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We consider the out-of-equilibrium dynamics of an interacting integrable system in the presence of an external
dephasing noise. In the limit of large spatial correlation of the noise, we develop an exact description of the
dynamics of the system based on a hydrodynamic formulation. This results in an additional term to the standard
generalized hydrodynamics theory describing diffusive dynamics in the momentum space of the quasiparticles
of the system, with a time- and momentum-dependent diffusion constant. Our analytical predictions are then
benchmarked in the classical limit by comparison with a microscopic simulation of the nonlinear Schrödinger
equation, showing perfect agreement. In the quantum case, our predictions agree with state-of-the-art numerical
simulations of the anisotropic Heisenberg spin in the accessible regime of times and with bosonization predic-
tions in the limit of small dephasing times and temperatures.

DOI: 10.1103/PhysRevB.102.161110

Introduction. Recent advances in controlling and manip-
ulating quantum matter [1–3] have spurred the development
of novel methods to study the out-of-equilibrium dynamics
of many-body systems. On the one hand, numerical methods
based on tensor network algorithms had astonishing achieve-
ments, extending their range of applicability to longer times
and to a larger class of systems and protocols [4–11]. On
the other hand, for one-dimensional exactly solvable mod-
els, a new set of analytical tools has been devised to access
the long-time stationary state, correlation functions, and en-
tanglement production [12–17]. For homogeneous integrable
systems evolving under a time-independent Hamiltonian, it
is now completely understood how to express the long-time
evolution once the local and quasilocal conserved charges
of the model have been classified [18,19]: their expectation
values uniquely determine the generalized Gibbs ensemble
(GGE) [20] describing the late-time stationary state.

More recently, generalized hydrodynamics (GHD) pro-
vided an efficient framework to study integrable systems
prepared in inhomogeneous states [21,22]. It progressed at
a fast pace leading to several extensions [23–25], analytic
results [26], applications [27–33], studies of classical systems
[34–37], and even experimental confirmations [38]. Further
developments have included diffusive corrections [39–44],
predictions beyond integrability [45,46], and quantum fluctu-
ations [47], and have extended its applicability to additional
protocols, including space-time dependent forces [48] and
interactions [49].

However, a crucial aspect when comparing to real-world
experiments is that interaction with the external environment
will eventually affect the unitary evolution of the system.
Modeling the open dynamics of a quantum system is a
notoriously difficult problem [50] as there is not a unique
way to incorporate the external degrees of freedom while

first-principles constructions often lead to hardly treatable
formulations [51]. An important simplification occurs for se-
tups where the correlation time of the bath can be neglected
compared with the scale of the system itself. In this case,
one can assume that Markovianity and consistency with the
laws of quantum mechanics restrict the possible form of
open evolution to the so-called Lindblad equation. In prac-
tice finding exact solutions for its dynamics is a difficult
task, and it constitutes an active subject of research. Notable
progress was done in quadratic Fermi systems [52], integrable
Linbladians [53–57], and by means of mappings to classical
stochastic systems [58–60]. At the leading order, the effect
of the environment is to induce phase fluctuations between
different portions of the system, without locally exchanging
energy or other conserved quantities (although global heating
is possible due to the interactions between different regions).
This dephasing is described by a Lindbladian whose jump
operators are Hermitian. In this Rapid Communication, we
introduce a general framework where the dynamics of an
integrable model subject to the dephasing noise can be studied
exactly. In particular, we consider the case where a fluctuating
environment is locally coupled to any local operator, focusing
primarily on local conserved charges. In the spirit of GHD,
we derive, in the long-wavelength limit, a compact evolution
equation for the local stationary state, which admits a simple
interpretation in terms of diffusion in the momentum space
of the relevant quasiparticles. Our approach is particularly
suitable for describing cold bosonic atoms trapped in noisy
optical lattices or atom chips [61,62] (see Fig. 1) and spin
and fermionic chains interacting with phonon modes, whose
wavelengths are much larger than that of the system [63].

Noise and dephasing model. We consider generic ho-
mogeneous Bethe-Ansatz integrable Hamiltonians Ĥ0. For
definiteness, we focus on lattice systems, with a finite local
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FIG. 1. Left: Pictorial representation of 1d interacting Bose gas
trapped on an atom chip, experiencing fluctuations in the confining
potential (see main text). Right: Comparison between GHD pre-
diction and ab initio numerical simulations in the classical NLS
with interaction c = 1; the initial state is thermal and homoge-
neous with inverse temperature β = 1 and chemical potential μ =
2 (resulting in density 〈|ψ |2〉 = 0.80). The noise correlation is
F (x) = �

√
π/2e−x2/(2�2 ): Agreement with the theoretical prediction

is achieved with � = 4 and γ = 0.1. We focus on the time evolution
of the density moments O = {|ψ |4, |ψ |6, |ψ |8} as a function of the
rescaled time τ in the NLS. Solid lines: Predictions from Eq. (7).
Symbols: Ab initio numerical simulations.

Hilbert space (e.g., spin chains), although the discussion can
be extended to other settings (see below). We assume that the
evolution is described by the nonintegrable Hamiltonian

Hη = H0 +
∑

j

η j (t )O j, (1)

where the second term encodes the dephasing noise, with
〈η j (t )η j′ (t ′)〉 = γ F ( j − j′)δ(t − t ′). The parameter γ con-
trols the intensity of the noise, while the function F (x)
its spatial correlation. The operator O j is assumed to have
(quasi)local support around the site j. The quantum dy-
namics of the model is then described as the solution of
the Schrödinger equation d |ψ〉/dt = −ıHη |ψ〉 , which is
a stochastic differential equation. Note that it involves a
multiplicative noise term and the Stratonovich convention is
assumed here [64] (see also the Supplemental Material (SM)
[65]). The noise-averaged density matrix � = |ψ〉 〈ψ | satisfies
the Lindblad equation

�̇ = −ı[H0, �] − γ

2

∑
j, j′

F ( j − j′)[O j, [O j′ , �]]. (2)

In general, solving Eq. (2) for a many-body system is
even harder than its pure dynamics. For short-range noise,
i.e., F ( j − j′) → δ j, j′ , a few solvable cases have recently
been discovered: when H0 describes noninteracting spinless
fermions and O j denotes their on-site occupation number,
Eq. (2) was shown to be related to the integrable Fermi-
Hubbard model [53]; other integrable examples have been
classified in Ref. [56]. Moreover the case O = Sz in the XXZ
spin chain was recently studied in [66,67] in the limit γ → ∞
and for δ-correlated noise. Here, instead, we focus on the
opposite limit where the correlation F ( j − j′) is flat within
the correlation length � and smoothly decays for | j − j′| � �.

Hydrodynamics description. Let us briefly describe the
dynamics for γ = 0. Since H0 is integrable, there exists an
infinite set of conserved quantities Q(α), α = 1, . . ., com-
muting with the Hamiltonian [Q(α), H0] = 0. Starting from
an initial density matrix �0, the unitary evolution preserves

all the conserved quantities of the system Q(α) and induces
equilibration to the GGE pinned down by such initial values
[18]. In practice, it is convenient to encode the GGE by
introducing the root density of the quasiparticles ρ(λ) [68],
defined such that Lρ(λ)dλ equals the number of quasiparticles
with rapidities ∈ [λ, λ + dλ). Quasiparticles are conserved
modes and their dynamics is fully encoded in the scattering
shift T (λ, λ′) for any integrable system. For simplicity, here
we consider a single quasiparticle species, the generalizations
being straightforward. The rapidity λ parametrizes the state of
each quasiparticle, such that, in the thermodynamic limit,

lim
L→∞

Tr[�0Q(α)]

L
=

∫
dλρ(λ)q(α)(λ) ≡ 〈ρ|Q(α)|ρ〉, (3)

where the functions q(α)(λ) are the single-particle eigenvalues
associated with the αth charge. Equation (3) establishes the
correspondence between a complete set of charges and the
root density. In the last equality, we employed a generalized
microcanonic ensemble to select a pure macrostate |ρ〉 repre-
sentative of the root density ρ(λ) [69].

Now, we turn on the weak dissipative term in Eq. (2)
and we assume that the system remains always in a GGE
representative state |ρ(t )〉 which evolves in time. In order to
get the evolution equation for the root density, we look at the
time variation of the expectation values of the charges. We
replace � → |ρ(t )〉 〈ρ(t )| in the right-hand side of Eq. (2) and
we obtain

lim
L→∞

Tr[Q(α)�̇]

L

= γ
∑

e

Q(α)
e F̂ (Pe)| 〈ρ| O |ρ; e〉 |2 + O(γ 2), (4)

with the higher-order corrections involving extra numbers
of excitations on the GGE state. Here, we assume the ob-
servable O is number conserving; hence we inserted a sum
over the tower of all the possible particle-hole excitations
|ρ, e〉 on top of the GGE state |ρ〉 [69–71]. We denote by
Q(α)

e = 〈ρ; e| Q(α) |ρ; e〉 − 〈ρ| Q(α) |ρ〉 the extra charge due
to the excitation e on top of |ρ〉 [72]. Similarly, Pe is the
momentum of the excitation e, while the matrix element
〈ρ| O |ρ; e〉 is a generalized form factor on top of the state |ρ〉
[71,73]. We also introduced the Fourier transform of the noise
correlation F̂ (k) = ∑

j F ( j)e−ık j . We are now interested in
the limit of smooth noise with finite correlation length. We
thus parametrize F ( j) = � f ( j/�), where f (x) is an even and
smooth function decaying to zero for x � 1. Expanding F̂ (k)
for � � 1, we have

F̂ (k)

2π
= � f (0)δ(k) + κ2

�
δ′′(k) + O(�−3), (5)

where to simplify the notation we set κ2 = − f ′′(0)/2 > 0.
Once Eq. (5) is injected in Eq. (4), we observe that only excita-
tions at small exchanged momentum Pe are relevant. In this
limit, the form factor is dominated by a single particle-hole
excitation [40,73] and one can replace

∑
e

Pe→0−→
∫

d phd pp[1 − n(ph)]n(pp) + · · · , (6)
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where the integral runs over the dressed momenta p of
the particle pp and the hole ph, with Pe = pp − ph. The
dressed momentum and the rapidities are related via d p =
2πρt (λ)dλ, where ρt (λ) is the total root density, which
counts the number of available modes [74]. For noninteract-
ing systems, ρt (λ) is a fixed function, but in the presence
of interactions, it is state-dependent and is related to ρ(λ)
via integral equations [75]. The filling function is expressed
as n(p(λ)) = ρ(λ)/ρt (λ) and it fully specifies a stationary
state. The right-hand side of Eq. (6) ensures that the mo-
mentum ph (pp) is unoccupied (occupied). In particular, the
leading order in Eq. (5) gives a vanishing contribution as
Q(α)

e = O(Pe). The second term instead gives a finite re-
sult, which can be entirely expressed in terms of the single
particle-hole form factor in the limit of vanishing momentum
[32,76] limpp→ph 〈ρ| O |ρ; {pp, ph}〉 = V O(ph), where V O is
related to the expectation value of the operator on a generic
stationary state 2πV O(p) = δ〈O〉/δn(p) (see SM [65]). If the
noise is coupled to a conserved charge, one has the simple re-
sult V q(p) = qdr (p) [40,70]. In the rapidity space, the dressed
single-particle eigenvalue qdr (λ) is determined solving the in-
tegral equation (1 + T n)qdr = q (where the scattering shift T
is seen here as a linear operator in the space of λ and [1]λ,λ′ =
δ(λ − λ′) is the identity operator). For the sake of simplicity,
we make a little abuse of notation using the same symbol qdr

to denote both the dependence on rapidities and momenta.
We point out that the dressed momentum introduced above is
conventionally defined as the integral of the dressed derivative
of the bare momentum pbare, since 2πρt (λ) = (∂λ pbare)dr.

The terms of order �−3 in Eq. (5) generate more compli-
cated excitations such as two particle-hole terms in Eq. (6).
Restricting ourselves to the first nontrivial term, we can
perform the integration over pp, and by employing the com-
pleteness of the set of charges Q(α), Eq. (4) can be recast into
a diffusion equation for the root density ρ(λ) or equivalently
for the filling function n(p) [65] describing the state at any
time t :

∂t nt (p) = κ2γ

�
∂p

([
V O

t (p)
]2

∂pnt (p)
) + O

(
γ

�3

)
+ O(γ 2).

(7)

This final equation has the simple form of diffusion in the
space of dressed momenta p and is the main result of our
work. The remaining details of the noise can be completely
re-absorbed defining a rescaled time τ = κ2γ t/�. In the case
of a generic driving, Eq. (7) holds in the limit �, γ −1 � 1,
while τ is kept constant. However, in the case where O is
chosen as a conserved charge, it is expected to hold for
arbitrary γ , provided � is chosen large enough. Indeed, for
� → ∞, driving with a conserved charge leaves the system
unscathed; thus the O(γ 2) term is absent and all higher-order
ones. On the contrary, in the generic case diffusive corrections
of order γ 2/�0 [45,77] are expected. In the following, we
will focus on the most relevant case where the operator O
is a conserved density as for example a U (1) charge or the
Hamiltonian density of the system. Note that the diffusion
constant ∝ [V O

t (p)]2 is time-dependent, since it depends on
the state nt (p) itself: the resulting equation is highly nonlinear.
Additionally, the mapping from momentum to rapidity space

(where the dressing is defined) also evolves in time (see SM
[65] and Ref. [78] for details about the numerical solutions).

The interacting Bose gas. As a first application of our
general findings, we revert to the 1d interacting Bose gas
H0 = ∫

dx ∂xψ
†∂xψ + cψ†ψ†ψψ , which is ubiquitous in de-

scribing the state-of-the-art cold-atom experiments [38,79–
85]. Atom chips [61] are routinely used to manipulate 1d
atomic gases, in view of their ability of creating customizable
external traps [86]. However, imperfections in the chip’s fabri-
cation [62], and in particular fluctuations in the currents of the
device [61], result in spatially smooth and time-uncorrelated
fluctuations of the external trap (Fig. 1, left). This setup pro-
vides a first example of the proposed dephasing dynamics in a
experimentally relevant context. The model is integrable both
in its classical [87] and quantum [88,89] formulation.

Continuous quantum models are notoriously hard to
simulate with tensor network techniques; hence their hy-
drodynamic description is a paramount achievement in
experiments’ simulations [38,90]. Within the weakly interact-
ing regime and at finite temperature, the quantum system is
well described by its classical limit [91–96], i.e., the nonlinear
Schrödinger model (NLS), which is amenable to efficient ab
initio numerical simulations [97,98]. For this reason, hereafter
we focus on the classical regime in the repulsive phase c > 0
(see SM [65] for details). In Fig. 1, we compare GHD predic-
tions with numerical simulations, finding excellent agreement.
The system is initialized in a thermal state, which is then
allowed to evolve with a noise coupled to the local density
ψ†(x)ψ (x). The choice of this particular dephasing is moti-
vated by the atom chip setup, where changes in the confining
trap results in a locally fluctuating chemical potential. For
the sake of simplicity and to better isolate the effects of the
noise correlation length scale �, we focus on a homogeneous
setup. We consider the time evolution of the density moments
〈|ψ (x)|2n〉 computed in Ref. [99] for arbitrary GGEs (see also
Refs. [100,101] for the quantum case). The details of the
numerical simulations and further comparisons are left to the
SM [65].

Interacting spin chains. The XXZ spin chain is given by
the Hamiltonian H0 = ∑

j h j, j+1 where h j, j+1 = Sx
jS

x
j+1 +

Sx
jS

x
j+1 + (Sz

jS
z
j+1 − 1/4) with Sx,y,z being spin-1/2 op-

erators. We focus on the easy-axis regime  > 1, where
the quasiparticle are labeled by an extra integer index s =
1, . . . ,∞ representing their spin quantum number. Here, we
restrict ourselves to the dynamics close to the ground state,
so that only quasiparticles with s = 1 are relevant. Since no
new quasiparticles are generated by the dynamics of Eq. (7),
a gapped ground state remains exactly unperturbed by our
dynamics in the limit � → ∞. However, by adding an external
magnetic field H0 + B

∑
j Sz

j , we can choose  and B such
that the ground state is gapless and the dynamics is nontrivial
[46,68]. As an example, we drive the system with the local
energy density q j = h j, j+1, which describes the effect of a
phononic bath [102,103]. We plot the evolution of the total
energy of the system in Fig. 2 and we notice that agreement
with our theoretical prediction does indeed improve for large
�, no matter the value of γ , as is expected driving with a
conserved charge. We observe that Eq. (7) predicts that energy
increases up to a plateau on a prethermal stationary state,
different from an infinite-temperature state. The latter indeed
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FIG. 2. Plot of the time evolution of the energy density of an XXZ
chain obtained by the 2-site TDVP algorithm [7] and averaged over
20 realizations with maximally used bond dimension χ = 200 and
L = 300. The chain is initially prepared in the gapless ground state at
 = cosh(3/2) and B = 1.75946, such that 〈Sz

j〉 = 1/10. The noise
is coupled with the energy density q j = h j, j+1. The energy density of
the infinite-temperature state is given by −/4 � −0.59. Inset: The
log plot of the entanglement entropy of the bipartite chain.

cannot be reached by the dynamics given by Eq. (7), as it
requires creating quasiparticles with higher spin s, which are
not contained in the initial state. Clearly, the corrections in �−3

will include terms leading to quasiparticle production that will
lead the system to thermalize. However on timescales of order
�/γ we observe perfect agreement of the numerical simulation
with the evolution (7), proving that it correctly describes the
dynamics of the system at such timescales.

It is also interesting to consider the evolution (7) at short
times. Starting from the ground state, this implies an initial
linear growth in time for the charges; in particular, for the
energy we have 〈H0〉/L = eGS + [V O(pF )]2vF τ/π + O(τ 2)
where eGS is the ground-state energy, vF is the Fermi velocity
of the system, and pF is the Fermi momentum. In the case
of the driving coupled to the local spin q j = Sz, we have
[V O(pF )]2 = K the Luttinger parameter of the ground state,
which recovers the prediction from bosonization [104–107]
(see SM [65] for details).

Single noise realization. The dynamics given by Eq. (7)
describes the average over several realizations of the noise in
the evolution given by Hamiltonian (1) [108,109]. However, in
each single realization, the evolution is pure and unitary, and
the noise term plays the role of a random force. In the case
where the driving is coupled to an external charge, the hydro-
dynamic equations at first order in the external perturbation
are known [48]. However, they are applicable in a regime of
weak space-time dependence where the hydrodynamic picture
applies. Nevertheless, since the effect of the noise is weak in

our regime � � 1, we can assume that in each noise realiza-
tion the system remains locally close to a quasiequilibrium
state. Then, the stochastic evolution of the stochastic filling
function nx,t ≡ nx,t (λ) reads [48]

∂tnx,t + veff
x,t ∂xnx,t − (∂xUx,t )

(
qdr

x,t

p′
x,t

)
∂λnx,t = 0, (8)

where Ux,t = √
γ ηx(t ). The effective velocity of the quasi-

particle is given by the dressed energy ε, veff [ε] = ∂ε/∂ p =
∂λε(λ)/∂λ p(λ), and is also modified by the external force
via ∂λε → ∂λε + Ux,t (∂λq)dr. Note that the noise in Eq. (8)
is meant in the Stratonovich convention which makes the
noise average nontrivial. Nevertheless, after converting to the
Ito formulation, one obtains a translationally invariant filling
nt (λ) ≡ nx,t (λ) whose time evolution in the space of momenta
matches with Eq. (7).

It is interesting to observe that Eq. (8) does not lead to any
entropy production [30]. Starting from a Fermi sea distribu-
tion for nx,t=0(λ), the evolution (8) for a single realization
of the noise can be seen as a local (random) boost of the
Fermi points so that the state remains a zero-entropy one at all
times. It is natural to expect this to result in the suppression of
the entanglement entropy production. This is indeed what we
observed in the tDMRG simulation at short times, see Fig. 2,
where the growth of entanglement entropy is indeed curbed.
However, at times of order t ∼ κ2γ /�, the entanglement en-
tropy of each realization suddenly starts growing linearly with
time, signaling that its dynamics is given by terms that go be-
yond Eq. (8), as for example diffusive terms of order O(∂2

x nx,t )
[40]. However, Eq. (7) still provides a good description of
the averaged evolution of local operators. A similar entropy
increasing at intermediate timescales was observed in the
studies of classical hard rods in external potentials [30,43].

Discussion and conclusion. We presented an exact hy-
drodynamic description of the out-of-equilibrium dynamics
of integrable systems in the presence of dephasing noise,
where the extension to inhomogeneous setups is now obvious
[110,111]. For future perspectives, it would be interesting to
extend our treatment to include subleading terms, operators
which do not conserve particles’ number, and to effectively
describe three-body losses, one of the leading effects in
cold-atom setups involving quantum gases [38,100]. Another
exciting direction is the inclusion of a genuinely quantum
noise term, as modeled by the coupling to an ensemble of
bosonic/fermionic quantum oscillators [112,113].
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