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The aim of this paper is to continue the research work that we have done in a previous paper
published in this journal (see Mihail andMiculescu, 2008). We introduce the notion of GIFS, which
is a family of functions f1, . . . , fn : Xm → X, where (X, d) is a complete metric space (in the above
mentioned paper the case when (X, d) is a compact metric space was studied) andm,n ∈ N. In case
that the functions fk are Lipschitz contractions, we prove the existence of the attractor of such a
GIFS and explore its properties (among them we give an upper bound for the Hausdorff-Pompeiu
distance between the attractors of two such GIFSs, an upper bound for the Hausdorff-Pompeiu
distance between the attractor of such a GIFS, and an arbitrary compact set of X and we prove its
continuous dependence in the fk’s). Finally we present some examples of attractors of GIFSs. The
last example shows that the notion of GIFS is a natural generalization of the notion of IFS.

1. Introduction

1.1. The Organization of the Paper

The paper is organized as follows. Section 2 contains a short presentation of the notion of an
iterated function system (IFS), one of the most common and most general ways to generate
fractals. This will serve as a framework for our generalization of an iterated function system.

Then, we introduce the notion of a GIFS, which is a finite family of Lipschitz
contractions fk : Xm → X, where (X, d) is a complete metric space and m ∈ N.

In Section 3 we prove the existence of the attractor of such a GIFS and explore its
properties (among them we give an upper bound for the Hausdorff-Pompeiu distance
between the attractors of two such GIFSs, an upper bound for the Hausdorff-Pompeiu
distance between the attractor of such a GIFS, and an arbitrary compact set of X and we
prove its continuous dependence in the fk’s).

Section 4, the last one, contains some examples and remarks. The last example shows
that the notion of GIFS is a natural generalization of the notion of IFS.
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1.2. Some Generalizations of the Notion of IFS

IFSs were introduced in their present form by John Hutchinson and popularized by Barnsley
(see [1]). There is a current effort to extend Hutchinson’s classical framework for fractals to
more general spaces and infinite IFSs. Some papers containing results on this direction are
[2–7].

1.3. Some Physical Applications of IFSs

In the last period IFSs have attracted much attention being used by researchers who work on
autoregressive time series, engineer sciences, physics, and so forth. For applications of IFSs
in image processing theory, in the theory of stochastic growth models, and in the theory of
random dynamical systems one can consult [8–10]. Concerning the physical applications of
iterated function systems we should mention the seminal paper [11] of El Naschie which
draws attention to an informal but instructive analogy between iterated function systems
and the two-slit experiment which is quite valuable in illuminating the role played by
the possibly DNA-like Cantorian nature of microspacetime and clarifies the way in which
probability enters into this subject. We also mention the paper [12] of Słomczyński where
a new definition of quantum entropy is introduced and one method (using the theory of
iterated function systems) of calculating coherent states entropy is presented. The coherent
states entropy is computed as the integral of the Boltzmann-Shannon entropy over a fractal
set.

In [13], Bahar described bifurcation from a fixed-point generated by an iterated
function system (IFS) as well as the generation of “chaotic” orbits by an IFS, and in [14]
unusual and quite interesting patterns of bifurcation from a fixed-point in an IFS system, as
well as the routes to chaos taken by IFS-generated orbits, are discussed. Moreover, in [15]
it is shown that random selection of transformation in the IFS is essential for the generation
of a chaotic attractor. In [16, Section 6.4], one can find a lengthy but elementary explanation
which features of randomness play the main role.

2. Preliminaries

Notations. Let (X, dX) and (Y, dY ) be two metric spaces.
As usual, C(X,Y ) denotes the set of continuous functions from X to Y , and d :

C(X,Y ) × C(X,Y ) → R+ = R+ ∪ {∞} defined by

d
(
f, g

)
= sup

x∈X
dY

(
f(x), g(x)

)
(2.1)

is the generalized metric on C(X,Y ).
For a sequence (fn)n of elements of C(X,Y ) and f ∈ C(X,Y ), fn

s→ f denotes the
punctual convergence, fn

u.c→ f denotes the uniform convergence on compact sets, and fn
u→

f denotes the uniform convergence, that is, the convergence in the generalized metric d.
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Definition 2.1. Let (X, d) be a complete metric space and m ∈ N.

For a function f : Xm = ×m
k=1X → X, the number

inf
{
c : d

(
f(x1, . . . , xm), f

(
y1, . . . , ym

)) ≤ cmax
{
d
(
x1, y1

)
, . . . , d

(
xm, ym

)}
,

∀x1, . . . , xm, y1, . . . , ym ∈ X
}
,

(2.2)

which is the same with

sup
x1,...,xm,y1,...,ym∈X;max{d(x1,y1),...,d(xm,ym)}>0

d
(
f(x1, . . . , xm), f

(
y1, . . . , ym

))

max
{
d
(
x1, y1

)
, . . . , d

(
xm, ym

)} , (2.3)

is denoted by Lip(f) and it is called the Lipschitz constant of f .
A function f : Xm → X is called a Lipschitz function if Lip(f) < ∞ and a Lipschitz

contraction if Lip(f) < 1.
We will use the notation LConm(X) for the set {f : Xm → X : Lip(f) < 1}.

Notations. P(X) denotes the subsets of a given set X and P ∗(X) denotes the set P(X) − {∅}.
For a subset A of P(X), by A∗ we mean A − {∅}.
Given a metric space (X, d), K(X) denotes the set of compact subsets of X and B(X)

denotes the set of closed bounded subsets of X.

Remark 2.2. It is obvious that K(X) ⊆ B(X) ⊆ P(X).

Definition 2.3. For a metric space (X, d), we consider on P ∗(X) the generalized Hausdorff-
Pompeiu pseudometric h : P ∗(X) × P ∗(X) → [0,+∞] defined by h(A,B) = max(d(A,B),
d(B,A)) = inf{r ∈ [0,∞] : A ⊆ B(B, r) and B ⊆ B(A, r)}, where B(A, r) = {x ∈ X : d(x,A) <
r} and d(A,B) = supx∈Ad(x, B) = supx∈A(infy∈Bd(x, y)).

Remark 2.4. The Hausdorff-Pompeiu pseudometric is a metric on B∗(X) and, in particular, on
K∗(X).

Remark 2.5. The metric spaces (B∗(X), h) and (K∗(X), h) are complete, provided that (X, d) is
a complete metric space (see [1, 7, 17]).

The following proposition contains the important properties of the Hausdorff-
Pompeiu semimetric (see [1, 17] or [18]).

Proposition 2.6. Let (X, dX) and (Y, dY ) be two metric spaces. Then one has the following:

(i) ifH and K are two nonempty subsets of X, then

h(H,K) = h
(
H,K

)
; (2.4)



4 Fixed Point Theory and Applications

(ii) if (Hi)i∈I and (Ki)i∈I are two families of nonempty subsets of X, then

h

(
∪
i∈I
Hi, ∪

i∈I
Ki

)
= h

(
∪
i∈I
Hi, ∪

i∈I
Ki

)
≤ sup

i∈I
h(Hi,Ki); (2.5)

(iii) ifH and K are two nonempty subsets of X and f : X → X is a Lipschitz function, then

h
(
f(K), f(H)

) ≤ Lip
(
f
)
h(K,H). (2.6)

Definition 2.7. An iterated function system on X consists of a finite family of Lipschitz
contractions (fk)k=1,n on X and is denoted S = (X, (fk)k=1,n).

Theorem 2.8. Let (X, d) be a complete metric space, let S = (X, (fk)k=1,n) be an IFS. Then there
exists a unique A(S) ∈ K∗(X) such that

FS(A(S)) def= f1(A(S))
⋃

. . .
⋃

fn(A(S)) = A(S). (2.7)

The set A(S) is called the attractor of the IFS S = (X, (fk)k=1,n).

Given a metric space (X, d), the idea of our generalization of the notion of an IFS is to
consider contractions from Xm = ×m

k=1X to X, rather than contractions from X to itself.

Definition 2.9. Let (X, d) be a complete metric space and m ∈ N. A generalized iterated
function system on X of order m (for short a GIFS or a GmIFS), denoted S = (X, (fk)k=1,n),
consists of a finite family of functions (fk)k=1,n, fk : Xm → X such that f1, . . . , fn ∈ LConm(X).

Earlier several authors tried to coin the name generalized IFS. One should note
the paper [19] in which notion tightly corresponds to contractive multivalued IFS from [2].

3. The Existence of the Attractor of a GIFS for Lipschitz Contractions

In this section m is a fixed natural number, (X, d) will be a fixed complete metric space, and
all the GIFSs are of orderm and have the form S = (X, (fk)k=1,n), where n is a natural number.

We prove the existence of the attractor of S (Theorem 3.9) and study its properties
(among them we give an upper bound for the Hausdorff-Pompeiu distance between
the attractors of two such GIFSs (Theorem 3.12), an upper bound for the Hausdorff-
Pompeiu distance between the attractor of such a GIFS, and an arbitrary compact set of X
(Theorem 3.17) and we prove its continuous dependence in the fk’s (Theorem 3.15)).

Definition 3.1. Let f : Xm → X be a function. The function Ff : K∗(X)m → K∗(X) defined by

Ff(K1, K2, . . . , Km) = f(K1, K2, . . . , Km) =
{
f(x1, x2, . . . , xm) : xj ∈ Kj ∀j ∈ {1, . . . , m}},

(3.1)

for all K1, K2, . . . , Km ∈ K∗(X), is called the set function associated to the function f .
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The function FS : K∗(X)m → K∗(X) defined by

FS(K1, K2, . . . , Km) =
n⋃

k=1

Ffk(K1, K2, . . . , Km), (3.2)

for all K1, K2, . . . , Km ∈ K∗(X), is called the set function associated to the GIFS S.
Lemma 3.2. For a sequence (fn)n of elements of C(Xm,X) and f ∈ C(Xm,X) such that fn

u→ f ,
one has

fn(K1, K2, . . . , Km) −→ f(K1, K2, . . . , Km), (3.3)

in(K∗(X), h), for all K1, K2, . . . , Km ∈ K∗(X).

Proposition 3.3. Let (X, dX) and (Y, dY ) be two complete metric spaces and let fn, f ∈ C(X,Y ) be
such that supn≥1Lip(fn) < +∞ and fn

s→ f on a dense set in X. Then

Lip
(
f
) ≤ sup

n≥1
Lip

(
fn
)
,

fn
u.c→ f.

(3.4)

Proof. In this proof, byM we mean supn≥1Lip(fn).
Let us consider A = {x ∈ X | fn(x) → f(x)}, which is a dense set in X, let K be a

compact set in X, and let ε > 0.
Since f is uniformly continuous on K, there exists δ ∈ (0, ε/3(M + 1)) such that if

x, y ∈ K and dX(x, y) < δ, then

dY

(
f(x), f

(
y
))

<
ε

3
. (3.5)

Since K is compact, there exist x1, x2, . . . , xp ∈ K such that

K ⊆
p⋃

i=1

B

(
xi,

δ

2

)
. (3.6)

Taking into account the fact thatA is dense in X, we can choose y1, y2, . . . , yp ∈ A such
that

y1 ∈ B

(
x1,

δ

2

)
, . . . , yp ∈ B

(
xp,

δ

2

)
. (3.7)

Since, for all i ∈ {1, . . . , p}, limn→∞fn(yi) = f(yi), there exists nε ∈ N such that for
every n ∈ N, n ≥ nε, we have

dY

(
fm

(
yi

)
, f

(
yi

))
<

ε

3
, (3.8)

for every i ∈ {1, . . . , p}.
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For x ∈ K, there exists i ∈ {1, . . . , p}, such that x ∈ B(xi, δ/2) and therefore

dX

(
x, yi

) ≤ dX(x, xi) + dX

(
xi, yi

)
<

δ

2
+
δ

2
< δ <

ε

3(M + 1)
, (3.9)

and so

dY

(
f
(
yi

)
, f(x)

)
<

ε

3
. (3.10)

Hence, for n ≥ nε, we have

dY

(
fn(x), f(x)

) ≤ dY

(
fn(x), fn

(
yi

))
+ dY

(
fn
(
yi

)
, f

(
yi

))
+ dY

(
f
(
yi

)
, f(x)

)

≤ MdX

(
x, yi

)
+
ε

3
+
ε

3
≤ M

ε

3(M + 1)
+
2ε
3

< ε.
(3.11)

Consequently, as x was arbitrary chosen in K, we infer that fn
u→ f on K, and so

fn
u.c→ f. (3.12)

The inequality

Lip
(
f
) ≤ sup

n≥1
Lip

(
fn
)

(3.13)

is obvious.

Lemma 3.4. Let A1, A2, . . . , Am be subsets of R.
Then

(1) infa1∈A1,...,am∈Am max{a1, . . . , am} = max{infA1, . . . , infAm};
(2) supa1∈A1,...,am∈Am

max{a1, . . . , am} = max{supA1, . . . , supAm}.

Lemma 3.5. If f : Xm → X is a Lipschitz function, then

Lip
(
Ff

)
= Lip

(
f
)
. (3.14)

Lemma 3.6. In the framework of this section, one has

Lip(FS) ≤ max
{
Lip

(
f1
)
, . . . ,Lip

(
fn
)}

. (3.15)

The proofs of the above lemmas are almost obvious.
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Theorem 3.7 (Banach contraction principle for LConm(X)). For every f ∈ LConm(X), there
exists a unique α ∈ X, such that

f(α, α, . . . , α) = α. (3.16)

For every x0, x1, . . . , xm−1 ∈ X, the sequence (xn)n≥1, defined by xk+m = f(xk+m−1,
xk+m−2, . . . , xk), for all k ∈ N, has the property that

lim
n→∞

xn = α. (3.17)

Concerning the speed of the convergence, one has the following estimation:

d(xn, α) ≤
m
(
Lip

(
f
))[n/m] max{d(x0, x1), d(x1, x2), . . . , d(xn−1, xn)}

1 − Lip
(
f
) (3.18)

for every n ∈ N.

Proof. See [20, Remark 5.1].

Remark 3.8. The point α from the above theorem is called the fixed point of f .

From Theorem 3.7 and Lemma 3.6 we have the following.

Theorem 3.9. In the framework of this section, there exists a unique A(S) ∈ K∗(X) such that

FS(A(S), A(S), . . . , A(S)) = A(S). (3.19)

Moreover, for any H0,H1, . . . ,Hm−1 ∈ K∗(X), the sequence (Hn)n≥1 defined by Hk+m =
FS(Hk+m−1,Hk+m−2, . . . ,Hk), for all k ∈ N, has the property that

lim
n→∞

Hn = A(S). (3.20)

Concerning the speed of the convergence, one has the following estimation:

h(Hn,A(S)) ≤ m
(
max

{
Lip

(
f1
)
, . . . ,Lip

(
fn
)})[n/m] max{h(H0,H1), . . . , h(Hm−1,Hm)}

1 −max
{
Lip

(
f1
)
, . . . ,Lip

(
fn
)}

(3.21)

for all n ∈ N.
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Definition 3.10. The unique set A(S) given by the previous theorem is called the attractor of
the GIFS S.

Theorem 3.11. If f, g ∈ LConm(X) have the fixed points α and β, then

d
(
α, β

) ≤ min

{
1

1 − Lip
(
f
)d

(
f
(
β, β, . . . , β

)
, β
)
,

1
1 − Lip

(
g
)d

(
α, g(α, α, . . . , α)

)
}

≤ 1
1 −min

{
Lip

(
f
)
,Lip

(
g
)}d

(
f, g

)
.

(3.22)

Proof. We have

d
(
α, β

)
= d

(
f(α, . . . , α), g

(
β, . . . , β

))

≤ d
(
f(α, . . . , α), f

(
β, . . . , β

))
+ d

(
f
(
β, . . . , β

)
, g

(
β, . . . , β

))

= d
(
f(α, . . . , α), f

(
β, . . . , β

))
+ d

(
f
(
β, . . . , β

)
, β
)

≤ Lip
(
f
)
d
(
α, β

)
+ d

(
f
(
β, . . . , β

)
, β
)
,

(3.23)

so

d
(
α, β

) ≤ 1
1 − Lip

(
f
)d

(
f
(
β, β, . . . , β

)
, β
)
, (3.24)

and in a similar manner we get

d
(
α, β

) ≤ 1
1 − Lip

(
g
)d

(
α, g(α, α, . . . , α)

)
. (3.25)

Therefore

d
(
α, β

) ≤ min

{
1

1 − Lip
(
f
)d

(
f
(
β, β, . . . , β

)
, β
)
,

1
1 − Lip

(
g
)d

(
α, g(α, α, . . . , α)

)
}

= min

{
1

1 − Lip
(
f
)d

(
f
(
β, . . . , β

)
, g

(
β, . . . , β

))
,

1
1 − Lip

(
g
)d

(
f(α, . . . , α), g(α, . . . , α)

)
}

≤ min

{
1

1 − Lip
(
f
)d

(
f, g

)
,

1
1 − Lip

(
g
)d

(
f, g

)
}

=
1

1 −min
{
Lip

(
f
)
,Lip

(
g
)}d

(
f, g

)
.

(3.26)

From Theorem 3.11 and Lemma 3.6, we have the following.
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Theorem 3.12. In the framework of this section, if S = (X, (fk)k=1,n) and S′ = (X, (gk)k=1,n) are
twom dimensional GIFSs, then

h
(
A(S), A(S′)) ≤ 1

1 − μ
max

{
d
(
f1, g1

)
, . . . , d

(
fn, gn

)}
, (3.27)

where μ = min(max{Lip(f1), . . . ,Lip(fn)},max{Lip(g1), . . . ,Lip(gn)}).

Theorem 3.13. Let fn, f ∈ LConm(X) with fixed points αn and α, respectively, such that

sup
n≥1

Lip
(
fn
)
< 1,

fn
s→ f

(3.28)

on a dense set in Xm.
Then

αn −→ α. (3.29)

Proof. From the fact that supn≥1Lip(fn) < 1 and fn
s→ f on a dense set inXm, it follows, using

Proposition 3.3, that

fn
u.c.→ f (3.30)

on Xm and

Lip
(
f
) ≤ sup

n≥1
Lip

(
fn
)
. (3.31)

From Theorem 3.11, we have

d(α, αn) ≤ 1
1 − Lip

(
fn
)d

(
α, fn(α, α, . . . , α)

)
, (3.32)

and hence

d(α, αn) ≤ 1
1 − supn≥1Lip

(
fn
)d

(
α, fn(α, α, . . . , α)

)
(3.33)

for all n ∈ N.
Since fn

u.c→ f on Xm, we obtain that

lim
n→∞

fn(α, α, . . . , α) = f(α, α, . . . , α), (3.34)
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and consequently, using the above inequality, we obtain that

lim
n→∞

αn = α. (3.35)

Proposition 3.14. Let Sj = (X, (fj

k)k=1,n), where j ∈ N
∗, and let S = (X, (fk)k=1,n) be m-

dimensional generalized iterated function systems such that

sup
j≥1

max
{
Lip

(
f
j

1

)
, . . . ,Lip

(
f
j
n

)}
< 1,

f
j

k

s→ fk

(3.36)

on a dense set in Xm, for every k ∈ {1, . . . , n}.
Then

FSj

u.c→ FS. (3.37)

Proof. Using Proposition 3.3, we obtain that

f
j

k

u.c→ fk (3.38)

on Xm and

max
{
Lip

(
f1
)
, . . . ,Lip

(
fn
)} ≤ sup

j≥1
max

{
Lip

(
f
j

1

)
, . . . ,Lip

(
f
j
n

)}
. (3.39)

Then, using Lemma 3.2 and Proposition 2.6(ii), we get

FSj

s→ FS. (3.40)

Since, according to Lemma 3.6, we have

Lip
(
FSj

)
≤ max

{
Lip

(
f
j

1

)
, . . . ,Lip

(
f
j
n

)}
≤ sup

j≥1
max

{
Lip

(
f
j

1

)
, . . . ,Lip

(
f
j
n

)}
< 1

(3.41)

for all j ∈ N, we obtain, using again the arguments from Proposition 3.3, that

FSj

u.c→ FS. (3.42)

From Theorem 3.13, Proposition 3.14, and Lemma 3.6, we have the following.
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Theorem 3.15. Let Sj = (X, (fj

k)k=1,n), where j ∈ N
∗, and let S = (X, (fk)k=1,n) be m-dimensional

generalized iterated function systems having the property that

sup
j≥1

max
{
Lip

(
f
j

1

)
, . . . ,Lip

(
f
j
n

)}
< 1,

f
j

k

s→ fk

(3.43)

on a dense set in Xm, for every k ∈ {1, . . . , n}.
Then

A
(Sj

) −→ A(S). (3.44)

Theorem 3.16. Forf ∈ LConm(X) having the unique fixed point α and for every x ∈ X, one has

dX(x, α) ≤
d
(
f(x, x, . . . , x), x

)

1 − Lip
(
f
) . (3.45)

Proof. We can use the Banach contraction principle for g ∈ LCon1(X), where

g(x) = f(x, x, . . . , x) (3.46)

for all x ∈ X.

Theorem 3.17. For a generalized iterated function system S = (X, (fk)k=1,n) and H ∈ K∗(X), the
following inequality is valid:

h(A(S),H) ≤ h
(
f(H,H, . . . ,H),H

)

1 −max
{
Lip

(
f1
)
, . . . ,Lip

(
fn
)} . (3.47)

Proof. The function GS : K∗(X) → K∗(X), defined by

GS(K) = FS(K,K, . . . , K) =
n⋃

k=1

fk(K,K, . . . , K), (3.48)

for all K ∈ K∗(X), is a contraction and

Lip(GS) ≤ Lip(FS) ≤ max
{
Lip

(
f1
)
, . . . ,Lip

(
fn
)}

. (3.49)

4. Examples

In this section we present some examples of attractors of GIFSs. Example 4.3 shows that the
notion of GIFS is a natural generalization of the notion of IFS.
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Example 4.1. Let A1, A2, . . . , Am ∈ B(X) and α ∈ X, where X is a Banach space and B(X) is the
set of linear and continuous operators from X to X.

Let us consider the function f : Xm → X, given by

f(x1, x2, . . . , xm) = A1x1 +A2x2 + · · · +Amxm + α, (4.1)

for every x1, x2, . . . , xm ∈ X.
Then

∥
∥f(x1, x2, . . . , xm) − f

(
y1, y2, . . . , ym

)∥∥

=
∥
∥A1

(
x1 − y1

)
+A2

(
x2 − y2

)
+ · · · +Am

(
xm − ym

)∥∥

≤
m∑

k=1

‖Ak‖
∥∥xk − yk

∥∥ ≤
(

m∑

k=1

‖Ak‖
)

max
{∥∥x1 − y1

∥∥, . . . ,
∥∥xm − ym

∥∥},

(4.2)

for every x1, x2, . . . , xm, y1, y2, . . . , ym ∈ X, and so

Lip
(
f
) ≤

m∑

k=1

‖Ak‖. (4.3)

In particular, if X = R and Ak = akIR, for every k ∈ {1, . . . , m}, then

Lip
(
f
) ≤

m∑

k=1

|ak|. (4.4)

Let us consider fm
0 , fm

1 : Rm → R given by

f0(x1, x2, . . . , xm) =
m∑

k=1

1
8
xk,

f1(x1, x2, . . . , xm) =
8 −m

8
+

m∑

k=1

1
8
xk

(4.5)

for every x1, x2, . . . , xm ∈ R.
Then

Lip
(
f0
)
= Lip

(
f1
) ≤ m

8
. (4.6)

Ifm < 8, then f0, f1 are contractions.
We consider the GIFS Sm = (R, (fm

0 , fm
1 )), where m ∈ {1, 2, . . . , 7}.

If m ≥ 4, then

A(Sm) = [0, 1]. (4.7)
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Indeed, fm
0 ([0, 1], [0, 1], . . . , [0, 1]) = [0, m/8], fm

1 ([0, 1], [0, 1], . . . , [0, 1]) = [1 −m/8, 1]
and so [0, 1] = fm

0 ([0, 1], [0, 1], . . . , [0, 1]) ∪ fm
1 ([0, 1], [0, 1], . . . , [0, 1]), that is, [0, 1] =

FSm([0, 1], . . . , [0, 1]). This proves that A(Sm) = [0, 1].
If m = 3, then

A
(
S3

)
=
[
0,

3
8

]
∪
[
5
8
, 1
]
. (4.8)

Indeed, if A = [0, 3/8] ∪ [5/8, 1], then

f3
0 (A,A,A) = f3

0

([
0,

3
8

]
,

[
0,

3
8

]
,

[
0,

3
8

])
∪ f3

0

([
0,

3
8

]
,

[
0,

3
8

]
,

[
5
8
, 1
])

∪ f3
0

([
0,

3
8

]
,

[
5
8
, 1
]
,

[
5
8
, 1
])

∪ f3
0

([
5
8
, 1
]
,

[
5
8
, 1
]
,

[
5
8
, 1
])

=
[
0,

9
64

]
∪
[
5
64

,
14
64

]
∪
[
10
64

,
21
64

]
∪
[
15
64

,
3
8

]
=
[
0,

3
8

]

(4.9)

and f3
1 (A,A,A) = [5/8, 1]. Hence A = f3

0 (A,A,A) ∪ f3
1 (A,A,A). This proves that A(S3) =

A = [0, 3/8] ∪ [5/8, 1].
If m = 2, then

A
(
S2

)
=
[
0,

2
32

]
∪
[
3
32

,
5
32

]
∪
[
6
32

,
8
32

]
∪
[
24
32

,
26
32

]
∪
[
27
32

,
29
32

]
∪
[
30
32

, 1
]
. (4.10)

If m = 1, then A(S1) is a Cantor type set (more precisely A(S1) consists of those elements of
[0, 1] for which one can use the digits 0 and 7 in order to write them in base 8).

Remark 4.2. Finally let us note that

A
(
S1

)
⊆ A

(
S2

)
⊆ A

(
S3

)
⊆ A

(
S4

)
= A

(
S5

)
= A

(
S6

)
= A

(
S7

)
. (4.11)

Example 4.3. Let X be one of the spaces lp, l∞, or c0, where p ≥ 1.

Let j : X → X, im : Rm → X and π1 : X → R be given by

j
(
(xn)n≥1

)
= (0, x1, x2, . . . , xm, . . .),

im
(
(xn)n≥1

)
= (x1, x2, . . . , xm, 0, 0, 0, . . .) ,

π1
(
(xn)n≥1

)
= x1

(4.12)

for all (xn)n≥1 ∈ X.
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We consider the GIFS S = (X, (f0, f1)), where f0 : X × X → X and f1 : X × X → X are
given by

f0
(
x, y

)
= i1

(
π1(x)
2

)
+
j
(
y
)

2
,

f1
(
x, y

)
= i1

(
π1(x)
2

+
1
2

)
+
j
(
y
)

2

(4.13)

for all x, y ∈ X.
Then

A(S) = ∞×
k=0

[
0,

1
2k

]
. (4.14)

Indeed, ifA = ×∞
k=0[0, 1/2

k], then j(A) = {0}×(×∞
k=0[0, 1/2

k]) and π1(A) = [0, 1]. Hence

f0(A,A) = im1

(
π1(A)

2

)
+
j(A)
2

=
[
0,

1
2

]
× {(0, 0, 0, . . .)} + {0} ×

(
∞×
k=0

[
0,

1
2k+1

])

=
[
0,

1
2

]
×
(

∞×
k=0

[
0,

1
2k+1

])
,

f0(A,A) = im1

(
π1(A)

2
+
1
2

)
+
j(A)
2

=
[
1
2
, 1
]
× {(0, 0, 0, . . .)} + {0} ×

(
∞×
k=0

[
0,

1
2k+1

])

=
[
1
2
, 1
]
×
(

∞×
k=0

[
0,

1
2k+1

])
,

(4.15)

and therefore A = f0(A,A) ∪ f1(A,A). This, together with the fact that A is compact, proves
that A(S) = A = ×∞

k=0[0, 1/2
k].

On one hand it is obvious that A(S) has infinite Hausdorff dimension. On the other
hand, for every finite IFS S, with contraction constant less then 1, we have dimH(A(S)) < ∞.
Indeed, the proof of the above claim is similar with the one of Proposition 9.6, page 135, from
[18].

Therefore there exists no finite IFS consisting of Lipschitz contractions having as attractor the
set A(S) = ×∞

k=0[0, 1/2
k].
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[12] W. Słomczyński, “From quantum entropy to iterated function systems,” Chaos, Solitons and Fractals,
vol. 8, no. 11, pp. 1861–1864, 1997.

[13] S. Bahar, “Chaotic orbits and bifurcation from a fixed point generated by an iterated function system,”
Chaos, Solitons and Fractals, vol. 5, no. 6, pp. 1001–1006, 1995.

[14] S. Bahar, “Further studies of bifurcations and chaotic orbits generated by iterated function systems,”
Chaos, Solitons and Fractals, vol. 7, no. 1, pp. 41–47, 1996.

[15] S. Bahar, “Chaotic attractors generated by iterated function systems: “harmonic decompositions” and
the onset of chaos,” Chaos, Solitons and Fractals, vol. 8, no. 3, pp. 303–312, 1997.

[16] H.-O. Peitgen, H. Jürgens, and D. Saupe, Chaos and Fractals: New Frontiers of Science, Springer, New
York, NY, USA, 2nd edition, 2004.

[17] K. J. Falconer, The Geometry of Fractal Sets, vol. 85 of Cambridge Tracts in Mathematics, Cambridge
University Press, Cambridge, UK, 1986.

[18] K. Falconer, Fractal Geometry: Mathematical Foundations and Applications, John Wiley & Sons,
Chichester, UK, 1990.

[19] J. J. P. Veerman and L. B. Jonker, “Rigidity propertiesof locally scaling fractals,” http://arxiv.org/
abs/math.DS/9701216.
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