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Abstract

In continuation of our previous works [J. Phys. A: Math. Gen. 35, 9355-9365 (2002)], [J.
Phys. A: Math. Gen. 38, 7851 (2005)] and [Eur. Phys. J. D 72, 172 (2018)], we investigate
a class of generalized coherent states for associated Jacobi polynomials and hypergeometric
functions, satisfying the resolution of the identity with respect to a weight function expressed
in terms of Meijer’s G-function. We extend the state Hilbert space of the constructed states
and discuss the property of the reproducing kernel and its analytical expansion. Further, we
provide the expectation values of observables relevant to this quantum model. We also perform
the quantization of the complex plane, compute and analyze the probability density and the
temporal stability in these states. Using the completeness relation provided by the coherent
states, we achieve the thermodynamic analysis in the diagonal P -representation of the density
operator.

Key words: Hypergeometric coherent states; Meijer’s G-functions; Bessel functions; Repro-
ducing kernel; Polynomials; Quantization; Density probability.

1 Introduction

During the past few decades, the concept of coherent states (CSs) has aroused great scientific interest
since their introduction, at the beginning of the 1960s, by Schrödinger [1] for the quantum harmonic
oscillator (HO)as a specific quantum states which have the most similar dynamical behavior to that
of classical HO.

Glauber [2] and Sudarshan [3] reconsidered the definition of these Schrödinger CSs, while the
conditions any state must fulfill to be coherent, (i. e., continuity in complex label, normalization,
non orthogonality, unity operator resolution with unique positive weight function of the integration
measure, temporal stability and action identity), were elaborated by Klauder [4]. More details on the
CSs and their different generalizations can be found in the literature. See, for example, [5, 6, 7, 8].
Different kinds of CSs have also been generalized for quantum systems. One can mention the
Barut-Girardello CSs [9], Perelomov CSs [6], Gazeau-Klauder CSs [10], Penson-Solomon CSs [11]
Klauder-Penson-Sixdeniers CSs [12], generalized hypergeometric CSs (GHCSs) introduced by Appl
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and Schiller [13]. These have been taken into account in many works since their introduction. One
can also consult [14] concerning nonclassical properties of CSs. Generalized hypergeometric photon-
added and photon-depleted CSs, and deformed photon-added non-linear CSs were introduced, re-
spectively, in [15] and [16]. Note that the photon-added CSs (PACSs) and the lower truncated
CSs are the limiting cases of suitably deformed PACSs [17]. Photon-added Gazeau-Klauder and
Klauder-Perelomov CSs for exactly solvable Hamiltonians were studied in [18], while photon-added
Barut-Girardello CSs of the pseudoharmonic oscillator were constructed in [19]. Besides, in [19]
the GHCSs were extended to mixed (thermal) states and applied, particularly, to the case of a
pseudoharmonic oscillator.

In general, the GHCSs are given by the expression [13, 19]:

|z〉 =
1√

pFq({ai}p1; {bj}q1; |z|2)

∞∑
n=0

zn√
ρp,q(n)

|n〉, (1)

where pFq({ai}p1; {bj}q1; |z|2) are the generalized hypergeometric functions [20]:

pFq({ai}p1; {bj}q1;x) =
∞∑
n=0

p∏
i=1

(ai)n

p∏
j=1

(bj)n

xn

n!
≡
∞∑
n=0

1

ρp,q(n)
xn, (2)

p and q are integer numbers; the ρp,q(n) stand for generalized factorials expressed through Pochham-
mer symbols (a)n = Γ(n+a)

Γ(a) and Euler gamma functions Γ(x). The appellation of generalized hyper-
geometric coherent state refers to the normalization function given by generalized hypergeometric
functions.

Cotfas, in his work [21], provided a factorization method of associated hypergeometric operators,
and deduced the associated algebra and corresponding CSs. These are eigenstates of the annihilation
operator denoted am. Following Aleixo et al. [22], we introduced a right inverse operator a−1

m in
[23] in order to define generalized associated hypergeometric CSs (GAH-CSs). These states fulfill
the Klauder prescriptions required for a set of CSs and establish a close connection between the
quantum and classical formulations of a given physical system. Recently [24], some of us applied the
general procedure of CS quantization, (also known as the Berezin-Klauder-Toeplitz quantization),
in the complex plane to a set of GPAH-CSs from the resolution of the identity obtained by a positive
weight function expressed in terms of Meijer’s G-functions. In addition, these authors discussed the
nonclassical behaviour by investigating the Mandel Q-parameter expressed in terms of generalized
hypergeometric functions. All these developments on generalizations of GHCSs and GPAH-CSs,
which also put in light the applications of hypergemetric functions and Meijer’s G-functions (see
[13, 21, 23, 19, 15, 25], and references therein), motivate the present work. Indeed, following the
method developed in [21]-[23], we built a family of generalized hypergeometric CSs (GHCSs) for
associated Jacobi polynomials and hypergeometric functions. These CSs coincide with the GHCSs
introduced by Appl and Schiller [13], (see (1) in this paper), and their expansion is provided in
terms of the Fock basis states. All computations, including the weight function of the integration
measure, are performed in terms of the Meijer’s G-functions related to the hypergeometric functions,
and modified Bessel functions of the first kind, highlighting the relevance of the usefulness of these
functions.

The diagonal expansion of the density operator, known as the Glauber-Sudarshan (GS)-P -
representation [26], plays a key role in the concepts of Husimi distribution [27] and Wehrl entropy
[28] in various constructions (see for example [19, 25, 29, 30, 31] for more details). Also in [32],
the density operator diagonal representation in the CSs basis was used to study harmonic oscillator
quantum systems and models of spinless electrons moving in a two-dimensional noncommutative
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space, subject to a magnetic field coupled with a harmonic oscillator. Relevant statistical prop-
erties such as the Q-Husimi distribution and the Wehrl entropy were also investigated. Besides,
multi-matrix vector coherent states (VCSs) basis was successfully performed in the density opera-
tor representation and applied to Landau levels of an electron in an electromagnetic field coupled
to an isotropic harmonic potential [33]. Main relevant statistical properties such as the Mandel
Q-parameter and the signal-to-quantum-noise ratio were derived and discussed. In addition, more
recently [34], in the context of supersymmetric harmonic oscillator, a matrix formulation of the den-
sity operator to construct a two-component VCS representation was achieved. Relevant statistical
properties were described, with a link with quantum information given via an integral representation
of a qubit.

The paper is organized as follows. Section 2 recalls the construction method of hypergeometric
CSs as it is carried out in the literature. In section 3, we construct the GHCS and establish the
resolution of the identity satisfied by these states by providing the appropriate weight function
expressed by the Meijer G-functions [20], which solves the Stieltjes moment problem. Section 4
deals with the analytical insights of the GHCSs through the reproducing kernel and the analytic
representation of a given function in the Hilbert space spanned by these states. In Section 5, the
expectation values of the observables describing the quantum system are derived. The quantization
of a complex plane, known as the Berezin-Klauder-Toeplitz quantization, (and also called coherent
state or anti-Wick quantization), using these states is investigated in Section 6. In Section 7, the
probability density and the time dependence of the GHCSs are discussed. Section 8 deals with the
treament of thermodynamical properties of the quantum system, with the thermal expectations of
the relevant observables determined from the Glauber-Sudarshan P -diagonal representation of the
density operator.

2 General method of GHCSs construction

We start with the following definition.

Definition 2.1. The generalized associated hypergeometric type CSs (GAH-CSs) are the CSs corre-
sponding to the mth derivative Φl,m = κmΦ

(m)
l of the classical orthogonal polynomials Φl satisfying

the second order differential equation of hypergeometric type:

σ(s)Φ′′l (s) + τ(s)Φ′l(s) + λlΦl(s) = 0, (3)

where λl = −1
2 l(l − 1)σ′′ − lτ ′, κ =

√
σ, with σ a nonnegative function; σ and τ are polynomials of

at most second and exactly first degrees, respectively.

The Φl,m, called associated hypergeometric-type functions (AHF), are solutions of the eigenvalue
problem HmΦl,m = λlΦl,m where the Hamiltonian operator Hm is expressed as a second order
differential operator as follows:

Hm = −σ d
2

ds2
− τ d

ds
+
m(m− 2)

4

σ′2

σ
+
m

2
τ
σ′

σ
− 1

2
m(m− 2)σ′′ −mτ ′. (4)

The Φl,m are orthogonal∫ b

a
Φl,mΦk,m ρ ds = 0, l 6= k, l, k ∈ {m,m+ 1,m+ 2, . . .}, (5)

with respect to the positive weight function ρ related to the polynomial functions σ and τ by the
Pearson’s equation (σρ)′ = τρ, over the interval (a, b), which can be finite or infinite. The operator
Hm factorizes as:

Hm − λm = A†mAm, Hm+1 − λm = AmA
†
m,
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and fulfills the intertwining relations

HmA
†
m = A†mHm+1 and AmHm = Hm+1Am.

The mutually formal adjoint first-order differential operators

Am : Hm −→Hm+1 and A†m : Hm+1 −→Hm,

are defined as [21]:

Am = κ(s)
d

ds
−mκ′(s) and (6)

A†m = −κ(s)
d

ds
− τ(s)

κ(s)
− (m− 1)κ′(s), (7)

with κ =
√
σ. Hm is the Hilbert space of {Φk,m}k≥m, for m ∈ N, with respect to the inner product

(5). We restrict ourselves to the case when for each m ∈ N, Hm is dense in the Hilbert space
H = {ϕ ∈ L2(ρ(s)ds)} where L2 is the space of square integrable functions. The following shape
invariance relations are satisfied

AmA
†
m = A†m+1Am+1 + rm+1,

rm+1 = λm+1 − λm = −mσ′′ − τ ′, (8)

where eigenvalues λl and eigenfunctions Φl,m are:

λl =
l∑

k=1

rk,

Φl,m =
A†m

λl − λm
A†m+1

λl − λm+1
· · ·

A†l−2

λl − λl−2

A†l−1

λl − λl−1
Φl,l (9)

for all l ∈ N and m ∈ {0, 1, 2, . . . , l − 1}, Φl,l satisfying the relation AlΦl,l = 0.

The annihilation and creation operators are defined as:

am, a
†
m : Hm −→Hm, am = U †mAm and a†m = A†mUm (10)

within the unitary operator

Um : Hm −→Hm, Um|l.m〉 = |l + 1,m+ 1〉. (11)

The states |l,m〉 =
Φl,m

||Φl,m||
are defined for all l ≥ m and for each m ∈ N. The mutually formal

adjoint operators am and a†m act on the states |l,m〉 as

am|l,m〉 =
√
λl − λm |l − 1,m〉 and

a†m|l,m〉 =
√
λl+1 − λm |l + 1,m〉, l ≥ m, (12)

and satisfy the commutation relations:

[am, a
†
m] = Rm, [a

†
m,Rm] = σ′′a†m, [am,Rm] = −σ′′am, (13)

where Rm = −σ′′Nm − τ ′, Nm : Hm −→ Hm is the number operator defined as NmΦl,m = lΦl,m.

Remark that, when deg(σ) = 1, the algebra defined by the generators in (13) is isomorphic to the
Heisenberg-Weyl algebra [21]. In addition to the commutation relations (13), we have

AmRm = Rm+1Am, (14)
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and the similarity transformation

UmRmU
†
m = Rm+1 + σ′′, for all m ∈ N. (15)

Setting for all m ∈ N, |n〉 = |m+ n,m〉, en = λm+n− λm, m ∈ N, we obtain, with Nm = a†mam:

am|n〉 =
√
en|n− 1〉,

a†m|n〉 =
√
en+1|n+ 1〉, (16)

(Hm − λm)|n〉 = en|n〉.

The CSs for AHF were provided by Cotfas [21] as:

|z〉 = N (|z|2)

∞∑
n=0

zn
√
εn
|n〉, N (|z|2) =

[ ∞∑
n=0

|z|2n

εn

]−1/2

(17)

for any z in the open disc C (O,R) with centre O and radius

R = lim sup
n→∞

n
√
εn 6= 0 (18)

with εn =

{
1 if n = 0

e1e2 · · · en if n > 0
. (19)

These CSs are eigenstates of the annihilation operator am, i.e., am|z〉 = z|z〉.
Introducing the right-inverse operators A−1

m , a−1
m , it was established in [23] that the CSs (17) can

be rewritten as

|z〉 = N (|z|2)
∞∑
n=0

(za−1
m )

n|0〉, (20)

with their generalization given by

|z; Rm〉 =

∞∑
n=0

(zRma
−1
m )

n|0〉 =

∞∑
n=0

zn

hn(Rm)
|n〉 (21)

where

h0(Rm) = 1, (22)

hn(Rm) =

√
εn

n−1∏
k=0

(Rm + kσ′′)

for n ≥ 1. (23)

The states (21) are eigenstates of am,

am|z; Rm〉 = z(Rm − σ′′)|z; Rm〉, (24)

and satisfy the second order differential equation

{am − z(Rm − σ′′)}
d

dz
|z; Rm〉 = (Rm − σ′′)|z; Rm〉. (25)

Furthermore, we generalized the CSs (21) as:

|z; Rm〉 =

∞∑
n=0

(zf(Rm)a−1
m )

n|0〉 =

∞∑
n=0

zn

hn(Rm)
|n〉 (26)
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for any analytical function f, where

h0(Rm) = 1

and hn(Rm) =

√
εn

n−1∏
k=0

f(Rm + kσ′′)

for n ≥ 1. (27)

The CSs (26) are eigenstates of am,

am|z; Rm〉 = zf(Rm − σ′′)|z; Rm〉, (28)

and satisfy the condition

{am − zf(Rm − σ′′)}
d

dz
|z; Rm〉 = f(Rm − σ′′)|z; Rm〉. (29)

Taking into account the fact that Rm is an operator which acts on the states |n〉 as

Rm|n〉 = [−(m+ n)σ′′ − τ ′]|n〉 = rm+n+1|n〉, (30)

we rewrite the CSs (26) under the form:

|z;m〉 =
∞∑
n=0

zn

hn(m)
|n〉, (31)

where

h0(m) = 1

and hn(m) =

√
εn

n−1∏
k=0

f(rm+n+1−k)

for n ≥ 1. (32)

The properties (28) and (29) become

am|z;m〉 = zf(r′′m+n+2)|z;m〉,

{am − zf(rm+n+2)} d
dz
|z;m〉 = f(rm+n+2)|z;m〉, (33)

respectively. We established in [23] that the generalized coherent states (31) verify the properties
of label continuity, overcompleteness, temporal stability and action identity.

3 Generalized hypergeometric coherent states for associated Jacobi
polynomials and hypergeometric functions

3.1 The construction

In this section, we construct CSs for Jacobi associated fuctions and hypergeometric functions. The
resolution of the identity satisfied by these states is discussed through the Stieltjes moment problem
and solved using the Mellin transform. The appropriate solution is given in terms of Meijer G
functions.

The polynomial functions σ(x) and τ(x) corresponding to Jacobi associated functions polyno-
mials are

σ(x) = 1− x2, τ(x) = (ζ − γ)− (γ + ζ + 2)x (34)
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while for the hypergeometric functions polynomials they are given by

σ(x) = (1− x)x, τ(x) = (ζ + 1)− (γ + ζ + 2)x. (35)

The derivatives of first order of τ(x) and second order of σ(x) are provided as:

τ ′(x) = −(γ + ζ + 2), σ′′(x) = −2, (36)

respectively. For commodity, set
µ = γ + ζ + 2. (37)

The eigenvalues of the Hamiltonian Hm, given in (4), with associated eigenvectors {Φl,m}l≥0 , are
obtained from (36) and (37) as follows:

λl = −1

2
l(l − 1)σ′′ − lτ ′ = l(l + µ− 1) (38)

such that we get [25]:
en = λm+n − λm = n(2m+ n+ µ− 1). (39)

The quantity hn(Rm) yields

hn(Rm) =

√
Γ(n+ 1)

Γ(2m+ n+ µ)

c2n Γ(2m+ µ)
. (40)

In order to obtain hn(Rm) for any value of c, set

f(Rm) = f(Rm + σ′′) =

√(
−1

2
Rm

)(
−1

2
Rm

)
(41)

with
Rm = −(m+ n)σ′′ − τ ′ = 2

(
m+ n+

µ

2

)
.

Then, we obtain the product

n−1∏
k=0

f(Rm + kσ′′) =

√
Γ
(
n− Rm

2

)
Γ
(
n− Rm

2

)
Γ
(
−Rm

2

)
Γ
(
−Rm

2

) = cn. (42)

Fixing ν = µ
2 , from (42) it comes :

hn(Rm) =

[
Γ(n+ 1)

Γ(n+ 2m+ 2ν)

Γ(2m+ 2ν)

Γ
(
−Rm

2

)
Γ
(
n− Rm

2

) Γ
(
−Rm

2

)
Γ
(
n− Rm

2

)]− 1
2

. (43)

Thereby

hn(m) =

[
Γ(n+ 1)

(2m+ 2ν)n
[(−(m+ n)− 2ν)n]2

]− 1
2

. (44)

Then, the related CSs |z;m〉 for both associated Jacobi polynomials and hypergeometric func-
tions are provided as follows:

|z;m〉 =
[
N(|z|2,m)

]− 1
2

∞∑
n=0

zn√
Γ(n+1)(2m+2ν)n
[(−m−n−ν)n]2

|n〉 (45)

where the normalization function is given in terms of Meijer’s G function as

N(|z|2,m) =
Γ(2m+ 2ν)

[Γ(−m− n− ν)]2
G1,2

2,2

(
−|z|2

∣∣∣∣ 1+m+n+ν, 1+m+n+ν

0, 1−2m−2ν

)
. (46)
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Remark 3.1. 1. The constructed GHCSs (45) coincide with the GHCSs introduced by Appl and
Schiller (1), and correspond to the GPAH-CSs for c 6= 1 and for the number of added quanta
(or photons) p = 0 [25].

2. In the case c = 1, the GHCSs |z;m〉 are delivered by

|z;m〉 =
1√

0F1(2m+ 2ν; |z|2)

∞∑
n=0

zn√
Γ(n+ 1)(2m+ 2ν)n

|n〉 (47)

with the normalization constant given as follows:

N(|z|2;m) =

∞∑
n=0

|z|2n

|hn(m)|2
=0 F1(2m+ 2ν; |z|2)

= Γ(2m+ 2ν)|z|1−2m−2νI2m+2ν−1(2|z|). (48)

The GHCSs (47) coincide with the GPAH-CSs obtained in [23] for the number of added quanta
(or photons) p = 0.

Moreover, they are not orthogonal to each other since

〈z′,m|z,m〉 =
1[

G1,2
2,2

(
−|z′|2

∣∣∣∣ 1+m+n+ν, 1+m+n+ν

0, 1−2m−2ν

)] 1
2

G1,2
2,2

(
−zz̄′

∣∣∣∣ 1+m+n+ν, 1+m+n+ν

0, 1−2m−2ν

)
[
G1,2

2,2

(
−|z|2

∣∣∣∣ 1+m+n+ν, 1+m+n+ν

0, 1−2m−2ν

)] 1
2

.

(49)

3.2 Continuity in the labeling

The GHCSs (47) are continuous in labeling z. Indeed, the transformation of CSs parameter z′ −→ z
leads to the transformation of GHCSs |z′;m〉 −→ |z;m〉:

If |z − z′| −→ 0 then‖|z,m〉 − |z′,m〉‖2 = 2 [1− Re (〈z′,m|z,m〉)] −→ 0, (50)

where (48) and (49) together have been used.

3.3 Resolution of the unity operator

Next, a fundamental property of any CSs is the resolution of unity operator. We have the following
proposition:

Proposition 3.2. The GHCSs |z;m〉 satisfy the following resolution of the identity∫
C

d2z

π
|z;m〉 〈z;m|W (|z|2,m) = IH (51)

with the Hilbert space H = span{|n〉}∞n=0 identical to the Fock basis, where the weight function
W (|z|2,m), obtained through the Mellin transform, is given by

W (|z|2,m) =
1

[Γ(−m− ν)Γ(−m− n− ν)]2
G1,2

2,2

(
−|z|2

∣∣∣∣ 1+m+n+ν, 1+m+n+ν

0, 1−2m−2ν

)
×G2,0

2,2

(
|z|2
∣∣∣∣ m+ν; m+ν

0; 2m+2ν−1

)
. (52)

Proof. See the Appendix. �

In Figure 1, we plot the weight function (52) versus x = |z|2 for different values of m,n and ν. All
the curves are positive, this confirms the positivity of the weight function for the parameter ν > 0.
We also notice that the polynome parameter ν does not affect the general behaviour of the curves
but increases their asymptotic behaviour by taking smaller values.
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Figure 1: Plots of the weight function (52) versus x = |z|2: with the parameters m = 1, n = 2 and for
different values of ν; with the parameters m = 2, ν = 0.7 and for different values of n; with the parameters
n = 2, ν = 0.7 and for different values of m.

4 Reproducing kernel and analytic representation

4.1 Reproducing kernel

The overcompleteness of the constructed GHCSs |z,m〉 allows the study of their relation with the
reproducing kernels [8].

Define the quantity K(z, z′) := 〈z′,m|z,m〉 , by using the connection between the Meijer’s G-
functions and the modified Bessel functions of the first kind [35]-[38], as follows:

K(z, z′) =

G1,2
2,2

(
−zz̄′

∣∣∣∣ 1+m+n+ν, 1+m+n+ν

0, 1−2m−2ν

)
[
G1,2

2,2

(
−|z′|2

∣∣∣∣ 1+m+n+ν, 1+m+n+ν

0, 1−2m−2ν

)] 1
2

1[
G1,2

2,2

(
−|z|2

∣∣∣∣ 1+m+n+ν, 1+m+n+ν

0, 1−2m−2ν

)] 1
2

=

(
|zz′|
zz̄′

)m+ν− 1
2 I2m+2ν−1(2

√
zz̄′)√

I2m+2ν−1(2|z|)I2m+2ν−1(2|z′|)
.

(53)

K(z, z′) is a reproducing kernel. Indeed, we have the following result.

Proposition 4.1. The following properties

(i) hermiticity K(z, z′) = K(z′, z),

(ii) positivity K(z, z) > 0, and

(iii) idempotence
∫
C
K(z, z”)K(z”, z′)

W (|z”|2)d2z”

π
= K(z, z′)

are satisfied by K on the Hilbert spce H.

Proof. See the Appendix.
�

4.2 Analytic representation in the GHCSs basis

From the resolution of the identity property (51), given |Ψ〉 ∈ H, we have

|Ψ〉 =

∫
C

d2z

π
W (|z|2,m)Ψ(z) |z;m〉 (54)

where Ψ(z) := 〈z;m|Ψ〉 . Then, the following reproducing property

Ψ(z) =

∫
C

d2z′

π
W (|z′|2,m)Ψ(z′)K(z′, z) (55)
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is also satisfied. The Hilbert space H can be represented as the Hilbert space of analytic functions
in the variable z.

Given a normalized state |Φ〉 =
∞∑
k=0

Ck |k〉 , Ck ∈ C on H, we obtain

〈z̄;m|Φ〉 =

[
Γ(2m+ 2ν)

[Γ(−m− n− ν)]2
G1,2

2,2

(
−|z|2

∣∣∣∣ 1+m+n+ν, 1+m+n+ν

0, 1−2m−2ν

)]− 1
2

×
∞∑
n=0

Cn
(−m− n− ν)nz

n√
Γ(n+ 1)(2m+ 2ν)n

(56)

such that the entire functions

f(z,m) =

[
Γ(2m+ 2ν)

[Γ(−m− n− ν)]2
G1,2

2,2

(
−|z|2

∣∣∣∣ 1+m+n+ν, 1+m+n+ν

0, 1−2m−2ν

)] 1
2

〈z̄;m|Φ〉

=

∞∑
n=0

Cn
(−m− n− ν)nz

n√
Γ(n+ 1)(2m+ 2ν)n

(57)

are analytic over the whole z plane. Then, from the resolution of the identity (51), we can write

|Φ〉 =

∫
C

d2

π
W (|z|2,m)[N(|z|2,m)]−1f(z̄,m)|z;m〉 (58)

and express the scalar product of two states |Φ1〉 and |Φ2〉 given on H by the formula

〈Φ1|Φ2〉 =

∫
C

d2z

π
W (|z|2,m)[N(|z|2,m)]−1f1(z̄,m)f2(z̄,m) (59)

where

f1(z̄,m) =

∞∑
n=0

Cn
(−m− n− ν)n√

Γ(n+ 1)(2m+ 2ν)n
zn,

f2(z̄,m) =
∞∑
k=0

Ck
(−m− k − ν)k√

Γ(k + 1)(2m+ 2ν)k
z̄k. (60)

5 Expectation values

The constructed CSs can be used in different physical applications to calculate the expectation
(mean) values of any significant physical observable O which characterizes the quantum system
embedded in the considered potential. We have the following statement.

Proposition 5.1. From the definition of the CSs in (45), the mean value of a physical observable
O in the generalized CSs for hypergeometric type functions |z;m〉 is obtained as

〈A〉z,m =

[
Γ(2m+ 2ν)

[Γ(−m− n− ν)]2
G1,2

2,2

(
−|z|2

∣∣∣∣ 1+m+n+ν, 1+m+n+ν

0, 1−2m−2ν

)]−1

×
∞∑
n=0

z2n 〈n|A |n〉
Γ(n+1)(2m+2ν)n
[(−m−n−ν)n]2

. (61)

Then, we get

〈N〉z,m = −C(n)
1

G1,2
2,2

(
−|z|2

∣∣∣∣ 1+m+n+ν, 1+m+n+ν

1, 1−2m−2ν

)
G1,2

2,2

(
−|z|2

∣∣∣∣ 1+m+n+ν, 1+m+n+ν

0, 1−2m−2ν

) , (62)
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and

〈N2〉z,m =
1

G1,2
2,2

(
−|z|2

∣∣∣∣ 1+m+n+ν, 1+m+n+ν

0, 1−2m−2ν

) [−C(n)
1 G1,2

2,2

(
−|z|2

∣∣∣∣ 1+m+n+ν, 1+m+n+ν

1, 1−2m−2ν

)

+C
(n)
2 G1,2

2,2

(
−|z|2

∣∣∣∣ 1+m+n+ν, 1+m+n+ν

2, 1−2m−2ν

)]
, (63)

providing the intensity correlation

(g(2))z,m = G1,2
2,2

(
−|z|2

∣∣∣∣ 1+m+n+ν, 1+m+n+ν

2, 1−2m−2ν

) G1,2
2,2

(
−|z|2

∣∣∣∣ 1+m+n+ν, 1+m+n+ν

0, 1−2m−2ν

)
G1,2

2,2

(
−|z|2

∣∣∣∣ 1+m+n+ν, 1+m+n+ν

1, 1−2m−2ν

) (64)

with C(n)
1 = C

(n)
2 = 1.

Proof. See the Appendix.
�

6 Quantization with the generalized hypergeometric coherent states

In this paragraph, we deal with the general procedure described in [7] and used, for example, in our
previous works [39]-[41]. For more details, one may also consult references quoted therein.

6.1 Coherent State Quantization: General Scheme

Let X be a set of parameters equipped with a measure µ and let L2(X,µ) be its associated Hilbert
space of complex-valued square integrable functions with respect to µ. Let us choose in L2(X,µ) a
finite or countable orthonormal set O = {φn , n = 0, 1, 2, . . . },

〈φm|φn〉 =

∫
X
φm(x)φn(x)µ(dx) = δmn , (65)

obeying the (crucial) condition:

0 <
∑
n

|φn(x)|2 := N (x) <∞ a.e. . (66)

Let H := span(O) in the Hilbert space L2(X,µ) be a separable complex Hilbert space with or-
thonormal basis {|en〉 , n = 0, 1, 2, . . . }, in one-to-one correspondence with the elements of O =

{φn , n = 0, 1, 2, . . . }. One defines the family of states FH = {|x〉 , x ∈ X} in H as:

|x〉 =
1√

N (x)

∑
n

φn(x) |en〉 ∈H . (67)

From conditions (65) and (66) these CS are normalized, 〈x|x〉 = 1 and resolve the identity in H :∫
X

N (x) |x〉〈x| µ(dx) = IH . (68)

The relation (68) allows us to implement a coherent state quantization of the set of parameters X
by associating to a function X 3 x 7→ f(x) that satisfies appropriate conditions the operator Af in
H as:

f(x) 7→ Af :=

∫
X

N (x) f(x) |x〉〈x| µ(dx). (69)
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The matrix elements of Af with respect to the basis |en〉 are given by

(Af )nm = 〈en|Af |em〉

=

∫
X
f(x)φn(x)φm(x) µ(dx). (70)

The operator Af is

1. symmetric if f(x) is real valued,

2. bounded if f(x) is bounded, and

3. self-adjoint if f(x) is real semi-bounded (through
Friedrich’s extension or self adjoint extension).

6.2 Quantization of elementary classical observables

The resolution of the identity provided by (51) allows us to implement the CS quantization (also
named Berezin-Klauder-Toeplitz or anti-Wick quantization) of the complex plane by associating a
function C 3 z 7→ f(z). For this purpose, let us define the operator on the Hilbert space H

f(z) 7→ Af =

∫
C
f(z) |z;m〉 〈z,m| d

2z

π
W (|z|2,m) (71)

such that

Af :=
∞∑
n=0

∞∑
k=0

|n〉 〈k|√
Γ(n+1)(2m+2ν)n

[(−Nm−ν)n]2
Γ(k+1)(2m+2ν)k

[(−N†
m−ν)k]2

∫
C

[N(|z|2,m)]−1f(z)znz̄k
d2z

π
W (|z|2,m) (72)

where the operators Nm, N
†
m act on the Fock Hilbert space {|n〉}∞n=0 as delivered in (16).

The Berezin-Klauder-Toeplitz quantization of the elementary classical variables z and z̄ is re-
alized via the maps z 7→ Az and z̄ 7→ Az̄ defined on the Hilbert H. Then, after some algebra, we
obtain in the complex plane

Az =
∞∑
n=0

(−m− n− 1− ν)
√

(n+ 1)(2m+ 2ν + n) |n〉 〈n+ 1| , (73)

Az̄ =
∞∑
n=0

(−m− n− ν)
√
n(2m+ 2ν + n− 1) |n〉 〈n− 1| , (74)

where the matrix elements

(Az)k,n =
∞∑
n=0

∞∑
k=0

∫ 2π

0

∫ ∞
0

rdrdθ

π
[N(r2,m)]−1 ei(n+1−k)θrn+1+kW (r2,m)√

Γ(n+1)(2m+µ)n
[(−Nm−ν)n]2

Γ(k+1)(2m+µ)k
[(−N†

m−ν)k]2

|n〉 〈k| , (75)

(Az̄)k,n =
∞∑
n=0

∞∑
k=0

∫ 2π

0

∫ ∞
0

rdrdθ

π
[N(r2,m)]−1 ei(n−k−1)θrn+1+kW (r2,m)√

Γ(n+1)(2m+µ)n
[(−m−n−ν)n]2

Γ(k+1)(2m+µ)k
[(−m−k−ν)k]2

|n〉 〈k| , (76)

are together obtained from (72), and the following relations

z = reiθ, z̄ = re−iθ and
d2z

π
=
rdrdθ

π
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∫ 2π

0
ei(n−m)θdθ =


0 if m 6= n,

2π if m = n

(77)

are used.
The commutator of the operators Az and Az̄ takes the form

[Az, Az̄] =
∞∑
n=0

{
(−m− n− 1− ν)2(n+ 1)(2m+ 2ν + n)− (−m− n− ν)2n(2m+ 2ν + n− 1)

}
× |n〉 〈n| . (78)

For the quantization of f(z) = |z|2 , using the integral formula (72), we obtain the corresponding
operator

A|z|2 =

∞∑
n=0

∞∑
k=0

∫ 2π

0

∫ ∞
0

rdrdθ

π
[N(r2,m)]−1 ei(n−k−1)θrn+1+k√

Γ(n+1)(2m+µ)n
[(−m−n−ν)n]2

Γ(k+1)(2m+µ)k
[(−m−k−ν)k]2

W (r2,m) |n〉 〈k|

=

∞∑
n=0

(n+ 1)(2m+ µ+ n) |n〉 〈n| . (79)

Its commutators with Az and Az̄ yield

[Az, A|z|2 ] = −2

∞∑
n=0

(m+ ν + n+ 1)2
√

(n+ 1)(2m+ 2ν + n) |n〉 〈n+ 1| , (80)

[Az̄, A|z|2 ] = 2
∞∑
n=0

(m+ ν + n)2
√
n(2m+ 2ν + n− 1) |n〉 〈n− 1| , (81)

respectively.

7 Probability density and time evolution

This section deals with the semi-classical character of the GHCSs. We analyse how these states do
evolve in time under the action of the time evolution operator provided by the physical Hamiltonian
describing the quantum system.

We start with the overlap (49) expressed in terms of the modified Bessel functions of the first
kind as follows:

〈z′,m|z,m〉 =

(
|zz′|
zz̄′

)m+ν− 1
2 I2m+2ν−1(2

√
zz̄′)√

I2m+2ν−1(2|z|)I2m+2ν−1(2|z′|)
. (82)

Then, taking a normalized state |z0;m〉, the related phase space distribution is provided through
the probability density:

z → %z0(z) := |〈z;m|z0;m〉|2

=
I2m+2ν−1(2

√
zz̄′)I2m+2ν−1(2

√
z̄z′)

I2m+2ν−1(2|z|)I2m+2ν−1(2|z′|)
. (83)

Remark 7.1. The expression (83) is analogue to the probability density defined for BGCSs

|z〉m =
|z|m/2√
Im(2|z|)

+∞∑
n=m

zn−m√
Γ(n−m+ 1)Γ(n+ 1)

|n,m〉 (84)
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built in [41], given as follows:

︷︸︸︷
%z0 (z) := |m〈z|z0〉m|2 =

Im(2
√
z0z̄)Im(2

√
z̄0z)

Im(2|z|)Im(2|z0|)
(85)

also provided through modified Bessel functions of the first kind. Thus, we can emphasize that the
GHCSs (47) show similar time evolution behaviour as the BGCSs (84).

Then, the associated time evolution behaviour is supplied by

z → %z0(z, t) = | 〈z;m| e−iHmt |z0;m〉 |2. (86)

After acting the evolution operator U(t) = e−iHmt, with Hm provided by (4) and its eigenvalues
en = n(n+ 2ν + 2m− 1) with µ = 2ν (see (39)), on the GHCSs |z0;m〉, we obtain

|z0; t;m〉 = e−iHmt |z0;m〉

= [N(|z0|2,m)]−
1
2

∞∑
n=0

(−m− n− ν)n(z0)n√
Γ(n+ 1)(2m+ 2ν)n

e−iHmt |n〉

= [N(|z0(t)|2,m)]−
1
2

∞∑
n=0

(−m− n− ν)n(z0e
−i(n+2ν+2m−1)t)n√

Γ(n+ 1)(2m+ 2ν)n
|n〉 . (87)

Then, in the basis {|e−in2tn〉 := |Φn(t)〉 = |e−iθn(t)n〉,
θn(t) = n2t}∞n=0, the equation (87) becomes︷ ︸︸ ︷

|z0; t;m〉 =: e−iHmt |z0;m〉

= [N(|z0(t)|2,m)]−
1
2

∞∑
n=0

(−m− n− ν)n(z0(t))n√
Γ(n+ 1)(2m+ 2ν)n

|Φn(t)〉

= |z0(t);m〉 (88)

where z0(t) := z0e
−i(2ν+2m−1)t. Then, by recasting the GHCSs in the basis {|Φn(t)〉}∞n=0 as follows:

︷ ︸︸ ︷
|z;m〉 = [N(|z|2,m)]−

1
2

∞∑
n=0

(−m− n− ν)nz
n√

Γ(n+ 1)(2m+ 2ν)n
|Φn(t)〉 (89)

we get from (83)

%z0(z, t) := |
︷ ︸︸ ︷
〈z;m|

︷ ︸︸ ︷
z0; t;m〉 |2

=
I2m+2ν−1(2

√
z̄z0(t))I2m+2ν−1(2

√
zz0(t))

I2m+2ν−1(2|z|)I2m+2ν−1(2|z0(t)|)
. (90)

Thereby, the time dependence of a given GHCSs |z;m〉 is realized as︷ ︸︸ ︷
|z; t;m〉 = e−iHmt|z;m〉

= |z(t);m〉, z(t) := e−i(2ν+2m−1)tz. (91)

The relation (91) shows that the time evolution of the GHCSs |z;m〉 reduces to a rotation in the
complex plane given by z 7→ z(t) = e−i(2ν+2m−1)tz. Therefore, the semi-classical feature of the
GHCSs is given by (86), while the temporal stability property is highlighted by the relation (91).
The latter asserts that the temporal evolution of any GHCS always remains a GHCS, and fixes the
phase behaviour of the GHCSs |z;m〉 with the factor e−i(2ν+2m−1)t.
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8 Thermal properties of the GHCSs

This section furnishes a description of statistical properties of the GHCSs for the model in the
situation of a thermal equilibrium. Consider a quantum gas of the system in the thermodynamic
equilibrium with a reservoir at temperature T , which satisfies a quantum canonical distribution.
The corresponding normalized density operator is given by

ρ(m) =
1

Z(β)

∞∑
n=0

e−βEn |n〉 〈n| , En = n(n+ µ+ 1), (92)

where the partition function denoted Z(β) is taken as the normalization constant with its expression:

Z(β) =
∞∑
n=0

e−βn(n+µ+1) (93)

ensuring the normalization condition: Tr(ρ(m)) = 1.
The density operator GS-P -representation (also known as the diagonal expansion) is given by

ρ =

∫
C

d2z

π
W (|z|2,m) |z;m〉P (|z|2,m) 〈z;m| , (94)

with the quasi-distribution function P (|z|2,m) given, by the normalization condition

1

π

∫
W (|z|2,m)P (|z|2,m)d2z = 1, (95)

as

P (|z|2,m) = eβµ
∞∑
k=0

βk

k!

(
d

da

)2k

[
eaG2,0

2,2

(
ea |z|2

∣∣∣∣ m+ν, m+ν

0, 2m+µ−1

)]
G2,0

2,2

(
|z|2
∣∣∣∣ m+ν, m+ν

0, 2m+µ−1

) , (96)

where a = β(µ+ 1).
Using the identity (see [19, 29])

e−βEn = e−nβ(µ+1)
∞∑
k=0

βk

k!
(n)2k (97)

we obtain the thermal average of the integer powers of number operator 〈N s〉 in terms of Meijer’s
G-functions:

〈eεN 〉|z;m〉 =

G1,2
2,2

(
−eε|z|2

∣∣∣∣ 1+m+n+ν, 1+m+n+ν

0, 1−2m−µ

)
G1,2

2,2

(
−|z|2

∣∣∣∣ 1+m+n+ν, 1+m+n+ν

0, 1−2m−µ

) . (98)

Thereby

lim
ε→0

∂s

∂εs
〈eεN 〉|z;m〉 = 〈N s〉|z;m〉 lim

ε→0
〈eεN 〉

= 〈N s〉|z;m〉 . (99)

Then, from

〈N s〉 =

∫
C

d2z

π
W (|z|2,m)P (|z|2,m) 〈N s〉|z;m〉
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= lim
ε→0

∂s

∂εs

∫
C

d2z

π
W (|z|2,m)P (|z|2,m) 〈eεN 〉|z;m〉 , (100)

we finally get

〈N s〉 =

∞∑
n=0

eβµ
∞∑
k=0

βk

k!

(
d

da

)2k

lim
ε→0

∂s

∂εs
(eε)n (e−a)n. (101)

In this manner, the thermal average of the first two powers of the number operator are

〈N〉 = 1 + 2eβ(2−µ), 〈N2〉 = 1 + 4eβ(2−µ). (102)

Therefore, the thermal second-order correlation function g(2) and the thermal Mandel parameter
are obtained as follows:

g(2) =
〈N2〉 − 〈N〉
〈N2〉

=
2eβ(2−µ)

(1 + 2eβ(2−µ))2
, (103)

Q = 〈N〉 (g(2) − 1) = −

[
1 + 4

e2β(2−µ))

1 + 2eβ(2−µ)

]
. (104)

9 Concluding remarks

In this work, we have first explored the building method, developed in [21]-[25], for generalized
associated hypergeometric coherent states, and, then, proposed a construction method for general-
ized hypergeometric CSs (GHCSs) for associated Jacobi polynomials and hypergeometric functions.
The constructed GHCSs coincide with the GHCSs introduced by Appl and Schiller, and correspond
to the GPAH-CSs for c 6= 1 and for the number of added quanta (or photons) p = 0 [25]. The
resolution of the identity property is established through a Stieltjes moment problem solved by an
appropriate weight function, in terms of product of Meijer’s G functions, by using the Mellin trans-
form. Then, the analytical features of the GHCSs are discussed through the reproducing kernel and
the analytic representation of a given function in the Hilbert space spanned by these CSs. Next,
the expectation values of the observables describing the quantum model have been derived in the
constructed GHCSs basis. Besides, the CS quantization procedure, known as the Berezin-Klauder-
Toeplitz quantization, (and also called coherent state, or anti-Wick quantization), has been applied
in the complex plane by using the basis of the GHCSs. The study of the properties of the GHCSs
has been also carried out by the analysis of their time dependence under the action of the time
evolution operator elaborated from the quantum Hamiltonian and a probability density. Using the
GS-P -representation also known as the diagonal representation of the density operator, the relevant
thermodynamical properties of the quantum system have been investigated and discussed in the
GHCSs basis.

Appendix

Proof of Proposition 3.2
From the definition of the CSs (45), we have∫

C

d2z

π
|z;m〉 〈z;m|W (|z|2,m) =

∞∑
n=0

∫ ∞
0

[N(x,m)]−1 x
nW (x,m)dx

Γ(n+1)(2m+2ν)n
[(−m−n−ν)n]2

|n〉 〈n| (105)

where the following relations

z = reiθ,
d2z

π
=
rdrdθ

π
and |z|2 = x (106)
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are used. The second member in the last line of (105) leads to∫ ∞
0

[N(x,m)]−1 xn

Γ(n+1)(2m+2ν)n
[(−m−n−ν)n]2

W (x,m)dx

=

∫ ∞
0

[Γ(−m− ν)]2Γ(2m+ 2ν)[N(x,m)]−1W (x,m)

[Γ(−m− n− ν)]2Γ(n+ 1)Γ(2m+ 2ν + n)
xndx

= 1. (107)

Then, setting

n = s− 1,

g(m)(x) = [Γ(−m− ν)]2Γ(2m+ 2ν)[N(x,m)]−1W (x,m)

and by use of the Meijer’s G-functions and the Mellin inversion theorem [42, 43]∫ ∞
0

dxxs−1Gm,np,q

(
αx| a1, . . . , an; an+1, . . . , ap

b1, . . . , bm; bm+1, . . . , bq

)

=
1

αs

m∏
j=1

Γ(bj + s)

q∏
j=m+1

Γ(1− bj − s)

n∏
j=1

Γ(1− aj − s)

p∏
j=n+1

Γ(aj + s)

, (108)

the Eq.(107) leads to∫ ∞
0

g(m)(x)

[Γ(−m− s+ 1− ν)]2Γ(s)Γ(2m+ 2ν + s− 1)
xs−1dx = 1,

implying ∫ ∞
0

g(m)(x)xs−1dx = [Γ(1− ν −m− s)]2Γ(s)Γ(2m+ 2ν + s− 1). (109)

Using the connection between the hypergeometric functions and the Meijer’s G-functions [20, 35],
it follows:

g(m)(x) = G2,0
2,2

(
x

∣∣∣∣ m+ν; m+ν

0; 2m+2ν−1

)
,

[Γ(−m− ν)]2Γ(2m+ 2ν)[N(x,m)]−1W (x,m) = G2,0
2,2

(
x

∣∣∣∣ m+ν; m+ν

0; 2m+2ν−1

)
,

such that we get

W (x,m) =
N(x,m)

[Γ(−m− ν)]2Γ(2m+ 2ν)
G2,0

2,2

(
x

∣∣∣∣ m+ν; m+ν

0; 2m+2ν−1

)
.

Thereby, by replacing x by |z|2, it comes

W (|z|2,m) =

G2,0
2,2

(
|z|2
∣∣∣∣ m+ν; m+ν

0; 2m+2ν−1

)
[Γ(−m− ν)Γ(−m− n− ν)]2

G1,2
2,2

(
−|z|2

∣∣∣∣ 1+m+n+ν, 1+m+n+ν

0, 1−2m−2ν

)
. (110)

�
Proof of Proposition 4.1
The proof of (i) and (ii) can be easily obtained. Indeed, after direct calculations, we arrive at

K(z, z′) =
1[

G1,2
2,2

(
−|z′|2

∣∣∣∣ 1+m+n+ν, 1+m+n+ν

0, 1−2m−2ν

)] 1
2

G1,2
2,2

(
−z′z̄

∣∣∣∣ 1+m+n+ν, 1+m+n+ν

0, 1−2m−2ν

)
[
G1,2

2,2

(
−|z|2

∣∣∣∣ 1+m+n+ν, 1+m+n+ν

0, 1−2m−2ν

)] 1
2
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= K(z′, z) (111)

and

K(z, z) = 1 > 0. (112)

We start the proof of the idempotence property by first using the expression of the reproducing kernel (53),
and then writing:

∫
C
K(z, z”)K(z”, z)W (|z”|2)

d2z”

π
=

∫
C
G2,0

2,2

(
|z”|2

∣∣∣∣ m+ν; m+ν

0; 2m+2ν−1

) G1,2
2,2

(
−zz̄”

∣∣∣∣ 1+m+n+ν, 1+m+n+ν

0, 1−2m−2ν

)
[
G1,2

2,2

(
−|z|2

∣∣∣∣ 1+m+n+ν, 1+m+n+ν

0, 1−2m−2ν

)] 1
2

× 1

[Γ(−m− ν)Γ(−m− n− ν)]2

×
G1,2

2,2

(
−z”z̄′

∣∣∣∣ 1+m+n+ν, 1+m+n+ν

0, 1−2m−2ν

)
[
G1,2

2,2

(
−|z′|2

∣∣∣∣ 1+m+n+ν, 1+m+n+ν

0, 1−2m−2ν

)] 1
2

d2z”

π
. (113)

Let

S(z, z′) = G1,2
2,2

(
−zz̄”

∣∣∣∣ 1+m+n+ν, 1+m+n+ν

0, 1−2m−2ν

)
G1,2

2,2

(
−z”z̄′

∣∣∣∣ 1+m+n+ν, 1+m+n+ν

0, 1−2m−2ν

)
(114)

and

X(z”) =

∫
C

G2,0
2,2

(
|z”|2

∣∣∣∣ m+ν; m+ν

0; 2m+2ν−1

)
[Γ(−m− ν)Γ(−m− n− ν)]2

S(z, z′)
d2z”

π
. (115)

From

S(z, z′) =

∞∑
n=0

∞∑
k=0

[Γ(−m− ν)]4

Γ(2m+ 2ν + n)Γ(2m+ 2ν + k)

(z̄”z)n(z̄′z”)k

Γ(n+ 1)Γ(k + 1)
(116)

we get

X(z”) =

∞∑
n=0

∞∑
k=0

[Γ(−m− ν)]4

Γ(2m+ 2ν + n)Γ(2m+ 2ν + k)

(z)n(z̄′)k

Γ(n+ 1)Γ(k + 1)

×
∫
C

G2,0
2,2

(
|z”|2

∣∣∣∣ m+ν; m+ν

0; 2m+2ν−1

)
[Γ(−m− ν)Γ(−m− n− ν)]2

(z̄”)n(z”)k
d2z”

π

= G1,2
2,2

(
−zz̄′

∣∣∣∣ 1+m+n+ν, 1+m+n+ν

0, 1−2m−2ν

)
. (117)

Thereby ∫
C
K(z, z”)K(z”, z)W (|z”|2)

d2z”

π
=

1[
G1,2

2,2

(
−|z|2

∣∣∣∣ 1+m+n+ν, 1+m+n+ν

0, 1−2m−2ν

)] 1
2

×
G1,2

2,2

(
−zz̄′

∣∣∣∣ 1+m+n+ν, 1+m+n+ν

0, 1−2m−2ν

)
[
G1,2

2,2

(
−|z′|2

∣∣∣∣ 1+m+n+ν, 1+m+n+ν

0, 1−2m−2ν

)] 1
2

= K(z, z′). (118)

�
Proof of Proposition 5.1
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From the relations (45), the expectation of a given observable A in the basis of the CSs |z;m〉 is obtained
as follows:

〈z;m|A |z;m〉 = 〈A〉z,m =

[
Γ(2m+ 2ν)

[Γ(−m− k − ν)]2
G1,2

2,2

(
−|z|2

∣∣∣∣ 1+m+k+ν, 1+m+k+ν

0, 1−2m−2ν

)
× Γ(2m+ 2ν)

[Γ(−m− n− ν)]2
G1,2

2,2

(
−|z|2

∣∣∣∣ 1+m+n+ν, 1+m+n+ν

0, 1−2m−2ν

)]− 1
2

×
∞∑

n,k=0

znz̄k√
Γ(n+1)(2m+2ν)n
[(−m−n−ν)n]2

Γ(k+1)(2m+2ν)k
[(−m−k−ν)k]2

〈k|A |n〉 . (119)

Thereby, if n = k, it comes

〈A〉z,m = [N(|z|2,m)]−1
∞∑
n=0

[(−m− n− ν)n]2

(2m+ 2ν)n

z2n

Γ(n+ 1)
〈n|A |n〉 . (120)

For the number operator N , we have in the Fock basis {|n〉}∞n=0: 〈n|N i |n〉 = ni and 〈n′|N i |n〉 = 0. Using
the ansatz [19], set

Si =

∞∑
n=0

[(−m− n− ν)n]2

(2m+ 2ν)n

xn

Γ(n+ 1)
ni with x = |z|2. (121)

For i > 0, we obtain the following relation for ni

ni =

i∑
l=1

C
(i)
l

n!

(n− l)!
=

i∑
l=0

(−1)lC
(i)
l

n!

(n− l)!
. (122)

Then, we get

Si =

(
x
d

dx

)i
S0 =

i∑
l=1

C
(n)
l xl

(
d

dx

)l
S0, (123)

where

S0 =
Γ(2m+ 2ν)

[Γ(−m− n− ν)]2
G1,2

2,2

(
−x
∣∣∣∣ 1+m+n+ν, 1+m+n+ν

0, 1−2m−2ν

)
(124)

such that, by applying the nth derivative of the Meijer’s G-functions, we get:

Si =

i∑
l=1

(−1)lC
(n)
l

Γ(2m+ 2ν)

[Γ(−m− n− ν)]2
G2,2

3,3

(
−x
∣∣∣∣ 1+m+n+ν, 1+m+n+ν, 0

0, l, 1−2m−2ν

)
=

i∑
l=1

(−1)lC
(n)
l

Γ(2m+ 2ν)

[Γ(−m− n− ν)]2
G1,2

2,2

(
−x
∣∣∣∣ 1+m+n+ν, 1+m+n+ν

l, 1−2m−2ν

)
. (125)

From (125), the expectations of the operators N and N2 are:

〈N〉z,m = [N(|z|2,m)]−1S1 = −C(n)
1

G1,2
2,2

(
−|z|2

∣∣∣∣ 1+m+n+ν, 1+m+n+ν

1, 1−2m−2ν

)
G1,2

2,2

(
−|z|2

∣∣∣∣ 1+m+n+ν, 1+m+n+ν

0, 1−2m−2ν

) , (126)

and

〈N2〉z,m = [N(|z|2,m)]−1S2

=
1

G1,2
2,2

(
−|z|2

∣∣∣∣ 1+m+n+ν, 1+m+n+ν

0, 1−2m−2ν

) [−C(n)
1 G1,2

2,2

(
−|z|2

∣∣∣∣ 1+m+n+ν, 1+m+n+ν

1, 1−2m−2ν

)

+C
(n)
2 G1,2

2,2

(
−|z|2

∣∣∣∣ 1+m+n+ν, 1+m+n+ν

2, 1−2m−2ν

)]
. (127)

�
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