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Abstract. We provide a general framework for constructing identity-
based and broadcast encryption systems. In particular, we construct a
general encryption system called spatial encryption from which many
systems with a variety of properties follow. The ciphertext size in all
these systems is independent of the number of users involved and is just
three group elements. Private key size grows with the complexity of the
system. One application of these results gives the first broadcast HIBE
system with short ciphertexts. Broadcast HIBE solves a natural problem
having to do with identity-based encrypted email.

1 Introduction

In this paper we develop a general framework for constructing identity-based
encryption (IBE) [17,4] and broadcast encryption [9] with constant-size cipher-
texts. This framework enables one to easily combine different encryption prop-
erties via a product rule and to obtain encryption systems supporting multiple
properties. For example, a multi-authority, forward-secure, broadcast encryption
system (with constant-size ciphertexts) is easily derived by taking the “product”
of three systems. One new concept constructed using our framework is broadcast
hierarchical IBE. We discuss this concept at the end of the section and explain
its importance to secure email.

We start with an informal description of the framework; a precise definition is
given in the next section. Rather than an IBE or a broadcast system we consider
a higher level abstraction.
– Let P be a finite set of policies. Roughly speaking, a message m can be

encrypted to any policy π in P .
– Let R be a finite set of roles. Each decryptor has a role ρ in R and can

obtain a private key Kρ corresponding to its role ρ.
– We allow for an arbitrary predicate called open on the set R×P that specifies

which roles in R can open what policies in P .
A key Kρ can decrypt ciphertexts encrypted for policy π if and only if role ρ
opens policy π, i.e. open(ρ, π) is true.

To continue with the abstraction, we provide a notion of delegation which
is useful in hierarchical IBE (HIBE) [13,11]. To support delegation we assume
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there is a partial order � defined on the set of roles R. The idea is that given
the key Kρ1 there is a delegation algorithm that can be used to generate the
key Kρ2 , whenever ρ1 � ρ2. Naturally, we require that the open relation respect
delegation, meaning that if role ρ2 opens policy π and ρ1 � ρ2 then ρ1 also
opens π.

Given the sets P , R and relations open and �, one obtains a very general
notion of identity-based encryption. It generalizes HIBE, broadcast encryption,
attribute-based encryption [12], predicate encryption [6,14] and other variants.
We refer to such schemes as generalized IBE, or GIBE. In the next section we
define GIBE schemes more precisely along with their associated security games.

Spatial encryption. In Section 3 we study an important instance of GIBE called
spatial encryption in which policies are points in Z

n
p and roles are affine subspaces

of Z
n
p . The delegation relation � on roles is defined by subspace inclusion: role

ρ1 � ρ2 if ρ1’s affine space contains ρ2’s space.
As we will see, spatial encryption enables us to build a host of identity-based

and broadcast encryption schemes. In particular, it supports a product rule
that lets us combine encryption properties such as forward security, multiple
authorities, and others.

In Section 4 we construct an efficient spatial encryption system with constant-
size ciphertext. Our starting point is an HIBE construction of Boneh, Boyen, and
Goh [2]. We are able to extend their system to obtain a spatial encryption sys-
tem. However, the proof of security is more difficult and requires the BDDHE
assumption introduced in [5] (the proof in [2] used the slightly weaker BDHI as-
sumption). We describe various extensions of the system at the end of Section 4.

Our initial motivation: email encryption. Suppose user A wishes to send an
encrypted email to users B1, . . . , Bn. User A knows the identities of all recipients,
but does not know which private key generators (PKGs) issued their private keys.
Moreover, user A only trusts PKGs P1, . . . , P�. She wishes to encrypt the email
so that user Bj can decrypt it if and only if Bj has a private key issued by
one of the � trusted PKGs. Using basic IBE this will require ciphertext of size
O(n ·�). Our goal is to construct a system whose ciphertext size is constant, that
is, independent of n and �.

This natural email encryption problem can be modeled as a GIBE and con-
structed using the product of two instances of our spatial encryption scheme.
Here each PKG has a role which can delegate to a key for any user; a (possibly
distributed) dealer holds the master key K�. We obtain a system that precisely
solves the problem described above, with ciphertext size independent of n and
�. However, in our current construction the private key size is linear in n + �.

Similarly, we also construct a broadcast HIBE. Roughly speaking, in a broad-
cast HIBE there is a tree-like hierarchy of identities and private keys as in HIBE.
An encryptor picks a set S of nodes in the hierarchy and encrypts a message
m to this set S. We let c be the resulting ciphertext. As in a broadcast system,
any user in S can decrypt c, but (proper) coalitions outside of S cannot. We say
that the system has constant-size ciphertext if the size of c is independent of the
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size of S. Broadcast HIBE applies naturally to hierarchical email systems where
messages can have many recipients.

Broadcast HIBE can be easily modeled as a GIBE and constructed from our
spatial encryption system. This expands on the features of previous constant-size
broadcast systems such as Boneh et al. [5] and Sakai and Furukawa [16], albeit
at the cost of increased private-key size.

2 Generalized Identity-Based Encryption (GIBE)

A Generalized Identity-Based Encryption Scheme, or GIBE, allows a participant
to encrypt a message under a certain policy, in some set P of allowable policies.
We will enforce no structure on the allowed policies. To decrypt, users may hold
secret keys corresponding to roles. Roles are organized in a partially-ordered set
R, that is, a set endowed with a reflexive, transitive, antisymmetric relation �.

A GIBE may be parameterized in some way. For example, a system may have
a limited number of identities, hierarchy levels, time periods or the like. We call
such choices the setup parameters SP. As SP varies, P and R will generally
also vary. Similarly, P and R may depend on the security parameter λ or on
randomness chosen at setup. We encode these choices into a policy parameter χ
generated at setup, and use policies Pχ and roles Rχ. For brevity, we will omit
χ when it is unambiguous.

For a policy π and a role ρ, we write open(ρ, π) if a user with a secret key for ρ
is allowed to decrypt a message encrypted under π. We require this relation to be
monotone, meaning that if ρ � ρ′ and open(ρ′, π) then open(ρ, π). For simplicity,
we require that R contains a top element �, such that � � ρ for all ρ ∈ R, and
open(�, π) for all π ∈ P . Informally, greater roles open more messages, and the
greatest role, �, can open them all. Obviously, only a highly-trusted authority
should hold the secret key K�.

A GIBE consists of four randomized algorithms:

– Setup(λ, SP) takes as input a security parameter λ and setup parameters
SP. It returns public parameters PP (which include the policy parameter χ)
and a master secret key K�.

– Delegate(PP, ρ, Kρ, ρ
′) takes the secret key Kρ for role ρ and returns a secret

key Kρ′ for ρ′, where ρ � ρ′.
– Encrypt(PP, π, m) encrypts a message m under a policy π.
– Decrypt(PP, ρ, Kρ, π, c) decrypts a ciphertext c using a secret key Kρ.

Decryption may fail. However, we require that decryption succeeds when
open(ρ, π), so that:

Decrypt( PP, ρ, Kρ, π, Encrypt(PP, π, m) ) = m

for all PP generated by Setup, for all policies π and roles ρ, and for all keys
Kρ for ρ delegated directly or indirectly from K�.
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We require that the algorithms Setup, Delegate, Encrypt, Decrypt and the predi-
cates open and � all run in expected polynomial time in λ. We also require that
delegation is independent of the path taken; that is, if ρ1 � ρ2 � ρ3, then

Delegate(PP, ρ1, Kρ1 , ρ3)

should produce the same distribution as

Delegate(PP, ρ2,Delegate(PP, ρ1, Kρ1 , ρ2), ρ3)

2.1 Security

We define the security of a GIBE I in terms of a family of security games between
a challenger and an adversary. The system parameters SP are fixed, and the
adversary is allowed to depend on them. We define the full, CCA2, anonymous
game first (anonymity here refers to the property that the ciphertext leaks no
information about the policy used to create it [1]).

Setup: The challenger runs Setup(λ, SP) and sends PP to the adversary.
First query phase: The adversary makes several delegation queries ρi to the

challenger, which runs Delegate(PP, �, K�, ρi) and returns the resulting Kρi .
The adversary may also make decryption queries (ρi, πi, ci) to the challenger,
where open(ρi, πi). The challenger runs Kρi ← Delegate(PP, �, K�, ρi), then
runs Decrypt(PP, ρi, Kρi , πi, ci) and returns the resulting mi (or fails).

Challenge: The adversary chooses messages m0 and m1 and policies π∗
0 and π∗

1 ,
and sends them to the challenger. We require that the adversary has not
been given decryption keys for these policies, that is, ¬open(ρi, π

∗
j ) for all

delegation queries ρi in the first query phase, and for j ∈ {0, 1}.
The challenger chooses a random b

R← {0, 1}, runs Encrypt(PP, π∗
b , mb), and

returns the resulting challenge ciphertext c∗ to the adversary.
Second query phase: The second query phase is exactly like the first, except

that the adversary may not issue decryption queries for c∗, and the adversary
may not make delegation queries for roles that open π∗

j for j ∈ {0, 1}.
Guess: The adversary outputs a bit b′ ∈ {0, 1}. The adversary wins if b′ = b,

and otherwise it loses.

There are several important variants on the above game:

– In a CCA1 game, the adversary may not issue decryption queries during the
second query phase.

– In a CPA game, the adversary may not issue decryption queries at all.
– In a non-anonymous game, we require that π∗

0 = π∗
1 .

– In a selective game, the setup phase is modified. The challenger sends the
policy parameter χ to the adversary. The adversary chooses in advance its
π∗

0 and π∗
1 and sends them to the challenger. Then the challenger sends the

rest of the public parameters PP.
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We define adversary A’s advantage in game variant V (when A is attacking the
GIBE system I with parameter SP) to be

VAdvA↔(I,SP)(λ) := | Pr[A wins V ] − Pr[A loses V ] |

We say that a GIBE I is V-secure if for all setup parameters SP and all proba-
bilistic polynomial-time adversaries A, the function VAdvA↔(I,SP)(λ) is a neg-
ligible function of λ.

In this paper we will primarily focus on the simplest security model, namely
selective-security, non-anonymous, against a CPA adversary. We denote the ad-
versary’s advantage in this model by (NonAnon, Sel, CPA)AdvA↔(I,SP)(λ).

2.2 Example GIBE Instances

Many instances of GIBE already appear in the literature:

– In traditional IBE [17,4] the policies are simply identities and the roles are
identities or �. A message encrypted to an identity I can be decrypted only
with a key for I or for �. There is no delegation except from �.

– In broadcast IBE [9] the policies are sets of identities and the roles are
identities or �. A message to a set S of identities can be decrypted only
with a key for I ∈ S, or for �. There is no delegation except from �.

– In attribute-based encryption (ABE) [12], the policies are subsets of a set S of
attributes, and the roles are upwardly closed subsets of � := 2S . A message
to a set S of attributes can be decrypted with a key for any set containing S.
[12] does not define a delegation model for attribute-based encryption, but
the circuit-based implementation permits delegation by widening a k-of-n
threshold gate into a k + 1-of-n + 1 threshold gate.

– In hierarchical IBE [13,11] the policies are identities and the roles are points
in the hierarchy, with � at the root of the hierarchy. Here the key for a point
x can either delegate to or decrypt from any point y below x.

– In forward-secure [7] systems, the roles and policies include a time t. Roles
can be delegated by increasing the time t, and cannot decrypt messages with
an earlier t.

The games used to define the security of these instances are special cases of
the GIBE games. In the next section we will show that most of these instances
can be constructed from a GIBE we call spatial encryption. These generic con-
structions for IBE and HIBE are competitive with the best known hand-tailored
constructions. For broadcast IBE and forward-secure IBE our generic construc-
tion has short ciphertexts, but the private key is longer than the best known
tailor-made constructions [7,16,5].

2.3 Embedding Lemmas

It is clear that some GIBEs can be used to construct other GIBEs. For example,
it is obvious that any broadcast IBE can also function as a traditional IBE.
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In particular, suppose that we have a GIBE I with policies Pχ and roles
Rχ, and we wish to define a GIBE with policies P ′

χ and roles R′
χ. Suppose

that we are given an efficient injective map fP : P ′
χ → Pχ and an efficient

embedding fR : R′
χ → Rχ which satisfy open(fR(ρ), fP(π)) ⇐⇒ open(ρ, π)

and fR(�) = �. Then we can define a GIBE I ′ with policies P ′
χ and roles R′

χ

simply by applying all fP to all policies and fR to all roles.

Lemma 1 (Embedding Lemma). Let I and I′ be GIBEs as defined above.
For any GIBE adversary A against I ′, there is a GIBE adversary B against I,
running in about the same time as A, such that

VAdvA↔(I,SP)(λ) = VAdvB↔(I,SP)(λ)

Similarly, we can sometimes use collision-resistant hashing to construct new
GIBEs. Suppose we have a GIBE I in which policies and roles are lists of elements
of some set X , and in which open and � are decided in a monotone fashion by
comparing certain elements for equality. Suppose also that we have an efficient
collision-resistant hash H : X ′ → X on some other set X ′. Then we can define a
GIBE I ′ which is identical to I except that its policies and roles are lists over
X ′ instead of X , and all operations apply H pointwise to the policies and roles.

Lemma 2 (Hashed Embedding Lemma). Let I and I ′ be GIBEs as defined
above. For any GIBE adversary A against I ′, there is a GIBE adversary B1
against I and a collision-resistance adversary B2 against H, each running in
about the same time as A, such that

VAdvA↔(I,SP)(λ) ≤ VAdvB1↔(I,SP)(λ) + CRAdvB2↔H(λ)

The proofs of these lemmas are immediate and are omitted.

3 Spatial Encryption: An Important Instance of GIBE

The building block for systems in our paper will be spatial encryption, a new
GIBE. In spatial encryption, the policies P are the points of an n-dimensional
affine space Z

n
q . The roles R are all subspaces W of Z

n
q ordered by inclusion,

and open(W, π) ⇐⇒ W 
 π.

3.1 Systems Derived from Spatial Encryption

To demonstrate the power of spatial encryption, we show that many other GIBEs
are embedded in it.

Hierarchical IBE. Hierarchical IBE is trivially embeddable in spatial encryp-
tion. Here the path components are elements of Zq, and the paths are limited
to length at most n. This extends easily to hierarchical IBE where the path
components are strings by using the Hashed Embedding Lemma. This is not the
only embedding of hierarchical IBE in spatial encryption, however.
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Inclusive IBE. In inclusive IBE, the policies are subsets of size at most n
of a set of identities. The roles are also subsets of size at most n, where ρ �
ρ′ ⇐⇒ ρ ⊆ ρ′; that is, one can delegate by adding elements to a set. We say
that open(ρ, π) iff ρ ⊆ π; that is, a message to a set can be decrypted with a key
for any subset.

We can embed inclusive IBE in a spatial system of dimension n + 1. Here
the identities are elements of Zq, but this extends to inclusive IBE with strings
as identities using the Hashed Embedding Lemma. We encode a policy π ⊂ Zq

as the coefficients of the polynomial π̂(t) :=
∏

c∈π x − c; this polynomial has
degree at most n and therefore has at most n + 1 coefficients. We encode a role
ρ ⊂ Zq as the vector subspace of coefficients of polynomials which are divisible
by

∏
c∈ρ x − c.

Inclusive IBE seems almost as powerful as spatial encryption; nearly all the
applications in this paper use inclusive IBE rather than using spatial encryption
directly.

Inclusive IBE can be built using attribute-based encryption, but this con-
struction is less efficient than spatial encryption. In particular, the ciphertext
has size O(n). Our construction gives constant size ciphertext.

Co-inclusive IBE. Co-inclusive IBE is the dual of inclusive IBE. Policies and
roles (other than �) are sets of at most n identities, where r � r′ ⇐⇒ r ⊇ r′;
that is, one can delegate by removing elements from a set. We say that open(ρ, π)
iff ρ ⊇ π; that is, a message to a set can be decrypted with a key for any set
which contains it.

We can embed co-inclusive IBE in a spatial system of dimension 2n. For a
role ρ, we assign the span of {vi : i ∈ ρ}, where vi = (1, i, i2, . . . , i2n−1) is the
Vandermonde vector for i. To encrypt to a policy π, we encrypt to vπ :=

∑
i∈π vi.

It is clear that vπ is not contained in the subspace for any role ρ′ � π, for then
we would have expressed vπ as a sum of at most 2n linearly independent vectors
in two different ways.

Co-inclusive IBE can be built using attribute-based encryption, but this con-
struction is less efficient than spatial encryption. Once again, the ciphertext has
size O(n). Our construction gives constant size ciphertext.

Broadcast Hierarchical IBE. Broadcast HIBE (and therefore also vanilla
broadcast IBE [16]) is embeddable in inclusive IBE. The role for a path a/b/c/...
in the hierarchy is the set {a, a/b, a/b/c, . . .}. The policy for a set of nodes in the
hierarchy is the union of their roles. The scheme can broadcast to a set of points
S in the hierarchy if the number of distinct path prefixes in S is less than the di-
mension n.

For a useful broadcast system, short ciphertexts are required. Our spatial
encryption has constant-size ciphertexts, so our broadcast HIBE does as well.

Product Schemes. For GIBEs I1, I2 with roles R1, R2 and policies P1, P2,
respectively, we define a product scheme I1⊗I2. This scheme’s roles are R1×R2
and its policies are P1×P2. Here open((ρ1, ρ2), (π1, π2)) if and only if open(ρ1, π1)
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and open(ρ2, π2), and similarly (ρ1, ρ2) � (ρ′1, ρ
′
2) if and only if ρ1 � ρ′1 and

ρ2 � ρ′2. Note that this is different from what can be accomplished with double
encryption, for here the recipient needs to be able to decrypt both components
using a single key K(ρ1,ρ2). For instance, in the forward-secure encryption system
that follows, a recipient decrypts with a key for a role ρ issued before time t, not
a key for ρ and another key issued before time t.

Using the vector space Z
n1+n2
q

∼= Z
n1
q × Z

n2
q , we can embed two instances of

spatial encryption with dimensions n1 and n2 in one of dimension n1+n2. There-
fore, if two schemes I1 and I2 are embeddable in spatial systems of dimensions
n1 and n2, their product I1 ⊗I2 is embeddable in a spatial system of dimension
n1 + n2. Similarly, we can construct product schemes in inclusive IBE. Here the
policies are of the form π1 � π2 and the roles are of the form ρ1 � ρ2, where �
denotes a disjoint union.

Multiple Authorities. A common limitation in IBE systems is the need to
trust a single central authority. The central authority has the ability to decrypt
any message sent using the system, but equally importantly, the central author-
ity must correctly decide to whom it will issue keys for a given role. The hu-
man element of this authentication problem makes it less amenable to technical
solutions.

Product schemes are a step toward a solution to this problem. Let Ia be a
broadcast system whose identities are the names of authorities, and let Is be
any GIBE. Then the product system Ia ⊗ Is is a multi-authority version of Is.
A (possibly distributed) central dealer gives each authority a the decryption key
for the role (a, �). Then if a user wishes to encrypt a message to some policy
π ∈ Ps, and trusts a set A of authorities, she encrypts the message to (A, π).
This can be decrypted only by a user who holds the key for (a, ρ) where a ∈ A
and open(ρ, π), that is, one whom a has certified for a role which opens π.

Forward Security. There are already constructions of forward-secure IBE from
HIBE, so we already know that forward-secure encryption is embeddable in
spatial encryption [7]. We show a trivial forward-secure system from spatial
encryption that will be useful in constructing product schemes. Set the policy
for a time t to be the vector of t ones followed by n − t zeros, and the role for a
range of times [t1, t2] to be the affine subspace of t1 ones, followed by any t2 − t1
components, followed by n − t2 zeros.

A similar construction works for forward-secure IBE based on inclusive IBE.
These constructions require many more dimensions than [7], but they require
the user to store only one secret key for a given range of times. This makes them
more efficient for use in product schemes.

CCA2 Security. Following [3], we can use a MAC and a commitment scheme
to create a CCA2-secure encryption I ′ scheme from a scheme I which is merely
CPA-secure. To encrypt a message m to a policy π, we choose a random MAC
key k, a commitment com to k and the decommitment dec. We encrypt c :=
Encrypt(PP, (π, com), (m, dec)) using the product I⊗IBE, and set the ciphertext
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as (com, c, MAC(k, c)). The resulting scheme is anonymous if I is, and fully
secure if I is. The proof is exactly as in [3].

Email Encryption. We have now solved the motivating example of practical
email encryption: by composing the above constructions, we can easily build a
forward-secure, multiple-authority, CCA2-secure broadcast hierarchical encryp-
tion system. This system can encrypt a message to nr (path prefixes of) re-
cipients, trusting in na authorities, with t time periods in a single key. The
ciphertexts have constant size, and the private keys have size O(na + nr + t).

Short Identity-Based Ring Signatures. We can convert a GIBE I to an
identity-based signature scheme using the product scheme I ⊗ IBE. The signing
key for a role ρ is K(ρ,�), and a signature of a message m under a role ρ is
K(ρ,H(m)), where H is a collision-resistant hash. This construction has the curi-
ous property that a signature by ρ on a message m can be delegated to produce
a signature by ρ′ on m for any ρ′ � ρ. If this property is undesirable, delegation
can be prevented by using H((ρ, m)) instead of H(m) above.

If the construction of I ⊗ IBE is fully secure, then this signature scheme
will be unforgeable; if it is selectively secure, then the signature scheme will be
selectively unforgeable in the random oracle model for H .

If we choose I to be inclusive IBE, then this construction gives an identity-
based ring signature system [15,8,18], in which a user A can sign messages
anonymously on behalf of any set of users containing A. A straightforward im-
plementation using spatial encryption would result in long signatures, but the
length results from the ability to delegate signatures further. By removing this
ability, we can build constant-length identity-based ring signatures. We give the
details in the full version of the paper.

4 Constructing a Spatial Encryption System

We now turn to the construction of a selectively-secure n-dimensional spatial
encryption system with constant-size ciphertext. Our construction is inspired
by the construction of a constant size HIBE given in [2]. Our proof of security,
however, requires a slightly stronger complexity assumption, namely the BDDHE
assumption previously used in [5].

4.1 Notation

Vectors in this paper are always column vectors. When writing them inline, we
transpose them to save space. We will be working with vectors of group elements,
so we will adopt a convenient notation. For a vector v = (v1, v2, . . . , vn)� ∈ Z

n
p

of field elements, we use gv to denote the vector of group elements

gv := (gv1 , gv2 , . . . , gvn)� ∈ G
n
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In many cases, we will manipulate these without knowing the actual vector v. For
example, given gv and w, we can easily compute g〈v,w〉, where 〈v, w〉 := v�w
is the usual dot product on Z

n
p .

We will write Aff(M, a) ⊆ Z
n
p for the d-dimensional affine space {Mx + a :

x ∈ Z
d
p}.

4.2 The System

The system parameters for our spatial encryption system will be a prime p
(where log p is approximately the security parameter λ) and two groups G and
GT of order p, with a bilinear pairing e : G × G → GT . Additionally, the public
parameters will include group elements g, ga0 , t ∈ GT and a vector ga ∈ G

n.
A secret key for an affine space V := Aff(M, x) will have the form

(
gr, gb+ra0+r〈x,a〉, grM�a

)

where b is the master secret and r is random in Zp.

The four GIBE algorithms work as follows:

– Setup(λ, n) generates the system parameters p, G, GT . It then chooses pa-
rameters

g
R← G

∗, a0
R← Zp, a

R← Z
n
p

and secret parameter b
R← G, then computes t := e(g, g)b. It outputs public

parameters
PP := ( p, G, GT ; g, ga0 , ga, t )

and master secret key

K� :=
(

g, gb, ga
)

∈ G
n+2

– Delegate(PP, V1, KV1 , V2) takes two subspaces V1 := S(M1, x1) and V2 :=
S(M2, x2). Since V2 is a subspace of V1, we must have M2 = M1T and
x′

2 = x1 + M1y for some (efficiently computable) matrix T and vector y.
We can then compute a key

K̂V2 :=
(

gr, gb+ra0+r〈x1,a〉 · gry�M�
1 a, grT �M�

1 a
)

=
(

gr, gb+ra0+r〈x2,a〉, grM�
2 a

)

for V2. However, we also need to re-randomize it. To do this, we pick a
random s

R← Zp and compute

KV2 :=
(

gr · gs, gb+r(a0+〈x2,a〉) · gs(a0+〈x2,a〉), grM�
2 a · gsM�

2 a
)

=
(

gr+s, gb+(r+s)(a0+〈x2,a〉), g(r+s)M�
2 a

)

Notice that V1 and V2 may be the same subspace. In that case, this formula
translates the secret key between different forms for V1 and re-randomizes
it. As a result, we are free to choose whatever representation of V we wish.
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– Encrypt(PP, x, m), where m is encoded as an element of the target group
GT , picks a random s

R← Zp and computes a ciphertext
(

gs, gs(a0+〈x,a〉), m · ts
)

– Decrypt(PP, V, KV , x, c) where c = (c1, c2, c3) is the above ciphertext, first
delegates KV to obtain the key K{x} = (k1, k2) :=

(
gr, gb+r(a0+〈x,a〉) )

. It
then recovers

c3 · e(c2, k1)
e(c1, k2)

=
m · ts · e(g, g)rs(a0+〈x,a〉

e(g, g)sb+rs(a0+〈x,a〉) = m

4.3 Bilinear Decision Diffie-Hellman Exponent

To prove security we use a generalization of bilinear Diffie-Hellman first proposed
in [5]. Let G be a group of prime order p, and let g be a generator of g. Let
e : G × G → GT be a bilinear map, and let n be a positive integer. We define
the notation gα[a,b]

for integers a ≤ b as

gα[a,b]
:=

(
gαa

, gαa+1
, . . . , gαb

)�

We then define distributions

PBDDHE := choose: g
R← G

∗, α R← Zp, h
R← G

∗, z ← e(g, h)αn

output:
(

gα[0,n−1]
, gα[n+1,2n]

, h, z
)

RBDDHE := choose: g
R← G

∗, α R← Zp, h
R← G

∗, z R← GT

output:
(

gα[0,n−1]
, gα[n+1,2n]

, h, z
)

We define the BDDHE-advantage of a randomized algorithm A : G
2n+1 ×GT →

{0, 1} as

BDDHE AdvA,n(λ) :=
∣
∣
∣Pr

[
A(x) = 1 : x

R← PBDDHE

]

− Pr
[

A(x) = 1 : x
R← RBDDHE

]∣
∣
∣

4.4 Proof of Selective Security

Call the spatial encryption system above S. To make the proof more readable
we abstract away re-randomization terms in the main proof of security. To do
so, we divide the proof into two steps:

– First, we show in Observation 1 that if the system S is insecure then so is a
system with rigged randomization parameters (i.e. a system where a0, a, b, r
and s are chosen non-uniformly). This step is straightforward.
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– Second, we show in Theorem 1 that a specific rigging of the randomization
parameters in S is secure. The combination of these two steps implies that
S is secure.

We believe that hiding re-randomization terms in the main simulation makes
the proof easier to understand.

Observation 1 (Rigged parameters). Let S′ be identical to S except that
a0, a, b, the r in delegation queries and the s in the challenge ciphertext are
chosen by some algorithm rather than uniformly at random. Then for any V-
adversary A against S, there is is a V-adversary B against S′, running in about
the same time as A, such that

VAdvA↔(S,n)(λ) = VAdvB↔(S′,\)(λ)

Proof. The adversary B runs A, but re-randomizes A’s queries and the simu-
lator’s responses. More concretely, at setup time B chooses uniformly random
a′
0

R← Zp, a
′ R← Z

n
p , b′ R← Zp. It sends A the public parameters
(

p, G, GT ; g, ga0+a′
0 , ga+a′

, t · e(g, g)b′
)

B then adjusts A’s queries to match these public parameters. For example, when
A makes a delegation query, B passes the query through directly to the chal-
lenger. Given the response

(
gr, gb+ra0+r〈x,a〉, grM�a

)

B computes a new key
(

gr, gb+ra0+r〈x,a〉 · gb′ · (gr)a′
0+〈x,a′〉, grM�a · (gr)M�a′

)

B re-randomizes it using Delegate, and returns it to A.
Because A’s view of the parameters is uniformly random, it is attacking the

system S. At the end, B will win its S′-game if and only if A wins its S-game, so

VAdvA↔(S,n)(λ) = VAdvB↔(S′,\)(λ)

as claimed.

We now proceed to the selective-security game. Here we prove that spatial
encryption is selectively CPA secure so long as the BDDHE-problem is hard
on G.

Theorem 1. Let A be any non-anonymous, selective CPA adversary against
S. Then there is a BDDHE-adversary B, running in about the same time as A,
such that:

BDDHE AdvB,n+1(λ) =
1
2

· (NonAnon, Sel, CPA)AdvA↔(S,n)(λ)
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Proof. We first use the above observation to construct an S′-adversary A′ with
the same advantage as A. Our proof then follows by direct reduction. The sim-
ulator B takes p, G, GT and (gα[0,n]

, gα[n+2,2n+2]
, h, z) from the BDDHE prob-

lem above. For the setup phase, B passes to A′ the policy parameters χ =
(p, G, GT , n). Upon receiving the intended target policy v, the simulator sets

a = α[1,n], a0 = − 〈v, a〉 , b = αn+1

Note that while B cannot efficiently compute a, a0 or b, it can compute ga, ga0

and e(g, g)b which are all it needs to present the public parameters to A′.
To answer delegation queries for a subspace V = Aff(M, x), the simulator

finds a vector u = (u1, u2, . . . , un)� such that M�u = 0, but 〈x − v, u〉 �= 0.
Such a u must exist since v /∈ V , and it can easily be found by the Gram-Schmidt
process. The simulator then formally sets

r =
u1α

n + u2α
n−1 + . . . + unα

〈x − v, u〉

Note that while B cannot efficiently compute r, it can compute gr. Now, for
any vector y, the coefficient of the missing term αn+1 in r 〈y, a〉 is exactly
〈y, u〉/〈x − v, u〉. Therefore, rM�a is a vector of polynomials in α of degree
at most 2n, and the coefficient of αn+1 is zero by the choice of u. Therefore
B can compute grM�a efficiently from gα[0,n]

and gα[n+2,2n]
. Similarly, B can

compute

gb+r(a0+〈x,a〉) = gαn+r〈v−x,a〉

= gαn+P (α)+〈v−x,u〉αn/〈x−v,u〉

= gP (α)

where P (α) has degree 2n and a zero coefficient on the αn+1 term. B uses this
technique to answer delegation queries during both query phases.

To construct a challenge ciphertext for the message mi, the simulator formally
sets s = logg h, returning c = (h, z · m).

B returns 1 if A′ guesses correctly, and 0 otherwise. Now, if z = e(g, h)αn+1
,

this is a valid challenge ciphertext, so A′ wins with probability

1
2

+
1
2

· (NonAnon, Sel, CPA)AdvA′↔(S′,\)(λ)

On the other hand, if z is random, then so is c and A′ wins with probability 1
2 .

As a result,

BDDHE AdvB,n+1(λ) =
1
2

· (NonAnon, Sel, CPA)AdvA′↔(S′,\)(λ)

=
1
2

· (NonAnon, Sel, CPA)AdvA↔(S,n)(λ)

as claimed.
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4.5 Extensions to Spatial Encryption

Short Public Parameters. The public parameters g, ga0 and ga in spatial
encryption consist of uniformly random elements of G (with the caveat that g �=
1). Therefore, given a random-oracle hash H : [1, n + 2] → G, these parameters
can be omitted.

Policy Delegation. It may be desirable to re-encrypt a message from a policy
π to a more restrictive policy π′. A simple model of this is to make P �R into a
partially-ordered set. We say that π � π′ if π′ can be delegated to π, and ρ � π
if open(ρ, π). The bottom ⊥ ∈ P of the partially ordered set represents plaintext
or plaintext-equivalent, i.e. a policy which anyone can decrypt. Then encryption
becomes a special case of policy delegation, just as key generation is a special
case of delegation.

We can implement policy delegation in spatial encryption by allowing encryp-
tions to any affine subspace W = Aff(M, x) ⊂ Z

n
p . This can be decrypted by a

key KV if and only if V ∩ W �= ∅. The encryptions look much like the private
keys in Section 4.2:

(
gs, gs(a0+〈x,a〉), gsM�a, m · ts

)

This allows us to construct dual systems for many of the systems in Section 3,
in which policies and roles are transposed. It also enables us to turn co-inclusive
encryption into a k-of-n threshold system.

However, ciphertexts for the policy-delegated systems are no longer constant-
size: their size is instead proportional to the dimension of the policy as a subspace
of Z

n
p . Furthermore, while the proof given in Section 4.4 still holds, the limitations

of selective security seem much stronger: the adversary must choose a subspace
to attack ahead of time.

5 Future Work

The biggest drawback of cryptosystems derived from spatial encryption is that
our proof only shows selective security. We leave as a significant open problem
the construction of a fully-secure spatial encryption system under a compact,
refutable assumption (preferably one simpler than our BDDHE assumption).
Since most of the systems derived in this paper can be constructed through
inclusive IBE, a fully-secure inclusive system would be almost as strong a result.
We note that Gentry’s recent fully-secure “key-randomizable broadcast IBE” [10]
is nearly identical to our inclusive IBE, except that Gentry’s adversary is only
allowed to issue delegation requests for singleton identities. This result suggests
that a fully-secure inclusive IBE system is within reach.

Another important challenge is to reduce the the size of the secret keys. Our
current construction requires users to store O(n log λ) bits of sensitive informa-
tion in memory and on disk, which may be challenging in some scenarios.
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6 Conclusions

We presented GIBE, a general framework for viewing identity-based and broad-
cast encryption systems. We also constructed a spatial encryption system, which
is an important instance of GIBE. Spatial encryption supports a product rule
which enables us to easily construct systems with various encryption properties.
One result of spatial encryption is broadcast HIBE with short ciphertexts.

A natural open problem is to constuct a spatial encryption system where both
ciphertexts and private keys are short. Perhaps the techniques in [5] or [16] can
be used towards this goal.
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