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Abstract

In this article, the concepts of gH-subgradients and gH-subdifferentials of interval-valued functions
are illustrated. Several important characteristics of the gH-subdifferential of a convex interval-valued
function, e.g., closeness, boundedness, chain rule, etc. are studied. Alongside, we prove that gH-
subdifferential of a gH-differentiable convex interval-valued function only contains gH-gradient of
that interval-valued function. It is observed that the gH-directional derivative of a convex interval-
valued function in each direction is maximum of all the products of gH-subgradients and the direction.
Importantly, we show that a convex interval-valued function is gH-Lipschitz continuous if it has gH-
subgradients at each point in its domain. Furthermore, the relations between efficient solutions of an
optimization problem with interval-valued function and its gH-subgradients are derived.

Keywords: (R) Convex programming, gH-subgradient, gH-subdifferential, Interval optimization
problems
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1. Introduction

In the real-life decision-making process, we often face the optimization problem with nonsmooth func-
tions and in order to deal with the optimization problems with nonsmooth functions, the concepts of
subgradient and subdifferential inevitably arise. Due to inexact and imprecise natures of many real-
world occurrences the study of Interval-Valued Functions (IVFs) and Optimization problems with IVFs,
known as Interval Optimization Problems (IOP)s, become substantial topics to the researchers. In this
article, we illustrate the concepts of subgradient and subdifferential for IVFs, and study the several
important characteristics of subgradient and subdifferential of IVFs. We also study the optimality con-
ditions for nonsmooth IOPs. As intervals are the inextricable things in IVFs and IOPs, before making a
survey on IVFs and IOPs, we make a survey on the arithmetic and ordering of intervals.
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1.1. Literature Survey

In the literature of IVFs, to deal with compact intervals and IVFs, Moore [27] developed interval
arithmetic. There are a few limitations (see [16] for details) of Moore’s interval arithmetic; especially,
Moore’s interval arithmetic cannot provide the additive inverse of a nondegenerate interval. By a non-
degenerate interval, we mean an interval whose upper and lower limits are different. To overcome this
difficulty, Hukuhara [19] proposed a new rule for the difference of intervals, known as Hukuhara dif-
ference of intervals. Although the Hukuhara difference provides the additive inverse of any compact
interval, it is not applicable between all pairs of compact intervals (see [16] for details). For this rea-
son, the ‘nonstandard subtraction’, introduced by Markov [26], has been used and named as generalized
Hukuhara difference (gH-difference) by Stefanini [29]. The generalized Hukuhara difference is appli-
cable for all pairs of compact intervals and it also provides the additive inverse of any compact interval.

Unlike the real numbers, intervals are not linearly ordered. Isibuchi and Tanaka [20] suggested a few
partial ordering relations of intervals. In [5] some ordering relations based on the parametric represen-
tation of intervals are proposed. Also, an ordering relation of intervals is provided in [11] by a bijective
map from the set of intervals to R2. However, all the ordering relations of [5, 11] can be derived from
the ordering relations of [20]. The concept of variable ordering relation of intervals is introduced in [17].

Calculus is one of the most important tools in functional analysis. Therefore, as like the real-valued,
vector-valued functions, the development of the calculus for IVFs is much more essential to study the
characteristics of IVFs. In order to develop the calculus of IVFs, the concept of differentiability of IVFs
was initially introduced by Hukuhara [19] with the help of Hukuhara difference of intervals. However,
this definition of Hukuhara differentiability is restrictive [10]. Based on gH-difference, the concepts
of gH-derivative, gH-partial derivative, gH-gradient, and gH-differentiability for IVFs are provided
in [9, 12, 26, 30, 31]. Lupulescu studied the differentiability and the integrability for the IVFs on
time scales in [23] and developed the fractional calculus for IVFs in [24]. The concept of directional
gH-derivative for IVF is depicted in [3, 31]. Recently, Ghosh et al. [16] have introduced the idea of
gH-Gâteaux derivative, and gH-Fréchet derivative of IVFs.

Based on the existing ordering relations of intervals and calculus of IVFs many authors developed
the theories to characterize the solutions to IOPs. For instance, using the concept of Hukuhara differen-
tiability, Wu proposed Karush-Kuhn-Tucker (KKT) conditions for IOPs in [34]. In [35], Wu presented
the solution concepts of IOPs with the help of bi-objective optimization. Also, Wu presented some
duality conditions for IOPs in [36, 37]. Using the concept of gH-differentiability, Chalco-Cano et al.
[9] presented KKT conditions for IOPs. Ghosh et al. [15] developed generalized KKT conditions to
obtain the solution of the IOPs. Recently, Stefanini et al. [31] have depicted the optimality conditions
for IOPs using the concepts of directional gH-derivative and total gH-derivative of IVFs, and Ghosh et
al. have developed the optimality conditions for IOPs using the concepts of gH-Gâteaux derivative, and
gH-Fréchet derivative of IVFs.

The authors of [1, 2, 22, 32, 33] proposed various optimality and duality conditions for nonsmooth
IOPs converting them into real-valued multiobjective optimization. However, in this approach, one
needs the closed-form of boundary functions of the interval-valued objective and constrained functions
as readily available, which is practically difficult. Because even for a very simple IVF F, the closed
forms of the lower boundary function f and upper boundary function f are not easy to execute; for

instance, consider F(x1, x2) = [−1,6]�x1⊕[3,5]�x2
[−2,7]�x1⊕[−4,0]�x2 for all (x1, x2) ∈ R2. Apart from these, based on

parametric representations of the IVFs, some authors [5, 12, 14] studied IOPs and developed theories
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to obtain the solutions to IOPs by converting them into real-valued optimization problems. The authors
of [6] proposed some optimality conditions and duality results of a nonsmooth convex IOP using the
parametric representation of its interval-valued objective and constrained functions. However, the para-
metric process is also practically difficult. Because in the parametric process, the number of variables
increases with the number of intervals involved in the IVFs, and to verify any property of an IVF one has
to verify it for an infinite number of its corresponding real-valued function. For instance, see Definition
9 in [6].

1.2. Motivation and Contribution

From the literature of IVFs and IOPs, it is observed that the concepts of subgradient and subdif-
ferentials for IVFs are not properly introduced. However, the authors of [18] proposed the concepts
of subgradient and subdifferentials for n-cell convex fuzzy-valued functions (FVFs) and proved that
the subdifferentials of convex FVFs are convex. But they didn’t mention about other important prop-
erties of subgradient and subdifferentials of FVFs, such as closeness, boundedness, chain rule, etc. of
subdifferentials. As IVFs are the special case of FVFs, in this article, at first adopting the concept of
subgradient for convex FVFs of the article [18] we define subgradient of convex IVFs (namely gH-
subgradient). Thereafter, we illustrate the concept of subgradient for convex IVFs in terms of linear
IVFs. Subsequently, we define subdifferential of convex IVFs (namely gH-subdifferential) and study
its various properties. We prove that gH-subdifferentials of convex IVFs are closed, and bounded sets.
In order to prove these properties, the norm on the set of gH-continuous bounded linear IVFs is defined
and the idea of sequences with their convergence on the set of n-tuple of compact intervals is described.
Although the author of [25] provided the concept of subgradients for IVFs in terms of linear functions,
our concept is more general (please see Remark 6 of this article for details).

Along with the aforementioned properties of gH-subdifferentials, several important characteristics
of gH-subgradients are also studied in this article. Interestingly, it is observed that if a convex IVF has
gH-subgradients at each point in its domain, then the IVF is gH-Lipschitz continuous. It is reported that
the gH-directional derivative of a convex IVF is the maximum of the products of the gH-subgradients
and the concerning direction. The chain rule of a convex IVF and the gH-subgradient of the sum of
finite numbers of convex IVFs are illustrated. Also, some optimality conditions of nonsmooth convex
IOP without applying the parametric approach are explored in this article. Most importantly, it is to
mention that all the proposed definitions and the results of this article are applicable to general IVFs
regardless of whether or not

(i) the IVFs can be expressed parametrically, or

(ii) the explicit form of the lower and upper boundary functions of the IVFs can be found.

1.3. Delineation

The proposed work is organized as follows. The next section deals with some basic terminologies
and notions of intervals analysis followed by the convexity and calculus of IVFs. The concepts of gH-
subgradients and gH-subdifferentials of IVFs with their several important characteristics are illustrated
in Section 3. It is shown that the gH-subdifferential of a convex IVF is closed and bounded. It is
observed that a gH-differentiable convex IVF has only one gH-subgradient. It is also proved that the
gH-directional derivative of a convex interval-valued function in each direction is maximum of all the
products of gH-subgradients and the direction. Further in Section 3, it is shown that a convex IVF is
gH-Lipschitz continuous if it has gH-subgradients at each point in its domain. Apart from these, The
chain rule of a convex IVF and the gH-subgradient of the sum of finite numbers of convex IVFs are
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illustrated. The relations between efficient solutions of an IOP with gH-subgradients of its objective
function are derived in Section 4. Finally, the last section is concerned with a few future directions for
this study.

2. Preliminaries and Terminologies

This section is devoted to some basic terminologies and notions on intervals. Convexity and calculus of
IVFs are also described here. The ideas and notations that we describe in this section are used throughout
the paper.

2.1. Interval Arithmetic, Dominance Relation and Sequence of Intervals

Let R be the set of real numbers, R+ be the set of all nonnegative real numbers, and I(R) be the
set of all compact intervals. We denote the elements of I(R) by bold capital letters A,B,C, · · · . We
represent an element A of I(R) with the help of corresponding small letter in the following way

A = [a, a].

Similarly, B = [b, b], C = [c, c], and so on. It is to note that any singleton set {p} of R can be repre-
sented by the interval [p, p] with p = p = p. In particular, 0 = {0} = [0, 0].

In this article, along with the Moore’s interval addition (⊕), substraction (	), multiplication (�),
and division (�) [27, 28]:

A⊕ B =
[
a+ b, a+ b

]
, A	 B =

[
a− b, a− b

]
,

A� B =
[
min

{
ab, ab, ab, ab

}
,max

{
ab, ab, ab, ab

}]
,

A� B =
[
min

{
a/b, a/b, a/b, a/b

}
,max

{
a/b, a/b, a/b, a/b

}]
, provided 0 6∈ B,

we use gH-difference (	gH ) of intervals because A 	 A 6= 0 for a nondegenerate interval A. The
gH-difference [26, 29] of the interval B from the interval A is defined by the interval C such that

A = B⊕ C or B = A	 C.

It is to be noted that for A = [a, a] and B =
[
b, b
]
,

A	gH B =
[
min{a− b, a− b},max{a− b, a− b}

]
and A	gH A = 0.

Remark 1. It is easy to check that the addition of intervals are commutative and associative, and

A	 B = A⊕ (−1)� B.

The algebraic operations on the product space I(R)n = I(R) × I(R) × · · · × I(R) (n times) are
defined as follows.

Definition 2.1. (Algebraic operations on I(R)n). Let Â = (A1,A2, · · · ,An) and B̂ = (B1,B2,
· · · ,Bn) be two elements of I(R)n. An algebraic operation ? between Â and B̂, denoted by Â ? B̂,
is defined by

Â ? B̂ = (A1 ? B1,A2 ? B2, · · · ,An ? Bn) ,

where ? ∈ {⊕, 	, 	gH}.
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The authors of [20] defined the ordering relations of intervals of the following types ‘≤LR’, ‘≤CW ’,
and ‘≤LC’. In this article, we only use ‘≤LR’ ordering relation and simply denote by ‘�’. Also, it is
to mention that in view of the ordering relation ‘�’, we define the dominance relations of intervals as
follows.

Definition 2.2. (Dominance relations on intervals). Let A and B be two intervals in I(R).

(i) B is said to be dominated by A if a ≤ b and a ≤ b, and then we write A � B;

(ii) B is said to be strictly dominated by A if either a ≤ b and a < b or a < b and a ≤ b, and then we
write A ≺ B;

(iii) if B is not dominated by A, then we write A � B; if B is not strictly dominated by A, then we
write A ⊀ B;

(iv) if A � B and B � A, then we say that none of A and B dominates the other, or A and B are not
comparable.

Now we illustrate the concept of sequence in I(R)n and study its convergence. To do so, we need
the concepts of norm on I(R) as well as on I(R)n.

Definition 2.3. (Norm on I(R) [27]). For an A = [a, ā] in I(R), the function ‖·‖I(R) : I(R) → R+,
defined by

‖A‖I(R) = max{|a|, |ā|},

is a norm on I(R).

Definition 2.4. (Norm on I(R)n). For an Â = (A1,A2, · · · ,An) ∈ I(R)n, the function ‖·‖I(R)n :
I(R)→ R+, defined by

‖Â‖I(R)n =

√√√√ n∑
i=1

‖Ai‖2I(R),

is a norm on I(R)n. To prove that the function ‖·‖I(R)n satisfies all the properties of a norm please see
Appendix A.

In the rest of the article, we use the symbols ‘‖·‖I(R)’ and ‘‖·‖I(R)n’ to denote the norms on I(R)
and I(R)n, respectively, but we simply use the symbol ‘‖·‖’ to denote the usual Euclidean norm on Rn.

Definition 2.5. (Sequence in I(R)n). A function Ĝ : N→ I(R)n is called sequence in I(R)n.

Definition 2.6. (Bounded sequence in I(R)n). A sequence
{

Ĝk

}
in I(R)n is said to be bounded from

below (above) if there exists an Â ∈ I(R)n (a B̂ ∈ I(R)n) such that

Â � Ĝk for all n ∈ N (Ĝk � B̂ for all n ∈ N),

where for any two elements Ĉ = (C1,C2, · · · ,Cn) and D̂ = (D1,D2, · · · ,Dn) in I(R)n,

Ĉ � D̂⇐⇒ Ci � Di for all i = 1, 2, · · · , n.

A sequence
{

Ĝk

}
that is both bounded below and above is called a bounded sequence.
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Definition 2.7. (Convergence in I(R)n). A sequence
{

Ĝk

}
in I(R)n is said to be convergent if there

exists a Ĝ ∈ I(R)n such that

‖Ĝk 	gH Ĝ‖I(R)n → 0 as k →∞.

Remark 2. It is noteworthy that if a sequence
{

Ĝk

}
in I(R)n, where Ĝk = (Gk1,Gk2, · · · , Gkn),

converges to Ĝ = (G1,G2, · · · ,Gn) ∈ I(R)n, then according to Definition 2.1 and Definition 2.4,
corresponding each sequence {Gki} in I(R) converges to Gi ∈ I(R) for all i = 1, 2, · · · , n. Also, due
to Definition 2.3, the sequences

{
gki
}

and {gki} in R converge to gi and gi, respectively, for all i.

2.2. Convexity and Calculus of IVFs

A function F from a nonempty subset X of Rn to I(R) is known as an IVF (interval-valued func-
tion). For each argument point x ∈ X , the value of F is presented by

F(x) =
[
f(x), f(x)

]
,

where f(x) and f(x) are real valued functions on X such that f(x) ≤ f(x) for all x ∈ X .

In [34], Wu introduced two types of convexity for IVF, i.e., ‘LU-convexity’ and ‘UC-convexity’.
However, in this article, we only use LU-convexity for IVF and we read an LU-convex IVF as simply a
convex IVF, which is defined follows.

Definition 2.8. (Convex IVF [34]). Let X ⊆ Rn be a convex set. An IVF F : X → I(R) is said to be a
convex IVF if for any two vectors x1 and x2 in X ,

F(λ1x1 + λ2x2) � λ1 � F(x1)⊕ λ2 � F(x2)

for all λ1, λ2 ∈ [0, 1] with λ1 + λ2 = 1.

It is notable that in Definition 2.8, we have used the notation ‘�’ instead of ‘�LC’. Because the
ordering relation ‘�LC’ provided in [34] is same as the ordering relation ‘�’.

Lemma 2.1. (See [34]). F is convex if and only if f and f are convex.

Definition 2.9. (gH-continuity [12, 26]). Let F be an IVF on a nonempty subset X of Rn. Let x̄ be an
interior point of X and d ∈ Rn be such that x̄ + d ∈ X . The function F is said to be a gH-continuous
at x̄ if

lim
‖d‖→0

(F(x̄+ d)	gH F(x̄)) = 0.

Lemma 2.2. An IVF F on a nonempty subset X of Rn is gH-continuous if and only if f and f are
continuous.

Proof. Please see Appendix B.

Theorem 2.1. If an IVF F on a nonempty open convex subset X of Rn is convex, then F is gH-
continuous on X .

Proof. Please see Appendix C.

6



Definition 2.10. (gH-Lipschitz continuous IVF [16]). Let X ⊆ Rn. An IVF F : X → I(R) is said to
be gH-Lipschitz continuous on X if there exists L > 0 such that

‖F(x)	gH F(y)‖I(R) ≤ L‖x− y‖ for all x, y ∈ X .

The constant L is called a Lipschitz constant.

Definition 2.11. (gH-derivative [26, 30]). Let X ⊆ R. The gH-derivative of an IVF F : X → I(R) at
x̄ ∈ X is defined by

F′(x̄) = lim
d→0

F(x̄+ d)	gH F(x̄)

d
, provided the limit exists.

Remark 3. (See [8, 26]). LetX be a nonempty subset ofR. The gH-derivative of an IVF F : X → I(R)
at x̄ ∈ X exists if the derivatives of f and f at x̄ exist and

F′(x̄) =
[
min

{
f ′(x̄), f

′
(x̄)
}
,max

{
f ′(x̄), f

′
(x̄)
}]

.

However, the converse is not true.

Definition 2.12. (Partial gH-derivative [9, 12]). Let F : X → I(R) be an IVF, where X is a nonempty
subset of Rn. We define a function Gi by

Gi(xi) = F(x̄1, x̄2, · · · , x̄i−1, xi, x̄i+1, · · · , x̄n),

where x̄ = (x̄1, x̄2, · · · , x̄n)T ∈ X . If the gH-derivative of Gi exists at x̄i, then the i-th partial
gH-derivative of F at x̄, denoted DiF(x̄), is defined by

DiF(x̄) = G′i(x̄i) for all i = 1, 2, · · · , n.

Definition 2.13. (gH-gradient [9, 12]). Let X be a nonempty subset of Rn. The gH-gradient of an IVF
F : X → I(R) at a point x̄ ∈ X , denoted ∇F(x̄), is defined by

∇F(x̄) = (D1F(x̄), D2F(x̄), · · · , DnF(x̄))T .

Definition 2.14. (Directional gH-derivative [3, 31]). Let F be an IVF on a nonempty subset X of Rn.
Let x̄ ∈ X and h ∈ Rn such that x̄+ λh ∈ X for any small λ. If the limit

lim
λ→0+

1

λ
� (F(x̄+ λh)	gH F(x̄))

exists, then the limit is said to be directional gH-derivative of F at x̄ in the direction h, and it is denoted
by F′(x̄)(h).

Definition 2.15. (Linear IVF [16]). Let Y be a linear subspace of Rn. The function L : Y → I(R) is
said to be linear if

(i) L(λx) = λ� L(x) for all x ∈ X and for all λ ∈ R,

(ii) for all x, y ∈ Y , either
L(x)⊕ L(y) = L(x+ y)

or none of L(x)⊕ L(y) and L(x+ y) dominates the other.
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Remark 4. (See [16]). The IVF L : Rn → I(R) that is defined by

L(x) = dT � Â =
n⊕
i=1

xi � Ai =
n⊕
i=1

xi � [ai, ai]

is a linear IVF, where ‘
⊕n

i=1’ denotes successive addition of n number of intervals.

We denote the set of all gH-continuous linear IVF on a linear space Y ⊂ Rn as Ŷ .

Definition 2.16. (Bounded linear interval-valued operator [16]). Let Y be a real normed space. A
linear IVF L : Y → I(R) is said to be a bounded linear operator if there exists K > 0 such that

‖L(x)‖I(R) ≤ K‖x‖X for all x ∈ Y.

Lemma 2.3. (See [16]). Let Y be a real normed. If a linear IVF L : Y → I(R) is gH-continuous at the
zero vector of Y , then it is a bounded linear operator.

The authors of [31] provided the definition of gH-differentiability for IVFs using the midpoint-

radius representation
[
f+f

2 ,
f−f

2

]
of an IVF F. However, as our main intention in this article is to illus-

trate all the things regarding IVF whether its lower boundary function f and upper boundary function f
are readily available or not, we consider the Proposition 7 of [31] as the definition of gH-differentiability
for IVFs, which is as follows.

Definition 2.17. (gH-differentiability). Let X be a nonempty subset of Rn. An IVF F : X → I(R) is
said to be gH-differentiable at a point x̄ ∈ X if there exists an IVF Lx̄(d) = dT � Â, where d ∈ Rn
and Â ∈ I(R)n, an IVF E(F(x̄); d) and a δ > 0 such that

(F(x̄+ d)	gH F(x̄)) = Lx̄(d)⊕ ‖d‖ � E(F(x̄); d) for all d with ‖d‖ < δ,

where E(F(x̄); d)→ 0 as ‖d‖ → 0.

Theorem 2.2. (See [31]). Let an IVF F on a nonempty subset X of Rn be gH-differentiable at x̄ ∈ X .
Then, for each d = (d1, d2, · · · , dn)T ∈ Rn, the gH-gradient of F at x̄ exists and the IVF Lx̄ in
Definition 2.17 can be expressed by

Lx̄(d) = dT �∇F(x̄) =
n⊕
i=1

di �DiF(x̄). (1)

Theorem 2.3. (See [31]). Let an IVF F on a nonempty subset X of Rn be gH-differentiable at x̄ ∈ X .
Then, F has directional gH-derivative at x̄ for every direction d ∈ Rn and

F′(x̄)(d) = dT �∇F(x̄) =

n⊕
i=1

di �DiF(x̄) for all d ∈ Rn.

Theorem 2.4. Let an IVF F on a nonempty open convex subset X of Rn be gH-differentiable at x ∈ X .
If the function F is convex on X , then

(y − x)T �∇F(x) � F(y)	gH F(x) for all x, y ∈ X .

Proof. Please see Appendix D.
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3. Subdifferentiability of IVFs

Here we describe the concepts gH-subgradient and gH-subdifferential for convex IVFs and study their
characteristics. In order to do this, we adopt the concept of subgradient for convex FVFs provided in
[18].

Definition 3.1. (gH-subgradient). Let X be a nonempty convex subset of Rn. An element Ĝ =
(G1,G2, · · · ,Gn) ∈ I(R)n is said to be a gH-subgradient of a convex IVF F : X → I(R) at x̄ ∈ X if

(x− x̄)T � Ĝ � F(x)	gH F(x̄) for all x ∈ X . (2)

Due to Remark 4, we can also define the gH-subgradient as gH-continuous linear IVF.
A gH-continuous linear IVF Lx̄ : Y → I(R) is said to be gH-subgradient of F at x̄ ∈ X if

Lx̄(x− x̄) � F(x)	gH F(x̄) for all x ∈ X , (3)

where Y is the smallest linear subspace of Rn containing X .

Definition 3.2. (gH-subdifferential). The set ∂F(x̄) of all gH-subgradients of the convex IVF F : X ⊂
Rn → I(R) at x̄ ∈ X , where X is convex, is called gH-subdifferential of F at x̄.

Throughout this article, we express an element of ∂F(x̄) either as as an element of I(R)n satisfying
(2) or as an element of Ŷ satisfying (3).

Remark 5. In view of Theorem 2.4, it is to be noted that if F is gH-differentiable at x̄ ∈ X , then
∇F(x̄) ∈ ∂F(x̄).

Example 3.1. Let X be a nonempty convex subset of R and an IVF F : X → I(R) be defined by
F(x) =|x| � A, where 0 � A. If G ∈ I(R) is a gH-subgradient of F at x̄ = 0, then according to
Definition 3.1, we have

(x− x̄)�G � F(x)	gH F(x̄) =⇒ G� x � A�|x|.

Therefore, for x ≤ 0, we have

G� x � (−1)� A� x =⇒ (−1)� A � G (4)

and for x ≥ 0, we have
G� x � A� x =⇒ G � A. (5)

With the help of (4) and (5), we obtain

(−1)� A � G � A.

Hence, ∂F(0) = {G : (−1)� A � G � A}.

Considering A = [1, 3], the IVF F is depicted in Figure 1 by the shaded region within dashed lines,
and two possible subgradients G1, G2 ∈ ∂F(0) of F are illustrated by black and dark gray regions,
respectively.
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Figure 1: The IVF F of Example 3.1 is depicted by the shaded region within dashed lines, and two possible subgradients G1

and G2 of F are illustrated by black and dark gray regions, respectively.

Remark 6. It is noteworthy that

(i) the author of [25] in Definition 2 has proposed the concept of subgradient for IVFs by considering
L as linear real valued function. However, in Definition 3.1 of the present article, we consider Lx̄
as linear IVF. That’s why our concept of subgradient in terms of linear function is more general.

(ii) as IVFs are the special case of FVFs, one may think that we can adopt the concept of subgradi-
ent for FVFs of the article [38] as the concept of subgradient for IVFs. However, according to
Definition 3.1 of [38], if we define the gH-subgradient Ĝ satisfying the condition

(x− x̄)T � Ĝ⊕ F(x̄) � F(x) (6)

instead of satisfying the condition (2) in Definition 3.1, then Definition 3.1 will be quite restrictive
even for a gH-differentiable IVF. For instance, consider the following example.

Example 3.2. Let an IVF F : [0, 2.5]→ I(R) be defined by

F(x) = [1, 1]� x4 ⊕ [0, 1]� (x2 − x4 + 34)⊕ [1, 6]

= [x4 + 1, x2 + 40]

= [f(x), f(x)]

Clearly, the real-valued functions f and f are differentiable at x̄ = 1. Hence, the gH-derivative F′(x̄)
of F at x̄ = 1 exists due to Remark 3, and

∇F(1) = F′(1) = [2, 4].

Since
∇F(1)� (2− 1) = [2, 4] � [3, 15] = F(2)	gH F(1)

but
∇F(1)� (2− 1)⊕ F(1) = [4, 45] � [17, 44] = F(2)

therefore,∇F(1) ∈ ∂F(1) with respect to condition (2) not respect to condition (6).

Now we provide an example of gH-subdifferential as a collection of gH-continuous linear IVF
through Theorem 3.1. To do so, we introduce the concept of norm on the set Ŷ of all gH-continuous
linear IVFs on a linear subspace Y of Rn.
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Definition 3.3. (Norm on Ŷ). A norm on the set Ŷ of all gH-continuous linear IVF L : Y → I(R) is
defined by the function ‖·‖Ŷ : Ŷ → R+ such that

‖L‖Ŷ = sup
x 6=0

‖L(x)‖I(R)

‖x‖
, where x ∈ Y.

To prove that the function ‖·‖Ŷ satisfies all the properties of a norm please see Appendix E.

Lemma 3.1. Let Y be a linear subspace of Rn, and L ∈ Ŷ be such that

L(x) � C� ‖x‖ for all x ∈ Y,

where C is a closed and bounded interval. Then,

‖L(x)‖I(R) ≤ ‖C‖I(R)‖x‖ for all x ∈ Y.

Proof. Please see Appendix F.

Theorem 3.1. Let Y be a linear subspace of Rn and F : Y → I(R) be a convex IVF, defined by

F(x) = C� ‖x‖ for all x ∈ Y,

where C ∈ I(R+). Then,
∂F(0) =

{
L0 ∈ Ŷ | ‖L0‖Ŷ ≤ ‖C‖I(R)

}
.

Proof. Let L0 ∈ ∂F(0). Therefore, for all nonzero x ∈ Y ,

L0(x− 0) � F(x)	gH F(0)

=⇒ L0(x) � C� ‖x‖
=⇒ ‖L0(x)‖I(R) ≤ ‖C‖I(R)‖x‖, by Lemma 3.1

=⇒
‖L0(x)‖I(R)

‖x‖
≤ ‖C‖I(R)

=⇒ sup
x 6=0

‖L0(x)‖I(R)

‖x‖
≤ ‖C‖I(R)

=⇒ ‖L0‖Ŷ ≤ ‖C‖I(R).

Hence,
∂F(0) =

{
L0 ∈ Ŷ | ‖L0‖Ŷ ≤ ‖C‖I(R)

}
.

Next, we show that a gH-differentiable convex IVF has only one gH-subgradient, which is gH-
gradient of the IVF. Also, we show that on a real linear subspace if the gH-subgradients of a convex
IVF at a point exists, then the gH-directional derivative of the IVF at that point in each direction is
maximum of all the products of gH-subgradients and the direction.

Lemma 3.2. Let X be a nonempty convex subset of Rn and F be a convex IVF on X . Then, for an
arbitrary x̄ ∈ Rn

∂F(x̄) =
{

Ĝ ∈ I(R)n | hT � Ĝ � F′(x̄)(h) for all h ∈ X
}
,
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where F′(x̄)(h) is gH-directional derivative of F at x̄ in the direction h.

Proof. For an arbitrary Ĝ ∈ ∂F(x̄), we have

(x− x̄)T � Ĝ � F(x)	gH F(x̄) for all x ∈ X .

Replacing x by x̄+ λh, where λ > 0, we get

(λh)T � Ĝ � F(x̄+ λh)	gH F(x̄),

which implies

hT � Ĝ � lim
λ→0+

1

λ
� (F(x̄+ λh)	gH F(x̄))

=⇒ hT � Ĝ � F′(x̄)(h).

Theorem 3.2. Let X be a nonempty subset of Rn. If an IVF F : X → I(R) is gH-differentiable at
x̄ ∈ X , then

∂F(x̄) = {∇F(x̄)} .

Proof. Let G ∈ ∂F(x̄). Since F is gH-differentiable at x̄, in view of Theorem 2.3 and Lemma 3.2, we
have

hT � Ĝ � hT �∇F(x̄) for all h ∈ Rn. (7)

Replacing h by −h in the last relation we get

(−h)T � Ĝ � (−h)T �∇F(x̄),

which implies
hT �∇F(x̄) � hT � Ĝ for all h ∈ Rn. (8)

Thus, the relations (7) and (8) together yield

hT �∇F(x̄) = hT � Ĝ for all h ∈ Rn. (9)

For each i ∈ {1, 2, · · · , n}, by choosing h = ei, we have

DiF(x̄) = Gi.

Therefore,
∇F(x̄) = Ĝ

and hence,
∂F(x̄) = {∇F(x̄)} .

Theorem 3.3. Let F : Y → I(R) be a convex and gH-continuous IVF on a real linear subspace Y of
Rn. If gH-subdifferential ∂F(x̄) of F at an x̄ ∈ Y is nonempty, then

F′(x̄)(h) = max
{
hT � Ĝ | Ĝ ∈ ∂F(x̄)

}
for all h ∈ Y,
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where F′(x̄)(h) is gH-directional derivative of F at x̄ in the direction h.

Proof. Let gH-subdifferential ∂F(x̄) of F at x̄ ∈ Y is nonempty. Since F is convex on Y , the gH-
directional derivative of F at x̄ in every direction h ∈ Y exists due to Theorem 3.1 in [16]. By Lemma
3.1 in [16], we have

1

λ
� F(x̄+ λh)	gH F(x̄) � F(x̄+ h)	gH F(x̄), where λ > 0

=⇒ F′(x̄)(h) � F(x̄+ h)	gH F(x̄)

for all h ∈ Y . Hence, in view of Lemma 3.2, we obtain

F′(x̄)(h) = max
{

Ĝ
T
� h | Ĝ ∈ ∂F(x̄)

}
for all h ∈ Y.

Next, we show that gH-subdifferentials of a convex IVF are bounded and closed. To do so, we
define a mappingW : I(R)n → Rn by

W(Â) =W(A1,A2, · · · ,An) = (wa1 + w′a1, wa2 + w′a2, · · · , wan + w′an)T , (10)

where w, w′ ∈ [0, 1] with w + w′ = 1.

Lemma 3.3. For any Â ∈ I(R)n and d ∈ Rn,

dT � Â � [c, c] =⇒ dTW
(

Â
)
≤ 2c,

where the mapW is defined by (10).

Proof. Please see Appendix G.

Lemma 3.4. For any Â ∈ I(R)n,

‖W
(

Â
)
‖ is finite =⇒ ‖Â‖I(R)n is finite,

where the mapW is defined by (10).

Proof. Please see Appendix H.

Theorem 3.4. Let X be a compact convex subset of Rn and F : X → R be a convex IVF. Then, the set⋃
x∈X

∂F(x) is bounded.

Proof. We claim that the set
⋃
x∈X

∂F(x) is bounded. On contrary, there exists a sequence {xk} on X

and an unbounded sequence {Ĝk}, where Ĝk ∈ ∂F(xk), such that

0 < ‖Ĝk‖ < ‖Ĝk+1‖, k ∈ N.

Let us take dk =
W(Ĝk)
‖W(Ĝk)‖

, where the mappingW is defined by (10). By Definition 3.1 we have

dTk � Ĝk � F(xk + dk)	gH F(xk) = max
{
f(xk + dk)− f(xk), f(xk + dk)− f(xk)

}
13



=⇒ dTk � Ĝk � [c, c], where max
{
f(x)

∣∣x ∈ X} ≤ c
=⇒ dTkW

(
Ĝk

)
≤ 2c, by Lemma 3.3

=⇒ ‖W
(

Ĝk

)
‖ ≤ 2c.

Since F is convex on Rn, in view of Theorem 2.1 and Lemma 2.2, f and f are continuous on Rn. As
{xk} and {dk} are bounded and the real-valued functions f and f are continuous, by the property of

real-valued function, c is finite. Thus, ‖W
(

Ĝk

)
‖ is finite and hence, due to Lemma 3.4, ‖Ĝk‖I(Rn) is

finite. Therefore, the sequence {Ĝk} is bounded, which is a contradiction. Hence, the set
⋃
x∈X

∂F(x) is

bounded.

Theorem 3.5. Let X be a nonempty convex subset of Rn and F be a convex IVF on X . Then, for every
x̄ ∈ X , ∂F(x̄) is closed.

Proof. Let
{

Ĝk

}
be an arbitrary sequence in ∂F(x) which converges to Ĝ ∈ I(R)n, where Ĝk =

(Gk1,Gk2, · · · ,Gkn) and Ĝ = (G1,G2, · · · ,Gn).

Since, Ĝk ∈ ∂F(x̄), for all d ∈ X we have

dT � Ĝk � F(x̄+ d)	gH F(x̄),

i.e.,
n⊕
i=1

di �Gki � F(x̄+ d)	gH F(x̄). (11)

Due to Remark 1, without loss of generality, let the first p components of d be nonnegative and the rest
n− p components be negative. Therefore, from (11), we get

p⊕
i=1

di �Gki ⊕
n⊕

j=p+1

dj �Gkj � F(x̄+ d)	gH F(x̄)

=⇒
p⊕
i=1

[
gkidi, gkidi

]
⊕

n⊕
j=p+1

[
gkjdj , gkjdj

]
� F(x̄+ d)	gH F(x̄)

=⇒

 p∑
i=1

gkidi +
n∑

j=p+1

gkjdj ,

p∑
i=1

gkidi +
n∑

j=p+1

gkjdj

 � F(x̄+ d)	gH F(x̄).

Therefore, we get

p∑
i=1

gkidi +
n∑

j=p+1

gkjdj ≤ min
{
f(x̄+ h)− f(x̄), f(x̄+ h)− f(x̄)

}
(12)

p∑
i=1

gkidi +

n∑
j=p+1

gkjdj ≤ max
{
f(x̄+ h)− f(x̄), f(x̄+ h)− f(x̄)

}
(13)

Since the sequence
{

Ĝk

}
converges to Ĝ, in view of Remark 2, the sequences

{
gki
}

and {gki} converge

14



to gi and gi, respectively, for all i. Thus, by (12) and (13), we have

 p∑
i=1

gkidi +

n∑
j=p+1

gkjdj

→
 p∑
i=1

gidi +

n∑
j=p+1

gjdj

 ≤ min
{
f(x̄+ h)− f(x̄),

f(x̄+ h)− f(x̄)
}

and

 p∑
i=1

gkidi +
n∑

j=p+1

gkjdj

→
 p∑
i=1

gidi +
n∑

j=p+1

gjdj

 ≤ max
{
f(x̄+ h)− f(x̄),

f(x̄+ h)− f(x̄)
}
.

Hence,  p∑
i=1

gidi +
n∑

j=p+1

gjdj ,

p∑
i=1

gidi +
n∑

j=p+1

gjdj

 � F(x̄+ d)	gH F(x̄)

=⇒
p⊕
i=1

[
gidi, gidi

]
⊕

n⊕
j=p+1

[
gjdj , gjdj

]
� F(x̄+ d)	gH F(x̄)

=⇒
p⊕
i=1

di �Gi ⊕
n⊕

j=p+1

dj �Gj � F(x̄+ d)	gH F(x̄)

=⇒ dT � Ĝ � F(x̄+ d)	gH F(x̄)

for all d ∈ X . Therefore, Ĝ ∈ ∂F(x̄) and hence, ∂F(x̄) is closed.

In the following theorem, we prove that if a convex IVF has gH-subgradients in all over its domain,
then the IVF is gH-Lipschitz continuous on its domain.

Lemma 3.5. For any x ∈ Rn and Â = (A1,A2, · · · ,An) ∈ I(R)n,

xT � Â � ‖x‖ �
[
‖Â‖I(R)n , ‖Â‖I(R)n

]
.

Proof. Please see Appendix I.

Lemma 3.6. Let X be a nonempty subset of Rn and F be an IVF on X such that

F(x)	gH F(y) � C� ‖x− y‖ for all x, y ∈ X ,

where C = [c, c] = [c, c]. Then,

‖F(x)	gH F(y)‖I(R) ≤ c‖x− y‖ for all x, y ∈ X .

Proof. Please see Appendix J.
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Theorem 3.6. Let X be a nonempty compact convex subset of Rn and F be a convex IVF on X such
that F has gH-subgradient at every x ∈ X . Then, F is gH-Lipschitz continuous on X .

Proof. Since F has gH-subgradient at every x ∈ X , there exists a Ĝ ∈ I(R)n such that

(y − x)T � Ĝ � F(y)	gH F(x)

=⇒ (−1)�
(

(x− y)T � Ĝ
)
� F(y)	gH F(x)

=⇒ F(x)	gH F(y) � (x− y)T � Ĝ

=⇒ F(x)	gH F(y) � ‖x− y‖ �
[
‖Ĝ‖I(R)n , ‖Ĝ‖I(R)n

]
, by Lemma 3.5

=⇒ ‖F(x)	gH F(y)‖I(R) ≤ ‖Ĝ‖I(R)n‖x− y‖, by Lemma 3.6.

Considering L = sup
Ĝ∈

⋃
x∈X

∂F(x)

‖Ĝ‖I(R)n , we have

‖F(x)	gH F(y)‖I(R) ≤ L‖x− y‖ for all x, y ∈ X .

Hence, F is gH-Lipschitz continuous on X .

Now we show another two important characteristics of gH-subdifferential of a convex IVF.

Theorem 3.7. (Chain rule). Let X be a nonempty convex subset of Rn and an IVF F be defined by

F(x) = H(Ax) for all x ∈ X ,

where H : Rm → I(R) is a convex IVF and A is an m× n matrix with real entries. Then,

∂F(x) = {AT � Ĝm | Ĝm ∈ ∂H(Ax), where Ĝm ∈ I(R)m and x ∈ X}.

Proof. By the definition of gH-subdifferentiability of H at A(x), for any x ∈ X , we have a Ĝm ∈
I(R)m such that

(Ay −Ax)T � Ĝm � H(Ay)	gH H(Ax) for all y ∈ X ,

which implies

(A(y − x))T � Ĝm � H(Ay)	gH H(Ax)

=⇒ (y − x)T � (AT � Ĝm) � H(Ay)	gH H(Ax)

=⇒ (y − x)T � (AT � Ĝm) � F(y)	gH F(x).

Since (AT � Ĝm) ∈ I(R)n, by Definition 3.1,

∂F(x) =
{
AT � Ĝm | Ĝm ∈ ∂H(Ax), where Ĝm ∈ I(R)m and x ∈ X

}
.

Theorem 3.8. (gH-subdifferential of a sum). Let X be a nonempty convex subset of Rn and an IVF F
be defined by

F(x) =

m⊕
i=1

Fi(x) for all x ∈ X ,

16



where each Fi : X → I(R) is a convex IVF. Then,

∂F(x) =
m⊕
i=1

∂Fi(x) for all x ∈ X .

Proof. We write
F(x) = H(Ax) for all x ∈ X ,

where A is a matrix, defined by Ax = (x, x, · · · , x)T for all x ∈ X and H : Rmn → I(R) is an IVF,
defined by

H(y) = H(y1, y2, · · · , ym) =

m⊕
i=1

Fi(yi) for all y ∈ Rmn.

Thus, by Theorem 3.7, we have

∂F(x) =

m⊕
i=1

∂Fi(x) for all x ∈ X .

4. Convex IOP and its Optimality Conditions

In this section, we explore the relation of efficient solutions to the following IOP:

min
x∈X

F(x), (14)

where F is a convex IVF on the nonempty convex subset X of Rn, with the gH-subgradients of F. The
IOP with convex IVFs is known as convex IOP.

The concept of an efficient solution of the IOP (14) is defined below.

Definition 4.1. (Efficient solution [16]). A point x̄ ∈ X is called an efficient solution of the IOP (14) if
F(x) ⊀ F(x̄) for all x(6= x̄) ∈ X .

Theorem 4.1. (Optimality condition). Let X be a nonempty convex subset of Rn and F : X → I(R) be
a convex IVF. If 0̂ ∈ ∂F(x̄) for some x̄ ∈ X , where 0̂ = (0, 0, · · · , 0), then x̄ is an efficient solution of
the IOP (14).

Proof. Let 0̂ ∈ ∂F(x̄). Then for all x ∈ X ,

(x− x̄)T � 0̂ � F(x)	gH F(x̄) =⇒ 0 � F(x)	gH F(x̄)

=⇒ F(x̄) � F(x)

=⇒ F(x) ⊀ F(x̄).

Hence, x̄ is an efficient solution of the IOP (14).

For instance, consider the following example.

Example 4.1. Let us consider the following IOP:

min
x∈X=[−2,6]

F(x) =

{
[−2, 5]	gH [−1, 0]� |x− 2|, if 1 ≤ x ≤ 3

[−2, 3]⊕ [1, 2]� |x− 2|, otherwise.
(15)
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Let x̄ = 2, then we have

F(x)	gH F(x̄) =


[0, |x− 2|], for 1 ≤ x ≤ 3

[2|x− 2| − 2, |x− 2|], for 0 ≤ x ≤ 1 and 3 ≤ x ≤ 4

[|x− 2|, 2|x− 2| − 2], otherwise.

Thus,
0 = (x− x̄)� 0 � F(x)	gH F(x̄) for all x ∈ X .

Therefore, 0 ∈ ∂F(x̄).

O-2 2 4 6
X

-2

2

4

6

8

10

Y

Figure 2: IVF F of the IOP (15) is illustrated by gray shaded region.

The graph of the IVF F is depicted by the gray shaded region in Figure 2. From Figure 2, it is to be
observed that there does not exist any x( 6= x̄) ∈ X such that F(x) ≺ F(x̄) = [−2, 5]. Hence, x̄ = 2 is
the efficient solution of the IOP (15). The following example shows that the converse of Theorem 4.1 is
not true.

Example 4.2. Consider the following IOP:

min
x∈X

F(x) = [1, 2]� x2 	 [0, 2]� (x+ 1)⊕ [4, 6], (16)

where X = [−1, 2].

Since f(x) = x2 − 2x+ 2 and f(x) = 2x2 + 6 are convex on X , the IVF F is convex on X by Lemma
2.1. Further, as f and f are differentiable in X , the IVF F is gH-differentiable in X by Remark 3.
Hence,

∂F(x) = {∇F(x)} = {[2, 4]� x	 [0, 2]} for all x ∈ X .

The graph of the IVF F is illustrated by the gray shaded region in Figure 3. From Figure 3, It is clear
that for any x̄ ∈ [0, 1], there does not exist any x( 6= x̄) ∈ X such that F(x) ≺ F(x̄). Therefore, each
x̄ ∈ [0, 1] is an efficient solution of the IOP (16). The region of the efficient solutions of the IOP (16) is
marked by bold black line on the x-axis in Figure 3. However, for each x ∈ [0, 1],

∇F(x) = [2x− 2, 4x] 6= 0

and hence, 0 6∈ ∂F(x).
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Figure 3: IVF F and efficient solutions of the IOP (16) are depicted by gray shaded region and bold black line on x-axis,
respectively.

Theorem 4.2. (Optimality condition). Let X be a nonempty convex subset of Rn and F : X → I(R) be
a convex IVF. If there exists a Ĝ ∈ ∂F(x̄) for some x̄ ∈ X , such that

(x− x̄)T � Ĝ ⊀ 0 for all x ∈ X , (17)

then x̄ is an efficient solution of the IOP (14).

Proof. Let there exists a Ĝ ∈ ∂F(x̄) for which the relation (17) is true. Then, by Definition 3.1 of
gH-subgradient and the relation (17), we obtain

F(x)	gH F(x̄) ⊀ 0
=⇒ F(x) ⊀ F(x̄)

for all x ∈ X . Hence, x̄ is an efficient solution of the IOP (14).

Remark 7. The converse of Theorem 4.2 is not true. For example, consider the IOP (16) of Example
4.2. We have seen that each point x̄ ∈ [0, 1] is an efficient solution of the IOP (16). However, at x̄ = 0,

(x− x̄)� Ĝ = (x− x̄)�∇F(x̄) = [−2, 0]� x ≺ 0 for all x ∈ (0, 2] ⊂ X .

5. Conclusion and Future Directions

In this article, the concepts of gH-subgradients and gH-subdifferentials of convex IVFs with their sev-
eral important characteristics have been provided. It has been shown that the gH-subdifferential of
a convex IVF is closed (Theorem 3.4) and convex (Theorem 3.5); the gH-subdifferential of a gH-
differentiable convex IVF contains only gH-gradient of that IVF (Theorem 3.2). It has been observed
that on a real linear subspace if the gH-subgradients of a convex IVF at a point exists, then the gH-
directional derivative of the IVF at that point in each direction is maximum of all the products of gH-
subgradients and the direction (Theorem 3.3). Also, it has been observed that a convex IVF is gH-
Lipschitz continuous if it has gH-subgradient at each point in its domain (Theorem 3.6). The chain
rule of a convex IVF (Theorem 3.7) and the gH-subgradient of the sum of finite numbers of convex
IVFs (Theorem 3.8) have been depicted. Furthermore, the relations between efficient solutions of an
IOP with gH-subgradient of its objective function have been illustrated (Theorem 4.1 and Theorem 4.2).
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Although in this article, we have studied various interesting properties of gH-subgradients and
gH-subdifferentials of convex IVFs but could not make any conclusion about nonemptiness of gH-
subdifferentials. In future, we shall try to make a conclusion about nonemptiness of gH-subdifferentials.
Also, in connection with the proposed research, future research can evolve in several directions as
follows.

• The concept of subdifferential of the dual problem of a constrained convex IOP can be illustrated.

• A gH-subgradient technique to obtain the whole solution set of a nonsmooth convex IOP can be
derived.

• The derived results can be applied to solve lasso problem with interval-valued data.

• The notions of quasidifferentiability for IVFs without the help of its parametric representation can
be illustrated.

• As IVFs are the special case of FVFs and IOPs are the special case of fuzzy optimization prob-
lems, similar results can be extended for FVFs and nonsmooth fuzzy optimization problems.

Appendix A. Proof of norm on I(R)n

Proof.

‖Â‖I(R)n =

√√√√ n∑
i=1

‖Ai‖2I(R),

(i) For any element Â = (A1,A2, · · · ,An) ∈ I(R)n, we have

‖Â‖I(R)n =

√√√√ n∑
i=1

‖Ai‖2I(R) ≥ 0, since ‖Ai‖I(R) ≥ 0 for all i

and

‖Â‖I(R)n = 0 ⇐⇒ ‖Ai‖I(R) = 0 for all i

⇐⇒ Ai = 0 for all i

⇐⇒ Â = 0̂ = (0, 0, · · · , 0) .

(ii) For any λ ∈ R and an element Â ∈ I(R)n, we obtain

‖λ� Â‖I(R)n =

√√√√ n∑
i=1

‖λ� Ai‖2I(R) = |λ|

√√√√ n∑
i=1

‖Ai‖2I(R) = |λ|‖Â‖I(R)n .

(iii) For any two elements Â, B̂ ∈ I(R)n, we have

‖Â⊕ B̂‖I(R)n =

√√√√ n∑
i=1

‖Ai ⊕ Bi‖2I(R).
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Without loss of generality, due to Definition 2.3, let

‖Ai ⊕ Bi‖I(R) =

{
|ai + bi| for i = 1, 2, · · · , p(≤ n)

|ai + bi| for i = p+ 1, p+ 2, · · · , n.

Therefore,√√√√ n∑
i=1

‖Ai ⊕ Bi‖2I(R)

=

√√√√ p∑
j=1

|aj + bj |
2 +

n∑
k=p+1

|ak + bk|
2

≤

√√√√ p∑
j=1

|aj |
2 +

n∑
k=p+1

|ak|2 +

√√√√ p∑
j=1

|bj |
2 +

n∑
k=p+1

|bk|
2

by Minkowski inequality

≤

√√√√ n∑
i=1

‖Ai‖2 +

√√√√ n∑
i=1

‖Bi‖2 due to Definition 2.3.

Thus,

‖Â⊕ B̂‖I(R)n ≤

√√√√ n∑
i=1

‖Ai‖2 +

√√√√ n∑
i=1

‖Bi‖2

Hence, the function ‖·‖I(R)n is a norm on I(R)n.

Appendix B. Proof of Lemma 2.2

Proof. Let F be gH-continuous at a point x̄ of the set X . Thus, for any d ∈ Rn such that x̄+ d ∈ X ,

lim
‖d‖→0

(F(x̄+ d)	gH F(x̄)) = 0,

which implies
lim
‖d‖→0

(
[f(x̄+ d), f(x̄+ d)]	gH [f(x̄), f(x̄)]

)
= [0, 0].

Hence, by the definition of gH-difference we have

lim
‖d‖→0

(f(x̄+ d)− f(x̄)) = 0 and lim
‖d‖→0

(f(x̄+ d)− f(x̄)) = 0,

i.e., f and f are continuous at x̄ ∈ X .

Conversely, let the functions f and f be continuous at x̄ ∈ X . If possible, let F be not gH-continuous
at x̄. Then, as ‖d‖ → 0, (F(x̄+d)	gH F(x̄)) 6→ 0. Therefore, as ‖d‖ → 0 at least one of the functions(
f(x̄+ d)− f(x̄)

)
and

(
f(x̄+ d)− f(x̄)

)
does not tend to 0. Thus, at least one of the functions f and

f is not continuous at x̄. This contradicts the assumption that the functions f and f both are continuous
at x̄. Hence, F is gH-continuous at x̄.
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Appendix C. Proof of Theorem 2.1

Proof. Let the IVF F be convex on X . Due to Lemma 2.1, f and f are convex on X . Therefore, by the
property of real-valued functions, f and f are continuous on X . Hence, according to Lemma 2.2, F is
gH-continuous on X .

Appendix D. Proof of Theorem 2.4

Proof. Let the function F be convex on X . Then, for any x, y ∈ X and λ ∈ (0, 1], we get

F(x+ λ(y − x)) = F(λy + λ′x) � λ� F(y)⊕ λ′ � F(x), where λ′ = 1− λ.

Hence,

F(x+ λ(y − x))	gH F(x) � (λ� F(y)⊕ λ′ � F(x))	gH F(x)

=
[
λf(y) + λ′f(x), λf(y) + λ′f(x)]	gH [f(x), f(x)

]
=
[

min{λf(y) + λ′f(x)− f(x), λf(y) + λ′f(x)− f(x)},
max{λf(y) + λ′f(x)− f(x), λf(y) + λ′f(x)− f(x)}

]
=
[

min{λf(y)− λf(x), λf(y)− λf(x)},
max{λf(y)− λf(x), λf(y)− λf(x)}

]
= λ�

[
min{f(y)− f(x), f(y)− f(x)},
max{f(y)− f(x), f(y)− f(x)}

]
, since λ > 0

= λ� (F(y)	gH F(x)),

which implies
1

λ
� (F(x+ λ(y − x))	gH F(x)) � F(y)	gH F(x).

Since F is gH-differentiable at x ∈ X , taking λ→ 0+, by Theorem 2.3, we have

(y − x)T �∇F(x) � F(y)	gH F(x) for all x, y ∈ X .

Appendix E. Proof of norm on Ŷ

Proof. (i) Since ‖L(x)‖I(R) ≥ 0 and ‖x‖ > 0,

‖L‖Ŷ = sup
x 6=0

‖L(x)‖I(R)

‖x‖
≥ 0 for all x ∈ Y,

and

‖L‖Ŷ = 0 ⇐⇒ sup
x 6=0

‖L(x)‖I(R)

‖x‖
= 0

⇐⇒ ‖L(x)‖I(R) = 0 for all x ∈ Y
⇐⇒ L(x) = 0 for all x ∈ Y
⇐⇒ L is the interval-valued zero mapping;
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by an interval-valued zero mapping we mean an IVF which maps each element of its domain to
0 = [0, 0].

(ii) Let L ∈ Ŷ and λ ∈ R. Then,

‖(λ� L)‖Ŷ = sup
x 6=0

‖(λL)(x)‖I(R)

‖x‖
= |λ|‖L‖Ŷ .

(iii) Let L1,L2 ∈ Ŷ . Then,

‖L1 ⊕ L2‖Ŷ = sup
x 6=0

‖L1(x)⊕ L2(x)‖I(R)

‖x‖

≤ sup
x 6=0

‖L1(x)‖I(R) + ‖L2(x)‖I(R)

‖x‖
= ‖L1‖Ŷ + ‖L2‖Ŷ .

Appendix F. Proof of Lemma 3.1

Proof. For all x ∈ Y , we have
L(x) � C� ‖x‖, (F.1)

i.e., [
l(x), l(x)

]
� [c‖x‖, c‖x‖] .

Therefore,
l(x) ≤ c‖x‖ and l(x) ≤ c‖x‖. (F.2)

Replacing x by −x in the relation (F.1), we get

L(−x) � C� ‖x‖
=⇒ (−1)� L(x) � C� ‖x‖
=⇒ (−1)� C� ‖x‖ � L(x)

=⇒ [−c‖x‖,−c‖x‖] �
[
l(x), l(x)

]
,

which implies
l(x) ≥ −c‖x‖ and l(x) ≥ −c‖x‖. (F.3)

By the inequalities (F.2) and (F.3) we obtain

− c‖x‖ ≤ l(x) ≤ c‖x‖ and − c‖x‖ ≤ l(x) ≤ c‖x‖
=⇒ |l(x)| ≤ max {|c|‖x‖, |c|‖x‖} and |l(x)| ≤ max {|c|‖x‖, |c|‖x‖}
=⇒ max

{
|l(x)|, |l(x)|

}
≤ max {|c|‖x‖, |c|‖x‖}

=⇒ ‖L(x)‖I(R) ≤ ‖C‖I(R)‖x‖

for all x ∈ Y .
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Appendix G. Proof of Lemma 3.3

Proof. According to Remark 1, without loss of generality, let the first p components of d be nonnegative
and the rest n− p components be negative. Therefore, dT � Â can be written as

dT � Â =
n⊕
i=1

di � Ai

=

p⊕
i=1

di � Ai ⊕
n−p⊕
j=p+1

dj � Aj

=

p⊕
i=1

[
aidi, aidi

]
⊕

n⊕
j=p+1

[
ajdj , ajdj

]

=

 p∑
i=1

aidi +

n∑
j=p+1

ajdj ,

p∑
i=1

aidi +

n∑
j=p+1

ajdj

 .
Therefore,

dT � Â � [c, c] =⇒
p∑
i=1

aidi +
n∑

j=p+1

ajdj ≤
p∑
i=1

aidi +
n∑

j=p+1

ajdj ≤ c

=⇒ w

n∑
i=1

aidi + w′
n∑
i=1

aidi ≤ 2c

=⇒
n∑
i=1

(wai + w′ai)di ≤ 2c

=⇒ dTW
(

Â
)
≤ 2c.

Appendix H. Proof of Lemma 3.4

Proof. Let

‖W
(

Â
)
‖ =

√
(wa1 + w′a1)2 + (wa2 + w′a2)2 + · · ·+ (wan + w′an)2.

be finite. Therefore, all ai’s and ai’s are finite. Hence,

‖Â‖I(R)n =

√√√√ n∑
i=1

‖Ai‖2I(R) =

√√√√ n∑
i=1

max
{
|ai|, |ai|

}2

is finite.

Appendix I. Proof of Lemma 3.5

Proof. Let xT � Â = B. According to Definition 2.3, we have

xT � Â = B �
[
‖B‖I(R), ‖B‖I(R)

]
,
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which implies
xT � Â � ‖x‖ �

[
‖Â‖I(R)n , ‖Â‖I(R)n

]
because

‖B‖I(R) = ‖x1 � A1 ⊕ x2 � A2 ⊕ · · · ⊕ xn � An‖I(R)

≤ ‖x1 � A1‖I(R) + ‖x2 � A2‖I(R) + · · ·+ ‖xn � An‖I(R)

= |x1|‖A1‖I(R) + |x2|‖A2‖I(R) + · · ·+ |xn|‖An‖I(R)

≤ ‖x‖
(
‖A1‖I(R) + ‖A2‖I(R) + · · ·+ ‖An‖I(R)

)
= ‖x‖‖Â‖I(R)n .

Appendix J. Proof of Lemma 3.6

Proof. Since F(x)	gH F(y) � C� ‖x− y‖, for all x, y ∈ X , we have

f(x)− f(y) ≤ c‖x− y‖ and f(x)− f(y) ≤ c‖x− y‖. (J.1)

Interchanging x and y in the inequalities (J.1), we obtain

f(x)− f(y) ≤ c‖x− y‖ and f(x)− f(y) ≤ c‖x− y‖ for all x, y ∈ X . (J.2)

With the help of the inequalities (J.1) and (J.2), we get

|f(x)− f(y)| ≤ c‖x− y‖ and |f(x)− f(y)| ≤ c‖x− y‖ for all x, y ∈ X ,

which implies
‖F(x)	gH F(y)‖I(R) ≤ c‖x− y‖ for all x, y ∈ X .
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