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Abstract—ID-based cryptography has been a very active Section IV. Some extensions and variations of this generalized
area of research in cryptography since bilinear pairings were E|Gamal signature scheme are also discussed in this section.

introduced as a cryptographic tool, and there have been many the paper is concluded with a discussion of the proposed
proposals for ID-based signatures recently. In this paper, we in- schemes in Section V

troduce the concept of generalized ID-based ElGamal signatures
and show that most of the proposed ID-based signature schemes
in the literature are special instances of this generalized scheme. I
We also obtain numerous new signatures from this generalized

scheme which have not been proposed before.

. BACKGROUND

In this section, we present the tools which will be used in
|. INTRODUCTION the rest of the paper. We briefly discuss bilinear pairings, the

) ) ElGamal signature scheme and its generalizations.
In 1984, Shamir [10] introduced the concept of ID-based

cryptography to simplify key management procedures in pub- N

lic key infrastructures. Following Joux’s [7] discovery on howf. Bilinear Pairings

to gtlllzlze bklll_lne;r palrlngs(;nf_putb lic k?.y clr)llgtcl))systsms, Bort1_eh Let G; be a cyclic additive group of ordergenerated byP.

and Franklin [2] proposed first practical ID-based encrypti Mot G4 be a cyclic multiplicative group of the same order. A

scheme in Crypto 2001. Since then, ID-based cryptography rb tographic bilinear pairing is defined as Gy x Gy — G
been one of the most active research areas in cryptography ar

. . ith the following properties:
numerous ID-based encryption and signature schemes have
been proposed that use bilinear pairings. 1) Bilinearity: e(aR,bS) = e(R,S)* whereR,S € G,
ID-based cryptography helps us to simplify the key man- ~ anda,b € Z,. This can also be stated a2, 5, T €
agement process in traditional public key infrastructures. In ~ G1 e(R+ 5. T) = e(R,T)e(S,T) ande(R, 5 +T) =
ID-based cryptography any public information such as e- €(R,S)e(R,T)
mail address, name, etc., can be used as a public key. Sincd Non-degeneracyThe mape does not send all pairs in
public keys are derived from publicly known information, their ~ G1 x G1 to the identity ofG. That ise(P, P) # 1.
authenticity is established inherently and there is no need for3) Computability: There exists an efficient algorithm to
certificates in ID-based cryptography. The private key for a  Computee(R,S) for any R, S € Gy
given public key is generated by a trusted authority and is
sent to the user over a secure channel. B. ElGamal Signature Scheme
Recently, there has been many proposals for ID-based
signatures [9], [11], [1], [8], [5], [3] and most of these Letp be a large prime ang be a generator oZ;. The
schemes, in one way or the other, have been based on Yf&r chooses € Z,_, as his private key and then computes
ElGamal signature algorithm [4]. In this paper, we show tha = 9* mod p as his public key. The parametersg, and
most of these proposals are in fact special instances of§ Public whereas the user keepsecret. To sign a message,
more general concept which we call the generalized ID-basé§ user generates a randdmer Z,—;. Then he computes
ElGamal signature. Besides providing a unified framewofk= ¢" mod p ands = k~'(m—ra) mod (p — 1). The(r, s)
for previously proposed ID-based signatures, the generaliZ@" is the signature of message The equation
scheme also yields many new ID-based signatures that have
not been explored before. m =ar+ks (modp—1) (1)
The rest of the paper is organized as follows: Background
concepts including bilinear pairings and ElGamal signatur&dlled signature equation and verification is done by checking
are discussed in Section Il. We explain how to convert ththe congruencegy™ = ("r° mod p. Security of ElGamal
original EIGamal signature into an ID-based signature schersignature relies on the discrete logarithm problem (DLP) since
in Section lll. We use the ideas of Horster et al. [6] andolving o from 3 or s from r, m, 3 can be reduced to solving
generalize the basic ID-based ElGamal signature schemeDbP in Z;.



C. The Meta-ElGamal Signature Scheme An ID-based signature scheme can be obtained from the
Horster et al. [6] showed that many variations of the basf¥iginal ElGamal signature scheme as follows:

ElGamal signature are possible by modifying the signatures SETUP. Let G, be a cyclic additive group of order
equation. Instead of using EIGamal’s original signature equa- ¢ generated byP. Let Go be a cyclic multiplicative

tion, one can use the general equation group of the same order and: G; x G; — G3 be an
admissible bilinear pairing. The PKG chooses i Z;
A=aB+kCmodq as the global secret key and compufés;, = sP as the

to obtain a signature, whefed, B, C) is a permutation of the global public key. The PKG publishes system parameters
parameter$m, r, s), ¢ is a divisor ofp—1, andg is an element (G1, G2, e, P, Ppy, H, Hy) where H and H, are

in Z of orderq. The signature can be verified by checking ~ S€CUr€ hash functions.

the equation: - ) )
o« EXTRACT: PKG verifies the user’s identity ID and

)
g =p%r¢  (mod p) @ computesQ;p = H,(ID) and S;p = sQ;p as user's
By these permutations six possible signatures can be obtained. Public and private keys respectively.
Different signature schemes can also be obtained by using
different coefficients instead of just using the permutations of« SIGN: To sign a message: € Z,, a user with his private
(m,r,s). The coefficients 4, B,C) can be chosen as a per-  Key Sip, first chooses: € Z,, then computes:

mutation of (mr, s, 1), (mr,ms, 1), (mr,rs, 1), or (mr, s, 1). r = H(kP)
Additionally the signs of 4, B, C) can be changed by multi- 3
plying them by+1. Then the signature equation will be U=k""(mP—rSip)

The signature for the messageis (kP,U)
+tA=4+aB+kC (mod q)

where (A4, B,C) is a permutation of the coefficients men- ¢ YERIFY: Given ID, a messagen, and a signature

tioned (kP,U), the signature is valid if the following equation
The generalization can be extended further by choosing holds.

A,B,C as genera] functions of, r, s, instead of just products e(U, kP)e(Q1p, Pyup)" 2 e(P,P)" ©)

of two. The functions must be chosen carefully to guarantee _ _

the solvability and security. To guarantee solvability, it is Correctness of the given scheme can be shown easily by

necessary that the parametercan be extracted from theusing the bilinearity properties ef Notice that if (kP,U) is

equation. To guarantee security, the parameters, s have a valid signature forn then we have:

to occur in at least one of the three coefficients. Also, th r -1 r

: . ; » N8U, kP P, k P —rSip), kP P

insecurers andms variants should be avoided. c Je(Qrp, Ppun)" = (k™" (mP = 151p), kP)e(Q1p, Fyus)
An insecurers variant occurs if(A4, B,C) is taken as a e(mP —rSrp, P)e(rSip, P)

permutation of(rs, m, 1): For some message, an attacker e(mP, P)

chooses a random € Z; and substitutes it fors in the = ¢(P,P)"

verification equation and computes Then he computes as ) ] o
s = cr~1. The (r,s) pair will be a valid signature for the The above scheme is the ID-based version of the original

messagen. ElGamal signature scheme. The conversion process, which
of (ms,r,1): Assume thatr, s) is a valid signature observedPelow: _ o
m', the adversary computeg as s’ — m’ ‘ms and takes ™ = ar + ks mod (p — 1) wherer = g* and the signature is

" =r. Then(r', s') will be a valid signature for’. (r, s). Since additive elliptic curve groups are used in ID-based
structure, the signing equation andavill be slightly different.
IIl. THE BASIC ID-BASED ELGAMAL SIGNATURE Signing equation for the ID-based ElGamal signature is:
SCHEME

. , : P=rS kU
An ID-based signature scheme consists of four algorithms: " oD+

SETUP, EXTRACT, SIGN, and VERIFY. In SETUP, the trusted Uppercase letters are used to denote elements of the elliptic
private key generator (PKG) chooses a secret as the globafve group.S;p is the private key of the user, so it is a
secret key and publishes the global public system parameterstural replacement fax in the original schemel/ is a part

In EXTRACT, the PKG verifies a user’s identity and computesf the signature and it is the replacement §oMWe cannot use

his private key. In &N, the user signs a message by usingy directly since it is not a member of elliptic curve group;
his private key. Finally in ¥RIFY, the verifier verifies the thereforemP is used to replacen. Here we can also use
signature by using the public parameters and the signers);p or mP,,, instead ofmP and get a slightly different
identity. signature scheme.



, , . . Variant | ID-Based Signat
A natural choice for in the ID-based scheme is to compute No A B ¢ Ele"imal anan fse ighatire
. P o IDI1 m r U m = ar + ks mP =rSip + kU
r asr = kP sincer equalsg® in the original scheme.| b2 r m U r=am+ ks P =mS;p + kU
However,r must be an integer i, in the signature equation, :B :i U r m s=ar+ k;n g = TSéD + km;i
so we use a hash function and computasr = H(kP). 4 U m | r | ssomthr =mbp + 1
. X . . . ID II.1 1 mr U 1=mra+ks P=mrSip +kU
Additionally, since kP is needed for verification (3), the| pnu2 | mr | 1 U mr = o+ ks mrP = Sip + kU
signature will be issued a% P, U) instead of(r, U). D3 | U |mr| 1 s=mra+k U=mrSip + kP
ID 1.4 U 1 mr s=a+ kmr U=-Sip —mrkP
IV. THE GENERALIZED ID-BASED ELGAMAL SIGNATURE :g :::% 1 ”;7" mg 1= W'a:kkms P =Pm7"gw Izﬂfg
. mr m mr=au« ms mrP = Srp m
AND ITS VARIANTS IDIL3 | mU | mr 1 ms=mra+k | mU=mrS;p + kP
We can generalize the above ID-based signature scheme Hy!ll4 | mU | 1 | mr | ms=a+kmr | mU = Sip + mrkP
ing th lized siani ti DIV | mr 1 Ur mr = o+ krs mrP = Srp +rkU
using the generalized signing equation ID IV.2 1 mr | Ur l=mra+krs P =mrSip +rkU
ID IV.3 Ur 1 mr rs =a+ mrk rU = Srp + mrkP
A=BSip+kC (4) ID IV.4 Ur | mr 1 rs=mra-+k rU =mrSip + kP

where(A4, B, C) is a permutation of the parametdrs, r, U),
instead of the basic equationP = »S;p + kU. Note that,
not all the permutations generate useful variants. We shoul
consider that/ is a member of elliptic curve group, and, » €

Z,. Accordingly, A and C' should be members of the elliptic
curve group, but noB. Also note that, we can use P andr P

instead ofm andr , in cases where they need to be memberists the variants that are obtained by permutimgr, U, 1).

TABLE |
IéLGAMAL VARIANTS AND THE CORRESPONDINGID-BASED ELGAMAL
SIGNATURE EQUATIONS

of the elliptic curve group. Group Il lists the variants that are obtained by permuting
We get four variants by simply permuting the elements @, mU, 1). Group IV lists the variants that are obtained by
(m,r,U). The signing equation for these variants are: permuting(msr, rU, 1) and (r,rU, 1). Group V shows theU
. variants discussed in Section IV-A. Finally group VI shows
mP =rSip +kU ©) the variants discussed in Section IV-B that were not possible
U=rSip +kmP (6)  on the basic EIGamal signatures.
U=mSip+ krP 7

A. Security Analysis of Proposed Schemes

The generalized ElGamal signature schemes of Horster et
Note that, the two variants whet€ is a coefficient ofS;p al. [6] are believed to be secure except two insecure variants.
do not produce useful signing equations. The two insecure variants in the generalized ElGamal signature

In the variants wheré P is not needed for verification; schemes are thes andms variants as discussed in Section II-
can be computed as(P, P)¥ and the signature forn will C. The corresponding ID-based variants are stheand mU
be (r,U). This has the advantage that we can get rid of on@riants. These variants occur(ifi, B, C') is a permutation of
pairing operation in the verification phase. Additionally, sincé-U, m, 1) or (mU,r, 1), respectively.
the signer knowsk, he can compute(P, P)* without any The mU variants are completely insecure and the attack
pairing computation. As can be seen in Table#lis taken as works similar to the attack for thens variant of the basic
e(P, P)* in (6) and (7). Note that, in (5) and (8), we need th&lGamal signature: Assume that ttie, U) pair is a valid
value ofk P for verification. In that case will be computed as signature observed by the adversary for messagd-or an
r = H(kP) and the signature fam will be (kP,U). We can arbitrary message:’, the adversary computés = m’~'mU
also compute- as H(m, kP) instead ofH (kP) or e(P, P)*. and uses’ = r. Then (', U’) pair will be a valid signature
In that caseyn does not need to occur in the signing equationfor m/’.

We can generate more variants by using different permu-This is not always the case for thé/ variants; the attack
tations. Instead of choosin@A, B,C) as a permutation of on the basic EIGamals variants does not work for two of the
(m,r,U), we can also choose them as a permutation fifur ID-based-U variants. Signature and verification equation
(mr,U, 1), (mr,mU,1) and (mr,rU, 1). Signs of A, B, and for the »U variants can be seen in Table II.

C can be changed by multiplying them hyl. We can also In Table IlI, the variants V.3, V.4 and V.6 are insecure.
use a general functiorf(m,r) instead of just productnr. The attack for theseU variants works as follows: For an
Note that, unlike the original EIGamal variants, we cannatrbitrary messagen, the adversary choosé&s €r G1. Then
choose(A4, B,C) as a permutation ofmU,rU, 1), since we he substitutes(C, P) for e(U, rP) in the verification equation
cannot extract/ from the signing equation in these variantsand computes-. After that, he compute§/ = r—'C. The
The signature equations for these ID-based ElGamal variaqtsU) pair will be a valid signature for the message

can be found in Table I. The variants V.1, V.2 and V.5 in Table Il seem to be

The verification equations and other details for all signaturescure since an attacker cannot extraftom the verification
are summarized in Table Ill. Group | lists the variants thaquation. Therefore, we have three more ID-based signatures
are obtained by permutingn,r,U) and (1,r,U). Group Il from therU variants.

rP =mS;p + kU 8)



Signature equation
V.1 mP = S;p +rkU
V.2 P =mSrp +rkU
V3 | rU=-mSip + kP
V.4 rU = —Srp + mkP
V.5 P =S;p+rkU

V.6 rU =—-Srp + kP

Verification equation
e(U,kP)"e(Qrp, Ppup) = (P, P)™
e(U7 kP) (QID» pub) - €(P, P)

e(U,rP)e(Qrp, Ppub)™
6(U»TP)6(Q1D7 Ppub) =r"
E(U, k'P)Te(QIDv Ppub) = e(P> P)
€(U, TP)e(QIDv Ppub) =r

definitions of S;p andQ;p as

Qip = (H.(ID) + s)P,
Sip = (Hi(ID) +s)"'P,

k,U:

For instance, for the signature,U), r = e(P, P)
(k + mr)Sp, the verification equation becomes

r=e(U,Qrp)e(P,P)~™"

and the number of pairing evaluations needed is reduced to
one.

A similar modification can also be applied to the other
nature schemes discussed in this paper to reduce the number
pairing evaluations in each verification.

TABLE I
THE 7U VARIANTS

B. Efficiency of the Proposed Schemes

Computing a signature requires a hash function evaluanglf'g
or a pairing evaluation depending on hewis computed, as
well as some additional computationd# . Several inversions C. Embedding Previously Known ID-based Signatures

modulo ¢ may also be needed depending on the signature
equation. Recently many ID-based signature schemes have been pro-

The cost of verifying a signature will be dominated by th@0sed. Most of these signatures [11], [8], [5], [3] can be seen

pairing computations, which is the most expensive operatid® SPecial instances of our generalized scheme:
Two or three pairing computations are needed to verify a« In Paterson’s scheme [8], the signatyke’, U) is com-
signature depending on the signing equation. Note that, the puted as

valuee(P, P) is fixed, so it needs to be computed only once.
Also the valuee(Q;p, Pyus) is fixed for a particular user, so
it needs to be computed once for each user.

More efficient variants can be obtained by modifying the
generalized signature equation (4) as

A= BS;p+kCSip (9)

Note that, this kind of generalization is not possible for the

basic ElGamal signature because wherand o are used
together we cannot extrastfrom the signing equation.

By the help of bilinear pairings we can sol¢é from the
signature equation (9) if we chooé4, B, C') as a permutation
of (m,r,U), (mr,U,1) or (m,rU,1). Note thatB and C
cannot be a member of the elliptic curve group; heice
should be inA’s position. So we get six more variants by
using equation (9). These variants are:

U=rSip+kmSip
U=mSip+krSip
U=rmSip+kSip
U=Sip+kmrSip
rU =mSip + kSip
rU = Sip + kmStp

The value ofkQ;p will be needed for verification. Therefore
r is computed as = H(kQ;p) for these variants. For a
messagen the signature will be(kQ;p,U). We can also
computer asr = H(m,kQ;p) and removem from the
signing equations. Group VI of Table 11l shows the verification
equations and other details for these schemes.

As observed by Barreto et al. [1], the number of pairing

— H(kP)

U =k Y (Hy(m)P +7rSrp)

where H, is a secure hash function. Paterson’s scheme
is equivalent to ID 1.1 of Table Ill where a second hash
function H, is used for message digest.

In Cha-Cheon’s scheme [3], the signatuk€);p,U) is
computed as

T = H(m,szD)
U= (7“ + k)S[D

Cha-Cheon’s scheme is the same as ID VI.7.

« In Yi's scheme [11], the signaturg P, U) is computed

as

r = H(m,kP)
U= kaub + TSID

Yi's scheme is equivalent to ID 1.7, wher&,,; is used
instead of P and the verification procedure is modified
accordingly.

In Hess's scheme [5], the signatufe, U) is computed
as

r=e(P, P)*

v=H(m,r)

U=kP, +vSip
where P, is an arbitrary point on the curve. Hess'’s
scheme can be converted into ID 1.3 with = P and

using mr instead ofv = H(m,r). Besides, in Hess’s
scheme verification takes an extra step for checking

operations needed can be reduced further by changing the v = = H(m,r).

4



No. T U Signature Verification
D I.1 r = H(kP) U=k T(mP—7rSip) (kP,U) e(U,kP)e(Qrp, Ppup)” = e(P, P)™
ID 1.2 r = H(kP) U=k~ (rP—-mSrp) (kP,U) e(U,kP)e(Qrp, Poup)™ = e(P, P)"
ID 1.3 r =e(P, P)* U=kmP—rSrp (r,U) e(U,P)e(Qrp, Ppup)” =1™
ID 1.4 r =e(P, P)* U=rkP—mSp (r,U) e(U,P)e(Qrp, Ppup)™ =1"
ID 1.5 r = H(m, kP) U=k"Y(P—-rSip) (kP,U) e(U,kP)e(Qrp, Ppup)" = e(P, P)
ID 1.6 r = H(m,kP) U=k='(rP - Sip) (kP,U) e(U,kP)e(Qrp, Ppup) = e(P, P)"
ID 1.7 r = H(m, kP) U=kP—rSip (kP,U) e(U, P)e(Qrp, Ppub)" = e(P,kP)
ID 1.8 r = H(m, kP) U=rkP—-Sip (kP,U) e(U, P)e(Qrp, Ppup) = e(P, kP)"
IDII.1 r = H(kP) U=k I(P-mrSrp) (kP,U) e(U,kP)e(Qrp, Ppup)™ = e(P, P)
ID 1.2 r = H(kP) U=k~ (=Sip +mrP) (kP,U) e(U,kP)e(Qrp, Ppup) = e(P, P)™"
ID 1.3 r= e(P,P)’C U=kP—mrSrp (r,U) e(U, P)e(Qrp, Ppup)™" =1
ID 1.4 r =e(P, P)* U =mrkP — Sip (r,U) e(U,P)e(Qrp, Ppup) =1r™"
ID 1.1 r = H(kP) U=kY(m 1P —rSip) (kP,U) e(U,kP)e(Qrp, Ppup)” = e(P, P)m‘1
ID 1.2 r = H(kP) U=k=1(rP—-m~1Srp) (kP,U) e(U,kP)e(Qrp, Ppub)m’1 =e(P,P)"
ID II1.3 r =e(P, P)* U=m~"1kP —rS;p (r,U) e(U,P)e(Qrp, Ppus)” =pm
ID 1.4 r = e(P, P)* U=rkP—-m~1S;p (r,U) e(U, P)e(Qrp, Ppub)m’1 ="
ID IV.1 r = H(kP) U=k=Y(mP —r~1S;p) (kP,U) e(U,kP)e(Qrp, Ppub)’“’1 =e(P, P)™
ID IV.2 r = H(kP) U=k~ (r—'P - mSip) (kP,U) e(U,kP)e(Qrp, Poup)™ = e(P, Pyt
ID IV.3 r = e(P, P)* U=mkP—r18;p (r,U) e(U, P)e(Qrp, P,,“,,)T‘1 =7rm
ID IV.4 r =e(P, P)* U=r"'kP—-mSrp (r,U) e(U, P)e(Q1p, Ppup)™ =17
ID IV.5 r = H(m, kP) U=k=Y(P-r=1Srp) (kP,U) e(U,kP)e(Q1p, Ppub)’“’1 =e(P, P)
ID IV.6 r = H(m, kP) U=k=1(r=1P-5Sip) (kP,U) e(U,kP)e(Qrp, Ppup) = e(P, pyrt
ID IV.7 r = H(m,kP) U=kP—-r"18;p (kP,U) e(U, P)e(Qrp, Ppub)r‘1 = e(P,kP)
ID IV.8 r = H(m, kP) U=r"1kP - S;p (kP,U) e(U, P)e(Qrp, Ppup) = e(P, kpP)y "
ID V.1 r = H(kP) U=k~ 1r—T(mP - Sip) (kP,U) e(U,kP) e(Q1p, Ppup) = e(P, P)™
ID V.2 r = H(kP) U=k=1r=Y(P —mSp) (kP,U) e(U,kP)"e(Q1D, Ppup)™ = e(P, P)
ID V.3 r = H(m, kP) U=k=1r—Y(P—S;ip) (kP,U) e(U,kP)"e(Q1p, Ppup) = e(P, P)
ID VL1 r = H(kQID) U= (r+km)Srp (kQ1p,U) e(U, P) = e((r + km)Q1D, Ppub)
ID VI.2 T—H(k)Q]D) U=(m+k"f‘)SID (k’Q[D,U) e(U,P):e((kr+m)Q1D7Ppub)
ID VI3 r = H(kQID) U= (rm+k)Sip (kQrp,U) e(U, P) = e((rm + k)Q1D, Ppub)
ID VI.4 T:H(kQ[D) U= (1+km7‘)S[D (k‘Q[D,U) C(U,P):e((l-‘f-ka)Q]D,Ppub)
ID VI.5 r=HkQrp) U=r—Ym+k)Sip (kQ1p,U) e(U, P)" = e((m+ k)Qrp, Ppus)
ID VI.6 r=H(kQrp) U=r"11+kmSip) (kQrp,U) e(U, P)" = e((mk + 1)Qr1p, Ppub)
ID VI.7 TZH(m,k'QID) U=(7"+k2)S[D (kQ[D,U) B(U,P)Ze((’r‘-ﬁ—k‘)Q[D,Ppub)
IDVIL8 | r=H(m,kQrp) U=r"Y1+k)Srp (kQrp,U) e(U,P)" = e((1+ k)Qrp, Ppus)

TABLE Il

THE GENERALIZED ID-BASED ELGAMAL SIGNATURES AND THEIR VERIFICATION EQUATIONS.

V. CONCLUSION

schemes by changing the signature and verification equations.
. _ o _ The ideas presented in this paper can also be used to get new
In this paper, converting the original ElGamal signaturg-based signatures with additional features such as message

scheme into an ID-based signature scheme is investigated. Movery and blinding.
showed how the basic ID-based ElIGamal signature scheme can
be extended into a generalized ID-based signature scheme as in
the work of Horster et al. on basic EIGamal signatures [6]. We

discussed which variants are not possible and which variant
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