators that are generated in the process. So far there is

nothing irreversible. However, we now keep a finite set of the couplings at E2 neglecting

the rest of the (usually irrelevant) couplings. It is this act that amounts to coarse-graining,

and removes information. Once we write the RG evolution for a finite set of coupling, the

evolution is irreversible. To put it precisely. Given a finite set of couplings at scale E2,

there is an infinity of theories at scale E1 which under an RG transformation match the

finite set of couplings at E2 Therefore in a holographic context we should ask a similar

question: given the values of a finite set of bulk fields and their derivatives at r = Λ,

how many holographic theories are there that provide these values at r = Λ, starting from

r = ǫ≪ Λ. The answer is again obviously infinite, and therefore, holographic RG evolution

is as irreversible as the QFT one is.

5The derivatives can be translated equivalently via the holographic dictionary to the expectation values

of the appropriate operators.
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On the other hand, as the dynamical condition of regularity emerges in the IR, the

complete IR dynamics can be discussed in terms of IR quantities and actions alone. Con-

sider for example an action (the EHT action) involving a finite (or infinite) collection of

fields, and valid up to r = 1/Λ in the holographic coordinate. This EHT action is enough

to describe all the relevant IR physics, in terms of a set of couplings (the boundary con-

ditions at the cutoff boundary). The regularity conditions in the IR guarantee that all

vevs have been fixed. In particular the physics is described as a function of the IR pa-

rameters (usually called “physical” in QFT parlance). What is missing is the connection

of the physical to the bare (UV) parameters. However, for the study of the non-trivial IR

behaviors at strong coupling, this approach is quite powerful, as it can determine most of

the interesting IR physics.

An important issue involves the number of relevant bulk fields. In any QFT the

number of operators is infinite, corresponding to the infinite number of the holographically

dual string modes. Although all except a finite number have no sources in the UV, they

are expected to develop vevs (such vevs can only be redefined away in the presence of

exact conformal symmetry.). This implies that a holographic saddle point solution will in

general involve an infinite number of bulk fields. In the UV scaling regime this phenomenon

is known as operator mixing. However, from standard Wilsonian arguments we know that

at least in the UV scaling region such flows can be successfully truncated to a small number

of fields, namely the ones that (a) are sourced or (b) have small dimensions. This notion

is perturbative and can eventually fail in the IR if the theory is strongly coupled.

In the reverse perspective, an EHT is determined by a finite set of bulk fields and

an action. The set of fields is decided as the ones that are instrumental in the determi-

nation of the IR saddle point (and therefore participate non-trivially in the saddle-point

solution), or give rise to observables via their correlation functions. For example, at zero

density, an associated gauge field is trivial, but its fluctuations determine the conductivity

at zero density.

The truncation of the infinite spectrum of bulk fields to a finite number that may

contribute to the saddle-point solution, has often important implications for the solution:

a naked singularity may appear in the IR. Singularities are in general not allowed in saddle-

point solutions, and typically they should be cloaked by regular horizons. The presence

of an horizon reflects an effective coarse-graining in the underlying theory, and typically

represents a state with thermal character. However, naked singularities may be acceptable

if their presence is due to the truncation of the relevant fields. To put it differently, the

presence of Kaluza-Klein (KK) or stringy states may resolve the singularity. Examples of

singularity resolution by KK states abound in string theory (see [12] for an early reference).

In the context of holography, many non-trivial flows become singular upon dimensional

reduction. This has led to the development of the Gubser criterion6 for the acceptability

of a naked singularity, [13]. The resolution of singularities by stringy states is also possible

(see for example [14–16]), but is a harder effect to control quantitatively. In both cases the

Gubser criterion is a necessary condition, but it is not known whether it is also sufficient.

6Which states that in the case of a relevant neutral scalar operator (such as in EMD theories, (1.2)), the

scalar potential evaluated on-shell should be bounded from below (note the opposite sign convention we use

in (1.3) compared to [13]). Equivalently, the extremal background must be the limit of a finite temperature

system, that is the naked singularity should be coverable by an event horizon and made into a black hole.
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A related question to the presence of a naked singularity at zero temperature, is to

what extent calculations in the singular saddle point solutions, like correlators, are reliable

and not dependent on the eventual singularity resolution. The criterion of a “repulsive

singularity” was developed systematically in [17–19]. A repulsive singularity is determined

by the fact that the correlators in the singular saddle-point are well-defined and do not

need additional boundary conditions at the singularity. A similar criterion was defined for

the evaluation of Wilson loops.

We now come to the second important issue in the EHT, namely the parametrization

of the interactions of an EFT, and their ordering in terms of IR relevance. In usual QFT

this is easily achieved by the standard derivative expansion, as well as the notion of an IR

anomalous dimension of fields.

The situation in EHTs is more complicated. The reason is that bulk diffeomorphism

invariance mixes radial and transverse derivatives. In particular, the linearized equations

that compute correlators in a given saddle point produce a non-linear function of the

space-time derivatives. Indeed, it is qualitatively understood that what controls derivatives

in the bulk theory is the QFT coupling constants. At strong coupling, higher-derivative

interactions are suppressed. Therefore, in an EHT the IR relevant couplings are controllable

in the limit of strong coupling.

However, a related issue appears in terms with the same number of bulk derivatives.

Consider the scalar potential: in this case, and depending on the flow of scalar fields in the

saddle-point solution, different parts of the potential will dominate the IR behavior. For

instance, the potential7

V (φ) =
1

2
(e2φ + e−2φ) (1.1)

has an AdS extremum at φ = 0. Near this AdS extremum that we can take as the

UV CFT, it can be approximated as V ≃ 1 + 2φ2, which suffices to construct the UV

asymptotics of the holographic RG (hRG) flow of φ. If the boundary conditions demand

that φ > 0 along the flow, then in the IR, φ → ∞ and the potential can be approximated

as VIR ≃ 1
2e

2φ. For sufficiently low IR cutoff scale, the EHT may use the exponential

asymptotics of the potential.

Compactified string theories generate potentials that are typically sums of exponen-

tials, generated by fluxes of various massless forms or the metric. As we will show in this

paper, all saddle-point solutions emerging from such potentials are (secretely) conformal

(scaling) in the IR. Strong IR effects not leading to exponential potentials may also appear

in non-trivial compactifications. They will spoil the IR scaling properties only in a few

concrete but exceptional cases as we will discuss in this paper.

In [4], the philosophy of the EHT was applied to the next-to-simplest non-trivial the-

ories, which contain a conserved charge. In such theories one should always include a

bulk graviton and a gauge field dual to the stress tensor and the U(1) conserved current

respectively. The leading relevant IR scalar operator, dual to a neutral8 bulk scalar φ was

7Our conventions on its sign are compatible with (1.2).
8Most of the original works on AdS/CMT considered charged matter, such as a complex scalar field,

in a charged AdS black hole. The latter is unstable to the condensation of the scalar field, which after
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also included, and a two-derivative action was advocated at strong coupling, which after

various field redefinitions takes the form

S = Mp−1

∫

dp+1x
√−g

[

R− 1

2
(∂φ)2 + V (φ) − Z(φ)

4
FµνF

µν

]

. (1.2)

This is an Einstein-Maxwell-Dilaton (EMD) theory in p + 1 dimensions. The general

functions include the potential V (φ) and the bulk inverse gauge coupling Z(φ). The IR

behavior of such a system may be controlled by an extremum of V , leading to an AdSp+1

saddle-point solution at zero density. We will not study such standard IR asymptotics but

we will focus on the runaway behavior of the scalar, φ → ±∞ in the IR. To study the IR

behavior in such a case it suffices to pick the most important term in the potential that we

parametrized as9

V ≃ 2Λe−δφ. (1.3)

For consistency, δφ→ −∞ in the IR. Similarly we parametrize the IR asymptotics of Z as

Z ≃ eγφ, (1.4)

where we absorbed the overall constant in a redefinition of the gauge field.

It turns out that the exponential parametrization of the IR asymptotics, (1.3) and (1.4),

is quite general, unless

Cp(γ, δ) ≡ 2(p− 1) + γ2 + 2(p− 2)γδ − (2p− 3)δ2 = 0 . (1.5)

For Cp(γ, δ) 6= 0, subleading changes to the potential do not affect the qualitative features

of the IR behavior and can be considered as the effects of irrelevant perturbations driving

the flow to the IR fixed point. As we will see later, the leading solution is conformal.

On the contrary, for Cp(γ, δ) = 0, we expect subleading changes of the potential to

affect the qualitative IR physics. The curve (1.5) is the line where the near-extremal

black-hole solutions turn from stable to unstable.

In the case of zero density, this phenomenon occurs at

δ2 = δ2c =
2

(p− 1)
. (1.6)

The detailed modifications near these asymptotics, namely the spectra as well as the finite

density behavior, were investigated in [17–19], and shown to match the behavior of asymp-

totically free theories, associated to potentials with asymptotics of the form Vn ∼ φn e
2φ

p−1 .

Such asymptotics are distinct from exponential asymptotics and lead to non-conformal IR

dynamics. In particular, when 0 < n < 1, the scale factor vanishes exponentially in the IR

as e−r
1

1−n
as r → ∞, which is a naked (but holographically acceptable) singularity. The

condensation sources the electric flux on the boundary, [71]. In this context, the chemical potential drives

the charged matter on the boundary. In our setup (1.2), the role of the scalar is not to form a condensate,

but to drive the IR asymptotics away from a conformal IR fixed point (such as AdS2 × R(p−1)) while

retaining a non-zero electric flux to the boundary.
9With these conventions, AdS fixed points for δ = 0 will correspond to positive Λ.
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case n = 1/2 was argued in [17–19] to describe the IR physics of large-Nc YM. When n > 1,

the naked (but holographically acceptable) singularity is at a finite distance r = r0, and the

scale factor of the metric vanishes there as e−(r−r0)
1

1−n
. The IR theory is not conformal,

but it is not known whether this case corresponds to any realistic QFT.

Therefore, apart from the theories satisfying (1.5), for all other values of γ, δ the

expected qualitative behavior does not change, as argued in [4] and explicitly checked

recently in [20].

With these reservations, the near T=0 behavior of such EHTs was analyzed based on

the generic near-extremal solutions that were found. In particular, the near-extremal be-

havior of entropy, energy and conductivity (both AC and DC) were derived in [4]. They all

implied a power-law behavior characteristic of scale invariant theories, with the difference

that hyper-scaling was violated. This a priori looks strange, as the naive interpretation of

the saddle-point solutions is as flows by a strongly-relevant scalar operator.

2 Results and outlook

In this section, we streamline our results, leaving a more detailed and technical description

to subsequent sections and appendices.

In this work, we will explain the near-extremal behavior of charged EMD solutions, by

indicating that it is consistent with the fact that such EHTs can be obtained from higher-

dimensional conformally or Lifshitz invariant theories at finite density, via ‘generalized

dimensional reduction’,10 [23, 26]. The former will be said to admit generalized conformal

symmetry, while the latter will have generalized Lifshitz symmetry. So far, it does not seem

possible to include the whole (γ, δ) plane (though our results cover a large part of it, see

figure 1), and moreover for arbitrary values of γ, δ the higher dimension must be real (in

the spirit of the ǫ-expansion), [23]. Despite this, this observation

1. Explains the near T=0 scaling behavior.

2. Explains the qualitative difference between EHTs with Cp < 0 and Cp > 0. In the

neutral case it explains the crossover value, δc.

3. Provides an alternative view of the Gubser bound.

4. Provides one possible resolution of the zero temperature naked singularity of the

original solution.

5. Gives a direct and efficient way to compute the scaling transport coefficients along

the lines of [23–26].

6. Provides a quick way to embed bottom-up EMD theories into supergravities emerg-

ing from string theory. All it takes is to choose the data so that the uplift di-

mension is integer and in a range (up to 11) that allowed embedding in the known

supergravity theories.

10A given reduction will be generalized if the number of reduced dimensions can be analytically continued

to the real line and give rise to a continuous parameter.

– 8 –



J
H
E
P
1
2
(
2
0
1
1
)
0
3
6

In particular, we will analyze several classes of higher-dimensional actions and asso-

ciated solutions, and show that they dimensionally reduce to our near-extremal solutions.

Moreover we will develop a network of theories that share extremal solutions, and we think

this is just the tip of an iceberg. In the process we will provide more analytic solutions

that are applicable to potentials containing two and three exponentials and have therefore

AdS completions.

All higher-dimensional theories considered over the course of this work may be encom-

passed by the following generic action in p+ q + 1 dimensions:

S =
1

16πGD

∫

dp+q+1x
√−g

[

R+ 2Λ − 1

2
∂Φ2 − 1

2(n+ 2)!
G2

[n+2] −
eΓΦ

4
F 2

[2]

]

. (2.1)

In table 1, we give an overview of which (sub)section examines which theory, as well as the

type of compactification. This can be diagonal (no KK vectors) or not, and over a curved

space or not. For instance, for diagonal reductions, we use either of the two following

metric Ansätze:11

ds2(p+q+1) = e−δφds2(p+1) + e
φ
δ

“

2
p−1

−δ2
”

dK2
(q) , δ2 =

2

p− 1

q

(p+ q − 1)
≤ δ2c , (2.2)

ds2(p+q+1) = e
− 2φ

(p−1)δ ds2(p+1) + e
φ
δ

“

δ2− 2
p−1

”

dK2
(q) , δ2 =

2

p− 1
+

2

q
≥ δ2c (2.3)

which cover two complementary ranges of the reduction exponent δ. If the number of

reduced dimensions q can be traded for the continuous parameter δ in the lower-dimensional

theory, then the reduction is generalized in the sense described in [23, 26].

We now turn to the lower-dimensional theories examined in this work, which can all

be encompassed by the following (p+ 1)-dimensional action:

S(p+1) =

∫

dp+1x
√−g

16πG(p+1)

[

R− 1

2
(∂φ)2 −

eγφH2
[n+2]

2(n+ 2)!
+ V1e

−δ1φ + V2e
−δ2φ + V3e

−δ3φ

]

,

(2.4)

and summarize in table 2 which (sub)section examines which theory. The exponential

terms in the potential have various origins:

• The higher-dimensional cosmological constant;

• The curvature of the reduced compact space, in a (non-)diagonal reduction;

• A dualised 0-form originating from the reduction of a p-form gauge potential.

1. In section 4, we examine the reduction of Einstein-AdS gravity

S =

∫

dp+q+1x
√
G [R+ 2Λ] , (2.5)

allowing for KK vectors. We first turn them off in section 4.1 and obtain a neutral

dilatonic theory with a single exponential, which admits a black hole solution with a

planar horizon. The uplift of this solution is a higher-dimensional AdS-Schwarzschild

11The reader can look up the details of the non-diagonal compactifications in the corresponding sections 4

and 8.

– 9 –



J
H
E
P
1
2
(
2
0
1
1
)
0
3
6

Section Λ G[n+2] F[2] Φ KK

4.1 X Ø Ø Ø D Tq G C δ2 ≤ δ2c
4.2 X Ø Ø Ø ND S1 NG C δ2 ≤ δ2c

5.2.1 Ø n = 0 Ø Ø D Kq G C δ2 ≥ δ2c
5.2.2 Ø n = p− 1 Ø Ø D Kq G C δ2 ≥ δ2c

6.1 X n = q Ø Ø D Kq G C δ2 ≤ δ2c
6.2 X n = p− 1 X Ø D Kq G C δ2 ≤ δ2c

7.1 X Ø X X D Tq G C δ2 ≤ δ2c
7.2 Ø Ø X X D Kq G C δ2 ≥ δ2c

8 Ø n = p− 1 Ø Ø ND Sq NG C δ2 ≤ δ2c

Table 1. A guide to the various higher-dimensional theories considered in this work. The symbol Ø

means that the field is absent from the higher-dimensional theory, X that it is present. From left to

right, the second up to the fifth columns indicate respectively the presence of a higher-dimensional

cosmological constant, a form G[n+2] (if so, we only indicate the value of its rank n), a Maxwell

field F[2], a scalar field Φ (always accompanied by a non-zero gauge coupling Γ to F[2]). In the sixth

column, KK, we indicate whether the reduction is diagonal (if it is we denote it by D, and therefore

no KK vectors are produced), or non-diagonal (ND); whether it is over a torus (Tq) or a curved

space (Kq); whether it is generalized (G) or not (NG) as explained in the main text; whether it is

consistent (C) or not (NC); as well as the range of the δ exponent in the reduction Ansatz.

black hole. The scaling symmetry is explained at extremality as it is embedded

in the conformal symmetry of the higher-dimensional theory. Note that δ < δc in

this construction. Therefore the continuous spectrum and absence of mass gap is

correlated with the conformal symmetry and the flatness of internal space.

In section 4.2, allowing for charge while requiring a single scalar is only consistent

for q = 1. In that case the higher-dimensional uplift of the near-extremal dila-

tonic charged solutions is a moving (infinite boost limit) AdS-Schwarzschild (p+ 2)-

dimensional black hole.

2. In section 5, we examine the diagonal reduction over a compact space Kq of Einstein

gravity plus an [n+ 2]-form field strength

S =
1

16πGD

∫

dp+q+1x
√−g

[

R− 1

2(n+ 2)!
G2

[n+2]

]

, (2.6)

leaving the form untouched. This class of actions contains among others the three

main branes of string/M-theory. The single exponential potential is provided by the

curvature of the Sq. There are two subcases of interest described in sections 5.2.1

and 5.2.2.

(a) n = 0: In this case, the charged near-extremal solution of the lower-dimensional

theory lifts to a charged near-extremal RN black-hole with a horizon of topology

Sq × Tp−1, in the higher dimensions.
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Section Λ1 Λ2 Λ3 H[n+2]

4.1 X Ø Ø Ø

4.2 X Ø Ø n = 0 γδ1 = δ2c

5.2 X Ø Ø γδ1 = (n+ 1)δ2c
5.2.1 X Ø Ø n = 0 γδ1 = δ2c
5.2.2 X δ1δ2 = pδ2c Ø Ø

6.1 X δ1δ2 = δ2c Ø n = 0 γ = −(p− 2)δ1

6.2 X (p− 1)δ2 = δ1 − γ δ3 = 2
δ1−γ n = 0

7.1 X Ø Ø X

7.2 X Ø Ø X

8 X ∼ Λ1 ∼ Λ1 X

Table 2. A guide to the E(M)D theories considered in this work, classified by (sub)section. We

indicate the number of exponential terms in the scalar potential and the presence of charge (ac-

companied by the rank of the corresponding form). If there are several exponential terms in the

potential, we enter the relations between the exponents in the table. In the last line, the reader is in-

vited to refer directly to section 8, since the expressions are a little cumbersome to enter in a table.

(b) n = p− 1: In this case, a second exponential potential is generated by dualising

the 0-form field strength in the action as in (5.18). There is no AdS minimum.

A new solution is presented, with emergent AdSp+1 symmetry in the IR. It lifts

in the higher dimension to a uniform (p − 1)-brane wrapped on a torus with a

transverse Sq.

When the charge of the (n+1)-form is zero, this is an uncharged solution of the

single exponential theory, but with δ > δc. In this case the lower-dimensional

theory has a mass gap and discrete spectrum, [17, 18]. The higher-dimensional

solution is AdSp+1 × Sq reduced on Sq, that explains both the scale invariance

and the presence of the discrete and gapped spectrum.

In this case the Gubser bound becomes q > 1, which is equivalent to the internal

sphere having a positive curvature.

3. In section 6, we study AdS Einstein gravity with forms:

(a) In section 6.1, we describe the diagonal reduction over a compact space Kq of

AdS Einstein gravity plus a [q + 2]-form field strength:

S =
1

16πGD

∫

dp+q+1x
√−g

[

R− 1

2(q + 2)!
G2

[q+2] + 2Λ

]

. (2.7)

In the higher-dimensional theory, the solution is that of a near-extremal q-

brane, wrapped on a q-sphere. The extremal metric is AdSq+2 × Kp−1, with

the charge of the q-brane sourcing the curvature of spacetime. The dimensional

reduction happens along the q curved directions of AdSq+2 leading to a warped

AdS2 geometry.
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In lower dimensions, the scalar potential originates both in the higher-dimen-

sional cosmological constant and in the internal curvature of the reduced space.

The theory (1.2) with potential (1.3) and near-extremal solution (3.11)–(3.16)

is recovered by setting to zero the curvature of the Kq and Kp−1.

(b) In section 6.2, we describe the diagonal reduction over a compact space Kq of

AdS Einstein gravity plus a Maxwell field and a [p+ 1]-form field strength:

S =
1

16πGD

∫

dp+q+1x
√−g

[

R− 1

4
F 2

[2] −
1

2(q + 2)!
G2

[p+1] + 2Λ

]

, (2.8)

The situation is quite similar to the previous case, except that in the higher-

dimensional geometry, the [p]-form potential is supported by the transverse com-

pact space Kp−1 together with the time direction. It can be better visualised as

a magnetic flux supported solely by the Kp−1 around which the worlvolume of

the brane is wrapped. The Maxwell term realises an electric point-field on the

the worlvolume of the brane.

The lower-dimensional theory can have up to three exponential potentials, orig-

inating from the higher-dimensional cosmological constant, the curvature of the

reduced space and the dualisation of the [p+1]-form. Again, setting all internal

curvatures to zero recovers the action (1.2), (1.3) and solution (3.11)–(3.16).

Note that the uplift in both case requires imposing a certain relation between the

gauge field and the exponential potential so that the higher-dimensional equations of

motion hold.

4. In section 7, we consider successively two different uplifts of the charged near-extremal

solutions to solutions of an EMD theory with higher-dimensional scalar Φ and gauge

coupling Γ, first with cosmological constant and then without:

S =
1

16πGD

∫

dp+q+1x
√−g

[

R−−1

2
∂Φ2 − 1

4
eΓΦF 2

[2] + 2Λ

]

, (2.9)

(a) In 7.1, we uplift diagonally over a torus Tq the charged near-extremal EMD

solutions to asymptotically Lifshitz solutions. The uplift allows to cover part of

the (γ − δ)(γ + (p− 2)δ) > 0 quadrants.

(b) In 7.2, we uplift diagonally over a curved space Kq the charged near-extremal

EMD solutions to the near-horizon geometry of asymptotically flat dilatonic

black p-branes with 0-charge. This uplift covers part of the complementary

quadrants (γ − δ)(γ + (p− 2)δ) < 0.

5. In section 8, we describe connections between three players:

(a) The first are rotating black brane solutions in Einstein gravity plus a [p+1]-field

strength:

S =
1

16πGD

∫

dp+q+1x
√−g

[

R− 1

2(p+ 1)!
G2

[p+1]

]

. (2.10)
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Such solutions include the well-known M2, D3 and M5 brane solutions for q =

7, 5, 4 and p = 3, 4, 6. Two scaling limits can be taken in these solutions: first,

the usual one where the charge parameter is large; second, the one where the

rotation parameter is large.12 Taking the near-extremal limit where the charge

sourcing the brane is large (decoupling limit), such solutions can be specialized

in a lower-dimensional reduction to asymptotically AdS non-scaling solutions

with non-trivial metric, a single gauge field and a single scalar. Contrarily to

the cases examined heretofore, the gauge field now comes from rotation in the

higher-dimensional theory, not charge. Generically, the non-diagonal reduction

over an Sq would involve one exponential potential accounting for the curvature

of the sphere, plus as many exponential potentials as there were independent

rotation planes with a non-trivial gauge field turned on.

(b) The second is a lower-dimensional theory of a metric, vector and a single scalar

with a potential including three exponential factors:

S =
1

16πGD

∫

dp+1x
√−g

[

R− 1

2
(∂φ)2 − 1

4
e−(p−2)δφ

(

F[2]

)2
+ V (φ)

]

,

(2.11)

V (φ) =
2(p− 1)2(p− 2)δ2V0e

− 2φ
(p−1)δ

p(1 + (p−1)
2 (p− 2)δ2)2

[

− (p− 2)

4(p− 1)

(

1 − p
(p− 1)

2
δ2
)

+

+e
2+(p−2)(p−1)δ2

2(p−1)δ
φ

+
(p− (p− 2)2 (p−1)

2 δ2)

2(p− 1)2(p− 2)δ2
e

2+(p−1)(p−2)δ2

(p−1)δ
φ

]

. (2.12)

This action has a single parameter δ entering the potential.

(c) The third are the charged, single scalar, near-extremal solutions in section 6 with

γ + (p− 2)δ = 0. A single exponential potential is retained in the action (6.6),

stemming from the reduction of some internal Sq.

The connections between these three classes are as follows.

(A) The non-extremal solutions of (5a) in the decoupling limit reduced to p + 1

dimensions, and specialized to a single gauge field and scalar, are identical to

the non-extremal solution of (5b), when δ = 1
p−2

√

2
p−1 .

The potential in (5b) has an AdS extremum, see figure 4. The non-extremal

solutions describe flows from this UV extremum to an IR scaling geometry.

(B) The near-extremal limit of the solutions of (5b) are the same as the near-

extremal solution in (5c) when the horizon is not flat. In the planar horizon

limit, the neutral near-extremal solutions are recovered: this illustrates that the

planar and near-horizon limit do not necessarily commute. Therefore the IR

scaling geometry of (5b) is one with an emerging generalized Lifshitz symmetry.

In this sense the theory in (5b) can be described as a possible UV completion of

the EMD solutions. It is interesting that the full flow is known analytically here.

12Practically speaking, both mean that the constant factor in a given harmonic function drops out.

– 13 –



J
H
E
P
1
2
(
2
0
1
1
)
0
3
6

Figure 1. Parameter spans of the various uplifts of the charged near-extremal solutions (3.11)-

(3.16) in the (γ, δ) plane for two values of the dimension: on the left, p = 3; on the right, p = 4. The

solid black line is γ = δ, where the uplift is AdS2 ×Rp+q−1. The dashed blue line is γ = −(p− 2)δ,

where the uplift is AdSq × Rp; on this line, for δ2 > δ2c , the system is gapped. The blue region is

the uplift to Lifshitz solutions with horizon Rp+q−1, while the red (dark+light) one is to dilatonic

near-extremal (p− 1)-branes with horizon Rp−1 × Sq. In the light (dark) red region, the system is

gapped (gapless). All uplifts are consistent truncations.

The reductions describe above are all consistent. By consistent, we mean that every

solution of the lower-dimensional equations of motion are also solutions to the higher-

dimensional equations of motion. It is so for the diagonal reductions of sections 4.1, 5

and 6,13 while the non-diagonal S1 reduction of section 4.2 is well-known. In section 7, we

consider diagonal reductions which are consistent provided the field strength and the cur-

vature of spacetime are tuned, as in Freund-Rubin compactifications, [44]. However, it hap-

pens that such a procedure is feasible for the near-extremal charged solutions (3.11)–(3.16),

so that the uplift of the solutions is consistent even though the uplift of the theory is not.

The consistency of the non-diagonal reduction of section 8 has been shown explicitly in [45]

in the cases p = 3, 4, 6 and q = 7, 5, 4 respectively, but not for generic p. In section 8, we

argue that the reduction of the solutions is consistent, although it falls short from proving

the full consistency.14

Although we have not managed to lift every solution on the (γ, δ) plane (see figure 1 for

a summary), the pattern above is obvious and leads to propose that all extremal solutions

described in section 3 correspond to (anisotropic) scale invariant states both at zero and

13In [26], the consistency of the curved reduction of Einstein AdS with a Maxwell gauge field was proven.

It is straightforward to extend it to the above cases.
14Though we do expect that the reduction should be consistent.
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Figure 2. The dynamical exponent z, (2.13), in terms of δ and for γ = 0.8, 2, 5 (solid black, dotted

blue and dashed red lines respectively), for p = 3 (left) and p = 4 (right), taking into account the

Gubser bound.

finite density. In particular, at zero density they all have conformal AdS symmetry, while

at finite density they have conformal Lifshitz symmetry with

z =
(γ − δ)(γ + (2p− 3)δ) + 2(p− 1)

(γ − δ)(γ + (p− 2)δ)
. (2.13)

By varying γ, δ in the range allowed by the Gubser bound

γ2 − γδ + 2 > 0 , −δ2 + γδ + 2 > 0 , pγ2 − 2γδ − (p− 2)δ2 + 2(p− 1) > 0 , (2.14)

z takes all real values, as can be seen from figure 2, 3.

Some special cases are of note:

• The case δ = 0 corresponds to the Lifshitz solutions with z = 1+ 2(p−1)
γ2 found in [21].

• The case γ = δ gives the expected AdS2 near horizon geometry (z = ∞), and is the

only one with finite entropy at extremality.

• The case γ+(p−2)δ = 0 also leads to (z = ∞) and AdS2 symmetry but the extremal

entropy vanishes.

In the process we have presented several new solutions to actions that go beyond the

ones postulated in (1.2), for which it would be interesting to analyze further the holographic

physics at finite density.

In all the cases that can be uplifted to higher-dimensional solutions, the latter are

regular. Therefore the naked singularity is resolved by the KK states, and the curvature

is related to the coefficient of the scalar potential. Nevertheless, this does not preclude a

different resolution by stringy states.
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Figure 3. The dynamical exponent z, (2.13), in terms of γ and δ, for p = 3 (left) and p = 4

(right), taking into account the Gubser bound.

Another important issue is the extremal entropy. In the chargeless solutions the ex-

tremal entropy is zero. This is also visible in the higher-dimensional incarnation as the

uplifted solution is AdS.

At finite density, the extremal entropy is zero except in the case of γ = δ that leads

to a charged AdS2 extremal geometry and therefore finite entropy. As the scalar becomes

trivial in this limit, so is the uplifting to a higher-dimensional AdS2 extremal geometry,

which is known to have finite entropy.15 For the γ + (p − 2)δ = 0 solutions however that

also have an AdS symmetry the uplifted geometry is AdSq+2 × T p−1 and therefore has

zero entropy. Upon reduction on T q the size of the torus vanishes at extremality and this

preserves the zero-entropy limit in the lower-dimensional solution.

On the other hand, for the uplifted charged solutions with γδ = 2
p−1 , the entropy

is zero at extremality due to the asymmetric scaling symmetry of the higher-dimensional

solution.

At finite temperature the dependence of entropy on temperature becomes also

transparent in the higher-dimensional setup. Consider for example the neutral scalar

solutions (3.7) with

S ∼ T
2(p−1)

2−(p−1)δ2 . (2.15)

Using the relation (4.9) that relates δ to the higher-dimensional theory and substituting

in (2.15) we obtain

S ∼ T p+q−1, (2.16)

which is the natural answer for a (p + q + 1)-dimensional CFT. This generalizes to all

other cases.

15This is the near-horizon limit of charged planar AdS black holes.
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All upliftable cases associated to a discrete gapped spectrum16 uplift to curved internal

manifolds Kq (though the converse is not true: there are curved uplifts which are gapless),

see Fig 1. In such cases the Gubser bound appears as the limit in which q → 1+ as in this

limit the internal curvature that supported the solution vanishes.

The higher-dimensional picture has both conceptual and practical applications. At

the conceptual level in explains many facts that seem mysterious or less motivated in the

near-extremal solutions, namely scale invariance, nature of spectra, the Gubser bound, etc.

On the practical side, they can help in simplifying the calculation of transport coeffi-

cients. This was already indicated in neutral backgrounds in the case of the calculation of

the bulk viscosity in [23–25]. A simple hydrodynamic reduction related the bulk viscosity

of the lower-dimensional solution to the shear viscosity of the higher-dimensional AdS so-

lution. Such relations generalize in the presence of charge. We will not explore them here

in their full generality17 but in section 9 we will review the scaling transport coefficients in

the IR, and derive the full AC conductivity showing that it is a scaling function of ω
T .

We conclude this exposition by stating that the near-extremal geometries presented

in [4] and analyzed further here provide the most general holographic quantum critical

points in such theories, generalizing AdS and Lifshitz geometries. A similar classifica-

tion of IR holographic quantum criticality is also possible in the superconducting phase.

We will report on this is a future publication, [54] (see also [72] for related work on the

superconducting instability in EMD backgrounds).

The structure of the rest of this paper is as follows. In section 3, we review the neutral

and charged near-extremal solutions EMD theories described already in [4]. In section 4,

we describe the KK reduction of higher-dimensional Einstein theory giving rise to EMD

theories in lower dimensions and present a case with Schrödinger symmetry. In section 5

we describe the dimensional reduction of static, asymptotically-flat black (p − 1)-branes

and their near-horizon limits, giving rise to both charged and neutral solutions of EMD

theories. In section 6, we describe successively the dimensional reduction of the near-

extremal limit of charged AdS black (p − 1)-branes in 6.1, and the same with a magnetic

flux on the worldvolume of the brane and a U(1) charge, again providing solutions to

EMD theories in lower dimensions. In section 7, we describe the uplift of the charged

near-extremal EMD solutions to either Lifshitz solutions or near-extremal dilatonic black

p-branes. In section 8, we describe the connections between rotating (p − 1)-branes and

AdS dilatonic black holes, via KK reduction to EMD theories. In section 9, we review the

scaling properties of thermodynamic functions and transport coefficients of near-extremal

EMD solutions, and derive the equation for the AC conductivity exhibiting its scaling in

terms of the frequency and temperature.

Appendix A, contains our notations and conventions. In appendix B, we describe the

effective 4-, 5- and 7-dimensional EMD effective actions leading to AdS dilatonic black

holes from the decoupling limit of the M2, D3 and M5 black brane solutions. Finally, in

appendix C, we give the expression for the rotating black (p− 1)-brane and its decoupling

limit in generic dimension p+ q + 1.

16Such cases where identified in [4] as those where the black holes are unstable Cp(γ, δ) < 0 and the

coefficient of the IR Schrödinger potential is positive.
17This is done in [26].
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3 The near-extremal scaling solutions of EMD theories

We start with the action

S = Mp−1

∫

dp+1x
√−g

[

R− 1

2
(∂φ)2 + V (φ) − Z(φ)

4
FµνF

µν

]

(3.1)

where

V = 2Λe−δφ , Z = eγφ. (3.2)

Early studies of the black-hole solutions of such actions may be found in [33–35], while

they were later revisited systematically in [32]. In the domain-wall coordinate system,

ds2 = e2A
[

−f(r)dt2 + dR2
(p−1)

]

+
dr2

f(r)
, (3.3)

the equations of motion derived from (3.1) read

(p− 1)A′′ +
1

2
φ′2 = 0 , A′

t =
Q

Ze(p−2)A
, (3.4)

f ′′ + pA′f ′ − Q2

e2(p−1)AZ(φ)
= 0 , (3.5)

(p− 1)A′
(

f ′

f
+ pA′

)

− V (φ)

f
− 1

2
φ′2 +

Q2

2e2(p−1)AfZ(φ)
= 0 . (3.6)

3.1 The neutral solution

The (p+1)-dimensional neutral (Q = 0) near-extremal solution is obtained using a scaling

ansatz, [22],

eA = r
2

(p−1)δ2 , eδφ =
Λδ4

(

2p
p−1 − δ2

) r2 , f = 1 −
(r0
r

)
2p

(p−1)δ2
−1

. (3.7)

The metric can be rewritten by a charge of coordinates

w = r
1− 2

(p−1)δ2 , t→ t
∣

∣

∣
1 − 2

(p−1)δ2

∣

∣

∣

, xi → xi

∣

∣

∣
1 − 2

(p−1)δ2

∣

∣

∣

, (3.8)

as conformal to an AdS-like black hole,

ds2 = e2χ
dw2

f − fdt2 + dxidxi

w2
(3.9)

with

e2χ = 2

2p
p−1 − δ2

(

2
p−1 − δ2

)2

1

V (φ)
, f = 1 −

(

w

w0

)

2p−(p−1)δ2

2−(p−1)δ2

. (3.10)

We define these to have generalized conformal symmetry, [23, 25].
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3.2 The charged solution

The (p + 1)-dimensional charged near-extremal solution is obtained using a scaling

ansatz, [4, 32],

eA = r
(γ−δ)2

2(p−1) eφ = eφ0r(δ−γ)f(r) = f0r
vh(r) , (3.11)

f0 =
8(p− 1)Λ e−δφ0

uwp
h(r) = 1 −

(r0
r

)

wp
2(p−1)

, (3.12)

At =
4(p− 1)

wp

√

Λv

u
e−

(γ+δ)
2

φ0r
wp

2(p−1) h(r) , (3.13)

u = γ2 − γδ + 2 v = −δ2 + γδ + 2 u− v ≥ 0 , (3.14)

wp = 2(p− 1) + pγ2 − 2γδ − (p− 2)δ2 = pu+ (p− 2)v − 2(p− 1) , (3.15)

with

Frt =
Q

e2(p−2)AZ
, Q = 2e

(γ−δ)
2

φ0

√

vΛ

u
. (3.16)

We have set the the IR scale ℓ = 1 in the above solution.

There are constraints on the parameters for the solution to exist and have AdS character

u > 0 , v > 0 , wp > 0 . (3.17)

The IR asymptotics correspond to r → 0. These capture the Gubser criterion for the asso-

ciated IR naked singularity at extremality. Moreover, when Cp, defined in (1.5), is positive

Cp = u+ (2p− 3)v − 2(p− 1) > 0 , (3.18)

the system is gapless, [4]. We may use u, v to parametrize the solutions instead of γ, δ:

γ = ǫ
u− 2√
u− v

, δ = ǫ
v − 2√
u− v

, ǫ = ±1 . (3.19)

We now consider the extremal solution, r0 = 0, and rewrite the metric as

ds2 =
r−δ(γ−δ)

f0

[

−f2
0 r

(γ−δ)(γ+(p−2)δ)
p−1

+v
dt2 + f0r

(γ−δ)(γ+(p−2)δ)
p−1 dxidxi +

dr2

r2

]

. (3.20)

Let us introduce a new radial coordinate w by

r = w
−2(p−1)

(γ−δ)(γ+(p−2)δ) ,
dr

r
=

−2(p− 1)

(γ − δ)(γ + (p− 2)δ)

dw

w
, (3.21)

and rescale

t→ 2(p− 1)t

f0

∣

∣

∣
(γ − δ)(γ + (p− 2)δ)

∣

∣

∣

, xi → 2(p− 1)xi

√
f0

∣

∣

∣
(γ − δ)(γ + (p− 2)δ)

∣

∣

∣

, (3.22)
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to obtain

ds2 = eχ dŝ2 , eχ =
4(p− 1)2wc

f0(γ − δ)2(γ + (p− 2)δ)2
=

(p− 1)uwp

(γ − δ)2(γ + (p− 2)δ)2
1

V (φ)
(3.23)

dŝ2 = − dt2

w2z
+
dw2 + dxidxi

w2
(3.24)

z =
(γ − δ)(γ + (2p− 3)δ) + 2(p− 1)

(γ − δ)(γ + (p− 2)δ)
, c =

2(p− 1)δ

γ + (p− 2)δ
. (3.25)

Finally, the gauge field becomes

At =
−(p− 1)

√

uv
Λ e

(δ−γ)
2

φ0

(γ − δ)(γ + (p− 2)δ)
r

wp
2(p−1) =

−(p− 1)
√

uv
Λ e

(δ−γ)
2

φ0

(γ − δ)(γ + (p− 2)δ)
w

−
wp

(γ−δ)(γ+(p−2)δ) . (3.26)

Therefore, in the generic case, the metric is conformal to a Lifshitz metric with the

conformal factor being the inverse of the scalar potential, [52]. We define these to have

generalized Lifshitz symmetry. A few special cases are of interest.

• When δ = 0, the potential is constant. The metric describes a Lifshitz spacetime as

χ = 0, [4, 21, 49, 50].

• For δ 6= 0, the metric becomes conformal to AdS2×Rp−1 when z → ∞. This happens

when:

– γ = δ: In that case, the space is AdS2 × Rp−1 with a trivial conformal factor.

– γ + (p − 2)δ = 0: In this case the following change of variables in the original

metric

r = w

1
(p−1)δ2

2 −1 , t→ t

f0

∣

∣

∣

(p−1)δ2

2 − 1
∣

∣

∣

, xi → xi

√
f0

∣

∣

∣

(p−1)δ2

2 − 1
∣

∣

∣

(3.27)

brings it into the form

ds2 = eχdŝ2 =
w

(p−1)δ2

(p−1)δ2

2 −1

f0

∣

∣

∣

(p−1)δ2

2 − 1
∣

∣

∣

2

[

dw2 − dt2

w2
+ dxidxi

]

(3.28)

with conformal factor

eχ ∼ eδφ (3.29)

• The metric would become conformal to AdSp+1 when z = 1. This happens when

v = −(γ − δ)δ − 2 = 0. In this case the density is zero and the solution is the

uncharged solution which is indeed conformal to AdSp+1.

Moreover, the near-extremal geometry (3.11)–(3.13) describes correctly the near-horizon

region of the extremal black holes of [20, 42, 43], even though their potentials comprise

more than one exponentials.
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4 Dimensional reduction and emergent Schrödinger symmetry

We will start from an Einstein plus cosmological constant action in p+ q + 1 dimensions,

S =

∫

dp+1x dqy
√

Ĝ
[

R̂+ 2Λ
]

, (4.1)

and we will make the standard toroidal KK ansatz, [27],

dŝ2 = Gµνdx
µdxν +Gαβ(dyα +Aα

µdx
µ)(dyβ +Aβ

νdx
ν), (4.2)

S =

∫

dp+1x
√
G e2Φ

[

R+ 4(∂Φ)2 +
1

4
∂µGαβ∂

µGαβ − 1

4
GαβF

α
µνF

β,µν + 2Λ

]

, (4.3)

with

Φ =
1

4
log det(Gαβ) , Fα

µν = ∂µA
α
ν − ∂νA

α
µ. (4.4)

We will now perform a series of field redefinitions to bring the (p + 1)-dimensional action

to standard form: first go to the Einstein frame using

Gµν = e
− 4Φ

p−1 gµν , R(G) = e
4Φ

p−1

[

R(g) − 4p

p− 1
(∂Φ)2 + O(�Φ)

]

, (4.5)

then define a unimodular scalar matrix by

Gαβ = e
4
q
Φ
G̃αβ , det G̃αβ = 1, (4.6)

and finally normalize the internal volume scalar as

φ = 2
√

2

√

1

p− 1
+

1

q
Φ (4.7)

to obtain

SE =

∫

dp+1x
√
g

[

R− 1

2
(∂φ)2 +

1

4
∂µG̃αβ∂

µG̃αβ − eγφ

4
G̃αβF

α
µνF

β,µν + 2Λ e−δφ

]

(4.8)

with

δ2 =
2

p− 1

q

p+ q − 1
≤ 2

p− 1
, γ =

2

(p− 1)δ
. (4.9)

The equations of motion stemming from this Lagrangian are

0 = Rµν − 1

2
(R+ 2Λe−δφ)gµν +

1

8

[

∂µG̃αβ∂
νG̃αβ + ∂νG̃αβ∂

µG̃αβ − gµν∂µG̃αβ∂
µG̃αβ

]

−

−1

2

[

∂µφ∂νφ− 1

2
(∂φ)2gµν

]

− eγφ

2
G̃αβ

[

Fα
µρF

β,ρ
ν − 1

4
gµνF

α
ρσF

β,ρσ

]

, (4.10)

0 = �φ− γ

4
eγφG̃αβF

α
µνF

β,µν − 2δΛ e−δφ, (4.11)

0 =
1√
g
G̃αγ∂µ

(√
ggµν∂νGγδG

δβ
)

− eγφ

2
Fα

µνF
β,µν , (4.12)

0 =
1√
g
∂ν

(√
ggµρgνσG̃αβF

α
µρ

)

. (4.13)

They are of the general form (3.4)–(3.6), with the addition of a q×q unimodular matrix

of scalars.
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4.1 Neutral solutions

When Fα
µν = 0, from (4.12) we can set G̃ to a constant and we may therefore forget about

G̃ and F as far as solutions are concerned. The scalar-tensor theory has an exponential

potential and the near-extremal solution in (3.7) lifts to the higher-dimensional metric of

the form

Gµν = e−δφ gµν , Gαβ = e
4Φ
q δαβ = e

q

2(p−1)
q(p+q−1)

φ
δαβ . (4.14)

Starting from the explicit form of the solution (3.10) we may compute the higher-dimen-

sional metric Gµν , Gαβ . Not surprisingly, this metric is that of an AdSp+q+1 -Schwarzschild

black-hole, [23–25, 36]:

ds2 = Gµνdx
µdxν +Gαβdy

αdyβ ∼
−fdt2 + du2

f + dxidxi + dyαdyα

u2
(4.15)

with

f = 1 −
(

w

w0

)p+q

(4.16)

where we used (4.9).

Therefore, this uplift to higher dimensions explains the scaling of the original fields:

it is secretly conformally invariant. This conformal invariance is hidden if the “internal”

dimensions disappear. Moreover, the higher-dimensional geometry is regular, unlike the

lower-dimensional geometry that has a naked singularity.

In [17, 18], it was shown that there are two special values of δ, the crossover value

δ2c = 2
p−1 and the Gubser bound limit δ2G = 2p

p−1 . Theories with 0 < |δ| < δc have a

continuous spectrum and no gap. Theories with |δ| ≥ δG violate the Gubser bound and

are therefore unacceptable. Theories with δc ≤ |δ| ≤ δG have a discrete spectrum and a

mass gap.

From (4.9) we observe that the values we obtain for δ for “physical” values of the extra

dimensions p + q − 1 > 0, q > 0, are below the crossover value δc. The properties of the

spectra in this regime become clear now: the higher-dimensional AdS space indeed has a

continuous spectrum and no mass gap.

The values of δ > δc can be obtained by a different uplift of the same solution described

in detail in section 5.2(see also [26]). It involves a compactification on a q = 2(p−1)
(p−1)δ2−2

-

dimensional sphere whose radius corresponds to the scalar φ as in (5.9). The higher-

dimensional solution is regular, and the Gubser-bound δ < δG corresponds to the statement

that the internal sphere should have dimension bigger than unity. Indeed when q → 1+,

the curvature of the sphere disappears.

4.2 Finite density solutions

It is clear from (4.12) that in the case q > 1, the matrix G̃ is dynamical and non-trivial,

and does not allow a consistent truncation to the case we are interested in. Therefore

below we will assume that we have a single extra dimension, q = 1 (though see [26] for a

‘generalized’ version).
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In terms of the (p + 1)-dimensional fields, Aα
µ, gµν , in (4.2), the (p + 2)-dimensional

metric GMN is

Gµν = e−δφ
[

gµν + eγφAα
µA

α
ν

]

. (4.17)

Substituting from (3.20), we obtain

ds2 = Gµνdx
µdxν (4.18)

=
e−δφ0

f0

[

−f2
0

(

1 − 2(p− 1)v

wp

)

r
(γ−δ)2

p−1
+2v−2

dt2 + f0r
(γ−δ)2

p−1
+v−2

dx2 +
dr2

r2

]

=
e−δφ0

f0






−f2

0

(

1 − 2(p− 1)v

wp

)

dt2

w2z
+ f0

dx2

w2
+

dw2

(

1 − v
2 − (γ−δ)2

2(p−1)

)2
w2







= e−δφ0
dxidxi

w2
+
p(p+ 1)dw2

2Λw2
,

where we changed coordinates to the Lifshitz coordinate (3.21) and in the last line replaced

γ and δ by their values (4.9). This is a Lifshitz metric with z given in (3.25). We also have

Gµα = e(γ−δ)φAα
µ =

4(p− 1)

wp

√

vu

Λ
e

(γ−δ)
2

φ0r
wpu

2(p−1)
−(γ−δ)2

δµt (4.19)

=
4(p− 1)

wp

√

uv

Λ
e

(γ−δ)
2

φ0
δµt

wz+ẑ

= −
√

p(p+ 1)

2Λ
e

(γ−δ)
2

φ0w−2 δµt ,

Gαβ = e(γ−δ)φ δαβ = e(γ−δ)φ0 r−(γ−δ)2 δαβ = e(γ−δ)φ0
δαβ

w2ẑ
(4.20)

= e(γ−δ)φ0wp−1 δαβ ,

ẑ =
(p− 1)(γ − δ)2

(p− 1)(v + 2) − (γ − δ)2
. (4.21)

Using (3.7), (4.9), we obtain

z + ẑ = p+ q + 2
1 − p

q + 1
. (4.22)

For q = 1, z+ ẑ = 2. Note the coefficient of the dt2 in the metric (4.18) is zero when q = 1.

The metric obtained is indeed the infinite boost limit of the boosted AdS black brane, which

has zero tt element but is regular everywhere. This is the so called Kaigorodov metric,

which is an Einstein space solution of Einstein plus cosmological constant theory, [55].

The metric is invariant under the generalized Lifshitz scaling

xi → λxi , t→ λzt , w → λw, , yα → λẑyα . (4.23)

This higher-dimensional metric will become of Schrödinger-like form if Gαβ → 0. This

happens if e(γ−δ)φ ∼ r−(γ−δ)2 , namely near r → ∞.

The non-trivial dilatation operator of a Schrödinger symmetry is

Dz̄ = ηµ∂µ = z̄ t∂t + r∂r + xi∂i + (2 − z̄)yα∂α . (4.24)
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It acts on the fields as

δηGMN = GMP∂Nη
P +GNP∂Mη

P + ηP∂PGMN . (4.25)

The metric Gµν satisfies (4.25) with z̄ = z. On the other hand we have

δηGµα = (2 − z̄)Gµα +Gρα∂µη
ρ + ηρ∂ρGµα , (4.26)

so that

δηGtα = (2 + r∂r)Gtα = (2 +
wpu

2(p− 1)
− (γ − δ)2)Gtα . (4.27)

Finally

δηGαβ = (2(2 − z̄) + r∂r)Gαβ =
(

2(2 − z̄) − (γ − δ)2
)

Gαβ . (4.28)

Both vanish at r → ∞. This suggests that at r → ∞ these solutions realize z-Schrödinger

symmetry. The case p = 3 has been analyzed in [28].

5 Static, asymptotically-flat black branes and their near-horizon limits

In this section, we will study the static black brane solutions of the action

Sp+q+1 =
1

16πGD

∫

dp+q+1x
√−g

[

R− 1

2(n+ 2)!
G2

[n+2]

]

. (5.1)

The form G[n+2] = dB[n+1] is the field strength of a massless (n+ 1)-form.

Our starting point will be the solution supported byG[n+2] with n ≤ p−1 field strength,

p− 1 being the number of space dimensions of the brane worldvolume. Such solutions are

said to have a smeared charge, [29]. Performing various diagonal dimensional reductions

will allow to make connections with the charged dilatonic theories (3.1).

5.1 The static, asymptotically flat black brane and its near-horizon limit

The action (5.1) has the following black (p−1)-brane solution with a smeared charge, [29],

ds2(p+q+1) = h(r)
−2

n+1

[

−f(r)dt2 + dR2
(n)

]

+ h(r)
2

(p+q−n−2)

[

dr2

f(r)
+ r2dK2

(q) + dR2
(p−n−1)

]

,

(5.2)

f(r) = k(q) −
(r0
r

)q−1
, h(r) = 1 +

sinh2 α

k(q)

(r0
r

)q−1
, (5.3)

B[n+1] = −
√

2(p+ q − 1)k(q)

(p+ q − n− 2)(n+ 1)

(

1 − h(r)−1
)

cothα dt ∧ dR(n) . (5.4)

Our conventions are spelled out in appendix A. α is the extremality parameter, while

r0 controls the temperature. The spaces R(d) are toroidal of the dimension d. This is

an asymptotically black (p − 1)-brane with a flat worldvolume and the electric charge

is smeared over n of the (p − 1) worldvolume dimensions. For generic n, the rotational

invariance of the brane worldvolume is broken by the non-uniform electric charge. It can
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be restored by setting n = 0, whereupon one finds back a Maxwell U(1) electric field and

a point-charge, while n = p − 1 corresponds to a black brane where the charge is spread

out uniformly on the worldvolume.

Note that in the latter case n = p− 1, we recover well-known solutions:

• q = 5, n = p−1 = 3: this is the non-spinning D3-brane, which is a solution of D = 10

supergravity from type IIB string theory, see appendix B.1.

• q = 7, n = p−1 = 2: this is the non-spinning M2-brane, which is a solution of D = 11

supergravity from M -theory, see appendix B.2.

• q = 4, n = p−1 = 5: this is the non-spinning M5-brane, which is a solution of D = 11

supergravity from M -theory, see appendix B.3.

It is also a well-known fact that, in the near-horizon, large-charge limit, these solutions

asymptote to AdSp+1 × Kq solutions, and that once the constant curvature space Kq is

reduced, they produce AdS black holes.

We now take the near-extremal limit of the previous solution (5.2), α→ ∞, to obtain:

ds2(p+q+1) = ξ2
[

−f(ξ)dt2 + dR2
(n)

]

+

+
ξ

2(n+1)(p−n−1)
(q−1)(p+q−n−2)

g2

[

dξ2

ξ2f(ξ)
+ dK2

(q)

]

+
ξ

−2(n+1)
p+q−n−2

g2
dR2

(p−n−1), (5.5)

f(ξ) =
(q − 1)2k(q)

(n+ 1)2
−
(

ξ0
ξ

)n+1

, (5.6)

B[n+1] =
(q − 1)

(n+ 1)

√

2(p+ q − 1)k(q)

(n+ 1)(p+ q − n− 2)
ξn+1dt ∧ dR(n) , (5.7)

where we have introduced the inverse radius of the compact space Kq

g =

(

rq−1
0

sinh2 α

k(q)

)

1
(n+2−p−q)

, (5.8)

and changed coordinates to rq−1 = ξn+1. It is obvious that for p − 1 = n, the geometry

reduces to AdSp+1 ×Kq. Notice also that in the case of a Maxwell field n = p− 1 = 0, the

metric reduces to the familiar AdS2 × Kq.

5.2 The Kaluza-Klein reduction of black branes with a smeared charge

Since our aim is to recover solutions of lower-dimensional theories with action (3.1), having

in particular a non-trivial potential, we shall dimensionally reduce along Kq, thereby gener-

ating the potential from the non-zero curvature of the compactified space Kq. This allows

the presence of an (n + 2)-field strength in the lower-dimensional theory. We postulate a

diagonal ansatz for the metric

ds2(p+q+1) = e
− 2φ

(p−1)δ ds2(p+1) + e
φ
δ

“

δ2− 2
p−1

”

dK2
(q) , (5.9)
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with

δ2 =
2

p− 1
+

2

q
≥ 2

p− 1
, γ =

2(n+ 1)

(p− 1)δ
. (5.10)

The reduced action is

S(p+1) =
1

16πG(p+1)

∫

dp+1√−g
[

R− 1

2
(∂φ)2 − 1

2(n+ 2)!
eγφH2

[n+2] + 2Λe−δφ

]

, (5.11)

where G(p+1) = GD/V (K(q)) with V (K(q)) being the volume of K(q). We can identify the

scalar as

eφ = ρ(p−1)δh(ρ)
2(p−1)δ

2(n+1)+(p−1)(q−n−2)δ2 , h(ρ) = 1 +
sinh2 α

k(q)

(

ρ0

ρ

)p− (p−1)
2

δ2

. (5.12)

The metric is now

ds2(p+1) = ρ2h(ρ)
−2(p−1)(p−n−2)δ2

(n+1)[2p+(p−1)(p−n−2)δ2]

[

−f(ρ)dt2 + dR2
(n)

]

+

+ρ2h(ρ)
2(p−1)δ2

[2(n+1)+(p−1)(p−n−2)δ2]

[

((p− 1)δ2 − 2)2dρ2

4ρ4−(p−1)δ2f(ρ)
+ dR2

(p−n−1)

]

(5.13)

while

f(ρ) = k(q) −
(

ρ0

ρ

)p− (p−1)
2

δ2

, (5.14)

B[n+1] = −
√

2(p− 1)2δ2

(n+ 1)[2(n+ 1) + (p− 1)(p− n− 2)δ2]

(

1 − h(ρ)−1
)

cothα dt ∧ dR(n) .

(5.15)

Finally, we have to set the Ricci scalar

R(q) = q(q − 1)k(q) = 2(p− 1)
2p− (p− 1)δ2

((p− 1)δ2 − 2)2
k(q) = 2Λ ≥ 0 (5.16)

to ensure that the higher-dimensional Einstein’s equations are verified. Thus, we have

obtained a dilatonic black (p−1)-brane with an n-brane charge, which is a generic solution

of Einstein-Maxwell-Dilaton theories for γδ = 2(n+ 1)/(p− 1). At the level of the lower-

dimensional theory, the solution above has an anisotropic horizon due to the electric charge,

whenever n 6= 0 and n 6= p − 1. There are two independent parameters, ρ0 and α, which

are related to the temperature and the electric charge.

Let us now examine the two cases that lead to translationally invariant solutions in

lower dimensions.

– 26 –



J
H
E
P
1
2
(
2
0
1
1
)
0
3
6

5.2.1 n = 0

For n = 0, the higher-dimensional theory is Einstein-Maxwell gravity, and the solution a

RN black hole with horizon topology Tp−1 × Sq.

After a change of radial coordinates, the solution (5.13) simply reduces to

the γδ = 2/(p− 1) charged dilatonic black brane, which is a solution of action (3.1), first

discovered for p = 3 by [32] and further studied in [4].

Moreover, the higher-dimensional theory can be, depending on the dimensional uplift

scheme:

• Either Einstein with a cosmological constant, and this solution uplifts to a boosted

AdS black brane18 in p + 2 dimensions via a Kaluza-Klein uplift with the lower-

dimensional U(1) charge becoming a Kaluza-Klein vector, [26];

• Or Einstein-Maxwell without a cosmological constant, and the solution is a RN black

hole with horizon topology Tp−1 × Sq, [12]. Should one then do a toroidal Kaluza-

Klein reduction along the brane directions R(p−1), (5.2), the 2-form field strength

is untouched and no potential is generated, and one recovers the asymptotically flat

Einstein-Maxwell-Dilaton black holes of [31].

We may also take the near-horizon limit α → +∞ in (5.13) to find the lower-dimen-

sional equivalent of (5.5). This is the solution of (3.1) with γδ = 2
p−1 , which becomes

an extremal RN solution with an anisotropic horizon of topology Tp−1 × Sq. Here the

lower-dimensional dilaton potential in (3.1) is generated by the positive curvature of the

internal Sq.

From (5.10) and the analysis in [4], we find that these solutions are in the regime

δ > δc. In this regime, the spin-two fluctuations are gapped while the spin-one fluctuations

may or may not be gapped.

5.2.2 n = p − 1

Setting n = p − 1, the expressions simplify considerably, and the (p + 1)-form becomes

dual to a 0-form, inducing another Liouville potential. More explicitly, one may rewrite

the action (5.11) as

S(p+1) =
1

16πG(p+1)

∫

dp+1√−g
[

R− 1

2
(∂φ)2 + 2Λ̃e−γφ + 2Λe−δφ

]

, (5.17)

18The near-extremal, infinite boost limit is presented in section 4.2 of this paper.
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using the equation of motion of the form field (or equivalently replacing it by its Hodge

dual). The solution (5.13) becomes

ds2(p+1) = ρ2h(ρ)

p−1(p−1)δ2

p−
(p−1)

2 δ2
[

−f(ρ)dt2 + dR2
(p−1)

]

+ ρ(p−1)δ2−2h(ρ)

(p−1)δ2

p−
(p−1)

2 δ2
dρ2

f(ρ)
, (5.18)

f(ρ) =
k(q)

( (p−1)
2 δ2 − 1)2

−
(

ρ0

ρ

)p− p−1
2

δ2

, (5.19)

h(ρ) = 1 +
sinh2 α( (p−1)

2 δ2 − 1)2

k(q)

(

ρ0

ρ

)p− p−1
2

δ2

, (5.20)

eφ = ρ(p−1)δh(ρ)
2(p−1)δ

2p−(p−1)δ2 , (5.21)

2Λ̃ =
(p− 1)2δ2[2p− (p− 1)δ2]

2((p− 1)δ2 − 2)2k(q)
cosh2 α sinh2 α ρ

p− p−1
2

δ2

0 , (5.22)

2Λ =
2(p+ 1)[2p− (p− 1)δ2]

((p− 1)δ2 − 2)2
k(q) , k(q)Λ > 0 , k(q)Λ̃ > 0. (5.23)

This is a neutral solution from the lower-dimensional point of view. The Ricci scalar

is well-behaved at infinity and displays a curvature singularity at ρ = 0 if δ < δG, while

the spacetime is a static black hole for Λ > 0 on top of the previous condition. It has only

one integration constant, namely ρ0, related to the temperature. The Liouville potentials

have the same overall sign, as well as different exponents with equal sign: although there

are two exponentials, the potential is always a monotonic function of the scalar field and

there is no UV AdS fixed point.

This solution is distinct from the two-exponential, neutral solution first reported in [33],

whose single exponential, planar version (3.7) is shown in section 4.1 to uplift to the planar

Schwarzschild-AdS black hole for δ < δc.

However, the solution does asymptote to the neutral, singular background (3.7) which

is a solution of (3.1) with a single Liouville potential, see [4]. The solution (5.18)–(5.23)

for α = 0 upon a change of the radial coordinate is exactly the neutral solution in (3.7)

but now with δ > δc. This is the range in which the spectrum is gapped and discrete. This

is now explained as this solution uplifts to (5.18)–(5.23) with an internal sphere that is

responsible for the discrete and gapped spectrum. Pursuing the generalisation of (5.18) to

a non-planar horizon or adding a Maxwell term such as (1.4) would certainly be interesting,

but is not straightforward.

Upon taking the decoupling, near-horizon limit α→ ∞, the solution (5.18) develops an

emerging IR AdSp+1 geometry, and therefore conformal symmetry is recovered. Moreover,

the scalar field flows to a constant. This is not surprising, given that the higher-dimensional

IR geometry is a direct product AdSp+1 × Kq. Neither is it in contradiction with the

paragraph above, since now the scalar field is constant everywhere, which is always a

trivial classical solution of the action (5.17).
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6 Dimensional uplift to near-extremal charged AdS black branes

In the previous section, we have studied how solutions to EMD actions of the kind (3.1)

might emerge from the KK reduction of solutions to higher-dimensional theories containing

Einstein gravity plus electric forms. In such reductions the scalar is associated with the

size of the internal dimensions.

It is well-known that another way to generate a non-trivial exponential potential is

to include a cosmological constant in the higher-dimensional theory. Combining both ef-

fects yields two-exponential potentials, as we show below. In this case the general black

(p − 1)-brane solutions are not known analytically, and one can only find their near-

extremal limit, which are Bertotti-Robinson geometries and have been widely used in

holography and AdS/CFT. Fortunately, this coincides exactly with our interest in the

IR properties of (3.1).

In a second step, we also consider the addition of a Maxwell field in the higher-

dimensional theory, which yields the same kind of Bertotti-Robinson geometries as pre-

viously, but this time the AdS part of the metric is charged under the U(1).

6.1 γ = −(p − 2)δ: near-extremal AdS black brane with q + 1-charge

We consider the theory

S(p+q+1) =
1

16πGD

∫

dp+q+1x
√−g

[

R− 1

2(q + 2)!
G2

[q+2] + 2Λ

]

, (6.1)

where G[q+2] = dB[q+1] is the field strength associated to some (q + 1)-potential and

the q-dimensional internal space dK(q) is in general curved. We shall take as diagonal

reduction ansatz

ds2(p+q+1) = e−δφds2(p+1) + e
φ
δ

“

2
p−1

−δ2
”

dK2
(q) , B[q+1] = A[1] ∧ dK(q) , (6.2)

δ2 =
2

p− 1

q

(p+ q − 1)
≤ δ2c =

2

p− 1
, (6.3)

so that the reduction is carried along q of the legs of the (q+ 1)-form and we are reducing

along (warped) worldvolume directions. We find that

e−δφR(p+q+1) = R(p+1) + δ�φ− 1

2
∂φ2 + e

−2φ
(p−1)δR(q) , (6.4)

G2
[q+2] =

(q + 2)!

2
e−(p−3)δφF 2

[2] , (6.5)

where R(d) above stands for the Ricci scalar in the appropriate space. Discarding a bound-

ary term, the lower-dimensional theory is of the kind (3.1) but with a potential containing

two exponentials:

S(p+1) =

∫

dp+1x
√−g

16πG(p+1)

[

R− 1

2
∂φ2 − 1

4
eγφF 2

[2] + 2Λe−δφ + 2Λ̃e
− 2φ

(p−1)δ

]

, (6.6)

δ2 =
2q

(p− 1)(p+ q − 1)
, γ = −(p− 2)δ , 2Λ̃ = R(q) = q(q − 1)k(q) , (6.7)
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where G(p+1) = GD/V ol(K(q)). Note that one of the exponentials is directly related to the

higher-dimensional cosmological constant, while the other is related to the curvature of the

compactified space.

The equations of motion derived from (6.6) admit a black hole solution, [33], that we

reproduce here and generalize to arbitrary horizon topology

ds2(p+1) = e2A
[

−f(r)dt2 + dK2
(p−1)

]

+
dr2

f(r)
, (6.8)

f(r) =

(

2Λ + (p− 2)2k(p−1)

)

(

1 + (p− 1)(p− 2) δ2

2

)2 r
2−(p−1)δ2

+
−8Λ̃(p− 1)−2δ−2

(2 − p(p− 1)δ2)
−
(r0
r

)
p
2
(p−1)δ2−1

,

(6.9)

e2A = eδφ = r(p−1)δ2
, (6.10)

A[1] =

√

(2 − (p− 1)δ2)Λ + (p− 1)(p− 2)k(p−1)

2 + (p− 1)(p− 2)δ2
2r1+(p−1)(p−2) δ2

2

1 + (p−1)(p−2)
2 δ2

dt . (6.11)

If we set k(p−1) = 0 and Λ̃ = 0 and we recover the generic, single exponential, near-extremal

black brane solution (3.11) studied in [4, 32, 35] for specific values γ = −(p− 2)δ.

On the other hand, setting Λ = 0 and taking the planar limit k(p−1) = 0 recovers

the neutral solution (3.7) after sending δ → 2/(p − 1)δ. Let us stress that this limit does

not recover the charged near-extremal solutions (3.11)–(3.13). In the following section 8,

we shall return to this statement, and connect it to the non-commutativity of planar and

near-horizon limits in some instances.

Using (6.2) and after changing coordinates with respect to the previous solution (6.8),

the uplifted (aka oxidised) solution, which is a classical solution of the action (6.1), can be

written as

ds2(p+q+1) = −f(ξ)dt2 + ξ2dK2
(q) +

dξ2

f(ξ)
+ dK2

(p−1) , (6.12)

f(ξ) =

(

2Λ + (p− 2)2k(p−1)

)

(q + 1)2
ξ2 + k(q) −

(

ξ0
ξ

)q−1

, (6.13)

B[q+1] =
Q

(q + 1)
ξq+1dt ∧ dK(q) , (6.14)

Q2 =
4Λ

q + 1
+ 2

(p− 2)(p+ q − 1)

(q + 1)
k(p−1) , (6.15)

where dK(q) is the unit volume of element of the internal space Kq. The IR geometry is

therefore AdS(q+2) × Kp−1, and has an emerging conformal symmetry.

In order to interpret this solution, let us consider a few special cases:

• If q = 0, the field strength has rank 2, and so is the usual Maxwell term. What we

recover here is the familiar AdS2 × Kp−1 extremal geometry.

• If Λ = 0, k(p−1) = 0, this is simply the neutral Schwarzschild black hole in q + 2 di-

mensions times p−1 flat directions. If p = 2, this corresponds to the well-known black
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string. This is indeed consistent with the remark that taking this limit in (6.8)–(6.11)

yields the neutral solution (3.7).

• If Λ̃ = 0, k(p−1) = 0, one recognizes an AdS spacetime times a flat space, with the

cosmological constant supported by the electric chage.

• If Λ = Λ̃ = 0 (which implies k(q) = 0), we recognize the near-extremal limit of

the generic black q-brane (5.5) with uniform electric charge and unit radius for the

space Kp−1.

The general solution (6.12) can then be interpreted as the near-extremal limit of a

black q-brane in (p + q + 1)-dimensional Anti de Sitter space, a solution to the equations

of motion derived from (6.1). It is simply a direct product of the (q + 2)-dimensional

AdS black brane with a (p− 1)-dimensional Einstein space where the internal curvature is

supported by the charge (density).

The solution with Λ̃ = 0, corresponding to a toroidal internal space, gives an uplift of

the the γ + (p − 2)δ near-extremal solutions of (3.1). They are in the subcritical δ < δc
regime, because the internal space is flat. The higher-dimensional solution is a near-

extremal black q-brane solution wrapped on Tq.

The uplift allows us also to understand the fixed value of the charge density for the near-

extremal black holes (3.11): it simply reflects the scalar condition on Einstein’s equations

so that a direct product geometry is admissible. This fact has been known for quite some

time and heavily used in supergravity contexts, [44].

Moreover, for k(p−1) = 0, the system will be continuous for Λ̃ = 0, that is when the

solution descends from a planar AdS black q-brane via a toroidal reduction; while it will

be gapped when Λ = 0, since then it descends from a curved asymptotically flat q-brane

via a curved reduction. One may also check from (3.17) that it always hold in the first

case, while it holds in the second one if and only if q > 1, that is for a compact space of

non-zero curvature.

6.2 pγ = δ: near-extremal AdS black brane with p- and 0-charge

Consider the theory

S = Mp+q−1

∫

dp+q+1x
√−g

[

R− 1

4

(

F 2
[2]

)

− 1

2(p+ 1)!

(

G[p+1]

)2
+ 2Λ̃

]

, (6.16)

suppose that both field strengths are only along the p+ 1 external coordinates and reduce

along a Tq

ds2(p+q+1) = e−δ̃φds2(p+1) + e
φ

δ̃

“

2
p−1

−δ̃2
”

dR2
(q) , (6.17)

δ̃2 =
2

p− 1

q

(p+ q − 1)
≤ δ̃2c =

2

p− 1
. (6.18)

Then, the field strengths reduce trivially, and one obtains the lower-dimensional action

S = Mp−1

∫

dp+1x
√−g

[

R− 1

2
(∂φ)2 − eδ̃φ

4

(

F 2
[2]

)

− epδ̃φ

2(p+ 1)!

(

G[p+1]

)2
+ 2Λ̃e−δ̃φ

]

.

(6.19)
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Using its equation of motion, the [p+1]-field strength can be dualised to a [0]-field strength

(that is, a scalar potential), by setting

− epδ̃φ

2(p+ 1)!

(

G[p+1]

)2
= 2Λe−pφ̃ (6.20)

so that (6.19) becomes

S = Mp−1

∫

dp+1x
√−g

[

R− 1

2
(∂φ)2 − 1

4
eδ̃φ
(

F 2
[2]

)

+ 2Λe−pδ̃φ + 2Λ̃e−δ̃φ

]

. (6.21)

Generalising slightly to

S = Mp−1

∫

dp+1x
√−g

[

R− 1

2
(∂φ)2 − 1

4
eγφ

(

F 2
[2]

)

+ 2Λe−δφ + 2Λ̃e−δ̃φ

]

, (6.22)

a black hole solution can be found: it appears in [33] for the positive horizon curvature

case and we write it for arbitrary curvature.

(p− 1)δ̃ = δ − γ , (6.23)

ds2p+1 = e2A
[

dK2
(p−1) − f(r)dt2

]

+
dr2

f(r)
, (6.24)

f(r) =
8Λ(p− 1)

wp
rvh(r) , (6.25)

h(r) = 1 −
(r0
r

)

wp
2(p−1)

+
(p− 2)wpuk(p−1)r

1+
(p−2)
2(p−1)

(γ−δ)2

8Λ(p− 1)
[

(γ−δ)2

2(p−1) − 1
] [

1 + (p−2)(γ−δ)2

2(p−1)

] (6.26)

e2A = e
− (γ−δ)

(p−1)
φ

= r
(γ−δ)2

(p−1) , (6.27)

A[1] =
4(p− 1)

wpu

√

Λv

u
r

wp
2(p−1) dt , (6.28)

Λ̃ =
(p− 1)2(p− 2)

2(p− 1) − (γ − δ)2
k(p−1) (6.29)

wp = 2(p− 1) + pγ2 − 2γδ − (p− 2)δ2 , u = γ2 − γδ + 2 , v = −δ2 + γδ + 2 .

(6.30)

This is a generic curvature black hole, which reduces to the black brane (3.11) if one takes

the planar limit k(p−1) ∼ Λ̃ = 0.

It is interesting to take the limit Λ = 0, and replacing factors of (γ−δ) by the remaining

exponent δ̃, one recovers a neutral solution complementary to the neutral solution (3.7): in

the latter, the potential is comological constant-like, while here it supports the curvature

of the horizon. Combining the two effects gives the most general neutral solution with

two potentials, the spherical version of which can be seen in [33], while the full topological

version will appear in [26].

This solution is distinct from (6.8), since upon taking γ = −(p−2)δ, (6.24) reduces to a

single exponential potential, whereas (6.8) has two. In some sense, the limit γ = −(p− 2)δ
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is degenerate in (6.24): for these values, more freedom is allowed since in (6.8), one may

fix independently Λ, Λ̃ and k(p−1). The price to pay is fixing all the exponents of the scalar

exponentials, whereas two are free in (6.24).

The relation (6.23) between the exponents is verified by the action (6.21), and so it is

straightforward to uplift the solution (6.24):

ds2(p+q+1) = −V (ρ)dτ2 +
dρ2

V (ρ)
+ ρ2dR2

(q) + dK2
(p−1) , (6.31)

V (ρ) =
2Λ̃ρ2

(q + 1)(p+ q − 1)
−
(

ρ0

ρ

)q−1

+
Q2

ρ2q−2
, (6.32)

A[1] = −
√

2Qρ1−qdτ , (6.33)

B[p] = −
√

2Q

(q − 1)
ρ1−qdτdK(p−1) , (6.34)

Q2 =
−2Λ

q − 1
, 2Λ̃ = (p− 2)(p+ q − 1)k(p−1) , (6.35)

after changing to the coordinates

τ =
p+ q − 1

p− 1
t , r = ρ

p+q−1
p−1 . (6.36)

These metrics have the topology AdSq+2 × K(p−1), with a non-trivial electric field and a

[p]-form gauge field along the product space. Note that if one dualises the [p + 1]-field

strength, a magnetic flux is obtained on the spatial directions Tq of the worldvolume

of the brane. They are charged generalisations of the metrics in section 6.1, which are

interpreted as the near-horizon limit of AdS black branes. Having a non-trivial U(1) gauge

field turned on naturally allows for particle number conservation in the dual field theory

living on the boundary.

They can easily be generalised to a curved horizon K(q) × K(p−1) by including a cur-

vature factor in the black hole potential (6.32):

V (ρ) =
2Λ̃ρ2

(q + 1)(p+ q − 1)
+ k(q) −

(

ρ0

ρ

)q−1

+
Q2

ρ2q−2
. (6.37)

Upon reduction, one would obtain in action (6.22) another exponential potential

V̄ (φ) = 2Λ̄e−δ̄φ (6.38)

with

2Λ̄ = q(q − 1)k(q) , δ̄ =
2

(p− 1)δ̃
. (6.39)

and modified (6.26)

h(r) → h(r) +
8(p− 1)Λ̄r

p(γ−δ)2

2(p−1)
−1

(γ − δ)2 [2(p− 1) − p(γ − δ)2]
. (6.40)

The end result is an EMD theory with three exponential potentials, different from that

examined in section 8. In particular, the lower-dimensional solutions of section 8 are

asymptotically AdS, while those examined in this section are not.
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7 Dimensional uplift for generic γ and δ

In this section, we give an interpretation to the result that the charged extremal solu-

tions (3.11)–(3.15) are generically conformally Lifshitz metrics, except in the cases γ = δ

and γ = −(p − 2)δ, by uplifting them to Lifshitz solutions. This will be restricted

to the quadrants (γ − δ)(γ + (p − 2)δ) > 0. This can be relaxed to the quadrants

(γ − δ)(γ + (p − 2)δ) < 0 by uplifting the solutions to near-extremal, asymptotically flat

dilatonic black (p − 1)-branes with a point-like charge. These metrics are generalisations

of those considered in 5 and include a dilaton, [29]. We consider each case in turn.

7.1 (γ − δ)(γ + (p − 2)δ) > 0: Lifshitz solutions

We start by considering a higher-dimensional theory of a vector coupled to a scalar in an

Einstein-AdS background:

S =

∫

dp+q+1x
√−g

[

R− 1

2
∂Φ2 − 1

4
eΓΦF 2 + 2Λ

]

. (7.1)

This action can be identified with the EMD action (3.1) with gauge coupling and scalar

potential (3.2), after setting p → p + q, δ = 0 and γ → Γ. It is known to have Lifshitz

solutions, [21], which are the δ → 0 limit of the charged extremal solution (3.11)–(3.15).

We now reduce this action over an internal torus of dimension q, and denote by ϕ the

scalar that controls its volume factor:

ds2 = e−∆ϕds2(p+1) + e
2ϕ

(p−1)∆(1− p−1
2

∆2)dR2
(q),

p− 1

2
∆2 =

q

p+ q − 1
. (7.2)

The dilaton Φ and the volume scalar ϕ equations of motion are

�Φ =
Γ

4
eΓΦ+∆ϕF 2 (7.3)

�ϕ =
∆

4
eΓΦ+∆ϕF 2 + 2∆Λe−∆ϕ. (7.4)

They can be derived from the lower-dimensional action with two scalars

S =

∫

dp+1x
√−g

[

R− 1

2
∂Φ2 − 1

2
∂ϕ2 − 1

4
eΓΦ+∆ϕF 2 + 2Λe−∆ϕ

]

. (7.5)

We now investigate whether we can truncate this theory to a single scalar consistently. This

can be done if a combination of the two scalars has a massless Klein-Gordon equation, in

which case we can set it to zero. We assume that

Φ = αϕ , (7.6)

which implies from (7.3) and (7.4) that

(Γ − α∆)2 F 2 = 8α∆Λe−(2∆+αΓ)ϕ. (7.7)

Defining further

φ =
√

1 + α2ϕ , γ =
αΓ + ∆√

1 + α2
, δ =

∆√
1 + α2

, (7.8)
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the action (7.5) turns into our original EMD action (3.1) with (3.2). We already know its

generic charged black hole solutions, (3.11)–(3.15). All that is left to do to have a consis-

tent KK reduction is find the proportionality factor α such that (7.7) holds. Expressing

everything in terms of lower-dimensional parameters γ, δ and using (3.11)–(3.15) in (7.7),

we eventually find that

α2 =
2 + γδ − δ2

δ(δ − γ)
=

v

δ(δ − γ)
(7.9)

where v is defined in (3.14). We may reexpress γ and δ in terms of higher-dimensional

quantities:

δ2 =
Γ2∆4

4 + Γ2∆2
, γ =

(

1 − 2

∆2

)

δ (7.10)

where ∆ is defined in (7.2).

We define the Lifshitz exponent as in (3.25)

z = 1 +
(p− 1)v

(γ − δ)(γ + (p− 2)δ)
= 1 +

2(p+ q − 1)

Γ2
=⇒ z ≥ 1 (7.11)

and then from (3.17)

u = 2(p− 1) , v =
2(p− 1)(z − 1)

p+ q + z − 2
, w =

2(p− 1)2(p+ q + z − 1)

p+ q + z − 2
, (7.12)

where z ≥ 1 allows the Gubser bound to hold. Changing the radial variable to

r = ρ
−2(p−1)

(γ−δ)(γ+(p−2)δ) , (7.13)

and noticing that

∆ϕ = δφ , e2A−∆ϕ = e
2ϕ

(p−1)∆(1− p−1
2

∆2), (7.14)

the higher-dimensional metric reads

ds2(p+q+1) = −V (ρ)dτ2

ℓ2zρ
2z

+
1

ρ2

[

ℓ2zdρ
2

V (ρ)
+ dR2

(p+q−1)

]

, (7.15)

V (ρ) = 1 −
(

ρ0

ρ

)z+p+q−1

, ℓ−2
z =

2Λ

(z + p+ q − 1)(z + p+ q − 2)
(7.16)

eΦ = ρ
√

2(p+q−1)(z−1) , Aτ =

√

2(z − 1)

(p+ q + z − 1)ℓ2z
ρ1−p−q−zh(ρ)dτ (7.17)

after rescaling

τ = (z − 1)(4 + Γ2∆2)
t

4
. (7.18)

This is the expected Lifshitz solution. It has been studied by a variety of authors in the

past, [4, 21, 49, 60–64]. Here, we interpret it as the dimensional uplift of the generalised

EMD solutions.19 This is also reminiscent of the work of [29], where dilatonic black p-branes

19Note that this procedure could be repeated to generate new EMD solutions, for instance starting from

the solutions uncovered in [64], which consider non-planar as well as multiple U(1) charge solutions.
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with horizon Tp×Sn−1 are shown to reduce to the dilatonic-Maxwell Gibbons-Maeda black

holes with horizon Sn−1, [31].

Note that the relations (7.8) restrict γ and δ to part of the two quadrants

(γ − δ)(γ + (p− 2)δ) > 0 , (7.19)

see figure 1.

7.2 (γ − δ)(γ + (p − 2)δ) < 0: near-extremal dilatonic branes

We now apply the same technique, this time starting from an Einstein-Maxwell-Dilaton

higher-dimensional theory

S = Mp+q−1

∫

dp+q+1x
√−g

[

R− 1

2
(∂Φ)2 − 1

4
eΓΦFµνF

µν

]

. (7.20)

This theory admits the following near-horizon black (p− 1)-brane,20 which can be derived

from the full geometry in appendix A.2 of [29], for instance:

ds2 = −ρ(q−1)Af(ρ)dτ2 + ρ−(q−1)B

[

dρ2

f(ρ)
+ ρ2dK2

(q) + dR2
(p−1)

]

(7.21)

f(ρ) = k(q) −
(

ρ0

ρ

)q−1

, (7.22)

eΦ = r
NΓ
4 , (7.23)

A[1] = −
√

Nk(q)r
q−1dτ (7.24)

where we have set the IR scale to unity, and A, B and N are given by

A =
4(p+ q − 2)

2(p+ q − 2) + (p+ q − 1)Γ2
, B =

4

2(p+ q − 2) + (p+ q − 1)Γ2
, N = A+B .

(7.25)

We may now reduce the theory (7.20) along a curved Ansatz with ∆ > ∆c:

ds2 = e
− 2ϕ

(p−1)∆ ds2(p+1) + e
2ϕ

(p−1)∆( p−1
2

∆2−1)dK2
(q),

p− 1

2
∆2 =

p+ q − 1

q
, (7.26)

which results in the theory

S =

∫

dp+1x
√−g

[

R− 1

2
∂Φ2 − 1

2
∂ϕ2 − 1

4
e
ΓΦ+ 2ϕ

(p−1)∆F 2 + 2Λe−∆ϕ

]

. (7.27)

Again we check that the two scalars can consistently be taken proportional to one another

upon imposing a condition analogous to (7.7)

Φ = αϕ =
φ√

1 + α2
, α = −

√

2(p− 1)(p+ q − 1)

q

(q − 1)Γ

2(p− 1) + (p+ q − 1)Γ2
. (7.28)

20The asymptotically flat Gibbons-Maeda black holes are also solutions to this action, [31], and are related

to the black (p − 1)-branes by KK uplift along a torus, see appendix A.1 of [29].
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Setting further

δ =
∆√

1 + α2
, γ =

1√
1 + α2

[

αΓ +
2

(p− 1)∆

]

, (7.29)

after some manipulations, we recover the original EMD theory (3.1) with arbitrary γ and

δ, and the solution (7.21)–(7.24) now coincides with (3.11)–(3.15). The part of the (γ −
δ)(γ+(p−2)δ) < 0 quadrants this uplift covers is represented as the red region of figure 1.

From (7.28) and (3.17), it can be checked straightforwardly that the Gubser condition

is equivalent to q > 1, that is non-zero internal curvature for the space Kq. On the other

hand, although the reduction is curved, not all the parameter space it covers corresponds

to a gapped system, see figure 1.

7.3 Summary of results in the (γ, δ) plane

Let us note that the relations (7.8) and (7.29) do not allow γ and δ to cover the whole (γ, δ)

plane, but rather only part of it, because the relations (7.10) and (7.29) are not trivial.

To summarise, in the quadrants

(γ − δ)(γ + (p− 2)δ) > 0 (7.30)

the charged near-extremal solutions (3.11)–(3.15) descend from Lifshitz metrics with hori-

zon R(p+q−1), the Gubser bound holds and the system is gapless, while in the quadrants

(γ − δ)(γ + (p− 2)δ) < 0 , (7.31)

they descend from near-extremal dilatonic black branes with a point-like charge and horizon

R(p−1) × K(q), the Gubser bound holds if and only if q > 1 and the system can either be

gapped or not. There are two limiting cases with infinite Lifshitz exponents:

• γ = δ: the metric is conformal to AdS2 × Rp−1, and can be uplifted to an AdS2 ×
Rp+q−1 space-time; the Gubser bound always holds and the system is gapless.

• γ = −(p − 2)δ: the metric is again conformal to AdS2 × Rp−1, but this time can

be uplifted to the near-horizon limit of a static AdS black q-brane with horizon

Kq × Rp−1 if δ2 ≤ δ2c ; in that case, the Gubser bound always holds and the system

is gapless.

and a point γ = 0, δ = 0, which admits both the AdS2 ×Rp+q−1 and AdSp+q+1 solutions.

There are several possibilities to cover the remaining parts of the (γ, δ) plane: one may

examine what happens in both cases when the higher-dimensional theory contains a [q+1]-

gauge potential instead of a Maxwell field. Then, in one case, one may obtain some kind of

generalised Lifshitz near-extremal, dilatonic black brane,21 while in the other one should

recover the well-known near-extremal, dilatonic black q-brane wrapped around a torus.

In [65], the authors study for p = 3 the response of fermionic probes in the back-

ground (3.11)–(3.15) with action (3.1). In the interior of the quadrant (7.19), their re-

sults reproduce a Fermi Liquid-type behaviour, with long-lived quasiparticles but an O(ω)

width,22 while they find non-Fermi Liquid behaviour along the lines γ = δ and γ = −δ. All

21Note that the existence of Lifshitz black p-brane was already noted in [21] in a theory with a massive

[p + 1]-form potential.
22Instead of a width O(ω2) for Fermi Liquids.
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of these results can now naturally be linked with those of [66], which showed that Lifshitz

symmetry allowed for Fermi Liquid behaviour, and earlier ones of [67–69], where the near-

horizon AdS2×R2 emergent geometry was proved to generate non Fermi-Liquid behaviour.

One may surmise that in the other two quadrants, (γ − δ)(γ + (p − 2)δ) < 0, the

non-Fermi Liquid behaviour found by [65] derives from the generalised Bertotti-Robinson

geometry (7.21)–(7.24).

8 AdS dilatonic black holes and near-extremal rotating black branes

In this section, we shall examine black hole solutions which are asymptotically AdS with

a non-trivial gauge and scalar field, [37]–[40].23 The price to pay is to increase the number

of exponentials in the potential to three. Then, we shall connect it via its near-extremal

limit to the solution (6.8)–(6.11), showing this constitutes an explicit example of a UV

completion of the IR effective action (3.1). Finally, we will argue that they can be given

a higher-dimensional interpretation as the Kaluza-Klein sphere reduction of near-extremal

rotating black branes, [45].

8.1 Generic charged AdS dilatonic black hole

In this section, we shall focus on a theory with a three-exponential potential, tuned just so

that it allows for asymptotically AdS solutions:

L(p+1)√−g = R− 1

2
(∂φ)2 − 1

4
e−(p−2)δφ

(

F[2]

)2
+ V (φ) , (8.1)

V (φ) =
2(p− 1)2(p− 2)δ2V0e

− 2φ
(p−1)δ

p(1 + (p−1)
2 (p− 2)δ2)2

[

− (p− 2)

4(p− 1)

(

1 − p
(p− 1)

2
δ2
)

+

+e
2+(p−2)(p−1)δ2

2(p−1)δ
φ

+
(p− (p− 2)2 (p−1)

2 δ2)

2(p− 1)2(p− 2)δ2
e

2+(p−1)(p−2)δ2

(p−1)δ
φ

]

. (8.2)

The black hole solutions of these theories were studied first in [37, 38], then generalized to

arbitrary topology [40], and then an arbitrary number of spins on the brane directions were

included in the planar case, [41]. The thermodynamics were studied in [39, 40]. Intuitively,

we recognize in the gauge coupling γ = −(p − 2)δ the value obtained when reducing a

q-form field strength down to a two-form field strength, whereas the first exponential of

the potential is a signal that a constant curvature space Kq has been compactified. We

shall see later it is indeed so.

While the potential (8.2) looks complicated, it actually displays some simple features:

• Such a potential always exhibits a positive local or global minimum at φ = 0, with

V (0) = V0. Thus, one may expect that asymptotically AdS solutions will exist when

the scalar field settles down at such a point.

• If 1/p ≤ (p− 1)δ2/2 ≤ p/(p− 2)2, there is a single global positive minimum at φ = 0.

23Different though from those recently reported in [70].
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Figure 4. The scalar potential (8.2) for p = 3, plotted for representative values of δ in the three

ranges (p− 1)δ2/2 < 1/p (Lower Range, solid black line), 1/p ≤ (p− 1)δ2/2 ≤ p/(p− 2)2 (Middle

range, dotted bue line) and p/(p− 2)2 < (p− 1)δ2/2 (Upper Range, dashed red line). In all three

ranges, the potential displays a positive minimum which is an AdS fixed point.

• If 1/p > (p− 1)δ2/2 (respectively (p− 1)δ2/2 > p/(p− 2)2), then there is also a local

maximum for positive (respectively negative) φ.

• In all cases, the potential has infinite tails for φ→ ±∞.

We plot it in each of these ranges in figure 4.

The equations of motion derived from (8.1) admit asymptotically AdS solutions. We

present the non-spinning, arbitrary topology version:24

ds2(p+1) = −h(r)−(p−2)
“

2
p−2

−Γ
”

f(r)dt2 + h(r)
2

p−2
−Γ
[

dr2

f(r)
+ r2dK2

(p−1)

]

, (8.3)

f(r) =
(r

ℓ

)2
h(r)

(p−1)
“

2
p−2

−Γ
”

+ κ−
(r0
r

)p−2
, (8.4)

h(r) = 1 +
(r0
r

)p−2
κ−1 sinh2 β , (8.5)

eφ = h(r)−
Γ
δ , Γ =

2(p− 1)δ2

2 + (p− 2)(p− 1)δ2
, (8.6)

A = −
√

(p− 1)(p− 2)κ

2 + (p− 2)(p− 1)δ2
2

(p− 2)

(

1 − h(r)−1
)

cothβ dt . (8.7)

24Compared to [39, 40], we have sent φ →
p

(p − 1)/8φ, A → A/2, α = (p−2)
p

2/(p − 1)/δ, and changed

coordinates to rp−2 = ρp−2
− bp−2, bp−2 = sinh2 β rp−2

0 /κ and cp−2 = cosh2 β rp−2
0 .
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where ℓ2 is the (p + 1)-dimensional AdS radius V0 = p(p − 1)ℓ−2 and κ the normalised

curvature of K(p−1).

In the δ = 0 limit, the potential reduces to a pure cosmological constant V0 (8.2) and

the action (8.1) to AdS-Einstein-Maxwell. The scalar field (8.6) becomes trivial, and the

solution (8.3)–(8.7) turns into the AdS-Reissner-Nordström black hole upon making the

change of coordinates ρp−2 = rp−2h(r).

The solution above has arbitrary topology, yet it seems like taking the planar limit

switches off the gauge field. It is actually not so, by taking the appropriate scaling limit

κ→ 0 , sinh2 β → κ sinh2 β , coshβ → 1 , (8.8)

whereupon the solution becomes

ds2(p+1) = −h(r)−(p−2)
“

2
p−2

−Γ
”

f(r)dt2 + h(r)
2

p−2
−Γ
[

dr2

f(r)
+ r2dR2

(p−1)

]

, (8.9)

f(r) =
(r

ℓ

)2
h(r)

(p−1)
“

2
p−2

−Γ
”

−
(r0
r

)p−2
, (8.10)

h(r) = 1 +
(r0
r

)p−2
sinh2 β , (8.11)

eφ = h(r)−
Γ
δ , Γ =

2(p− 1)δ2

2 + (p− 2)(p− 1)δ2
, (8.12)

A = −
√

(p− 1)(p− 2)

2 + (p− 2)(p− 1)δ2
2

(p− 2)

(

1 − h(r)−1
)

dt . (8.13)

In order to further interpret these solutions, we shall first take a near-extremal limit

where the charge parameter β is taken to be large. This will have the effect of zooming to

the near-horizon region of the extremal black hole.

8.1.1 The near-horizon region of the extremal black hole

Taking the limit β → ∞ in the solution (8.3), and changing to coordinates

rp−2 = ξ1+(p−1)(p−2)δ2/2, (8.14)

as well as setting

κ = k(p−1)e
−2φ0

(p−1)(p−2)δ , t =
2(p− 2)e

(p−1)(p−2)δ2−2(p−3)
2(p−1)(p−2)δ

φ0

2 + (p− 1)(p− 2)δ2
t̄, Kp−1 = e

φ0
(p−1)(p−2)δ K̄p−1,

(8.15)
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the near-extremal limit of (8.3) is

ds2(p+1) = −f(ξ)dt̄2 + eδφ dξ2

f(ξ)
+ ξ(p−1)δ2

dK̄2
(p−1) , (8.16)

V (ξ) =
8Λ̃e

− 2φ0
(p−2)δ ξ(p−1)δ2

(p− 1)2δ2(2 − p(p− 1)δ2)
+

(p− 2)2k(p−1)ξ
2

(2 + (p− 2)(p− 1)δ2)2
−
(

ξ0
ξ

)1−(p−1)(p−2)δ2/2

(8.17)

eφ = eφ0ξ(p−1)δ , eφ0 =

(

k(p−1)

sinh2 β rp−2
0

)

2(p−1)δ

2+(p−1)(p−2)δ2

, (8.18)

A =

√

(p− 1)(p− 2)k(p−1)

2 + (p− 2)(p− 1)δ2
e

p−1
2

δφ0
4ξ1+(p−1)(p−2)δ2/2

2 + (p− 1)(p− 2)δ2
dt , (8.19)

which is precisely the scaling solution (6.8) with Λ = 0. Indeed, the effective IR potential

derived from (8.2) can be reduced to a single exponential,

VIR(φ) = 2Λ̃e
− 2φ

(p−1)δ , 2Λ̃ = −V0
(p− 1)(p− 2)2δ2

(

2 − p(p− 1)δ2
)

p(2 + (p− 1)(p− 2)δ2)2
. (8.20)

Again, taking the planar limit recovers the single exponential, neutral solution (3.7) of (3.1)

once we have made the change δ → 2/(p− 1)δ. This simply represents the non-commuta-

tivity of the near-horizon limit and the planar limit: taking β → ∞ in the planar solu-

tion (8.9)–(8.13) turns off the gauge field since there is no extra scale with which to form

a fixed ratio. In more pictural terms, the near-horizon limit is a limit where the electric

charge blows up at the same time as the horizon radius (i.e. its curvature vanishes); if the

horizon already has planar topology, this is a singular limit which can only be regularised

by switching off the gauge field. On the other hand, when the scalar potential equivalent

of a cosmological constant is present, then the two limits may be taken while retaining a

non-trivial gauge field, since an extra curvature scale is available, giving rise to the planar,

charged, near-extremal scaling solutions (3.11)–(3.16).

Moreover, this provides an explicit UV completion to AdS asymptotics of the

single Liouville potential solutions: in order to describe the IR region, (8.14)–(8.19) is

all that is needed. Note that to recover the original action (1.2), one should change25

δ → 2/(p− 1)δ, and then the IR effective action derived from (8.1) corresponds to the

specific value γ = −2(p− 2)δ.

The next step along the interpretation of the solutions (8.3)–(8.7) is carried out in the

next section, where they are connected with the decoupling limit of asymptotically flat

rotating black branes.

8.2 Sphere reduction of the near-extremal limit of rotating black branes

We will use the results of [45], section 5 of the paper, to truncate to a single scalar, single

gauge field sector the reduction along a sphere Sq, q = 2N − 1, of the decoupling limit of

rotating black branes.

25This is consistent with the fact that (8.1) is derived from (8.21) by reducing over a curved space, as we

shall see next.
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The higher-dimensional theory we consider is (5.1) with n = q, that is:

S(p+q+1) =
1

16πGD

∫

dp+q+1x
√−g

[

R− 1

2(p+ 1)!
G2

[p+1]

]

. (8.21)

The static black branes were studied in section 5, and we shall consider here their rotating

version, which is presented in appendix C. One may find the necessary details in [45]. By

going to the near-extremal limit, the authors of [45] showed that the rotating black brane

could be rewritten in just the right way so as to allow for a consistent reduction over

the internal sphere, while truncating the massive modes and restricting to a U(1) Cartan

subgroup of the generic O(2N) Lie group rotating the internal S2N−1.

In appendices B.1, B.2 and B.3, we take up the explicit Lagrangians worked out by [45]

for the cases of D = 10 SUGRA on S5 and D = 11 SUGRA on S4, S7 and show how they

may be truncated to a single scalar, single gauge field sector.

Although the authors of [45] write the reduced metric in the generic case, they do

not provide the full reduced Lagrangian. We shall not attempt to work out its expression,

which is beyond the scope of this work. We shall simply start from the reduced solution,

equations (5.4), (5.5) of [45], and show how it can be truncated to a single scalar, single

gauge field sector, building on the subcases q = 4, 5, 7 of appendices B.1–B.3. Though this

does not prove that the truncation is true for all solutions of the reduced Lagrangian, it is

sufficient for our purposes, as we are really interested only in that particular solution:

ds2(p+1) = − (H1 . . . HN )
− p−2

p−1 f(r)dt2 + (H1 . . . HN )
1

p−1

(

dr2

f(r)
+ r2dR2

(p−1)

)

, (8.22)

Hi = 1 + g2l2i

(

2(N − 1)g

pr

)p−2

, Ai =
1

gli sinhα

(

1 −H−1
i

)

dt , (8.23)

f(r) =

(

2(N − 1)gr

p

)2

H1 . . . HN − µ

rp−2
, (8.24)

where i = 1 . . . N , so that there are N − 1 independent scalar and N independent gauge

fields. The scalars are parametrized in terms of N exponentials Xi:

Xi = e−
1
2
−→a i·

−→
φ , X1 . . . XN = 1, (8.25)

where the −→a i are independent vectors which are fixed by the reduction.26 These Xi are

fixed in terms of the Hi in order to have a solution as:

Xi = (H1 . . . HN )
p

2(p−1)(N−1) H−1
i . (8.26)

One may check that the Xi do verify (8.25) using N(p− 2) = 2(p− 1).

We now set all of the charge parameters but two to zero. The two non-zero charge

parameters we take to be equal: l1 = l2, li = 0 for 2 < i ≤ N . We also denote H1 = H2 = h.

26More precisely, they are the root vectors of the Cartan generators of the isometry group of the reduced

space.
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It is clear that in this case only two of the gauge fields survive, and moreover they can be

combined in a single one. We obtain

X1 = X2 = h
p

(p−1)(N−1)
−1
, Xi>2 = h

p
(p−1)(N−1) . (8.27)

In view of (8.25), this result means that

(−→a 2 −−→a 1) ·
−→
φ = 0 , (−→a i −−→a i−1) ·

−→
φ = 0 ∀ 3 < i ≤ N . (8.28)

Given that the −→a i are independent vectors, these conditions can only be accommodated

if φi = 0 ∀i > 1, and only a single scalar φ = φ1 survives. Note that although this does

not constitute a rigorous proof of the truncation,27 the procedure describe above reduces

correctly to the supergravity cases. Moreover, one can argue that being able to truncate

some fields at the level of a particular solution is always consistent vis-à-vis the equations

of motion, although this does not mean that such a procedure will hold generically for all

of the solutions to this particular set of equations of motion. Anyway, as our focus is on

the near-extremal limit of rotating black branes, the level of detail explained above suffices.

8.2.1 Dimensional uplift to the near-extremal limit of the rotating black brane

Along the lines of [45], it should be possible to embed the black hole solution (8.3) in the

higher-dimensional theory (8.21) which, as mentioned before, admits rotating black (p−1)-

brane solutions, where the (p+ 1)-form field strength is supported by the worldvolume of

the brane and rotation is along the space Sq. Indeed, if one sets (p− 2)δ = −
√

2/(p− 1),

the previous lagrangian (8.1) reduces to the following:

L(p+1)√−g = R− 1

2
(∂φ)2 − 1

4
e

q

2
p−1

φ (
F(2)

)2
+ V (φ) , (8.29)

V (φ) =
V0(p− 2)2

p(p− 1)

[

e
−

q

2
(p−1)

φ − p− 4

(p− 2)2
e
(p−2)

q

2
(p−1)

φ
+

4

p− 2
e

(p−3)√
2(p−1)

φ
]

, (8.30)

which agrees with (B.11), (B.5) and (B.12) for p = 3, 4, 6. The solution (8.3) becomes

in turn

ds2(p+1) = −h(r)−
2(p−2)

p−1 f(r)dt2 + h(r)
2

p−1

[

dr2

f(r)
+ r2dK2

(p−1)

]

, (8.31)

f(r) =
(r

ℓ

)2
h(r)2 + k(p−1) −

(r0
r

)p−2
, (8.32)

h(r) = 1 +
(r0
r

)p−2
k−1

(p−1) sinh2 β , (8.33)

eφ = h(r)

q

2
p−1 , (8.34)

A[1] = − cothβ
√

2k(p−1)

(

1 − h(r)−1
)

dt . (8.35)

27This would entail writing out explicitly the lower-dimensional equations of motion, and show that once

all charges but two are turned off, the N − 2 scalars are not sourced any longer and can also consistently

be turned off.
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In the planar limit k(p−1) = 0 and for the values p = 3, p = 4 and p = 6, the above coincides

with the double, equal charge AdS black holes of compactified supergravity theories on S7,

S5 and S4, [45], and for generic p with (8.22). The three exponentials present in the

potential can now be explained: one comes from the curvature of the reduced sphere, and

there is one surviving per plane with non-zero rotation. As we truncated all charges, i.e.

all angular momenta but two, this leaves two more scalar exponentials.

Furthermore, this means that the thermodynamic properties of these black holes shall

be related to those of the rotating black branes from which they descend. In [39], the

authors find that in the region of large δ (small δ), the spherical black holes are thermally

stable (unstable). This seems consistent with the previous remarks that in the former

(latter) region, the black holes have AdS-like (Minkowski-like) characteristics.28 Similar

results are presented in [40] for the topological case, and agree with the above and with

the results of [4] at low temperatures.

Finally, this also stresses that where dilaton black holes are concerned, charge may

originate from charge in the higher-dimensional theory, or from rotation or boosts.

9 Scaling in thermodynamics and transport

The scaling near-extremal solutions have simple power-like thermodynamic functions and

conductivity in the IR. This was analyzed in [4]. We will briefly review it here and we

will also produce the scaling of the AC conductivity for arbitrary frequencies in the near-

extremal regime. In all cases, this scaling is manifest in the higher-dimensional incarnation

when there is one.

The temperature and entropy of the solutions (3.11)–(3.13) scale as

T ∼ (r0)
wp

2(p−1)
− 1

2
(γ−δ)2 ∼ (r0)

u+(2p−3)v−2(p−1)
2(p−1) , (9.1)

S ∼ (r0)
1
2
(γ−δ)2 ∼ T

(p−1)(γ−δ)2

wp−(p−1)(γ−δ)2 ∼ T
(p−1)(u−v)

u+(2p−3)v−2(p−1) , (9.2)

E ∼ T
pu+(p−2)v−2(p−1))
u+(2p−3)v−2(p−1) , (9.3)

so that the near-extremal equation of state is

S ∼ E
pu+(p−2)v−2(p−1)

(p−1)(u−v) . (9.4)

9.1 DC conductivities

There are several regimes for the DC conductivity, depending on the nature of the charge

carriers. As discussed in [4] in the Maxwell case, the DC conductivity, which is the IR limit

of the AC conductivity, is ambiguous and further information is needed for its computa-

tion.29 An unambiguous computation involved the DBI approach [46] and provided the

28Taking into account that one should send δ → 2(p − 1)δ to recover the conventions of (3.1).
29In a theory with a quadratic Maxwell term, there is no relation between vev and source for constant

electric fields, necessary in order to calculate unambiguously the conductivity, [4]. This relation is imple-

mented in the probe DBI case, but requiring that the gauge field solution extends in the IR. It can be

verified that as we expand the DBI to obtain Maxwell, this source-vev relation disappears. The Maxwell

setup need extra information in order for the DC conductivity to be well-defined.
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two types of asymptotics: (a) The DC resistivity of massive charge carriers is dominated

by energy loss due to drag and scales as, [4],

ρ ∼ 〈J t〉−1 Tmp , (9.5)

mp ≡ 2k(p− 1)(δ − γ) + 2(δ − γ)2

2(p− 1)(1 − δ(δ − γ)) + (δ − γ)2
=

±2k(p− 1)
√
u− v + u− v

u+ (2p− 3)v − 2(p− 1)
, (9.6)

where 〈J t〉 is the charge density of carriers on the boudary.

(b) The DC resistivity for light charge carriers is dominated by pair production, is

independent of the charge density of carriers and scales as

ρ ∼ e(3−p)A(rh)

Z(φ(rh))
∼ Tnp (9.7)

with30

np =
(γ − δ)[(p+ 1)γ + (p− 3)δ]

2(p− 1) + (γ − δ)(γ + (2p− 3)δ)
=

(p+ 1)u+ (p− 3)v − 4(p− 1)

[u+ (2p− 3)v − 2(p− 1)]
. (9.8)

In the above, 0 ≤ k ≤
√

2/(p− 1) parametrises the dependence of the resistivity on

the frame. Since (see [4])

g(p+q+1)
µν = ekφg(p+1)

µν , (9.9)

this naturally allows us to find the higher-dimensional expressions for the resistivity by

setting k = −δ, and k belongs in the correct range for δ2 ≤ δ2c upliftings. Note that the

result for massive carriers depends on the frame, while it does not for massless ones. Then,

for Lifshitz metrics

mp+q+1 =
2(γ − δ)(γ + (p− 2)δ)

2(p− 1) + (γ − δ)(γ + (2p− 3)δ))
=

2

z
, np+q+1 =

p+ q + 1

z
. (9.10)

which is the expected value in the large mass limit, [51]. One can also compute the higher-

dimensional resistivities in the AdS2 × Rp+q−1 (γ = δ), AdSq+2 × Rp−1 (γ = −(p − 2)δ)

and boosted AdS cases:

γ = δ ⇒ mp+q+1 = 0 , np+q+1 = 0 , (9.11)

γ = −(p− 2)δ ⇒ mp+q+1 = 0 , np+q+1 = q , (9.12)

γ =

√

2p

p− 1
, δ =

√

2

p(p− 1)
⇒ mp+2 =

4

p+ 3
, np+2 = 1 . (9.13)

One should be careful that this last result hold in (p+2) dimensions. Notice that the z → ∞
and γ = δ coincide, which is correct since in that limit one recovers the AdS2 × Rp+q−1

metric from the Lifshitz one. However, the results for the case γ = −(p − 2)δ do not

necessarily coincide with that limit, since one would need to work out the uplifting of

solution (3.11)–(3.13) to a Lifshitz black (p− 1)-brane. In the limit z → 1, the AdSp+q+1

case is recovered.

30There is a sign typo in the numerator of (8.53) in [4].
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Let us also revisit what happens in the neutral case, for massless carriers. In that case,

our formula corresponds to microscopic fluctuations around the neutral solution and the

same formula (9.7) may be used, in conjunction with equation (3.7). One finds

ρ ∼ T
(p−1)γδ+(p−3)

p−1
2 δ2−1 . (9.14)

Note that one needs to make a choice for the scalar-gauge coupling function Z(φ) in the

action, since this will affect the perturbation. Even though we are working with a neutral

background, one needs to select a particular exponent γ, that is a particular uplifting to

p+ q + 1 (p+ 2 in the last case). The same values as previously now yield

γ = δ ⇒ ρ ∼ T−(p+q−3), (9.15)

γ = −(p− 2)δ ⇒ ρ ∼ T−(p−q−3), (9.16)

γδ =
2

p− 1
,

√

p− 1

2
δ =

√

1

p
⇒ ρ ∼ T−p (9.17)

The first result is valid for fluctuations of a U(1) Maxwell field around a neutral AdS(p+q+1)

background, and one may check that it indeed coincides in five dimensions, p+ q = 4, with

the linear scaling of the DC conductivity with temperature obtained in various works

using either correlator calculations [56], probe branes [46] or hydrodynamic gradient ex-

pansions [57, 58]. The third one, in the boosted case, coincides with the one obtained in [26]

by a hydrodynamic expansion. Note that in that case, the DC conductivity scales with

the temperature like the shear viscosity for the p+ 2-dimensional AdS black brane, which

may be expected since the lower-dimensional gauge field is uplifted to a higher-dimensional

metric element of the boundary of the black brane.

Finally, the drag force result for massive charge carriers in the neutral background,

which uplifts to AdSp+q+1, gives

ρ ∼ 〈J t〉−1 T
4+2(p−1)kδ

2−(p−1)δ2 = 〈J t〉−1 T
4−2(p−1)δ2

2−(p−1)δ2 = 〈J t〉−1 T 2 (9.18)

which recovers the classic result from [46] after replacing as prescribed k = −δ. It coincides

with the z → 1 limit in (9.10).

9.2 Scaling of the near-extremal AC conductivity

We recapitulate here the AC conductivity equation that was derived in [4]:

∂r

(

ZC
p−3
2

√

D

B
a′i

)

+ ZC
p−3
2

[

√

B

D
ω2 − Q2

√
DB

ZCp−1

]

ai = 0 . (9.19)

Restoring the IR scale ℓ, we substitute the near-extremal charged solution from sec-

tion 3.2 with

Q2 = e(γ−δ)φ0
4ℓ2Λv

u
, T =

ℓΛ e−δφ0

πu
(r0)

wp
2(p−1)

− 1
2
(γ−δ)2

, (9.20)

C = e2A =
(r

ℓ

)

(γ−δ)2

(p−1)
, D = fC = f0

(r

ℓ

)v+
(γ−δ)2

(p−1)
h(r) , B = 1/f =

(

ℓ
r

)v

f0h(r)
, (9.21)

Z = eγφ = eγφ0

(r

ℓ

)γ(δ−γ)
, (9.22)

f0 =
8(p− 1)ℓ2Λe−δφ0

uwp
, h(r) =

[

1 −
(

r

r0ℓ

)−
wp

2(p−1)
]

, (9.23)
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and define a new variable,

z =

(

πTu

ℓΛe−δφ0

)κ ℓ

r
, κ ≡ 2(p− 1)

wp − (p− 1)(γ − δ)2
. (9.24)

In terms of the new variable

h(z) = 1 − zc , c =
wp

2(p− 1)
, (9.25)

so that the horizon is at z = 1 while the boundary at z = 0.

Substituting in the equation (9.19), we obtain

z−a∂z (za h(z)∂zai(z)) +

[

zb W2

h(z)
+

vwp

2(p− 1)

1

z2

]

a(z) = 0 (9.26)

with

W =
wp

8π(p− 1)

ω

T
, a =

p(γ − δ)2

2(p− 1)
, b =

(γ − δ)(γ + (2p− 3)δ)

p− 1
. (9.27)

Therefore, the AC conductivity scales as

σAC

T
∼ f

(ω

T

)

. (9.28)

As ω → 0 we obtain, [4], σ ∼ ωn with

n =

∣

∣

∣

∣

6(1 − p) + (δ − γ)(pγ + (3p− 4)δ)

2(1 − p) + (δ − γ)(γ + (2p− 3)δ)

∣

∣

∣

∣

− 1 =
(p− 1)(u+ v)

u+ (2p− 3)v − 2(p− 1)
> 0 . (9.29)

In the various cases of interest in this paper, the exponent n reduces to simple expres-

sions

Lifshitz ⇒ n = 2 +
p+ q − 3

z
, (9.30)

γ = δ ⇒ n = 2 , (9.31)

γ = −(p− 2)δ ⇒ n = q + 2 , (9.32)

γ =

√

2p

p− 1
, δ =

√

2

p(p− 1)
⇒ n =

1 + 3p

3 + p
. (9.33)

Note added. As this work was being completed, [59] appeared which contains some

overlap with the solutions presented in section 6.
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A Notations and conventions

In the following, the most general, higher-dimensional theory we shall consider is (p+q+1)-

dimensional Einstein gravity plus a cosmological constant and an (n+2)-form field strength,

with n ≤ p+ q − 1:

S(p+q+1) =
1

16πGD

∫

dp+q+1x
√−g

[

R− 1

2(n+ 2)!
G2

[n+2] + 2Λ

]

. (A.1)

We also define the Planck mass in terms of Newton’s constant, Mp+q−1 = 1/16πGD.

We shall define Einstein spaces Kp−1, with metric dK2
(q) and volume element dKq, as

spaces where the Ricci tensor is proportional to the metric:31

R
(p−1)
ij = (p− 2)k(p−1)gij , i, j = 1 . . . p− 1 , (A.2)

as well as constant curvature spaces, for which the Riemann tensor itself is proportional to

the metric:32

R
(q)
ijkl = k(q) (gikgjl − gjkgil) . (A.3)

Both kind of spaces have constant Ricci scalar, which we have defined as

R(q) = q(q − 1)k(q) , (A.4)

where k(q) is the normalized curvature and is ±1, 0 for constant curvature spaces. These

can then be classified as the q-dimensional round sphere Sq, with metric dΩ2
(q) and volume

element dΩq, the q-dimensional plane (or torus) Rq, with metric dR2
(q) and volume element

dRq, and the q-dimensional hyperbolic place Hq, with metric dH2
(q) and volume element

dHq. In (p + q + 1 > 4)-dimensional Einstein gravity, the geometry of the horizon for

black hole solutions gets relaxed to generic Einstein spaces instead of constant curvature

spaces. In the following, for simplicity, we will mostly consider the latter, but it should

be understood that in many cases the metrics presented can be generalized to comprise

generic Einstein spaces on the horizon.

When needed, indices between parenthesis will indicate the dimensionality of spacetime

(so that for instance R(p−1) is the (p− 1)-dimensional Ricci scalar formed with the metric

gmn
(p−1)), while indices in brackets indicate the rank of the form considered (so that G[n+2]

is a field strength form of rank n+ 2).

B Truncations of supergravity theories to a single scalar field

In this appendix, we collect results from [45] and show how the various supergravity theories

in D = 10, 11 can be truncated to a single scalar and U(1) gauge field upon dimensional

reduction along a sphere.

31Therefore, they are solutions to Einstein’s vacuum equations with a cosmological constant. For zero

cosmological constant, such spaces will always be Ricci flat.
32So that the Weyl tensor vanishes.
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B.1 S5 reduction of type IIB supergravity

The S5 reduction of type IIB supergravity has an SO(6) Yang-Mills gauge group, which

can be truncated to an U(1)3 abelian sector. In addition to these three gauge fields, this

theory contains the metric and two scalar fields:

L5√−g = R−1

2
(∂ϕ1)

2−1

2
(∂ϕ2)

2+4g2
∑

i

X−1
i −1

4

∑

i

X−2
i

(

F i
(2)

)2
+

1

4
ǫµνρσλF 1

µνF
2
ρσA

3
λ . (B.1)

The Xi are defined in terms of the two scalars as

Xi = e−
−→a i·

−→
φ , X1X2X3 = 1 , (B.2)

with dilaton vectors

−→a 1 =

(

√

2

3
,
√

2

)

, −→a 2 =

(

√

2

3
,−

√
2

)

, −→a 3 =

(

−2

√

2

3
, 0

)

. (B.3)

Setting F 1
(2) =F

2
(2) =F(2)/

√
2 allows to consistently set ϕ2 =0, implying X1 =X2 =X

−1/2
3 :

L5√−g = R− 1

2
(∂ϕ1)

2 + 4g2

(

2e
ϕ1√

6 + e
− 4ϕ1√

6

)

− 1

4
e

2ϕ1√
6
(

F(2)

)2 − 1

4
e

2ϕ1√
6

(

F 3
(2)

)2
+

+
1

8
ǫµνρσλFµνFρσA

3
λ . (B.4)

If one considers purely electric or purely magnetic solutions of the equations of motion

deriving from the above Lagrangian, then the gauge field strength F 3
[2] may be set to zero:

L5√−g = R− 1

2
(∂φ)2 + 4g2

(

2e
φ
√

6 + e
− 4φ

√
6

)

− 1

4
e

2φ
√

6
(

F(2)

)2
. (B.5)

Then, this describes a two-exponential potential Einstein-Maxwell-Dilaton theory, which

admits an AdS5 black hole solution.

B.2 S7 reduction of D = 11 supergravity

The S7 reduction of D = 11 supergravity has an SO(8) Yang-Mills gauge group, which can

be truncated to an U(1)4 abelian sector. In addition to these four gauge fields, this theory

contains the metric, three scalar fields and three axions. The axions will be sourced by

Chern-Simons type terms made up of the various field strengths F i
(2). Though they cannot

generically be set to zero in a consistent manner, this can be done if one restricts to purely

electric or magnetic solutions, since then all the Chern-Simons type contributions in the

equations of motion will vanish. The four-dimensional lagrangian then takes the form

L4√−g = R− 1

2
(∂−→ϕ )2 + 8g2 (coshϕ1 + coshϕ2 + coshϕ3) −

1

4

4
∑

i=1

e
−→a i·

−→ϕ
(

F i
(2)

)2
, (B.6)

with dilaton vectors

−→a 1 = (1, 1, 1) , −→a 2 = (1,−1,−1) , −→a 3 = (−1, 1,−1) , −→a 4 = (−1,−1, 1) . (B.7)
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We can now look for a consistent truncation to a single scalar sector, by inspecting the

scalar equations of motion

�ϕj + 8g2 sinhϕj −
1

4

4
∑

i=1

aj
ie

−→a i·
−→ϕ
(

F i
(2)

)2
. (B.8)

It will only be possible to set, e.g. ϕ2 = ϕ3 = 0 if the Maxwell source term in the above

equations vanish. These respectively read for j = 2, 3

j=2 : eϕ1+ϕ2+ϕ3

(

F 1
(2)

)2
−eϕ1−ϕ2−ϕ3

(

F 2
(2)

)2
+e−ϕ1+ϕ2−ϕ3

(

F 3
(2)

)2
−e−ϕ1−ϕ2+ϕ3

(

F 4
(2)

)2
,

j=3 : eϕ1+ϕ2+ϕ3

(

F 1
(2)

)2
−eϕ1−ϕ2−ϕ3

(

F 2
(2)

)2
−e−ϕ1+ϕ2−ϕ3

(

F 3
(2)

)2
+e−ϕ1−ϕ2+ϕ3

(

F 4
(2)

)2
,

which upon truncating ϕ2, ϕ3 become

j = 2 : eϕ1

(

F 1
(2)

)2
− eϕ1

(

F 2
(2)

)2
+ e−ϕ1

(

F 3
(2)

)2
− e−ϕ1

(

F 4
(2)

)2
,

j = 3 : eϕ1

(

F 1
(2)

)2
− eϕ1

(

F 2
(2)

)2
− e−ϕ1

(

F 3
(2)

)2
+ e−ϕ1

(

F 4
(2)

)2
.

Setting further F 1
(2) = F 2

(2) = F(2)/
√

2 and F 3
(2) = F 4

(2) = F̃(2)/
√

2 cancels theses terms and

allows to have a consistent truncation to a single scalar φ. Its equation of motion now is

�φ+ 8g2 sinhφ− 1

4
eφ
(

F(2)

)2
+

1

4
e−φ

(

F̃(2)

)2
. (B.9)

One can then either set F(2) = F̃(2) and get the theory

L4√−g = R− 1

2
(∂φ)2 + 8g2 (coshφ+ 2) − 1

4

(

eφ + e−φ
)

(

F(2)

)2
, (B.10)

or set F̃(2) = 0 to reduce a single-exponential gauge coupling Einstein-Maxwell-Dilaton

theory:
L4√−g = R− 1

2
(∂φ)2 + 8g2 (coshφ+ 2) − 1

4
eφ
(

F(2)

)2
, (B.11)

which admits an AdS4 black hole solution.

B.3 S4 reduction of D = 11 supergravity

The S4 reduction of D = 11 supergravity reduces to a theory with SO(5) Yang-Mills gauge

group, which can be truncated to an Abelian U(1)2 sector. Provided we restrict ourselves

to purely electric or magnetic solutions, the axions of the theory can be set to zero, and

the only fields remaining are the metric, two scalars and the two gauge potentials. One can

further truncate to a single scalar sector by setting one of the scalar to zero and equating

the two gauge fields. The final theory is then:

L7√−g = R− 1

2
(∂φ)2 + g2

(

4e
−

q

2
5
φ

+ 4e
3

√
10

φ − 1

2
e

8
√

10
φ
)

− 1

4
e

q

2
5
φ (
F(2)

)2
, (B.12)

which admits an AdS7 black hole solution.
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C Rotating black branes

The action

Sp+q+1 =
1

16πGD

∫

dp+q+1x
√−g

[

R− 1

2(p+ 1)!
G2

[p+1]

]

(C.1)

has rotating black brane solutions, see for instance [45] and references therein, whose

worldvolume is supported by a non-trivial (p + 1)-field strength and whose static limit is

the solution (5.2)–(5.4) with a uniform charge along all worldvolume directions, n = p− 1.

For simplicity and to keep with our previous notations, we will only consider the case where

the sphere Sq in the transverse space is odd, q = 2N − 1. The solution goes as

ds2 = h(r)
− 2

p

[

−
(

1 − 2m

∆rq−1

)

dt2 + dR2
(p−1)

]

+ h(r)
2

q−1

[

dr2

H1 . . . HN − 2m
rq−1

+

+r2
N
∑

i=1

Hi

(

dµ2
i + µ2

i dψ
2
i

)

− 4m coshα

rq−1h∆
dt

N
∑

i=1

ℓiµ
2
i dψi +

2m

rq−1h∆

(

N
∑

i=1

ℓiµ
2
i dψi

)2


 ,

(C.2)

Hi = 1 +
ℓ2

r2
, ∆ = H1 . . . HN

N
∑

i=1

µ2
i

Hi
, h(r) = 1 +

2m sinh2 α

rq−1∆
, (C.3)

A[p] = cothα

(

1 − 1

h

)

dt ∧ dR(p−1) +

(

1 − 1

h

) ∑N
i=1 ℓiµ

2
i dψi

sinhα
∧ dR(p−1), (C.4)

where there are N angular momenta ℓi along the N independent planes of rotation of the

sphere, and the charge carried by the form is parametrized by the value of α, with α → 0

the neutral limit. The sphere is parametrized by 2N coordinates µi, ψi which are not

independent as
∑

µ2
i = 1. However, this set of coordinates allows to separate neatly the

N rotation planes.

One may take the decoupling limit, which zooms on the near-horizon region of the

extremal black hole: α → +∞, m → 0 while keeping g1−q = 2m sinh2 α fixed, where g is

the radius of the transverse sphere. The metric becomes, after the change of coordinates

gρ = p
q−1 (gr)

q−1
p

ds2 = ∆̃
q−1

p+q−1

[

− (H1 . . . HN )
− p−2

p−1 f(ρ)dt2 + (H1 . . . HN )
1

p−1

(

dρ2

f(ρ)
+ ρ2dR2

(p−1)

)]

+

+g−2∆̃
−p

p+q−1

N
∑

i=1

X−1
i

[

dµ2
i + (dψi + gAi)

2
]

, (C.5)

∆̃ =

∑N
i=1Xiµ

2
i

(Xi . . . XN )2
= ∆(H1 . . . HN )

− p+q−1
(p−1)(q−1) , Xi = (H1 . . . HN )

p
(p−1)(q−1) H−1

i , (C.6)

f(ρ) =
(q − 1)2

p
g2ρ2 (H1 . . . HN ) − µ

ρp−2
, Ai =

ℓidt

gr2 sinhα Hi
. (C.7)

Note that, if all rotations are turned off, the transverse sphere decouples from the internal

metric. As it happens, this is precisely the form needed to Kaluza-Klein reduce along the

sphere, with the dilaton vector being proportional to ∆̃, [45]. At some point along the way,
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in order to be able to reach the above decomposition of the metric in the decoupling limit,

we made use of the identity

2p = (q − 1)(p− 2) , (C.8)

which is a necessary condition for truncating the massive Kaluza-Klein modes while re-

taining the gauge bosons of the symmetry group of the sphere SO(q+1). This condition is

very restricitive, since it selects only the supergravity cases described in appendix B. It may

be relaxed a little by including a dilaton in the higher-dimensional theory (C.1). In sec-

tion 8.2, we shall keep the dimensions arbitrary, as we shall see that the lower-dimensional

reduction of (C.5)–(C.7) will be analytically continued to a family of solutions valid in

generic dimensions, with a single scalar and gauge field.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution Noncommercial License which permits any noncommercial use, distribution,

and reproduction in any medium, provided the original author(s) and source are credited.
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ten-dimensions and eleven-dimensions, Nucl. Phys. B 558 (1999) 96 [hep-th/9903214]

[INSPIRE].

[46] A. Karch and A. O’Bannon, Metallic AdS/CFT, JHEP 09 (2007) 024 [arXiv:0705.3870]

[INSPIRE].

[47] A. O’Bannon, Hall conductivity of flavor fields from AdS/CFT, Phys. Rev. D 76 (2007)

086007 [arXiv:0708.1994] [INSPIRE].

[48] B.-H. Lee, D.-W. Pang and C. Park, Strange metallic behavior in anisotropic background,

JHEP 07 (2010) 057 [arXiv:1006.1719] [INSPIRE].

[49] K. Goldstein, S. Kachru, S. Prakash and S.P. Trivedi, Holography of charged dilaton black

holes, JHEP 08 (2010) 078 [arXiv:0911.3586] [INSPIRE].

[50] K. Goldstein, N. Iizuka, S. Kachru, S. Prakash, S.P. Trivedi, et al., Holography of dyonic

dilaton black branes, JHEP 10 (2010) 027 [arXiv:1007.2490] [INSPIRE].

– 54 –

http://dx.doi.org/10.1103/PhysRevD.80.024028
http://arxiv.org/abs/0905.3337
http://inspirehep.net/search?p=find+EPRINT+arXiv:0905.3337
http://dx.doi.org/10.1016/0550-3213(95)00205-7
http://arxiv.org/abs/gr-qc/9502042
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B447,441
http://dx.doi.org/10.1103/PhysRevD.54.4891
http://dx.doi.org/10.1103/PhysRevD.54.4891
http://arxiv.org/abs/gr-qc/9609065
http://inspirehep.net/search?p=find+J+Phys.Rev.,D54,4891
http://dx.doi.org/10.1103/PhysRevD.57.6547
http://dx.doi.org/10.1103/PhysRevD.57.6547
http://arxiv.org/abs/gr-qc/9708063
http://inspirehep.net/search?p=find+J+Phys.Rev.,D57,6547
http://dx.doi.org/10.1103/PhysRevD.70.084042
http://arxiv.org/abs/hep-th/0406040
http://inspirehep.net/search?p=find+J+Phys.Rev.,D70,084042
http://dx.doi.org/10.1103/PhysRevD.70.124019
http://dx.doi.org/10.1103/PhysRevD.70.124019
http://arxiv.org/abs/hep-th/0411104
http://inspirehep.net/search?p=find+J+Phys.Rev.,D70,124019
http://dx.doi.org/10.1016/j.physletb.2004.11.030
http://arxiv.org/abs/hep-th/0411105
http://inspirehep.net/search?p=find+J+Phys.Lett.,B605,185
http://dx.doi.org/10.1103/PhysRevD.81.084040
http://arxiv.org/abs/0912.4199
http://inspirehep.net/search?p=find+EPRINT+arXiv:0912.4199
http://dx.doi.org/10.1140/epjc/s10052-010-1483-3
http://arxiv.org/abs/1002.0202
http://inspirehep.net/search?p=find+EPRINT+arXiv:1002.0202
http://dx.doi.org/10.1007/s10714-010-0929-0
http://dx.doi.org/10.1007/s10714-010-0929-0
http://arxiv.org/abs/0911.2831
http://inspirehep.net/search?p=find+EPRINT+arXiv:0911.2831
http://dx.doi.org/10.1103/PhysRevD.81.046001
http://arxiv.org/abs/0911.2898
http://inspirehep.net/search?p=find+EPRINT+arXiv:0911.2898
http://dx.doi.org/10.1007/JHEP03(2010)100
http://arxiv.org/abs/0912.3520
http://inspirehep.net/search?p=find+EPRINT+arXiv:0912.3520
http://dx.doi.org/10.1016/0370-2693(80)90590-0
http://dx.doi.org/10.1016/0370-2693(80)90590-0
http://inspirehep.net/search?p=find+J+Phys.Lett.,B97,233
http://dx.doi.org/10.1016/S0550-3213(99)00419-8
http://arxiv.org/abs/hep-th/9903214
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B558,96
http://dx.doi.org/10.1088/1126-6708/2007/09/024
http://arxiv.org/abs/0705.3870
http://inspirehep.net/search?p=find+EPRINT+arXiv:0705.3870
http://dx.doi.org/10.1103/PhysRevD.76.086007
http://dx.doi.org/10.1103/PhysRevD.76.086007
http://arxiv.org/abs/0708.1994
http://inspirehep.net/search?p=find+EPRINT+arXiv:0708.1994
http://dx.doi.org/10.1007/JHEP07(2010)057
http://arxiv.org/abs/1006.1719
http://inspirehep.net/search?p=find+EPRINT+arXiv:1006.1719
http://dx.doi.org/10.1007/JHEP08(2010)078
http://arxiv.org/abs/0911.3586
http://inspirehep.net/search?p=find+EPRINT+arXiv:0911.3586
http://dx.doi.org/10.1007/JHEP10(2010)027
http://arxiv.org/abs/1007.2490
http://inspirehep.net/search?p=find+EPRINT+arXiv:1007.2490


J
H
E
P
1
2
(
2
0
1
1
)
0
3
6

[51] S.A. Hartnoll, J. Polchinski, E. Silverstein and D. Tong, Towards strange metallic

holography, JHEP 04 (2010) 120 [arXiv:0912.1061] [INSPIRE].

[52] E. Perlmutter, Domain wall holography for finite temperature scaling solutions, JHEP 02

(2011) 013 [arXiv:1006.2124] [INSPIRE].

[53] S.A. Hartnoll and C.P. Herzog, Impure AdS/CFT correspondence, Phys. Rev. D 77 (2008)

106009 [arXiv:0801.1693] [INSPIRE].
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