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Abstract. We formulate general conjectures about the relationship between the 
A-model connection on the cohomology of a d-dimensional Calabi-Yau complete 
intersection V of r hypersurfaees VI, . . . ,  Vr in a toric variety Px and the system 
of differential operators annihilating the special generalized hypergeometric series 
~b0 constructed from the fan 2;. Using this generalized hypergeometric series, we 
propose conjectural mirrors V / of  V and the canonical q-coordinates on the moduli 
spaces of Calabi-Yau manifolds. 

In the second part of  the paper we consider some examples of Calabi-Yau 
3-folds having Picard number > 1 in products of  projective spaces. For conjec- 
tural mirrors, using the recurrent relation among coefficients of the restriction of the 
hypergeometric function ~b0 on a special line in the moduli space, we determine the 
Picard-Fuchs equation satisfied by periods of this special one-parameter subfam- 
ily. This allows to obtain some sequences of integers which can be conjecturally 
interpreted in terms of Gromov-Witten invariants. Using standard techniques from 
enumerative geometry, first terms of these sequence of integers are checked to 
coincide with numbers of  rational curves on Calabi-Yau 3-folds. 

1. Introduction 

In this paper we consider complex projective smooth algebraic varieties V of 
dimension d whose canonical bundles ~(-v are trivial, i.e. Y v  ~ Cv, and the Hodge 
numbers hP,~ are zero unless p = 0, or p = d. These varieties are called d- 
dimensional Calabi-Yau varieties, or Calabi-Yau d-folds. For each dimension 
d > 3, there are many examples of  topologically different Calabi-Yau d-folds which 
can be constructed from hypersurfaces and complete intersections in weighted pro- 
jective spaces [5, 6, 7, 24, 23, 26]. 

Physicists have discovered a fascinating phenomen for Calabi-Yau manifolds, 
so-called mirror symmetry [12, 17, 27, 29]. Using mirror symmetry, Candelas et al. 
in [9] have computed the coefficients of  the q-expansion of the Yukawa coupling 
for Calabi-Yau hypersurfaces of degree 5 in p4. The method of Candelas et al. was 
applied to Calabi-Yau 3-folds in weighted projective spaces [14,33,21] and 
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complete intersections in weighted and ordinary projective spaces [22, 28]. The 
q-expansions for Yukawa couplings have been calculated also for Calabi-Yau hy- 
persurfaces of dimension d > 3 in projective spaces [18]. 

The interest of algebraic geometers in Yukawa couplings is explained by the 
conjectural relationship between the coefficients of the q-expansion of the Yukawa 
couplings and the intersection theory on the moduli spaces of rational curves on 
Calabi-Yau d-folds [18, 19]. For small values of the degree of rational curves, this 
relationship was verified in some cases by S. Katz [20]. However, the main problem 
which remains unsolved is to find a general rigorous mathematical explanation of 
the relation between the coefficient of q-expansions and counting of rational curves 
(instantons) on Calabi-Yau manifolds. 

The purpose of this paper is to show that the calculation of the Yukawa 
couplings for d-dimensional Calabi-Yau complete intersections in toric varieties 
bases essentially on the theory of special generalized hypergeometric functions. We 
remark that these hypergcometric functions satisfy the hypergeometric differential 
system considered by Gelfand, Kapranov and Zelevinsky in [15]. We propose also 
a general method for computing the normalized canonical q-coordinates. 

The paper is organized as follows: 
In Sect. 2, we give a review of the calculation of Candelas et al. in [9] of the 

coefficients Fa of the q-expansion of the normalized Yukawa 3-point function 

K~ 3) = 5 + 2 ca qd �9 
a>__l 1 - 

The coefficients Fa = ndd 3 conjecturaly coincide with the Gromov-Witten invariants 
(introduced by D. Morrison in [35]) for rational curves on quintic hypersurfaces in 
p4. Our review is greatly influenced by the work of D. Morrison [32, 33], but we 
want to emphasize the fact that the computation of the prediction for the number of 
rational curves on quintic 3-folds bases essentially on the properties of the special 
generalized hypergeometric series 

~o(z) = E ~ z " ,  
n>O ~,~t. ] 

which admits a combinatorial definition in terms of curves on p4. 
In Sect. 3, we explain a Hodge-theoretic framework for mirror symmetry and 

the ideas due to P. Deligne [11] and D. Morrison [34, 35]. The key-point here is the 
existence of a new type of connection on cohomology of Calabi-Yau manifolds. 
Following a suggestion of D. Morrison, we call it A-model connection (see also 
[43]). The mirror symmetry identifies the A-model connection on the cohomology of 
a Calabi-Yau d-fold V with the classical Gaul3-Manin connection on cohomology 
of its mirror manifold V 1. 

Section 4 contains a review of the standard computational technique based on 
the recurrent relations satisfied by coefficients of formal solutions of Picard-Fuchs 
equations. We use this technique later in explicit calculations of q-expansions for 
Yukawa couplings for some examples of Calabi-Yau complete intersections in toric 
varieties. 

Section 5 is devoted to complete intersections in ordinary projective spaces. 
Using explicit description of the series ~0(z) for Calabi-Yau complete intersections 
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in projective spaces, we calculate the d-point Yukawa coupling and propose the 
explicit construction for mirrors of such Calabi-Yau d-folds 3. 

In Sect. 6, we give a general definition of special generalized hypergeometric 

functions and establish the relationships between these functions and combinato- 
rial properties of  rational curves on toric varieties containing Calabi-Yau complete 
intersections. It is easy to see that these generalized hypergeometric functions 
form a special subclass of the generalized hypergeometric functions with resonance 
parameters considered by Gelfand et al. in [15]. We formulate general conjectures 
about the differential systems and canonical q-coordinates defined by the generalized 
hypergeometric series corresponding to Calabi-Yau complete intersections in toric 
varieties. Using a combinatorial interpretation of Calabi-Yau complete intersections 
in toric varieties due to Yu. I. Marlin [30], we propose an explicit construction of 
mirrors. 

In Sect. 7, we consider in more detail the example of Calabi-Yau hypersur- 
faces V of degree (3,3) in P2xp2.  We use this example to illustrate the general 
computational method we used in Sect. 8, where we calculate the q-expansions of  
Yukawa couplings for some Calabi-Yau complete intersections in products of pro- 
jective spaces. For this, we restrict the hypergeometric function qi0(z) to a very 
special line, such that the resulting function of one parameter satisfies a fourth- 
order differential equation to which we apply the methods described in Sect. 4. The 
actual calculations were done on the computer, using a general program written 
inside M A P L E .  Applying methods of enumerative geometry, we check that first 
numbers in the resulting sequences of  integers (conjectural Gromov-Witten invari- 
ants) coincide with numbers of  rational curves of  small degree on the corresponding 
Calabi-Yau 3-folds. So our results can be seen as a confirmation of the conjectures 
related to mirror symmetry. 

2. Quint i c s  in p4 

In this section we give a review of the (conjectural) computation of the Gromov-  
Witten invariants Fd and predictions nd for numbers of  rational curves of 
degree d on quintics V in p5 due to P. Candelas, X. de la Ossa, P.S. Green, and 
L. Parkes [9]. The main ingredients of these computations were considered in papers 
of D. Morrison [32, 33]. The purpose of this review is to stress that this computation 
depends only on properties of the special generalized hypergeometric function ~0(z). 
We begin with the algorithm for computing the coefficients in the q-expansion of 
the Yukawa Coupling and the predictions for number of rational curves. 

2.1. The Coefficients in the q-Expansion o f  the Yukawa Coupling. Consider the 
series 

_ (5n)!  . 
�9 0(z  

(5,)! then the numbers an satisfy the recurrent relation Step 1. If  we put a,  - (n!)5, 

(n + 1)4a,+1 = 5(5n § 1)(5n + 2)(5n + 3)(5n + 4)an . 

3 Recently L. Borisov proposed a general combinatorial duality which includes as a particular 
case this our construction [4]. 
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This immediately implies that the series ~b0(z) is the solution to the differential 
equation 

~ ( z )  = 0,  

where 
8 

= 04 - 5 z ( 5 0  + 1) (50  + 2 ) ( 5 0  + 3 ) ( 5 0  + 4), O = Z ~ z .  

One can rewrite the differential operator ~ in powers o f  O as follows: 

= A 4 ( z ) O  4 -~- A 3 ( z ) O  3 - I - " "  -~- AO(Z) . 

We denote by Ci(z) the rational function Ai(z) /A4(z)  (i = 0 . . . . .  3) .  

Step 2. Following [32], define the normalized Yukawa 3-differential as 

"if/'3 = Kz (3) 

where K}3)= W3(z) /~g(z)  is the 3-point coupling function. The function W3(z) 

satisfies the differential equation 

oW3(z) = - �89 C3(z)W3(z)(lO) 

and the normalizing condition W3(0) = 5. 
One easily obtains 

- 'u / ;  = (1  - 5 ~ ) ~ o < ] ( z )  

Step 3. The equation ~ = 0 is a Picard-Fuchs differential equation with maximal 

unipotent monodromy (in the sense o f  Morrison [32]) at z = 0. Therefore, there 

exists a unique solution ~bl(Z) to ~ = 0 such that ~bl(z) = (logz)~b0(z) + ~(z) ,  
where 7J(z) is regular at z = 0 and 7J(0) = 0. We define the new local coordinate 

q = q(z)  near the point z = 0 as 

q(z) = exp ( ~ b l ( z ) )  = zexp ( ~ ( z )  
\ ~0(z) ) \ ~0(z) ) " 

Then, we rewrite the normalized Yukawa 3-differential ~ff'3 in the coordinate q as 

( ~ ) |  
~/'3 ~- g(3) 

The function K~ 3) is called the Yukawa 3-point coupling. This function has the 

power expansion 

K (3) = 5 4- s ndd3qd 

a>=l 1 - - q  a ' 

where Fa = ndd 3 are conjectured to be the Gromov-Witten invariants o f  rational 
curves of  degree d on a quintic 3-fold in p4 [20, 35]. The numbers na are predictions 
for numbers o f  rational curves o f  degree d on quintic 3-folds. 
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It is important to remark that in the above algorithm for calculation of the num- 
bers nd one needs to know only properties of  the series ~o(z) and the normalization 
condition W3(0) = deg V = 5 for W3(z), i.e., one does not need to know anything 
about mirrors of  quintics. 

2.2. Philosophy of Mirrors and the Series ~o(z). The central role in the compu- 
tation of Candelas et al. in [9] is played by the orbifold construction of mirrors 
for quintics in p4 [17]. In [1], this construction of mirrors was generalized for 
hypersurfaces in toric Fano varieties with Gorenstein singularities. 

In the above algorithm, we have shown that one can forget about mirrors. 
However, the philosophy of mirrors proves to be very helpful. For quintic 3- 
folds this philosophy appears as the following twofold interpretation of the series 

~0(z). 

The first interpretation. We compute the coefficients an of the power series ~0(z) 
using combinatorial properties of  curves C C p4 of degree n. 

Notice that any such curve C meets a generic quintic V at 5n distinct points 
Pl . . . . .  psn. There exists a degeneration of V into a union of 5 hyperplanes 
/-/1 tO... U Hs. Every such hyperplane //i intersects C at n points Pil . . . . .  pin 
which can be considered as deformations of  a subset of  n points from the set 
{Pb...,P5n}. It remains to remark that there exists exactly (5n)!/(n!) 5 ways to 
divide {Pl . . . .  , Psn} into 5 copies of n-element disjoint subsets. 

The second interpretation. We find the coefficients an from an integral representa- 
tion of ~o(z). 

Let T ~ (C*)4 be the 4-dimensional algebraic torus with coordinate functions 

XI, 3(2, X3, X4. Take the Laurent polynomial 

f (u, X)  = 1 - (UlX1 + b/2X2 -~ u3X3 -}- bl4X4 -]- bl5(X1XzX3X4 ) -1 ) 

in variables X1, X2, X3, X4, where the coefficients u l , . . . ,  us are considered as inde- 
pendent parameters. Let z = ulu2u3u4us. 

Proposition 2.2.1. 

1 1 dX1 dX2 dX3 dX4 
~ 0 ( U l . . . u s ) =  ~0(z ) - -  ( 2gX/ ~ )4  f - -  A A A" 

IXil=l f(u,  X)  X1 -~2 ~ X4 

Proof One has 

1 

f (u,  X)  
- -  - -  ~ (UlX1 -]- u2X2 -}- u3X3 -}- u4X4 -l- u5(X1X2X3X4)-I )  n 

n>0 

= 2 ~ m ( u ) X  m . 

mCZ 4 

It is straightforward to see that co(u) = ~ 0 ( U l . . .  u 5) .  NOW the statement follows 
from the Cauchy residue formula. [] 

The second interpretation of ~0(z) implicitly uses mirrors of  quintics, since 
zero-locus of f (u,  X)  defines the affine Calabi-Yau 3-fold Zf in T whose smooth 
Calabi-Yau compactification is mirror symmetric with respect to quintic 3-folds (see 
[1]). Moreover, the holomorphic 3-form co(z) on Zf that extends to a regular form 
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on a smooth compactification of Zf  depends only on z, i.e., only on the product 
u l . . .us .  This 3-form can be written as 

co(z) - 1 1 dX~ A dX2 dX3 dX4 
(2rcV/7]-)4 Res f(u, X~) ~-1 ~ A X3- A ~-4 

This shows that q~0(z) is exactly the monodromy invariant period of the 3-forrn 
co(z) near z = 0. 

Proposition 2.2.2. The differential 3-form co(z) satisfies the same Picard-Fuchs 
differential equation ~q~ = 0 as the series q~o(Z). In particular, all periods of co(z) 
satisfy the Picard-Fuch differential equation with the operator 

O 4 -- 5Z(50 -'[- 1 ) (50  -~ 2)(50 + 3)(50 + 4) .  

Proof In order to prove the statement, it is sufficient to check that 

( ~  1 ) dXi dXe dX3 dX4 
f ( u , X )  ~-1 A ~ 2  A ~ 3  A-~-4 

is a differential of a rational 3-form on T\Zf. The latter follows from a standard 
arguments using reduction by the Jacobian ideal Jf  (see [2]). [] 

2.3. A-model Connection. The Yukawa coupling can be described in terms of a 
nilpotent connection VA on the cohomology of quintic 3-fold V, 

VA'H*(V,C)---~H*(V,C)|  C < ~ >  . 

This connection is homogeneous of degree 2, i.e., 

~7 A :Hi(V,C)---+Hi+2(V,C)@ C < ~ >  , 

and hence VA vanishes on H3(V, C). For this reason, we consider only the 
cohomology subring 

3 
H2*(V, Z) = GH2~(V, z )  c H*(V, Z) 

i=0 

of even-dimensional classes on a quintic 3-fold V(rkH2i(V, Z ) =  1). Let t/i be the 
positive generator of H2i(V, Z). Then, in the basis r/o, t/l, q2, q3, the multiplication 
by t/1 is the endomorphism of H2*(V, Z) having as matrix 

0 1 0 0 / 
0 0 5 0 

A =  0 0 0 1 

0 0 0 0 
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Following [10] and [35], we define the 1-parameter connection on H2*(V, C) @ 
C[[q]] considered as a trivial bundle over Spec C[[q]] as follows: 

0 o) 0 
q o .o 

[ VA/']I / ~- 0 /~1 
/ VA/~/2 / 0 0 112 

\ ~7A~3 "] 0 0 /~3 

The matrix 

K(q) = 
0 
0 

can be considered as the deformation 

o o)  
q ~ ~ 
0 K(3) dq 

q q 

0 0 

0 0 

of  the matrix A such that 

(1) 

A = Reslq=0K(q).  

The mirror philosophy shows that the matrix (1) can be identified with the 
matrix of  the classical Gaul3-Manin connection on the 4-dimensional cohomology 
space H3(Zf, C) in a special symplectic basis. We notice that the quotients Fi/F i+l 
of the Hodge filtration 

H 3 ( Z f ,  C )  = F ~ D F I D F 2 D F 3 D F 4 = 0 

are 1-dimensional. There is also the monodromy filtration on the homology 

H3(Z f , Z), 

O= W - 1 C  Wo C W1 C W2 C W3 = H3(Zu, Z) 

such that Wi/W~-I are also 1-dimensional. We choose the symplectic basis 70, 71, 

72, 73 in H3(Zu, Z)  in such a way that {?o,-..,Yi} form a Z-basis of W/. We 

choose also the basis coo, cob co2, co3 of H3(Zf, C) such that {COo . . . . .  coi} form a 

C-basis of F 3-i and 

Pij = f COi = (~ij for i => j .  
~9 

So the period matrix /7 = (pq) has the form [18, 35] 

1 P12 P13 P14 "~ 
/7 = 0 1 P23 P34 ] 

0 0 1 J ' 0 0 0 P134 

Notice that all coefficients Pij(i < j)  are multivalued functions of z near z = 0. 
Applying the Griffiths transversality property, we obtain that the Gaul3-Manin 

connection in the z-coordinate has the form 

VCOl I 0 0 (0P23)~- 0 
wo2 ! = o o ( O p34 ) ~- 
Vco3 / 0 0 0 

COl 

(.0 2 

(-O3 

where Op.~+~ are single valued functions. 
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Then the Yukawa 3-differential is simply the tensor product 

"/~3 = K(3) = (OP12)  aZ @ (0P23) dz | (0P34) az . 
Z Z Z 

By Griffiths transversality, one has coo A co2 = 0, i.e. we can assume that 
P12 = P34. The differential form coo can be defined as CO/ebo(z). Moreover,  P12 = 
qOl(z)/CI)o(z). In the new coordinate q, we have p12 = logq.  Then the Gaug-Manin  
connection can be rewritten as 

0 
q COO 

[ ~7COl ] 0 K (3)dq 0 COl q q 
/ VCO2 / 0 0 dq 0)2 

q 0) 3 \ VCO3 2/ 0 0 0 

2.4. The q-Coordinate and the Yukawa Coupling Since the coordinate q was 
defined intrinsically as the ratio ~l(z)/~o(z) of  two solutions of  the differential 
equation ~ = 0, it is natural to ask about the form of  the differential operator 
in the new coordinate q. Denote by 3 the differential operator q~q. 

Proposi t ion 2.4.1. The differential 3-form COo satisfies the Picard Fuchs differential 
equation with the differential operator 

,_~4 ~_ c3(q)E3 + c2(q)E2 , 

where 

_ 2 ~ K  (3) ,..,~g~ 3) 
c3(q) = K(3) ,  e2(q) = (K~3)) 2 

Proof. By properties of  the nilpotent connection, one has 

~CO0 = COl, ~COl = K~3)CO2, ~CO2 = 093, 

So 

On the other hand, 

,~2K(3) 

~co3 = 0 . 

,.~4CO 0 = Z2K~3)co 2 = Z((~K~3))CO2 -[-K~3)CO 3 ) 

= (Z2Kq(3))co 2 4-. 2(~Kq(3))co 3 . 

1 
(1) 2 = K~'~,_.~2CO0 

SKq (3) 1 -3 
( r 3 ) )  2 s 2 c o K ~  + K ~  m coo. 

Remark. 2.4.2. The differential equation for COo can be written also as 

•2(Kq(3)) I~2CO 0 = 0 .  

In this form this equation first arose in [13]. 

[] 
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The differential operator ~ which annihilates the function ~bo(z) defines the 
connection in the basis co, Oco, O2co, 03o) of  H3(Zf, C): 

V O co 0 a~ 0 Oco 
O2co - 
O3co] 

The basis co, OcoO2co, 03o) is also compatible with the Hodge filtration in 

H3(2f, C). Thus there exists a matrix 

R = 

rll F12 F13 r14 / 
i F22 ?'23 /"34 

0 r33 r34 
0 0 /"44 

such that 

It is easy to see that 

Oco col 
O2CO = R 602 
O 3 co ] co3 

rll = ~o(z), r22 = @o(z)(Op12), r33 = 050(z)(Op12)(OP23), 

r44 = ~o(Z)(OP12)(OP23 )(OP34) . 

3. Quantum Variations of Hodge Structure on Calabi-Yau Manifolds 

3.1. A-Model Connection and Rational Curves. A general approach to the definition 
o f  a new connection on cohomology of  algebraic and symplectic manifolds V was 
proposed by Witten [42]. The construction o f  Witten bases on the interpretation o f  
third partial derivatives 

83 

8ziSzjSzk P(z ) 

of  a function P(z) on the cohomology space H*(V, C) as structure constants o f  

a commutative associative algebra. The function P(z) is defined via the inter- 
section theory on the moduli spaces of  mappings of  Riemann surfaces S to V. 
Using Poincare duality, one obtains the structure coefficients of  the connection on 
H*(V, C). 

We consider a specialization o f  the general construction to the case when V 
is a Calabi-Yau 3-fold. We put n = dimH2(V, C ) =  dimH4(V, C). Let ~/0 be a 
generator of  H~ Z ) , { t  h . . . . .  r/z) a Z-basis o f  H2(V, Z), {~1 . . . . .  ~ }  the dual Z- 

basis o f  H4(V, Z)(I r / i , ( j )  = 6ij), and Go the dual to r/o generator o f  H6(V, Z). We 
can always assume that the cohomology classes ~/1 . . . . .  t/~ are contained in the closed 
K/ihler cone o f  V. 
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Definition 3.1.1. Let R = C[[ql . . . . .  q,]] be the rino of  formal power series in n 
independent variables. We denote by H ( V )  the scalar extension 

We consider a flat nilpotent holomorphic connection 

VA : H ( V )  ---+ H ( V )  | ~ (logq) 

defined by the following formulas [10, 35] 

n dq~ 

i=1 qi 

n K - -  = . . . ,  , V A~lk = ~ ~ ijk~j | dqi, k 1, n" 
i=1 j=i qi 

VA(j=~O dqi, j = l , . . . , n ;  
qj 

VA~0 = 0 .  

The coefficients Kijk are power series in ql . . . . .  qn defined by rational curves C on 

V, i.e., morphisms f :  p1 ~ V as follows: 

q[C] 

[c]~=o 

c]  . . .  Cn where q[C] = ql q, (ci = {C, qi}). The integer 

rEcl(Hi, = nee1 (C, (c ,  

is called the Gromo~Wit ten invariant [20, 35] of  the class [C]. I f  the classes 
r/i, qj and r/k are represented by effective divisors Di, Oj and Dk on V, then 

ff[C](lli, llj, l~k) is the number of  pseudo-holomorphic immersions z: p1 ---+ V such 

that [z(P1)] = [C] and z(0) E Di, z(1) C Dj, z(c~) C Dk for sufficiently general 
almost complex structure on V. One could hope that under favorable circumstance 
the number n[c] would be equal to the number of  rational curves C C V in the 
class [C] is always non-negative. 

The connection VA will be called the A-model connection. The connection VA 
defines on H ( V )  a variation of Hodge structure of  type (1,n,n, 1). We call this 
variation the quantum variation of  Hodge structure on V. 

Remark. 3.1.2. The Picard-Fuchs differential system satisfied by q0 was considered 
in detail in [10]. 

One immediately obtains: 

Proposition 3.1.3. Let r l = l l q l  + . . . + l n ~ l n E H 2 ( V , Z )  be a class of  an 
ample divisor on V. Define the 1-parameter connection with the new coordinate 
q by putting ql = qll . . . . .  qn = qln. Then the connection VA on H ( V )  induces the 
connection 
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In particular, the residue of the connection operator ~Tq at q = 0 is the Lefschetz 
operator L, : Hzi(v ,C)  ---+ H2i+Z(v,c), and 

((v~)~,7o,,1o) : (,1,,7,,1) + d>oE n~I_--Z~) 

where 

n d : ~ n[c] . 
(C, ~)=d 

Coro l l a ry  3.1.4. The connection Vq defines a differential operator of order 4 
annihilating ~1o. 

3.2. The GauJ3-Manin Connection for Mirrors. Let W be a Ca lab i -Yau  3-fold such 

that dim H3(W, C )  --  2n + 2. Assume that we are given a variation Wz of  complex 

structure on W near a boundary point p o f  the n-dimensional moduli  space J g w  

of  complex structures on W in holomorphic coordinates z l , . . . , z n  near p such that 
p = (0 . . . . .  0). 

Definit ion 3.2.1. The family Wz is said to have the maximal unipotent monodromy 
at z = 0 i f  the weight filtration 

O= W-1 C Wo C W1 C W2 C W3 = H3(Wz, C) 

defined by N is orthogonal to the Hodge .filtration {Fi}, i.e., 

H3(Wz, C) = Wi • Q F 3-i, i = 0 , . . . , 3  . 

(This is essentially the same definition given in [34, 35].) 
Choose a symplectic basis 

{70, 71, - - -, 7,, 61 . . . .  6~, 60} 

ofH3(Wz, Z )  in such a way that 7o generates W0, {~0,71 . . . . .  7,} is a Z-basis  of  W1, 

{70,71 . . . . .  7,,61 . . . .  6 ,} 

is a Z-basis  of  W2. Then we choose a symplectic basis in H3(Wz, C): 

{~O0, CO,. . . ,~n,  ~, . . . .  , ~ . , ~ 0 ) ,  

such that coo generates F 3, {~Oo, col . . . . .  con} is the basis of  F2,{co0, col . . . .  ,co~, 
Vl . . . .  , vn} is the basis o f  F 1 such that 

(o~,  ~ )  = (~,, 6,)  = 1, i = o . . . . .  n ,  

(COi, 70) = (Vj,70) = {Vi, yj) = (VO, Yj ) = ( V O , 6 j )  ~- O, i = 1 . . . . .  n, j = 0 . . . . .  n .  

The choice o f  the basis o f  H3(Wz, C) defines the splitting into the direct sum 

H3(Wz, C) = H3,O @ H  2, 1 @H1,2 @H0,3 , 
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such that all direct summands/acquire canonical integral structures. By Griffiths 
transversality property, the Gaul3-Manin connection V sends H 3-i'i to H 3-i-11i+1 @ 
f/l(1ogz). 

Two Calabi-Yau 3-folds V and W are called mirror symmetric if the quantum 
variation of Hodge structure for V is isomorphic to the classical VMHS for W. In 
this case the q-co-ordinates near p up to constants are defined by the formula [34] 

qi = exp (2~ff-~f)  f COo. 
yi 

4. Pieard-Fuchs Equations 

In this section we recall standard facts about Picard-Fuchs differential equations 
which we use in computations of  Yukawa d-point functions and predictions for 
numbers of rational curves on Calabi-Yau manifolds. 

4.1. Recurrent Relations and Differential Equations. Let an (n = 0, 1,2 . . . .  ) be an 
infinite sequence of complex numbers. For our purposes, it will be more convenient 
to define an for all integers n E Z by putting an = 0 for n < 0. We define the 
generating function for the sequence  {ai} as the formal power series 

O O  

~ ( z )  = ~ < z  i E C[[z]] .  
i>0 

Consider the following two differential operators acting on C[[z]]: 

O: f ~ z ~ f  & ' 

z:  f ~-+z" f . 

They satisfy the relation 

[O,z] = O o z - z o O  = z .  (2) 

These operators generate the algebra D = C[z, 69] of  "logarithmic" differential 
operators which are polynomials in non-commuting operators O and z. 

Fix a positive integer d. Assume that there exist m + 1 (m > 1) polynomials, 

Po(Y) . . . .  ,Pro(Y) E C[y] 

of  degree d + 1 such that for every n C Z the numbers {ai} satisfy the recurrent 
relation: 

Po(n)an + Pl(n + 1)an+l + " "  + Pm(n + m)an+m = 0 .  (3) 

(Here we consider y as a new complex variable having no connection to our pre- 
vious variable z.) Then (b(z) is a formal solution of the linear differential equation 

~ ( z )  = o 

with the differential operator 

~@ = zmpo(O) -~- z m - l p l ( O )  -~ ""  + Pro(O).  ( 4 )  
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This differential equation o f  order d + 1 can be rewritten in powers of  O as 

= Acl+l(z)O d+l + . . .  + A l ( z ) O  +Ao(z) , (5) 

where Ai are some polynomials in z. It is easy to check the following: 

Proposition 4.1.1. A power series ~b(z) is a formal solution to a differential 
equation ~ @ ( z ) = O  of order d + l for some element ~ E D  if  and only i f  
the coefficients {ai} satisfy a recurrent relation as in ( 3 ) f o r  some polynomials 
Po(Y) . . . . .  Pro(Y) of  degree d + 1. 

4.2. Picard-Fuchs Operators. Recall that a differential operator N as in (5) is 
called a Picard Fuchs operator at point z = 0 if  Ad+l (0 )+0 .  Solutions o f  the 

Picard-Fuchs equations ~q~ are said to have maximal unipotent monodromy at 
z = 0 [33] if  Ai(O)= 0 for i = 0 . . . . .  d. The above conditions on the operator 

can be reformulated in terms of  properties o f  the polynomial Pro(Y) in (3) as 
follows: 

A differential operator @ is a Picard-Fuchs operator if  and only i f  the poly- 
nomial Pro(Y) has degree d + 1, i.e., its leadin9 coefficient is nonzero. Moreover, 
solutions of  the equations ~ have maximal unipotent monodromy at z = 0 i f  and 
only i f  the polynomial Pm(Y) equals cy k for some nonzero constant c. 

Picard-Fuchs operators having the maximal unipotent monodromy at z = 0 will 
be objects o f  our main interest. Therefore, we introduce the following definition: 

Definition 4.2.1. A Picard-Fuchs operator ~ with the maximal unipotent mon- 
odromy will be called a MU-operator. We will always assume that the corre- 
spondin9 polynomial Pro(Y) in ( 3 ) f o r  any MU-operator @ is y~, i.e., c = 1. 

The fundamental property of  MU-operators is the following one: 

Theorem 4.2.2. If ~ is MU-operator, then the subspace in C[[z]] of solutions of 
the linear differential equation 

~(z) = o 

has dimension 1. Moreover, every solution is defined uniquely by the value 
~b(O ) = ao. 

Proof If  we have chosen a value of  a0, all coefficients ai for i > 0 are 
uniquely defined from the recurrent relation (3). (We recall that we put a i  = 0 
f o r /  < 0.) [] 

Definition 4.2.3. Let ~ be a MU-operator. Then the power series solution ~)o(z) 
of  the equation ~q~( z )=  0 normalized by the condition ~ 0 ( 0 ) =  1 will be called 
the socle-solution. 

4.3. Logarithmic Solutions and the q-Coordinate. Let @ be a MU-operator o f  order 
d + 1. Putting Cg(z)----Ai(z)/Ad+1(z) we can define another differential operator 

d+ l  

: ~(o) = ~C~(z)O ~ , 

i:0 
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which is also a MU-operator of  order d + l, where Ci(z)  are rational functions in 
z, and Cd+l (z) --= 1. Assume that we have a formal regular solution 

q~(z) = ~ a n z  n . 
i=0 

Consider a formal polynomial extension 

M~ -- C[[z]] [ l o g z ] ,  

where log z is considered as a new transcendent variable. We can define the structure 
o f  a left D-module on Mz putting by definition Olog  z = 1. In fact, M~ will be a 
module over the larger algebra Dz containing the new operator Log z such that 

z o (6) o L o g z )  = (6) o L o g z  ) o z  = 1 , 

O o Log z - Log z o O = l , 

and Log z acts on Mz by multiplication on log z. 

Proposit ion 4.3.1. Let  2~ = ~di_+_o~ C i ( z ) 0  i be any operator in D. Then 

d+l 
I~ ,Log  z] = • i C i ( z )  0 i -1  = ~ o  , 

i - -1  

where ~ o  is a f o rmal  derivative o f  ~ with respect to 6). 

Proo f  The statement follows from relation 

6)i o Log z - Log z o 6)i = i 6 ) i - 1  , 

which can be proved by induction. 
[] 

Assume that we want to find a element ~ l ( z )  in M~ such that ~ q ~ l ( Z ) =  0 and 

~bl(z) has form 

�9 l(z) = logz  �9 ~b0(z) + ~ ( z ) ,  

where kU(z) is an element of  C[[z]], and ~ ( 0 )  = 0. 

Proposit ion 4.3.2. The element 7J (z) satisfies the linear non-homogeneous differ- 

ential equation 

~ ( P 0 ( z )  + ~ T ( z )  = 0 ,  (6) 

or, formally,  
~ ( Z )  ~- - - ~  l ~ o ( Z  ) = ?o log2~  �9 ~0(z) �9 

Proo f  Since ~0 and ~bl are solutions, we obtain 

0 = 2~ ~bl = ~ log z (b0 + ~ kg 

= (Logz  o g~ + [r176 + ~ = [~ ,Logz]  o ~bo(z) + ~ 

I 
= ~ o  q~o + ~ ~Po = 0 .  [] 

Proposit ion 4.3.3. I f  ~bo(z) is the socle solution, then the function g~(z) is uniquely 
defined by Eq. (6) and the condition 7~(0)= 0 as an element o f  C[[z]]. 
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Proof Let 7J(z) = ~+_-~-o~ bi zi be an element of  zC[[z]] ,  i.e., bi = 0 for i < 0. 

By 4.3.2, for any n ~ Z, the coefficient by z n in ~ 7*(z) is 

Pm(n)bn + Pm-l(n - 1)bn-1 §  �9 

On the other hand, the coefficient by z ~ in ~ 0 ( z )  is 

P'm(n)an + P ' _ , ( n  - 1)a , -1  + - "  +P~o(n - re )an-re .  

Thus, we obtain the recurrent linear non-homogeneous relation 

m m 

Pm(n)b~ + ~ P m - i ( n  - i )b . - i  + ~ P ~ _ i ( n  - i)a~-i = O . 
i = 1  i = 0  

(7) 

Since Pro(n) = n d+l 4 0  for n > 1, one can find all coefficients bi (i >= 1) using 

(7). For instance, we obtain 

b] = - ( d  + 1)al  - PIm_](O)ao , 

2d+lb2 = - ( d  + 1)2da2 - Pm-l(1)bl  - P~m_](1)a~ -- P~_2(0)a0; .. .  etc. 

Corol lary 4.3.4. Let ~ be a MU-operator, then the quotient T/q) of  the solutions 
o f  the linear system 

# ~ = 0 ,  # g ~ + ~ ' ,  ~ , ( 0 ) : 0  

is a function depending only on 2 .  

We come now to the most important definition: 

Definition 4.3.5. The element 

q : exp ( q q ( z ) ' ~  exp ( 7J(z)'~ 
k ~o(z)] = z k ~o(z)] 

is called the q-parameter Jor the MU-operator 2 .  

4.4. Generalized Hypergeometric Functions and 2-Term Recurrent Relations. Since 
the number m + 1 o f  terms in a recurrent relation (3) is at least 2, 2-term recurrences 
are the simplest ones. Any such relation is defined by two polynomials Po(Y) and 
P](y)  of  degree d + 1: 

Po(n)an = Pl(n + 1)an+l . (8) 

Without loss o f  generality we again assume that the leading coefficient of  

PI(Y) is 1. 

Definition 4.4.1. Denote by 

Ga+l(~,fl; w) = Gd+l / ~ l ~ .  - - ,  O{d+l  "~ 

) ;w 
/~1,..., Pd+l 

the series 
d + l  

rL=l F(~i) 

FId+] F{ R. ~ 
n>~O 1 1 / = 1  \ y t ]  

d + l  

x - ~ W ~ - - - - -  wn 
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which is the generalized hypergeometric function with parameters ~1 . . . .  , ~a+l, 
fll,...,fla+l. (This is a slight modification of the well-known 9eneralized hyper- 
9eometric function a+lFa (see [31, 39]).) 

Proposition 4.4.2. Assume that 

PI(Y)  : I I ( y  %- ~ i ) ,  
i=1 

Po(Y) = 21-[(y %- fl~), 
i=1 

then the function Gd+l(c~, fl; 2 z) is a formal solution of the differential equation 

~ = ( P ~ ( O )  - z P o ( O ) ) ~  = o . 

Consider now the case when ~ is a MU-operator, i.e., P I (y )  = yd+l, and the 
recurrent relation has the form 

(n + 1) 6/+1 a,+l = Po(n)an �9 

Then for the power series 7J(z) = ~=>1 bi zi which is the solution to 

~ ~0(~) + ~ 'e(z) = 0,  

where 
o~  

~ o ( z )  = ~ a r  i , 

i=O 

is a regular solution to ~ k~ = 0, the coefficients {hi} satisfy the recurrent relation 

na+lbn = Pl(n - 1)bn-1 + Prl(n - 1)an-1 - (d + 1)naa.. 

4.5. d-Point Yukawa Functions. Let z : Vz ~ S be a 1-parameter family of Calabi- 
Yau d-folds, where S = Spec C[[z]]. Let T be the corresponding monodromy trans- 
formation acting on Hd(W~, C), T~ the unipotent part of T,N = Lo 9 T~. 

Definition 4.5.1. The family Vz is said to have the maximal unipotent monodromy 
at z = 0 i f  the weight filtration 

0 = W_l c Wo c ffl C . . .  ~ Wa-~ ~ ma =Ha(Vz, C) 

defined by N is orthogonal to the Hodge filtration {Fi}, i.e., 

Ha(Vz, C) = Wi • @ Fa-i i = 0 . . . .  ,d . 

(This is similar to definitions given in [18, 35].) 
Assume that the family ~ has the maximal unipotent monodromy at 

z = 0 and dim Fi /F  i+1 = 1 for i = 0 . . . . .  d. Then the Jordan nomaal form of N 
has exactly one cell of  size (d + 1 ) x  (d + 1). This means that there exists a 
d-cycle 7 E Ha(Vz, Z)  such that 7,N7 . . . . .  NaT are linearly independent in Hd(V~, Z), 
and Nay = 70 is a monodromy invariant d-cycle. Take a 1-parameter family co(z) 
of  holomorphic d-forms on Wz. It is well-known that the periods of  co(z) over the 
d-cycles in Ha(Vz,C) satisfy a Picard-Fuchs differential equation of order d + l 
defined by some differential MU-operator 

= Oa+X+ C~(z)O a + . . .  + Co(z). (9) 
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Definition 4.5.2. Define the coupling functions Wkd(z)(k,I >= 0, k,l E Z) as 
follows: 

~ , l  = f Okco(z) A O~oo(z) . 
y~ 

(By definition, we put 0 ~ = 1 to be the identity differential operator.) 

Definition 4.5.3 [32]. The coupling function Wd, o is called unnormalized d-point 
Yukawa function. 

Proposition 4.5.4. The coupling functions Wk, l(z) satisfy the properties 

(i) wk,~(z) = (- - l )dWt,  k ; 

(ii) Wkd(z)=O f o r  k + l < d ;  
(iii) OWk.l(z) = Wk+l,l(z) + Wk, l+l(z) ; 
(iv) ~v~+~+~,0(z) + Cd(z)t~a+k,o(z) + . .  + Co(z)V~,o(z) ---- O . 

Proof The statements follow immediately from the properties of the cup-product 
and from the Griffiths transversality property. 

Theorem 4.5.5. The d-point Yukawa function Wd, o(z) satisfies the linear differen- 
tial equation of  order one, 

2 
o W~,o(z) + u ~ C d ( z ) W d ,  o = O . (10) 

Proof By 4.5.4(ii), we have 

Wd_i,i(z)+ Wd-i-l,i+l(z) = 0 for i = 0 , 1 , . . . , d .  (11) 

Therefore, Wd, o(z) = (-1)iWd-i,i. On the other hand, by 4.5.4(iii), we have 

OWd_,,i = Wd-i+~,i(z)+ Wd-i,i+l(z) for i = 0,1 . . . . .  d . (12) 

It follows from (1l )  and (12) that 

k--1 
k O  Wd, O(Z) -~- ~ ( - - l ) i m d _ i , i ( Z )  = Wd+l,O(Z) @ ( - 1 )  k-1Wd-k+l,k(z). (13)  

i=0 

Case I, d is odd. Since 

we obtain 

Wd+__tJ ~+__t~ ( z )  = 0 ( 4 . 5 . 4 ( i ) ) ,  
2 ' 2 

O W~,+, d-,  (z) = (z) -~-, -~ Wd+3 ~ 1  . 

Using (11 ) and (13) for k = (d + 1 )/2, we obtain 

(d  + 1) OW~ 0(z) = ~fd+l,0(z).  
2 

By 4.5.4(ii) and (iv), this implies Eq. (10) for Wa, o(z). 

Case II. d is even. One has 

O W~_ ~(z) = w~+2_r_, ~(z) + w ~, -~-~'+~ (z) = 2W,,+2_T_, ~(z) . 
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Using ( l l )  and (13) for k = d/2, we obtain 

(d + 1)O Wa, o(Z) = 2Wa+l,o(z) �9 

The latter again implies the same linear differential equation for Wd, o(z). 

Corollary 4.5.6. 

Wd, o(z) = coexp -- 2 d 

for some nonzero constant Co = Wa,0(0). 

Example 4.5.7. Assume that # =  O d+l - z P o ( O )  be the MU-operator corre- 
sponding to a 2-term recurrent relation (n + 1)a+lan+l = Po(n)an, where Po(y )=  
2y  a+l + . . . .  Then the Yukawa d-point function Wd,0(z) equals 

C0 12[z t" "t 
,vu,0tzj - 1 - 2z ' 

i.e., Wd, o(z) is a rational function in z. 

4.6. Multidimensional Picard-Fuchs Differential Systems with a Symmetry Group. 
So far we considered only the case of  the 1-parameter family o f  Calabi-Yau d-folds 
V~ such that dim Fi /F  i+1 = 1 for i = 0 . . . . .  d. It is easy to see that the same methods 
can be applied to the case dim Fi /F  i+1 >= 1, provided Vz has a large automorphisms 

group. 

Proposition 4.6.1. Let Vz be a 1-parameter family of  Calabi-Yau d-folds with 
dim Fi /F  i+l ~ 1. Assume that there exists an action of a finite 9roup G on Vz 
such that the G-invariant part (Fi/F i+l)G is 1-dimensional for all i = 0 . . . . .  d. 
Then the holomorphic differential d-form co(z) again satisfies the Picard-Fuchs 
differential equation of order d + 1. 

Proof The statement immediately follows from the fact that the cohomology 
classes of  co(z), Oco(z) . . . .  , odco(z) form the basis of  the G-invariant subspace 
Hd(Vz, C) c C Hd(Vz, C). [] 

5. Calabi-Yau Complete Intersections in pN 

5.1. Rational Curves and Generalized Hypergeometric Series. Let V be a complete 

intersection of  r-hypersurfaces V1 . . . .  , Vr o f  degrees dl . . . . .  dr in pd+r. Then V is 
a Calabi-Yau d-fold if  and only if  d + r + 1 = d~ + . - - +  dr. A rational curve 
C of  degree n in pd+r has ndi intersection points with a generic hypersurface 
Vi. On the other hand, there exists a degeneration of  every divisor Vi into the 
union of  d i hyperplanes. Each of  these hyperplanes has n intersection points with 
C. This motivates the definition o f  the corresponding generalized hypergeometric 

series @0(z) as 
oo (ndl!) (ndr!) (14) Zn 

i = 0  ( n ! )  d l  (hi) dr 

The coefficients 
(ndl ! ) . . .  (ndr! ) 

an = (n!)d+r+l 
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satisfy the recurrent relation 

(n + 1)d+la~+l = P(n)an , 

where P(y)  is the polynomial of degree d + 1: 

P(n) = (ndl + dl)! (ndr + d 2nd+ l 
. . .  (ndr)!")!(n + 1) - r  = 

+ . . .  
(n&)~ 

I 

In particular, the leading coefficient of P(y)  is 2 = I-[~=l(d,) ai. 

Example 5.1.I. Let V be a complete intersection of two cubics in ps. The corre- 
sponding generalized hypergeometric series is 

__ (3n!) 2 
�9 : z . 

This series was found in [28] using the explicit construction of mirrors for V by 
orbifolding the 1-parameter family of special complete intersections of two cubics 
in p5: 

y3 + Y3 + y3 = 3~,Y4r~ y6 ; 

y43 @ ~ + ~ ~-31]/Y1Y2Y3 , 

by an abelian group G of order 81, where z = (3t)) -6. 

We will give another interpretation of the construction of  mirrors V' for V 
which immediately implies that r is the monodromy invariant period for the 
regular differential 3-form on V'. 

Let Zfi f2 be the complete intersection of two hypersurfaces in a 5-dimensional 

algebraic toms T = Spec [X~ I . . . . .  X ~  1 ] defined by the Laurent polynomials 

f l (u,X) = 1 - (ulX1 +/d2X2 @ u3X3)  , , 

f 2(u,X) = 1 - -  ( u 4 Y  4 -}- u 5 Y  5 -}- u 6 ( X l . . . X 5 ) - l )  . 

We define the differential 3-form co on Zfl f2 as the residue of the rational differential 
5-form on T: 

1 1 dXj 
c o -  R e s  - -  A . - .  A 

(2rcv/-21) f l ( u , X ) f  2(u,X) fill 

Let z = ul -. .u6. By the residue theorem, we obtain 

dX5 

X5 

1 (_ 1 dX1 A . . .  A dX5 
~0(z) = (27zVcSTil ~ I f t ( u , X ) f 2 ( u , X )  X1 ~-5  

In this interpretation, the mirrors for V are smooth Calabi-Yau compactifications 
of  affine 3-folds Zf~ 72" 

The equivalence between the above two constructions of  mirrors for V follows 
by the substitution 

X 1 = Y 3 / ( Y 3 Y 4 Y 5 )  , X 2  = Y 3 / ( Y 3 Y 4 Y 5 )  , X 3 = } r 3 / ( Y 3 Y 4 Y 5 )  , 

X4 = Y2 / ( Y1Y2 Y3 ), )(5 = Y2 / ( Y~ Y2 Y3 ) , 

Zg 1 . . . . .  U 6 = (3 lp )  - 1  . 
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Proposition 5.1.2. The normalized Yukawa d-differential for Calabi-Yau complete 
intersections has the form 

~ a  = (1 -- 2 z ) ~ ( z )  

where dl .. . .  , dg are degrees of  hypersurfaces. 

Proof The statement follows from 4.5.7 and the normalizing condition d l . . .  dr = 
Wd(O). [] 

5.2. The Construction of  Mirrors. Let V be a d-dimensional Calabi-Yau complete 
intersection of r hypersurfaces of  degrees dl . . . . .  dr in pd+r. We propose the explicit 
construction of candidates for mirrors with respect to V as follows: 

Let E = {vl . . . . .  Vd+r+l) be a generating set in the (d + r)-dimensional lattice 

N -~ Z d+r such that there exists the relation 

V] -~- ' ' ' -} -Vd+r+l  = 0 .  

We divide E into a disjoint union of r subsets E g c  E such that Card Eg =- dg. For 
i = 1, . . . ,  r, we define the Laurent polynomial Pi(u,X) in variables )(1 . . . .  ,Xd+r as 

Pi(X)= I -  ( ~ ujXVJl , 

where ul . . . . .  Ud+r+l are independent parameters. We denote by V I a Calabi- 
Yau compactification of d-dimensional affine complete intersections Z in 
T = Spec[X~l , . . .  ,X~lr] defined by the polynomials PI(u,X) . . . . .  Pr(u,X) with suf- 
ficiently general coefficients ui. It is easy to see that up to an isomorphism the 
affine varieties Z c T depend only on z = Ul " 'Ud+r+l.  Thus, we have obtained a 
1-parameter family of  d-dimensional varieties V/. 

Conjecture 5.2.1. The 1-parameter family of  d-dimensional varieties V ~ yields the 
mirror family for V. 

This conjecture is motivated by the combinatorial interpretation proposed in [1] 
of  the well-known construction of mirrors for hypersurfaces of  degree d + 2 in 
pd+l (see [17]). On the other hand, the conjecture is supported by the following 

property: 

Proposition 5.2.2. The hypergeometric series ~bo(z) in (14) is the monodromy 
invariant period function of  the holomorphic d-form co on W. 

Proof The statement follows from the equality 

__ dXd+r ~-~ (ndl  !) (ndr !) , 1 f 1 dX1 A ' . .  A - -  
~=o (n!) d' "'" (n-~t.) d--Tz ( 2 ~ ) d + r l x ~ = l  PI(X)"""  Pr(X) X1 Xd+r 

D. 
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6. Complete Intersections in Toric Varieties 

6.1. The generalized Hypergeometric Series q)o. Let N be a free abelian group of  
rank (d + r).  Consider r finite sets 

Ei = {Vi, I,-..,Vi, k/}, i = 1 . . . . .  r 

consisting of  elements v~,j E N. Let E be the union E1 tA . . .  tA Er. 
We put k = Card E = kl + . . .  + k~ and assume that E generates the group N. 

Let R(E) be the subgroup in Z" consisting of  all integral vectors 2 = {2i,j} such 
that 

ki 

E2,,jv,,j = o. 
i=1 j = l  

We denote by R+(E) a submonoid in R(E) consisting of  all 2 = { , ~ i , j }  E R(E) such 
that 2i,j > 0. 

Definition 6.1.1. Let ui,j be k independent complex variables parametrized by k 
integral vectors vi,j. Define the power series q)o(u) as 

I~0(t/)-~- E f l  2i, j ! t j ~ l ~ )  �9 
2cR+(E) /=i 

Let 2 (1) . . . . .  2(0 be a Z-basis  of  the lattice R(E) such that every element 
2 E R+(E) is a non-negative integral linear combination of  2 (0. We define new 
r complex variables z l , . . .  ,zs as follows: 

i! I ki ;y! z , =  Ylui,)s; s =  l , . . . , t .  
i=1 j = l  

Thus, the series ~b0(u) can be rewritten as the power series ~0(z) in t variables 

Z1,  . . . ,Z t .  

Example 6.1.2. Let E = {Vl . . . .  ,Vd+I} be vectors generating d-dimensional lattice 
N and satisfying the integral relation Vl + - - - +  Va+l = O, i.e., the group R(E) 
is generated by the vector (1 . . . . .  1) E Z a+l. Then the corresponding generalized 
hypergeometric series is 

( n d +  n)! ( n d +  n)!zn 
050(u) = ~ /+1  (ul . . .ud+l)" = ~ = ~0(z) 

n_->O (n! n>O (n ! )  d+l ' 

where z = t / l - . .Ud+ 1. The integral representation of  this series is the mono- 
dromy invariant period function for mirrors of  hypersurfaces of  degree (d + 1) 
in pa .  

Definition 6.1.3. Let T be a (d +r)-dimensional algebraic torus with the 
Laurent coordinates X = (Xb . . .  ,X~+r). We define r Laurent polynomials Pea (X), 
. . . .  PEr(X) as follows: 

PEi(X) = 1 -- E ui,j X~i'j" 
vi, j C E i  
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Proposition 6.1.4. The series ~bo(u) admits the following integral representation 

l xf= 1 dX1 A . . .  A dXd+r 
~0(u) -- (2ZCX/-~)d+r I ~. 1PE1 (X) .  .. PEr(X) Xl Xd+-----~ 

Proof  The statement follows immediately from the residue formula. [] 

6.2. Calabi-Yau Complete Intersections. Let Pz be a quasi-smooth (d + r)-dimen- 
sional projective toric variety defined by a (d + r)-dimensional simplicial fan s 
Assume that there exist r line bundles 5el . . . . .  5er such that each 5el is generated 
by global sections and the tensor product 

5el |  | 5er 

is isomorphic to the anticanonical bundle on y - 1  on Pz. If  V/ is the set of zeros 
of  a generic global section of 5ei, then the complete intersection V = V1 N �9 �9 �9 N Vr 
is a d-dimensional Calabi-Yau variety having only Gorenstein toroidal singularities 
which are analytically isomorphic to toric singularities of  Pz. 

Now let E = {Va,..., vk} be the set of all generators of 1-dimensional cones in 
27. Denote by Dj the toric divisor on Pz corresponding to vj. Notice that 

k 
x -~ = |  

j=l 

Following a suggestion of Yu. I. Manin [30], we assume that one can represent E 
as a disjoint union 

E = E a U . . ' U E r  

such that the line bundle 5ei is isomorphic to the tensor product 

@ (~Pz (D j ) .  
~/6 Ei 

The elements of  the group R(E) can be identified with the homology classes of  
1-dimensional algebraic cycles on Pz. Moreover, one has the following property 

Proposition 6.2.1. Let 2 = (21 . . . . .  2k) be an arbitrary element o f  R(E) representing 
the class o f  an algebraic 1-cycle C. Then 

2 i=  (Di, C), i =  1 . . . . .  k .  

We can always choose a Z-basis ,~(1) . . . . .  ,~(t) of R(E) such that every effec- 
tive algebraic 1-cycle on Pz is a non-negative linear combination of the elements 
2 (1) . . . . .  2 (0. Since the submonoid R+(E) consists of  classes of  nef-curves, this 
implies that every element of R+(E) is also a non-negative linear combination of 
20) , . . . ,  2 (0. This allows us to rewrite the series ~0(u) in t algebraically independent 

variables Zl, . . .  ,zt (t = rk R(E)). 

Corollary 6.2.2. The series ~bo(Z) can be interpreted via the intersection numbers 
o f  classes [C] of  curves C on Pz as follows: 

(<vl, c ) ) ! . . .  (<Vr, C))! z~C J 
@0(z) = ~ <D1, C)! (Dk, C) '  ' [C]r 

where z [c] = Z l l . . . z / ,  [C] = c12 0) + - . .  + ct2 (t). 
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6.3. General Conjectures. Let V be a d-dimensional Calabi-Yau complete intersec- 
tion of hypersurfaces V1,..., Vr in a (d + r)-dimensional quasi-smooth toric variety 
defined by a simplicial fan S. Choose a Z-basis 2(x),..., 2 (t) in R(E) such that the 
classes of all effective algebraic 1-cycles have non-negative integral coordinates. We 
assume that the divisors Vb . . . ,  Vr are numerically effective (in particular, they are 
not assumed to be necessary ample divisors). We assume also that the following 
conditions are satisfied: 

(i) V is smooth; 
(ii) the restriction mapping Pic Pz ---, Pic V is injective. 

In this situation, there exist two flat A-model connections: the connection VAp 
on H*(Pz)  and the connection VAv on H*(V, C). Let D i be the image of Hi(pz ,  C) 
in Hi(V,C).  The connection V,~p defines the quantum variation on cohomology of 
toric variety Pz. It follows from the result in [3] the following. 

Proposition 6.3.1. The complex coordinates z~ . . . . .  zt on IYI 2 can be identified with 
flat coordinates with respect to VAp. 

Conjecture 6.3.2. The generalized hypergeometric series ~bo(z) as a function of  
VAp-flat z-coordinates on I~ 2 is a solution of  the differential system ~ de~ned 
by the A-model connection VAV on IYI 2 which defines the quantum variation o f  

Hodge structures on the subring in ~ = o H 2 i ( V , C )  generated by restrictions o f  
the classes in Pic Pz to V. 

Remark. 6.3.3. One can check in many examples that the differential system 
is already defined by the generalized hypergeometric series 4~0(z). Probably there 
exists a general explanation of this fact. 

Conjecture 6.3.4. The VAv-flat coordinates q l , . . . ,q t  on 171 2 are defined as 

qi = exp(qSi(z)/q)o(z)), i = 1 . . . . .  t ,  

where 4)i(z) is a logarithmic solution to the differential system ~ having the form 

~bi(z) = (logzi)q~0(z) + 7'~(z), I//i(0 ) = 0 

for some regular at z = 0 power series ~gi(z). 
Moreover, all coefficients o f  the expansion o f  V Av-flat coordinates qi as power 

series o f  V Ap-flat z-coordinates are integers. 

Remark. 6.3.5. This conjecture establishes a general method for normalizing the 
logarithmic solutions defining the canonical q-coordinates for the differential system 
~.  There are two motivations for this conjecture. First, the conjecture is true for all 
already known examples of q-coordinates for Picard-Fuchs equations corresponding 
to Calabi-Yau complete intersections in products of weighted projective spaces (see 
examples in the remaining part of the paper). Second, the Lefschetz theorem and 
the calculation of the quantum cohomology ring of toric varieties [3] imply the 
relation 

qi = zi + O (Izl2) , ( i = l , . . . , t ) .  



516 V.V. Batyrev, D. van Straten 

Conjecture 6.3.6. Assume that V has dimension 3. Let Ki, j,k(z) be structure con- 
stants defining the A-model VAV connection in the z-coordinates. Then 

e~(z)Xi, j, k(z) 

is a rational function in z-coordinates. 

Conjecture 6.3.7. The mirror Calabi-Yau /)arieties with respect to V are Calabi- 
Yau compactifications of  the complete intersection o f  the affine hypersurfaces in 
the (d + r)-dimensional algebraic torus T defined by the equations 

P~ (X) . . . . .  PEr(X) = O . 

Remark. 6.3.8. Recall that two Calabi-Yau d-folds V and V ~ are called mir- 
ror symmetric if  hp'd-P(V)= hd--p'd--P(V t) and the superconformal field theories 
corresponding to V and V ~ are isomorphic. In [1] a general method for con- 
structing pairs of mirror symmetric Calabi-Yau hypersurfaces in toric varieties was 
proposed, based on the duality among so-called reflexivepolyhedra A and A* (see 
also [36, 37]). However, the equality hl , l ( z f )  = ha-l,l(Zg) for the pair of Calabi- 

Yau d-folds Z f  2g corresponding to the polyhedra A and A* are not sufficient 

to prove the mirror duality between Z f  and 2g in full strength. One needs to 

prove more: the isomorphism between the quantum cohomology of 2f and 2g. 
Since the quantum cohomology is defined by the canonical form of the A-model 
connection VA in q-coordinates, Conjecture 6.3.2 and Proposition 6.1.4 yield more 
evidence for validity of Conjecture 6.3.7. We give below one example showing 
that Conjecture 6.3.7 agrees with an orbifold construction of mirrors for complete 
intersections in the product of projective spaces inspired by superconformal field 
theories. 

Example 6.3.9. Let V be a Calabi-Yau complete intersection of two hypersurfaces 

of degrees (3,0) and (1,3) in the product p3 x p2. 
It is known that the mirrors for V can be obtained by orbifolding the complete 

intersection of two special hypersurfaces 

s,r  + s2r# + s 3 r  3 = r  

+ s 3 + + = o s ,  s2s3 

by the group G of order 27, where ($1 : $2 : $3 : $4) and (1"1 : T2 : T3) are the 
homogeneous coordinates on p3 and p2 respectively. 

On the other hand, the 5-dimensional fan 22 defining p3 x p2 has 7 generators 
{v~ . . . . .  /)7} = E satisfying the relations 

/)1 -~ /)2 -~- /)3 -~- /)6 = /)4 -]- 1)5 -~- /)7 = 0 . 

We choose vectors /)1 . . . . .  /)5 as the basis of the 5-dimensional lattice N. The com- 
plete intersection V is defined by dividing E into two subsets E1 = {/)1,v2,/)3} and 
E2 = {/)4,/)5, v6, v7}. The corresponding polynomials PE1 (X) and PE2(X) are 

PE1 = 1 - (ulX1 + ~/2X2 -{-/1323 ) ,  

PE2 = 1 - -  ( u 4 2 4  q-  u5X5  -J- u6(XlX2X3) -1 q- u7(X425)-l). 
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We obtain the equivalence between two constructions of  mirrors by putting 

ul = u2 = u3 -- ~b-l,u4 = u5 = u6 = u7 = ~ -1 ,  and 

S1T2 X 2 _  $2T2 2 3 -  $3 T2 
S4T2 T3 ' S4T1T3 ' S4T1T2 ' 

X4 _ $ 2  X5 _ $ 2  
8283 ' SlS3 

6.4. Calabi-Yau 3-Folds with h 1,1 = 1. We consider below examples of  general- 
ized hypergeometric series corresponding to smooth Calabi-Yau complete intersec- 
tions V of  r hypersurfaces in a toric variety Pz  such that h~,l(V) = 1. By the 
Lefschetz theorem, h l , l (Px)  must be also 1. So S is a ( r +  3)-dimensional fan 
with (r  + 4) generators. There exists the unique primitive integral linear relation 

2ivi = 0 among the generators {vi} of  S, i.e., rk R(E) = 1, where E = {vi} is 
the whole set of  generators of  S (Card E = r + 4). 

In all these examples the MU-operator  ~ has the form 

= O 4 --  ]./Z(O -~- 0{1)(O -~ 0{2)({~ -}- 0{3)(0 @ 0{4) , 

where the numbers 0{1 . . . . .  0{4 are positive rationals satisfying the relations 

0{1 -I- 0{4 = 0{2 -I- 0{3 = 1.  

The Yukawa 3-differential in the z-coordinate has the form 

(7) 3 
~ff/'3 - -  (1 --  #Z)q~2(Z) 

Example 6.4.1. Hypersurfaces in weighted projective spaces." In this case we obtain 
Calabi-Yau hypersurfaces in the following weighted projective spaces P(21 , . . . ,  25) 

(~1 . . . . .  ~5) ~ 0 ( z )  W(O)  ~ (~1 ,~2 ,~3 ,~4)  

(5n)! n 55 (1, 1, 1, 1, 1) ~ - -  5 
n>O (n!) 5z 

(6n)! 2536 
(2, 1, 1, 1, 1) ~ (n!)4(2n!)Z n 3 

n>O 

(gn) !  218 
(4, 1, 1, 1, 1) ~ (n!)4(4n!)Z n 2 

n>O 

(5,2, 1, 1, 1) ~ (10n)! zn 1 2956 
, >_0 (n!)3(2n! )(5n[) 

(1 /5 ,2 /5 ,3 /5 ,4 /5 )  

(1 /6 ,2 /6 ,4 /6 ,5 /6 )  

(1 /8 ,3 /8 ,5 /8 ,7 /8 )  

(1 /10 ,3 /10 ,7 /10 ,9 /10)  

The q-expansion of  the Yukawa 3-point function and predictions nd for the 
number of  rational curves on these hypersurfaces were obtained in [33,21, 14]. 
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Example 6.4.2, Complete intersections in ordinary projective spaces: Let Va~,...,d,. 
denote the complete intersection of hypersurfaces of degrees dl . . . .  , d~. 

r W(0) # (~1, ~2, ~3, ~4) 

113,3 C p5 ~ ((3n)!)2,z" 9 3 6 (1/3, 1/3,2/3,2/3) 
n~o (hi) 6 

(2n)I(4n)! ~ 210 
V2,4 C p5 ~ ~ . ~ -  -z 8 (1/4,2/4,2/4,3/4) 

n~0 

V2,2,3 C p6 ~ ((2n)!)2(3n)!z" 12 2433 (1/3, 1/2, 1/2,2/3) 
n>-0 (n!) 7 

V2,2,2,2 C p8 ~ ((2n)!)4zn 16 28 (1/4, 1/4, 1/4, 1/4) 
._>__0 ( n ! )  8 

These Calabi-Yau complete intersections in ordinary projective spaces were con- 
sidered by Libgober and Teitelbaum [28]. 

Example 6.4.3. Complete intersections in weighted projective spaces." 

~0(Z) W(0) /2 (0~1,0~2, 0~3, r 

V4,4 E P(1, 1, 1, 1,2,2) 

1/6,6 ~ P(1, 1,2,2,3,3) 

V3,4 E P(I,  1, 1, 1, 1,2) 

V2,6 E 19(1,1,1, l ,1 ,3)  

V4,6 6 P(1, 1, 1,2,2,3) 

(4n!)2 n 212 
n:0 (n!)4-~ -! ) 2z 4 (1/4, 1/4, 3/4, 3/4) 

(6n!)2 z n 1 2836 (1/6, 1/6,5/6,5/6) 
(nI )2( 2n! )Z( 3n! )2 n=O 

o~ (4n[)(3n!)zn 2633 ~ 6 (1/4,1/3,2/3,3/4) 
n~0 

z ~ 4 2833 (1/6,1/2,1/2,5/6) 
,=0 (n.) (3n.) 

oo (6n!)(4n!) zn 2 21033 (1/6, 1/4,3/4,5/6) 
(nI )3( 2n! )2( 3n! ) n=O 

The coefficients of the Yukawa 3-point function K~ 3) for these five examples 
of Calabi-Yau 3-folds V having the Hodge number hl'a(V) = 1 were obtained by 
A. Klemm and S. Theisen [22]. 

7. Calabi-Yau 3-folds on pZ • p2 

7.1. The Generalized Hypergeometric Series ~o. Calabi-Yau 3-folds V in 192 • 192 
are hypersurfaces of degree (3, 3). The homology classes of rational curves on 
p2 • p2 are parametrized by pairs of integers (11, 12). Let ~1,~2 be the homology 
classes of  (I, 0)-curves and (0, 1 )-curves respectively. Then for any Kfihler class ~/ 
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we put 

z ~ = e x p ( - f t / ) ,  ( i =  1,2).  
7i / 

The generalized hypergeometric series corresponding to the fan Z defining 
p2 • p2 is 

( 3 / 1 + J / e ) !  11 12 �9 

ll,12>=O �9 . 

There are obvious two recurrent relations for the coefficients ah,z 2 of the series 

ll 12 
@0(zl,z2) = ~ atl,12zl Z 2 : 

/1,12 --> 0 

(ll + 1)3alt+t,t= = (3/~ +312 + 1)(3/1 +3 /2  + 2)(3ll +3 /2  + 3)aft& ; 

(12 + 1)3ah,z2+l = (3h + 3/2 + 1)(3/1 + 3/2 + 2)(3/1 + 3/2 + 3)aq& . 

Let 
0 

O 1 = Zl 0Z--~ ' O 2  = z2 0Z 2 " 

Then the function ~0(zbz2) satisfies the Picard-Fuchs differential system 9 :  

(0~ - z 1 ( 3 0 1  + 3 0 2  + 1)(301 + 3 0 =  + 2 ) ( 3 0 1  + 3 0 2  + 3))~b0 = 0 ,  

(0~ - z 2 ( 3 0 1  + 3 0 2  + 1)(301 + 3 0 2  + 2 ) ( 3 0 1  + 3 0 2  + 3))qb0 = 0 .  

The differential system ~ has the maximal unipotent monodromy a t  ( Z l , Z 2 ) =  

(0,0). There are two uniquely determined regular at (0,0) functions ~1(zl,z2) and 
7J2, (Zl, z2) such that 

(logzl)~o(zl,z2) + I/tl(Z1,Z2) , 

(log z2)q~o(zl, z=) + k~2 (zl, z2) 

are solutions to 9 ,  and 7J1(0,0)= 7J2(0,0)= O. If we put 

~U) l~ 12 
~ J j ( Z I , Z 2 )  : ~ D l l , / 2 Z 1  Z2 , 

11 ,l 2 >--0 

(/1,/2) @ (0,0) 

then one finds the coefficients b (J) from the simple recurrent relations based on 
Ii ,12 

4.3.2. 

The q-coordinates ql, q2 defined by the formulas 

ql = zlexp (~l/~bo,) ,  q2 = z=exp ( ~ J 2 / ~ 0 )  

are the power series with integral coefficients in z1,z 2 of the form 

qjzz2> z/l+ ,> 12 / W~,12"1"2 , j =  1,2. 
I1,12 _>--0 

(/b/2) +(o,o) 

By symmetry, one has C (1) = C (2) 
l1,12 12,ll " 
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7.2. Mirrors and the Discriminant. Let f be the Laurent polynomial 

f (X ,  u) = 1 - ulX1 - b /2X2 - - / , / 3 ( X 1 X 2 )  - 1  - ~/4X3 - b /5X4 - -  b / 6 ( Y 3 X 4 )  - 1  �9 

Let 70 be a generator of H4((C*)4, Z) ,  i.e., the cycle defined by the condition 

IX~l = 1 for i =  1 . . . . .  4. 
By the residue theorem, the integral 

1 1 dX1 A dX2 dX3 dX4 
I(u) = (2~x/7~) 4 f f(X) X1 ~ A X73 A ~-4 

is the power series 

(3k + 3rn)!, 
[ ( b / )  = E - - - -  )k  (U4b /51 /6 )  m 

k,m_->0 (k!)3(m!) 3 tUlU2b/3 

Thus, putting Zl = b/lU2U3; z2 = U4bt5U6, we obtain exactly the generalized hyper- 
geometric function ~0(zl,z2). 

It was proved in [1] and [2] that the function I(u) can be considered as the 
monodromy invariant period of the holomorphie differential 3-form 

gO z 1 4 Res 1X dX1 A dX2 dX3 dX4 
(2~z~---]-) f (  ) ~ - 2  ~ A ~ A 

for the family of Calabi-Yau 3-folds Zf  which are smooth compactifications of 

the affine hypersurfaces Zf in (C*) 4 defined by Laurent polynomial f .  One has 

h l , l ( z f )  = 8 3 ,  h 2 ' l ( z f ) =  2. The coordinates Zl,Z2 are natural coordinates on the 

moduli space of Calabi-Yau 3-folds Zf .  
The mirror construction helps to understand the discriminant of the differential 

system ~ as a polynomial function in Zl,Z2. 
By definition [16], the zeros of the diseriminant are exactly those values of the 

coefficients {ui} of f (X) such that the system 

0 X 0 ~X3 0 f(X)=Xl~-ff~lf( )=X2~2(X)=X3 f(X)=X4~44f(X) =0 

has a solution in the toric variety P~, where A is the Newton polyhedron of f .  

Since P~ is isomorphic to the subvariety of p6 defined as 

P a  = { ( Y o  : - - -  : Y 6 )  E P61Y  ~ = Y1Y2Y3, Y 3 = Y 4 Y s Y 6 }  , 

or equivalently, the system of the homogeneous equations 

bt0Y0 -I- �9 " " - [ - / g 6 Y 6  = UlYl  - u3Y3 

-~- u2Y2 - u3Y3 = b/4Y4 - -  u6Y6 = u5Y5 - u 6 Y 6  = 0 ; 

Y3=rlY2Y3=r4rsY6 

has a non-zero solution. 
If we put 

A = u3Y3, B = u6Y6, C = uoYo, 
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then the last system can be rewritten as 

3A + 3 B +  C - - A  3 +zlC 3 = B  3 -kz2C 3 = 0. 

So the discriminant o f  the two-parameter family is the resultant o f  two binary 
homogeneous cubic equations in A and B: 

27Zl(A + B )  3 - A  3 ~ 0, 27z2(A + B )  3 - B  3 ~ 0 . 

Put 27Zl = x, 27z2 = y. 

Proposition 7.2.1. The discriminant of the 2-parameter family of Calabi-Yau 3- 
folds ZT is 

Disc f =  1 - ( x + y ) + 3 ( x  2 - 7 x y + y 2 ) - ( x  3 + 3 x 2 y + 3 x y 2 + y 3 ) .  

7.3. The Diagonal One-Parameter Subfamily. We consider the diagonal one- 

parameter subfamily o f  Kiihler structures ~/ on V which are invariant under the 
natural involution of  H I , I ( v ) ,  i.e., we assume that 

f = f ~ 7 .  
?'1 "/2 

This is equivalent to the substitution z = zl = z2. 

Remark. 7.3.1. In this case we obtain the one-parameter family of  mirrors 

f,p(X) = X1 q -X2  q- ( 2 1 2 2 )  -1  - ~ 2 3  ~ - 2 4  -[- ( 2 3 2 4 )  -1  - 30  = 0, 03 ~-- ( 2 7 Z )  -1  , 

which is an analog to mirrors of  quintic 3-folds [9]. 

It is easy to check that the discriminant of  fo(X) vanishes exactly when 0 = 

c~ +/~, where ~3 = t 3  = 1, i.e., 03 E { 8 , - 1 } ,  or z E { - ( 3 ) - 3 , ( 2  �9 3)-3}.  

The monodromy invariant period function is 

Fo(z)=qbo(z,z)= ~ (+~m = ( 3 n ) , ) z  n 
n__>0 k n(k!)3(m[) 3 " 

It satisfies an ordinary Picard-Fuchs differential equation 

( ) " 0 4  -~- E Ci (z )  Oi F ( z )  O, 0 
i=0 ~ ~- z ~ Z  " 

We compute the Picard-Fuchs differential equation ~ for Fo(z) from the recur- 
rent formula for the coefficients 

a n 

in the power expansion 

( k ! )3 ( r n ! )3  )3 E 
k+m=n (n ! k=0 

Fo(z )  ~ E anzn " 
n>=O 
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Proposit ion 7.3.2 ([40]). Let  

bn ~ ~-~ ( k )  
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Then the numbers bn satisfy the recurrent relation 

(n + 1)2bn+l = (7n 2 + 7n + 2)bn + 8nZbn-1 . 

Corollary 7.3.3. The numbers an satisfy the recurrent relation 

(n + 1)4an+l = 3(7n 2 + 7n + 2)(3n + 2)(3n + 1)an 

+ 72(3n + 2)(3n + 1)(3n - 1)(3n - 2)a._a . 

Corollary 7.3.4. The monodromy &variant period funct ion Fo(y)  is annihilated by 
the differential operator ~." 

O 4 - -  3z(702 + 7 0  + 2 ) ( 3 0  + 1) (30  + 2) 

- 7 2 z 2 ( 3 0  + 5 ) ( 3 0  + 4 ) ( 3 0  + 2 ) ( 3 0  + 1) .  

The last operator can be rewritten also as 

(1 - 216z)(1 + 27z)O 4 - 54z(7 -t- 432z)O 3 - 3z(10584z -}- 95)02  

-48z(351z  + 2 ) 0  - 12z - 2880z 2 . 

In particular, one has the coefficient 

- 5 4 z ( 7  + 432z) 
C 3 ( z  ) = 

(1 - 216z)(1 + 27z) 

The z-normalized Yukawa coupling Kz (3) is the solution to the differential equa- 

tion 
dK} 3) 27(7 + 432z) ~,(3) 

dz -- ( 1 - T 6 z ~ 7 z )  ~ i  ' 

Let H be the cohomology class in H2(V,Z)  such that (H, Ta ) = IH,72) = 1. 
Since H 3 = 18, we obtain the normalization condition 

Kz(3)(0)  = 1 8 .  

Applying the general algorithm in 4.3.3, we find the q-expansion of  the z- 
coordinate 

z(q)  = q - 48q 2 - 18q 3 + 7976q 4 - 1697115q 5 + (9(q 6) , 

and the q-expansion of  the q-normalized Yukawa coupling is 

K~ 3) = 18 + 378q + 69498q 2 + 7724862q 3 + 1030043898q 4 

+ 132082090128q 5 + (9(q 6) . 

We expect that 

K (3) = 18 + ~'~ nad3qa 
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where nd are predictions for numbers rational curves of degree d relative to the 
ample divisor of type (1,1) on V. In particular, one has nl = 378. 

7.4. Lines on a Generic Calabi-Yau 3-Fold in p2 x p2. We show how to check 
the prediction for the number of lines on a generic Calabi-Yau 3-fold in p2 • p2. 

First we formulate one lemma which will be useful in the sequel. 

Lemma 7.4.1. Let M be a complete algebraic variety, 5O~ and ~:~2 tWO invertibte 
sheaves on M such that the projectivizations P(5O/) = P(H~ Y i ) ) ( i  = 1,2) are 
nonempty. Define the morphism 

p;o : P ( Y l )  x P(5O2) ---' P(5Ol | 5~ = P(H~ 5Ol | 5O2)) 

by the natural mapping 

2 : H~ SOl)| H~ 5O2) ---+ H~ SOl | 5Oz). 

Then the pullback p~6(1 ) of  the ample generator (9(1) of the Picard group of  
P(SOl | 5O2) is isomorphic to (9(1, 1) on P(SOl) • P(5O2). 

Proof The statement follows immediately from the fact that 2 is bilinear. [] 

Proposition 7.4.2. A generic Calabi-Yau hypersurface in p2 • p2 contains 378 
lines relative to the (9(1, 1)-polarization. 

Proof There are two possibilities for the type of lines: (1,0) and (0,1). By sym- 
metaT, it is sufficient to consider only (1,0)-lines whose projections on the second 

factor in p2 • p2 are points. Let 

7c2 : V ---+ p 2 

be the projection of V on the second factor. Then for every point p C p2 the fiber 

~21(p)  is a cubic in p2 • P. We want to calculate the number of those fibers 

~ l ( p )  which are unions of a line L and a conic Q in p2 x p. The space of 

the reducible eubics L U Q is isomorphic to the image A c p9 = P((gp2(3)) of the 
morphism 

P((gp2(1)) x P(Cp2(2))) = p2 x p5 ---, p9 = P(Cp2(3)).  

By 7.4.1, A has codimension 2 and degree 21. 
On the other hand, a generic Calabi-Yau hypersurface V defines a generic 

Veronese embedding 

(b : p2 ~_+ p9 = P((gp2(3)), ~ ( p )  = ~21(p)  . 

The degree of the image qS(P 2) is 9. The number of  (1,0)-lines is the intersection 

number of  two subvarieties qS(P 2) and A in p9, i.e., 9 • 21 = 189. Thus, the total 
amount of lines is 2 • 189 = 378 E3. 

8. Further Examples 

In this section we consider more examples of  Calabi-Yau 3-folds V obtained as 

complete intersections in the product of  projective spaces. In all these examples 
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for simplicity we restrict ourselves to one-parameter subfamilies invariant under 
permutations of factors. The latter allows to apply the Picard-Fuchs operators of 
order 4 to the calculation of predictions for numbers of rational curves on Calabi- 
Yau 3-folds with h 1,1 > 1. 

8.1. Calabi-Yau 3-folds in p1 x pl  x p1 • p1. We consider the diagonal subfamily 

of Kfihler classes on Calabi-Yau hypersurfaces of degree (1,1,1,1) in (p1)4. Re- 

peating the same procedure as for hypersurfaces of degree (3,3) in p2 x p2, we 
obtain: 

F0(z) 

f ; 3 )  

g~3)  

/'/i 

/ \ 
o~ ( (2kl + 2k2 + 2k3 + 2k4)! ] zn 

n=0 kl+k2+k3+k4=n 

04 -- 4z(502 + 5 0  + 2 ) (20  + 1) 2 + 64z2(20 + 3) (20  + 1)(20 + 2) 2 

48 

(1 -- 64z)(1 -- 16z) 

48 + 192q + 7872q 2 + 278400q 3 + 9445056q 4 + 315072192q 5 + (9(q 6) 

nl = 192, n2 = 960, n3 = 10304, n4 = 147456, n5 = 2520576 

Proposition 8.1.1. The number of lines on a 9eneric Calabi-Yau hypersurface in 
p1 x p1 x p1 x p1 relative to the (1, 1, 1, 1)-polarization is equal to 192. 

Proof Let f be the polynomial of degree (2,2,2,2) defining a Calabi-Yau hyper- 

surface V in (p1)4. If V contains a (0, 0, 0, 1 )-curve whose projection on the product 

of the first three p1 is a point (Pb P2, p3), then all three coefficients of the binary 
quadric obtained from f by substitution of (PbP2, P3) must vanish. Hence, the 
number of (0, 0, 0, 1 ) curves on V equals the intersection number of 3 hypersurfaces 

of degree (2,2,2) in p1 x pl x p1. This number is 48. By symmetry, the total 
amount of lines on V is 4 z 48 = 192. D. 

Proposition 8.1.2. The number of conics on a 9eneric Calabi-Yau hypersurface in 
p1 x p1 x p1 x p1 with respect to the (1, 1, 1, 1)-polarization is equal to 960. 

Proof By symmetry, it is sufficient to compute the number of rational curves of 

type (0, 0, 1, 1). Let M be the product of first two p1 in (p1)4. Then we obtain the 
natural embedding 

~b : M ~--~ p8 = P((gpl •  

On the other hand, the points on M corresponding to projections of (0, 0, 1, 1 )-curves 

on V are intersections of q~(M) with the 6-dimensional subvariety A C p8 which 
is the image of the morphism 

q~, : p((gplxpl(1, 1))2 = p3 x p3 ~ p8 = p(CPlxVl(2,2)) " 

The image ~b(M) has degree 8. On the other hand, ~b has degree two onto its image. 
Hence, the subvariety A has degree 10. Hence, we obtain 8 x 20 = 160 points on 
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M. There are 6 possibilities for the choice of the type of conics. Thus, the total 
amount of conics is 6 • 160 = 960. 

8.2. Complete Intersections of Three Hypersurfaces in p2 • p2 • p2. We consider 
two examples of 3-dimensional complete intersections with trivial canonical class 
in (p2)3. 

Calabi-Yau complete intersections of 3 hypersurfaces of degree (1,1,1): 

Fo( z ) 

K} 3) 

K~ 3) 

ni 

((k + m + l)[)3 z n 

n=0 k+ =n (k!)3(rn!)3(l!) 3 

2504 -- 15z(5 + 300  + 7202 + 8403 + 5104) 

+6z2(15 + 1550 + 54102 + 82803 + 53104) 

--54z3(1170 + 37950 + 439902 + 216003 + 42304) 

+243z4(402 + 15860 + 227002 + 136803 
+27904)  -- 59049z5(O + 1 )4 

90 + 162z 

(27z - 1)(27z 2 + 1 ) 

90 + 108q + 2916q 2 + 57456q 3 + 834084q 4 + 13743108q 5 + O(q 6) 

nl = 108, n2 = 351, n 3 = 2124, n4 = 12987, n5 = 109944 

Proposition 8.2.1. A generic complete intersection of 3 hypersurfaces of degree 
(1, 1, 1) /n p2 • p2 • p2 contains 108 lines relative to the (9(1, 1, 1)-polarization. 

Proof Let V be the complete intersection of three generic hypersurfaces Vb V2, V3 

in M1 • M2 • M3, where Mi ~ p2. 
By symmetry, it is sufficient to consider lines having the class (0, 0, 1 ) whose 

projections on M1 • M2 are points. There is the morphism 

q5 :M1 • ___~ p8 = P ( E ) ,  

where E is the space of all 3 • 3-matrices. By definition, ~b maps a point (Pb p2) E 
M1 • M2 to the matrix of coefficients of three linear forms obtained from the 
substitution of Pl and P2 in the equations of V1, V2, and V3. The morphism qb 
is the Segre embedding and its image has degree 6. On the other hand, if a 
point ( p b p 2 ) E M 1  • is a projection of a (0,0,1)-curve on V, then the im- 
age qS(pl,p2) must correspond to a matrix of rank 1 in E. Thus, the number of 
(0, 0, 1 )-curves equals 6 • 6 = 36, the intersection number of two Segre subvarieties 
in p8. So the number of lines on V is 3 • 36 = 108. [] 

Abelian 3-folds: The complete intersection of three hypersurfaces of degrees (3, 0, 0), 
(0,3,0), (0,0,3) are abelian 3-folds constructed by taking products of 3 elliptic cu- 

bic curves in p2. Although abelian varieties are not Calabi-Yau manifolds from 
the view-point of algebraic geometers, these manifolds also present interest for 
physicists. 
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( ((3p)')3((3q)')3((3r)')3 \ 
Fo(z) ~ ) Z n 

p+q+r=n \ (P!)3(q!)3(r!) 3 / 

0 4  -- 3z(6 + 290  + 5602 + 5403 -/- 2704) 

+81z2(2702 + 540  + 40 ) (0  + 1) 2 

- -2187z3(30 q- 5 ) ( 3 0  q- 4 ) ( 0  q- 2 ) ( 0  + 1) 

K~ 3) 162 

Thus, we obtain that all Gromov-Witten invariants for the abelian 3-folds are zero 
which agrees with the fact that there are no rational curves on abelian varieties. 

8.3. Calabi-Yau 3-Folds in p3 • p3. 

Complete intersections of a hypersurface of degree (2,2) and 2 copies of 
hypersurfaces of degree (1,1): 

Fo(z) 

K} 3) 

ni 

~_o(k+~m=n(2k + 2m)!((k + m)!)2) 

04 - 4z(302 + O + 1) (20  + 1) 2 - 4z2(40 + 5) 

( 4 0  + 6) (40  + 2 ) (40  + 3) 

4O 

(1 § 16z)(1 - 64z) 

40 + 160q + 12640q 2 + 393280q 3 

+17420640q 4 + 662416160q 5 § O(q 6) 

nl = 160, n2 = 1560, n3 = 14560, n 4  = 272000, n5 = 5299328 

Proposition 8.3.1. The number of lines on a generic complete intersection of a 
hypersurface of degree (2,2) and 2 copies of hypersurfaces of degree (1,1) is 
equal to 160. 

Proof Let W : G r ( 2 , 4 ) x  p3 be the 7-dimensional variety parametrizing all 

(1,0)-lines on p3 • p3. Let d o be the tautological rank-2 locally free sheaf on 
Gr(2,4). We put c 1 ( ~ ) =  cl ,  c 2 ( ~ ) =  e2, and h be the first Chern class of  the 

ample generator H of Pic(P 3). Let $2(~) be the 2 nd symmetric power of E. By 

standard arguments, we obtain: 

Lemma 8.3.2. The Chern classes cl, c2 generate the cohomology ring of Gr(2,4). 
The elements 1, cl, cz, c~, elc2, c~c2 form a Z-basis of H*(Gr(2, 4),Z),  and one 
has the following: 

e 4 = = 4 ,  = 2 e l c 2 ,  

Cl(S2(ox'~ : 3Cl, c 2 ( $ 2 ( ~ ) )  ~- 2c 2 + 4C2, c3($2(o-~)) : 4CLC2 . 
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Moreover, for any invertibIe sheaf 2 ~ on p3, one has 

c I ( S 2 ( ~ )  @ ,.~o) = 3Cl + 3c1(5~) , 

c2($2(C) | 5r = 2c 2 + 4c 2 + 2c1(~) (3c l )  + 3 c ~ ( ~ ) ,  

c3($2($) | ~q) = 4CLC2 + c1(S)(2c~ + 4c2) + c~(~)(3cl )  + c~(~-q~). 

Then the number of (1,0)-lines equals the following product in the cohomology 
ring of W: 

02(~ "~ @ (~(O))  �9 c2(w x~ @ (9(H))  �9 c3(82(o ~)  @ C(2H)) 

= (h 2 + clh + c2)2(8h 3 -}- 3Cl �9 4h 2 + 2(c 2 + 2c2) �9 2h + 4clc2) 

: (8c~ezh 3 + 4(c 2 + 2c2)2h 3 + 24c2c2h 3 + 8c2h 3) 

---- (8 + 4 x 10 + 24 + 8)c2c2h 3 = 80c2c2 h3 . 

Thus, the number of (1,0)-lines is 80. By symmetry, the total amount of lines 
is 160. [] 

Complete intersections of hypersurfaees of degrees (1, 1 ), (1,2) and (2, 1 ): 

Fo(z) 

K} 3) 

ni 

n__~ ~ C+m~ = ( 2 k + m ) ! ( k + 2 m ) ! ( ( k + m ) ! ) )  
n (k!)4(m[) 4 zn 

52904 - 23z(92 + 6210 + 164402 + 204603 + 92104) 

-z2(221168 § 10335280 + 177267302 + 132858403 + 38085104) 

-2z3( -27232 + 2089320 + 102879102 + 131017203 + 47586104) 
-68z4( -976  - 16640 + 513902 + 1402003 + 887304) 

+6936z5(30 + 4 ) ( 3 0  + 2 ) ( 0  + 1) 2 

46 + 68z 

( 5 4 z -  l ) (z  2 - l l z -  1) 

46 + 160q + 9416q 2 + 251530q 3 + 9120968r + 289172660q 5 + O(q 6) 

nl = 160, n2 = 1157, n3 = 9310, n4 = 142368, n5 = 2313380 

Proposition 8.3.3. The number of lines on a generic complete intersection of 
hypersurfaces of degrees (2,1), (1,2), and (1,1) is equal to 160. 

Proof We use the same notations as in 8.3.1. The number of (1,0)-tines equals the 
following product in the cohomology ring of W: 

c2(E | 0(H)) �9 c2(• | 0(2H)) �9 e3 ($2(~)  | 0(H)) 

: (h 2 + clh + c2) �9 (4h 2 + 2clh + c2) �9 (h 3 + 3clh 2 + 2(c 2 + 2c2)h + 4clc2) 

= (24C~Ce + 2(5ca + 2c2)(2c2 + c~) + 9c2c2 + 02)h3 

= (24 + 2(5 + 10 + 4 + 4) + 9 + 1)c2c2 h3 : 80c2c2 h3 . 
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Thus, the number of  (1,0)-lines is 80. By symmetry,  the total amount of  lines 
is 160. [] 

Hypersurfaces in product of two Del Pezzo surfaces of degree 3: 
A Calabi-Yau hypersurface in product of  two Del Pezzo surfaces of  degree 3 

is a complete intersections of  (1,1),  (3 ,0)  and (0,3)-hypersurfaces in p3 x p3. 

Fo(z) 

Kz (3) 

ni 

o c (  +m ~ =  (3k)!(3m)!(k+m)!)zn 
n=0 k n (k])4(m!) 4 

04 - 3z(4 + 2 3 0  + 5302 q- 6003 q- 4804 )  

+9z2(304 + 13440 + 231902 + 198003 + 87304)  

-162z3(800 + 33480  + 52590  z + 388803 + 126904) 

+2916z4(688 + 29520  + 465309 + 324003 + 89104)  

- 1417176z5 (30  + 4 ) ( 3 0  + 2 ) ( 0  + 1) 2 

54 - 972z 

(1 - 54z)(1 - 27z) 2 

54 + 162q + 7290q 2 § 119232q 3 + 3045114q 4 + 79845912q 5 + O(q 6) 

nl ---- 162, n2 = 891, n3 = 4410, n4 = 474/56, n5 = 638766 

Proposition 8.3.4. Let $1, $2 be two Del Pezzo surfaces of  degree 3. Then the 
number of  lines on a 9eneric Calabi-Yau hypersurface V in $1 x $2 is 162. 

Proof I f  C is a line of  type (1,0)  on $1 x $2, then 7r1(C) is one of  27 lines on $1, 
and rc2(C) is a point on $2. Let Csi(-K) denotes the anticanonical bundle over Si. 
Then the zero set of  a generic global section s o f  rcTCs 1 ( - K )  | 7r~(gs2(-K ) defines 
a morphism 

q5 : $2 --+ p3 = P((gs~ ( - K ) ) .  

On the other hand, for any line L E $1, one has the linear embedding 

qS' : P ( C s l ( - K -  L))  -~ p1 ~_9 p3 = p ( (gSl (_K)  ) . 

The intersection number of  Im ~b and Im ~b ~ in p3 equals 3, i.e., one has exactly 
3 lines C on a generic V such that ~rllC) = L and ~2(C) is a point on $2. Thus, 
there are 3 x 27 = 81 lines of  type (1,0)  on V. By symmetry,  the total amount of  
lines is 162. [] 

Proposition 8.3.5. Let S1, $2 be two Del Pezzo surfaces of  degree 3. Then the 
number of conics on a 9eneric Calab~ Yau hypersurface V in $1 x $2 is 891. 

Proof I f  C is a conic of  type (1,1)  on $1 5< $2, then L1 = 7z1(C) is one of  27 lines 
on $1, and L2 = ~2(C) is one of  27 lines on $2. On the other hand, for any pair o f  
lines L1 E $1,L2 E $2, the intersection of  the product L1 • L 2  C S1 • 8 2  with V is a 
conic of  type (1,1). So we obtain 27 x 27 = 729 conics of  type (1, 1 ) on V. On the 
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other hand, the number of (2,0) and (0,2) conics obviously equals the number of 
(1,0) and (0,1) lines. Thus, the total number of conics is equal to 729+  162 
= 891. [] 

8.4. Calabi-Yau 3-Folds in p4 • p4. 

Complete intersection of hypersurfaces of degrees (2,0), (0,2), and 3 copies of 
hypersurfaces of degree (1,1): 

Fo(z) ~ ((k + m)!)3(2k)I(Zm)! 
,=0 k n (k!)5(m[) 5 z" 

Kz (3) 

K~ 3) 

ni  

2504 - 20z(5 + 300  + 7202 + 8403 + 3604) 

-16z2(--35 - 700  + 7 tO  2 + 2 6 8 0 3  + 18104) 

+256z3(O + 1)(165 + 3750 + 24802 + 3703) 

+1024z4(59 + 2320 + 33102 + 19803 + 3904 ) + 32768z5(O + 1) 4 

80 + 128z 

(1 + 4z)(1 - 4z)(1 - 32z) 

80 + 128q + 3776q 2 + 65792q 3 + 1299136q 4 + 23104128q s + O(q 6) 

nl = 128, n2 = 456, n 3 = 2432, n4 = 20240, n5 = 184832 

Proposition 8.4.1. The number of  lines on a generic complete intersection of  
hypersurfaces o f  degrees (2,0), (0,2), and 3 copies of  hypersurfaces of  degree 
(1,1) is equal to 128. 

Proof Let W = Gr(2, 5 ) •  p 4  be the 10-dimensional variety parametrizing all 

(1,0)-lines on p 4 •  p4. Let C be the tautological rank-2 locally free sheaf on 
Gr(2,5). We put cl(d ~ = cl, c2(d ~ = c2, and h be the first Chem class of the 
ample generator H of Pic(p4). Let S2(g) be the 2 nd symmetric power of g. Again, 
by standard arguments, we obtain: 

Lemma 8.4.2. The Chern classes cl, C2 generate the cohomology ring of  Gr(2,5). 
The elements 1, el, c2, c 2, c1c2, c~, c2c2, e 4, c1 c2 + C 3 form a Z-basis o f  H* 
(Gr(2, 5) ,Z) ,  and satisfy the following relations." 

C4C2 = 2C~C 2 = 2C32, C~ = 5CLC22, C61 = 5C2C 2 = 5C~, C~C 2 ~- 2ClC~ . 

Then the number of (1,0)-lines equals the following product in the cohomology 
ring of W: 

c1((9(H) �9 (c2(S2(~'a)) 3 - c3(S2(~0)) 

= (2h) �9 (h 2 + clh + c2) 3 �9 (4CLC2) = 64c2c2h 4 . 

Thus, the number of (1,0)-lines is 64. By symmetry, the total amount of lines 
is 128. [] 
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Complete intersection of 5 hypersurfaces of degree (1, 1): 

F0(z) 

Kz (3) 

ni 

((k %- m)!)5 ) 
+m~= (k!)5(m!) 5 zn 

n=0 k n 

4904 -- 72(14 + 910  %. 23402 %. 28603 + 15504) 

--z2(15736 + 660940 %. 10226102 %. 68004403 %. 1610504) 
%,8z3(476 %. 37590 + 907102 + 858903 %. 262504) 

--1624(184 + 8060 + 143902 %. 126603 %--46504) + 512Z5(O %. 1) 4 

70 - 40z 

( 3 2 z -  1 ) ( z  2 - l l z -  1) 

Kq(q) = 70 + lOOq %. 5300q 2 %. 79750q 3 + 1966900q 4 

+37143850q 5 + O(q 6) 

nl = 100, n2 = 650, n3 = 2950, n4 = 30650, n5 = 297150 

Proposition 8.4.3. A 9eneric complete intersection of 9eneric 5 hypersurfaces of 
degree (1, 1) in p4 • p4 contains 100 lines. 

Proof We give below two different proofs of the statement. 

I: We keep the notation from the proof of 8.4.1. Then the number of (1,0)-lines 
equals the following product in the cohomology ring of W: 

( c 2 ( 3 2 ( ~ ) )  5 = (h  2 %- Clh 4- c2)  5 

= (c~h + c2)65 + 5(Clh  %" c2)64h 2 + 10(clh + c2)3h 4 

4 2 2 4 10c23h 4 =5c4c2h4%" 5(2)clc2hr%. 

= (5 • 2 + 5 x 6 + 10)c4c2h 4 = 50c~c22 h4 . 

Thus, the number of (1,0)-lines is 50. By symmetry, the total amount of lines 

is 100. 

1I: Let M = M1 x M2, where Mi '~ p4(i = l, 2). By symmetry, we consider only 
lines of type (0, 1) whose projections on M1 are points. The substitution of a point 
p E M1 in the equations of the hypersurfaces H~ . . . . .  //5 C M gives 5 linear forms 
f l  . . . . .  f5  in homogeneous coordinates on M2. A point p E M1 is a projection 
of a (0,1)-line on HI C/... O H5 if the system of  linear forms has rank 3. The 
space of 5 copies of linear forms can be identified with the space L of matrices 

5 x 5. We are interested in the determinantal subvariety D in p24 consisting of 
matrices of rank _-< 3. The subvariety D has the codimension 4, the ideal of D is 
generated by all 4 x 4 minors. Using the free graded resolution of the homogeneous 

coordinate ring of D as a module over the homogeneous coordinate ring of p24, 

we can compute the degree of D which is equal to 50 (The Hilbert-Poincar6 series 
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equals (1 + 4t + 10t 2 + 20t 3 + 10t 4 + 4t 5 + t6)/(1 -- 021). On the other hand, the 

equations of  generic hypersurfaces H1 . . . .  ,//5 define a generic embedding 

p4 ~__~ p4 

of  p4 as a linear subspace. So the number of  lines of  type (0,1)  on a generic 
complete intersection is 50. Thus, the total number of  lines is 100. [] 

Hypersurfaces in product of two Del Pezzo surfaces of degree 4: 
A Calabi-Yau hypersurface in the product o f  two Del Pezzo surfaces of  degree 4 

is a complete intersection of  5 hypersurfaces in p4 • p4: two copies of  type 
(2,0),  two copies of  type (0,2),  and one copy of  type ( l ,1 ) .  

Fo(z) 

K} 3) 

K~ 3) 

ni 

n~O (/c+m~=n ((2k)[)2((2m)[)2(k q- m)[ (k[)S(m!)5 ) zn 

904  -- 12z(6 + 3 3 0  + 7302 + 8003 -I- 6404)  

+128Z2(75 + 3 1 5 0  + 52702 + 44003 + 19404) 

--4096Z3(66 + 2 6 1 0  + 39702 + 28803 + 9404)  

+131072Z4(19 + 7 7 0  + 11702 + 8003 + 2204 )  -- 8388608z5(O + 1) 4 

96 - 1024z 

(1 - 32z)(1 - 16z) 2 

96 + 128q + 3456q 2 + 38144q 3 + 572800q 4 + 9344128q 5 + O(q 6) 

nl = 128, n2 = 416, n3 = 1408, n4 = 8896, n5 = 74752 

Proposition 8.4.4. Let S1, 32 be two Del Pezzo surfaces of degree 4. Then the 
number of lines on a 9eneric Calabi-Yau hypersurface V in S1 x 5'2 is 128. 

Proof I f  C is a line of  type (1,0)  on $1 x $2, then 7c1(C ) is one of  16 lines on $1, 
and ~2(C) is a point on $2. Let (gsi(-K) denotes the anticanonical bundle over Si. 
Then the zero set o f  a generic global section s o f  rc]" Csl ( - K )  | 7c~ (9s2 ( - K )  defines 
a morphism 

~b ; S  2 ----> p4 : p((gs1 ( - K ) )  . 

On the other hand, for any line L E $1, one has the linear embedding 

4' :P(Cs , ( -K - L ) )  -~ p2 ~ p4 = p ( O s I ( _ K ) )  . 

The intersection number of  Im 4~ and Im ~b ~ in p3 equals 4, i.e., one has exactly 
4 lines C on a generic V such that 7q(C) = L and ~z2(C) is a point on $2. Thus, 
there are 4 x 16 = 64 lines of  type (1,0)  on V. By symmetry,  the total amount of  
lines is 128. [] 

Proposition 8.4.5. Let $I, $2 be two Del Pezzo surfaces of degree 3. Then the 
number of conics on a 9eneric Calabi-Yau hypersurface V in $1 x $2 is 416. 

Proof I f  C is a conic of  type (1,1)  on $1 x $2, then L1 = ~1(C) is one of  16 lines 
on $1, and L2 = ~2(C) is one of  16 lines on $2. On the other hand, for any pair of  
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lines L1 E $1,, L2 E $2, the intersection o f  the product Li x L2 C $1 x S; with V is 

a conic o f  type (1,1).  So we obtain 16 • 16 = 256 conics o f  type (1, 1) on V. 

In order to compute the number o f  (2,0)-conics,  we notice that $1 has exactly 

10 conic bundle structures. Moreover,  these conic bundle structures can be divided 

into 5 pairs such that the union o f  degenerate fibers of  each pair is the set of  all 

16 lines on $1. A generic global section s o f / ~ ( f f S l ( - K  ) @ 7g~(_gs2(-K ) defines the 

anticanonical embedding 

q~. 82 r p4 = p((.gs 1 ( - K ) ) .  

On the other hand, the points p c $2 such that ~b(p) splits into the union o f  

two conics C1 U C2 are exactly intersection points o f  ~b(S2) and the image o f  the 

embedding 

~b' : P((9sI(C1) • (.9s1(C2) ~ p1 • p l  ~ p4 = p ( ( g S l ( _ K ) )  . 

Since the image o f  q51 has degree 2, we obtain 8 points p E $2. Each such a point 

yields 2 conics on r~21(p). Therefore, for each of  5 pairs of  conic bundle structures 

we have 16 (2,0)-conics.  
Thus, the total number o f  conics is equal to 256 + 2 • 80 = 416. [] 
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