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Generalized Hydrodynamics with Space-Time Inhomogeneous Interactions
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Institute for Theoretical Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands
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We provide a new hydrodynamic framework to describe out-of-equilibrium integrable systems with
space-time inhomogeneous interactions. Our result builds up on the recently introduced generalized
hydrodynamics (GHD). The method allows us to analytically describe the dynamics during generic space-
time-dependent smooth modulations of the interactions. As a proof of concept, we study experimentally
motivated interaction quenches in the trapped interacting Bose gas, which cannot be treated with current
analytical or numerical methods. We also benchmark our results in the XXZ spin chain and in the classical
sinh-Gordon model.
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Introduction.—Exploring the out-of-equilibrium behav-
ior of quantum many-body systems is nowadays among
the most active research areas in physics, due to a
successful synergy between theoretical and experimental
advances [1–4].
How, and is what sense, does a coarse-grained thermo-

dynamic description emerge through dynamical evolution
in isolated out-of-equilibrium many-body systems? One-
dimensional systems represent an ideal playground to
address this question: there, remarkably powerful tools
exist, both theoretical (such as conformal field theory [5]
and integrability [6,7]) and computational (such as matrix
product states methods [8]). Integrability is ubiquitous in
the low-dimensional world (and experimentally realized
[9]), with applications ranging from spin chains [6] to
continuummodels, the latter having Lorentz [7] or Galilean
[10,11] invariance, or neither [12]. Integrable models are
characterized by the presence of infinitely many conserved
charges Q̂j, which can be used to exactly determine their
thermodynamics [13]. In recent times, the importance of
quasilocal charges has moreover been underlined [14].
The last decade has witnessed exact results reaching

out-of-equilibrium protocols as well: great attention has
been devoted to the homogeneous sudden quantum
quench [15] (see also Ref. [16] and reference therein).
Because of the conserved quantities, the system exhibits
local relaxation to a state that is not thermal [17–25], but
rather emerges from a quench action [26,27] or (where
applicable) a generalized Gibbs ensemble (GGE) [28,29]
which accounts for all the relevant charges.
More recently, the focus has been on quenches from

spatially inhomogeneous systems. A new theoretical toolbox,
dubbed generalized hydrodynamics (GHD) [30,31] allows us
to address this problem. In Refs. [30,31] GHD dealt with
inhomogeneous states evolving under a homogeneous
Hamiltonian. Several applications have been explored

[32–57], for instance, including diffusive corrections [58–
61] or applying it to classical models [62–66]. Also, com-
bined with the quasiparticle picture for integrable systems
[67,68], GHD allows us to describe the entanglement spread-
ing after inhomogeneous quenches [69–72]. Very recently, it
has been shown that GHD provides the correct theoretical
framework to describe atom-chip experiments [73].
When comparing with actual experiments, inhomoge-

neities, for instance due to external trapping potentials,
should ideally be kept into account. Strictly speaking,
inhomogeneities break integrability, but smooth variations
can still be captured by invoking local relaxation to a
(locally homogeneous) integrable model.
Inhomogeneities in the dynamics have already been

studied with some limitations for either spatial [32,65]
or temporal changes [54], opening the possibility, for
example, of studying the famous quantum Newton cradle
experiment [74] through GHD [47]. However, the current
state of the art cannot capture changes in the interparticle
interactions, leaving perturbative methods [75,76] or boso-
nization techniques [77–83] as the only methods to tackle
this experimentally relevant situation.
In this Letter, we present a complete GHD approach

that allows us to treat the dynamics under integrable

FIG. 1. Prototypical experimental setup that can be addressed
with our method. A Bose gas is trapped in a one-dimensional
tube. The space-time dependent interparticle interaction strength
cðt; xÞ is modified by modulating the transverse trapping poten-
tial (see also Fig. 2).
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Hamiltonians with space-time inhomogeneous interactions.
Our results significantly extend the current GHD frame-
work exhausting all the possible inhomogeneities which
can be considered on a pure hydrodynamic level, disclosing
the full power of GHD in describing experimentally
relevant protocols. We discuss the potential applications
of our result to interaction changes in the Lieb-Liniger
model [10,11] (Figs. 1 and 2), which is of primary
experimental interest. So far, the primary analytical tool
used in dealing with time-dependent interactions has been
the Luttinger liquid approach [84,85], recently generalized
to include spatial inhomogeneities [86–92]. In contrast
with GHD, this method is nevertheless confined to the
low-energy excitations. We numerically benchmark the
GHD predictions both in the quantum and classical realms,
considering the XXZ spin chain and the classical sinh-
Gordon field theory, showing once again the wide appli-
cability of our results. Furthermore, we improve the
numerical method proposed in Ref. [34] to solve GHD
equations, promoting it from a first order to a second order
algorithm in the time step, providing a great stability
enhancement.
Thermodynamics of integrable models.—The thermody-

namic Bethe ansatz (TBA) technique is nowadays a text-
book topic [13]: here we present the basic concepts for the
sake of a self-contained exposition. The Hilbert space of
integrable models can be understood in terms of multi-
particle states jfλgNi¼1i, labeled by suitable parameters λ
called rapidities [6,7]. Quasiparticles undergo pairwise
elastic scatterings, which are described by an interaction-
dependent scattering matrix SðλÞ. These states are common
eigenstates of the full set of (quasi-)local charges. In the

thermodynamic limit (TDL), we switch to a coarse-grained
description through a rapidity (root) density ρðλÞ [13],
which gives the density of rapidities within the interval
ðλ; λþ dλÞ. The root densities are in a one-to-one corre-
spondence with the possible thermodynamic states of the
system, such as GGEs [93] or thermal states and fix the
(extensive part of) the expectation value of the local charges

lim
TL

1

L
hfλgNi¼1jQ̂jjfλgNi¼1i ¼

Z
dλqjðλÞρðλÞ; ð1Þ

together with any other local (in real space) property of
the system, according to the quench action approach
[26,27,94]. The function qjðλÞ in Eq. (1) is called the
charge eigenvalue.
Nontrivial interactions induce collective effects. For

example, the group velocity of the quasiparticles, which
is defined as vðλÞ ¼ ∂λϵ=∂λp, with ϵðλÞ, pðλÞ the energy
and momentum eigenvalues respectively, is “dressed” as
veffðλÞ ¼ ð∂λϵÞdr=ð∂λpÞdr, with ϵdr and pdr the dressed
quasiparticle energy and momentum. These are obtained by
using that an arbitrary dressed quantity τdrðλÞ is defined
through the integral equation

τdrðλÞ ¼ τðλÞ −
Z

dμ
2π

∂λΘðλ − μÞϑðμÞτdrðμÞ; ð2Þ

with τðλÞ the “bare” quantity. HereΘðλÞ ¼ −i log SðλÞ, with
SðλÞ the two-body scattering matrix encoding the interac-
tion, while ϑðλÞ ¼ 2πρðλÞ=ð∂λpÞdr is the so-called filling
function. We summarized the TBA considering a single

(a.1) (b.1)

(a.2) (a.3) (b.2) (b.3)

FIG. 2. Evolution of the trapped one-dimensional Lieb-Liniger gas. The interaction strength is changed as cðtÞ ¼ 0.3þ tanhð3tÞ
during the evolution. The left and right panels correspond to the harmonic and anharmonic trapping potentials VðxÞ ¼ x2=2 − 0.5 and
VðxÞ ¼ x4=2 − 0.5, respectively. In both cases the initial state is a thermal state at inverse temperature β ¼ 2. In (a.1) and (b.1) we show
the space dependence of the quasiparticle filling functions at different times. In each subfigure, the y axis λ is the quasiparticle rapidity.
The x axis shows the position inside the trap. (a.2) Particle densities nðt; xÞ≡ hψ†ðxÞψðxÞi as a function of x, for several times.
Subfigure (a.3): density at the center of the trap as a function of time. Subfigures (b.2) and (b.3): the same as in (a.2) and (a.3) for the
quench in the anharmonic trap.
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particle species, but the construction is easily generalized to
several species of excitations and bound states.
Emergent hydrodynamicswith space-time inhomogeneous

interactions.—TBA describes homogeneous stationary
states. Instead, we now consider smooth space-time inho-
mogeneities, both in the initial state and in the Hamiltonian.
We imagine a family of integrable models parametrized by
a coupling α, with Hamiltonians

ĤðαÞ ¼
Z

dxĥ(x; αðt; xÞ): ð3Þ

Crucially, in Eq. (3) α is a function of both space and time.
We consider models in the continuum for simplicity, but the
same construction can be repeated on the lattice.
Spatial inhomogeneities of the initial state on the same

typical length scale of the variation of α are allowed. We
are then interested in describing the system at the Eulerian
scales ðΔt;ΔxÞ ∼ (ð∂tαÞ−1; ð∂xαÞ−1), considering at the
same time the limit of infinitely smooth variations
∂tα ∼ ∂xα → 0.
Closely following the same argument presented in

Refs. [30,31], in this limit we can invoke local relaxation
to an inhomogeneous GGE, associated with a weakly
inhomogeneous root density ρðt; x; λÞ. We report the details
of the derivation of the GHD equations in the Supplemental
Material (SM) [95]. Here, we rather present the result,
discussing its physical interpretation and validity regime,
together with possible applications.
Our main result is that ρðt; x; λÞ satisfies the following

hydrodynamic equations as

∂tρþ ∂xðveffρÞ þ ∂λ

�∂tαfdr þ ∂xαΛdr

ð∂λpÞdr
ρ

�
¼ 0 ð4Þ

where we dropped the space-time dependence to lighten
the notation. In Eq. (4) veff is the dressed velocity of the
quasiparticles. Only first-order derivatives appear, implying
that the equation is invariant under the rescaling
ðt; xÞ → ðAt; AxÞ, with A ∈ Rþ. For a space-time homo-
geneous dynamics (∂xα ¼ ∂tα ¼ 0), the standard GHD
equations are obtained [30,31]. The forces f and Λ are
obtained by solving

fðλÞ ¼ −∂αpðλÞ þ
Z

dμ
2π

∂αΘðλ − μÞð∂μpÞdrϑðμÞ; ð5Þ

ΛðλÞ ¼ −∂αϵðλÞ þ
Z

dμ
2π

∂αΘðλ − μÞð∂μϵÞdrϑðμÞ: ð6Þ

Here ϑ ¼ 2πρ=ð∂λpÞdr is the filling function. As usual in
GHD, Eq. (4) has a clear semiclassical interpretation:
ρðt; x; λÞ locally describes the phase-space density of a
collection of quasiparticles, moving with velocity veff and
subjected to force terms induced by the inhomogeneities,

which can change the quasiparticles rapidity. The force
terms account for both single particle as well as collective
effects. The former are contained in the terms ∂αp and ∂αϵ
in Eqs. (5) and (6). These are the energy-momentum
changes of a single excitation of rapidity λ induced by
the inhomogeneities: the change in the dispersion relation
causes the excitation to accelerate. Force terms due to
inhomogeneities have been previously derived in Ref. [32],
for spatially inhomogeneous potentials linearly coupled to
the charge densities, which nevertheless cannot induce any
inhomogeneity in the scattering data of the model. In
Ref. [54], slow magnetic flux changes in the XXZ spin
chain have been studied. In both cases, only single-particle
effects arise in the GHD equation and can now be regarded
as a particular case of our more general findings.
The integrals in Eqs. (5) and (6) are entirely due to

collective behaviors and have never been derived in previous
studies. Because of the modifications in the interparticle
interactions, encoded in the scattering phase Θ, the excita-
tions experience force fields caused by the surrounding
particles.
For spatial-homogeneous interactions, i.e., ∂xα ¼ 0, we

are able to derive Eq. (4) for rather generic integrable
models [95]. In the presence of spatial inhomogeneities,
thus ∂xα ≠ 0, Eq. (4) is derived in the presence of Lorentz
invariance [95] and in Galilean invariant models through a
nonrelativistic limit [96–99] (see SM [95]). Outside of the
mentioned cases, we present Eq. (6) as a conjecture,
although well supported by numerical evidence (see
Fig. 3). As a further nontrivial check, thermal states are
shown to be steady states of the GHD equation [Eq. (4)]
with ∂xα ≠ 0 [95].
We stress that, in order to have a weakly varying (locally)

integrable model, a smooth dependence of ĥðx; αÞ [Eq. (3)]
on the coupling does not suffice: the whole set of (quasi-)
local charges must be smooth as a function of α. For
example, our method cannot be applied to interaction
changes in the XXZ spin chain with jΔj < 1, which has
a fractal dependence on the coupling [13].
Applications and numerical checks.—We now show the

wide applicability of our results. GHD equations are
numerically solved according with the method described
in the SM [95], where we also present a short summary of
the TBA of the models here investigated. In Fig. 2 we show
a possible application to an experimentally relevant setup,
namely, a (slow) interaction quench in the interacting Bose
gas [10,11]. We mention that there are no alternative
analytical and numerical methods to address this type of
protocols. Closely related setups have already been exper-
imentally addressed [100].
The Hamiltonian of the Lieb-Liniger model reads

Ĥ ¼ R
dxf∂xψ̂

†∂xψ̂ þ cðtÞðψ̂†Þ2ðψ̂Þ2 þ VðxÞψ̂†ψ̂g, with
½ψ̂ðxÞ;ψ†ðyÞ� ¼ δðx − yÞ. The gas is loaded in a harmonic
trap in a low-temperature state, the interaction cðtÞ > 0 is
then slowly increased. This induces a nontrivial evolution
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of the quasiparticle densities, which are reported in
Fig. 2(a.1). As the interparticle repulsion is increased
quasiparticles increase their rapidity λ (reflected in the
stretching of the initial blob along the vertical direction)
and escape from the center of the trap. The local total
density nðt; xÞ ¼ R

dλρðλÞ of the quasiparticles is shown in
Fig. 2(a.2). Interestingly, the quench induces a breathing
mode, which is long-lived in harmonic potentials [100].
This is clear from Fig. 2(a.3), where we show the density n
in the center of the trap as a function of time. In Figs. 2(b.1)
and 2(b.3) we focus on the slow quench in an anharmonic
trap. As it is clear from Fig. 2(b.1) the anharmonicity causes
a spiral motion in the filling which develops a fractal
structure as times passes [47,66], which is smoothed due to
the discretization used to solve the GHD equation [Eq. (4)].
Now a much faster relaxation is observed as compared with
the harmonic case, due to dephasing [47,101].
In Fig. 3we focus on theXXZ spin chainwithHamiltonian

Ĥ ¼ P
L
j¼−LfŜxj Ŝxjþ1 þ Ŝyj Ŝ

y
jþ1 þ ΔjðtÞŜzjŜzjþ1 þ BjŜ

z
jg,

where Ŝαj are standard spin-1=2 operators. The system is
initialized in a confining magnetic field and in a low temper-
ature thermal state, with a uniform interactionΔj > 1. Then,
Δj is slowly changedwith time in the formof a travelingwave
(see Fig. 3). In Fig. 3 we compare the GHD predictions

for the local magnetization and the local energy density with
time-dependent density matrix renormalization group
(tDMRG) simulations [102–104], finding excellent agree-
ment. tDMRGmethods suffer strong limitations in the acce-
ssible time scale; therefore we revert to the classical world to
explore longer time scales. In Fig. 4 we benchmark the GHD
in the classical sinh-Gordon model (see Ref. [105] and [62]
for the TBA). The model describes a scalar field ϕ with

(a)

(b)

FIG. 3. Slow quench in the trappedXXZ spin chain.We apply the
external static magnetic field Bj ¼ −1 − 8ðj=LÞ2, with j the
distance from the chain center and L its length. The initial
state is a thermal one with β ¼ 4. We evolve the system with the
XXZ chain with ΔjðtÞ ¼ 1.5þ 0.3 tanhð3t=LÞ sin½4πðj − tÞ=L�.
(a) Profile of the local magnetization Ŝzj as a function of j=L and
several times. The curves areGHDresults. The symbols are tDMRG
simulations for a chain with L ¼ 128, and are in good agreement
with the GHD. The inset shows a zoom around the center of the
system. (b) Profile of the local energy density ĥj ¼ Ŝxj Ŝ

x
jþ1þ

Ŝyj Ŝ
y
jþ1 þ ΔjðtÞŜzjŜzjþ1 − ΔjðtÞ=4.

(a.1)

(a.2)

(b)

FIG. 4. Classical sinh-Gordon model: GHD results compared
with classical Monte Carlo simulations. Panels (a.1) and (a.2): the
system is prepared in an inhomogeneous thermal state with
inverse temperature βðxÞ ¼ 1.25þ 0.25 tanh½2 sinð2πx=LÞ�, with
L the system length. The system is evolved with the sinh-Gordon
Hamiltonian with inhomogeneous coupling gðxÞ ¼ 1.5þ
0.5 tanh½2 sinð2πx=LÞ� and m ¼ 1. (a.1) Profile of the vertex
operator hegϕi as a function of x=L at different times. The curves
are GHD predictions. Symbols are classical Monte Carlo sim-
ulations for L ¼ 30. (a.2) Vertex operator hegϕi at x ¼ L=2 as a
function of time. Now the continuous line is the GHD prediction.
The dashed line is the result obtained by ignoring the force fields,
i.e. Λ ¼ 0 in Eq. (4), which is inaccurate, as expected. Panel (b):
the system is prepared in an homogeneous thermal ensemble with
m ¼ 1, g ¼ 1.5 and β ¼ 1.25. At t > 0 we vary the mass m →
mðt; xÞ ¼ mþ Δm4t=L½cosð2πx=LÞ − 1� for t ≤ L=4 and
mðt; xÞ ¼ mþ Δm½cosð2πx=LÞ − 1� for t > L=4, we choose
Δm ¼ 0.25 and the interaction g is kept constant. The profiles
of the vertex operator at different times are displayed.
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Lagrangian L¼R
dxf∂μϕ∂μϕ=2−ðm=gÞ2½coshðgϕÞ−1�g,

withm themass and g the interaction parameter.We consider
two protocols. In the first case [panels (a.1) and (a.2)] the
system is initially prepared in a thermal state with an
inhomogeneous temperature profile. The system is then
evolved with the sinh-Gordon Hamiltonian with inhomo-
geneous coupling g → gðxÞ. Such an inhomogeneity does
not affect the single-particle dispersion law (see SM [95]),
providing an ideal benchmark to test the collective effects in
Eqs. (5) and (6). Symbols areMonteCarlo data [62], whereas
the lines are the GHD results. In (a.1) we show the expect-
ationvalue of the vertex operator egϕ as a function of position
x=L for different times, in (a.2) we plot egϕ at x ¼ L=2 as a
function of time. The agreementwith theGHD is spectacular.
The dashed line is the GHD result neglecting the collective
effects, i.e., the integrals in the right-hand side in Eq. (5),
which clearly have a crucial role. In the second protocol
[panel (b)], we start from a homogeneous thermal ensemble,
then a mass inhomogeneity is slowly activated with a linear
ramp in time up to t ¼ L=4 and then kept constant. Mass
changes do not affect the scattering data [95], implying that
only single-particle effects in Eqs. (5) and (6) play a role.
Despite the formof the force terms,mass inhomogeneities do
not belong to the class of inhomogeneities described in
Ref. [32] and thus provide a nontrivial benchmark of our
findings.
Conclusions and outlook.—The success of hydrody-

namic approaches is hard to overestimate. GHD merges
the hydrodynamic framework with integrability, providing
unprecedented levels of accuracy in describing out-of-
equilibrium systems. In this Letter we extended the reach
of this program, providing hydrodynamic equations which
account for arbitrary (smooth) inhomogeneities in the
couplings and state. Several interesting questions are left
out for the future. Our analysis holds true when the model
has a smooth dependence on the inhomogeneous coupling,
but there could be special points (or regions) where this
hypothesis breaks down. Understanding the behavior of
protocols overcoming such special points is surely a
compelling quest, which can unveil a rich phenomenology
(see Ref. [54] for a closely related problem). Including
higher order corrections in the derivative expansion at the
root of Eq. (4) is another important direction. Finally, it is
important to devise numerical schemes based on molecular
dynamics, such as the flea gas [33], to simulate the GHD
equations [Eq. (4)].

A. B. is indebted to A. De Luca for useful discussions
and work on related subjects. The authors acknowledge the
support from the European Research Council under ERC
Advanced Grant No. 743032 DYNAMINT.
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