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ABSTRACT

Many (but not all) approaches self-qualifying as “meta-learning” in deep learning
and reinforcement learning fit a common pattern of approximating the solution
to a nested optimization problem. In this paper, we give a formalization of this
shared pattern, which we call GIMLI, prove its general requirements, and derive
a general-purpose algorithm for implementing similar approaches. Based on this
analysis and algorithm, we describe a library of our design, unnamedlib, which
we share with the community to assist and enable future research into these kinds
of meta-learning approaches. We end the paper by showcasing the practical appli-
cations of this framework and library through illustrative experiments and ablation
studies which they facilitate.

1 INTRODUCTION

Although it is by no means a new subfield of machine learning research (see e.g. Schmidhuber,
1987; Bengio, 2000; Hochreiter et al., 2001), there has recently been a surge of interest in meta-
learning (e.g. Maclaurin et al., 2015; Andrychowicz et al., 2016; Finn et al., 2017). This is due
to the methods meta-learning provides, amongst other things, for producing models that perform
well beyond the confines of a single task, outside the constraints of a static dataset, or simply with
greater data efficiency or sample complexity. Due to the wealth of options in what could be con-
sidered “meta-” to a learning problem, the term itself may have been used with some degree of
underspecification. However, it turns out that many meta-learning approaches, in particular in the
recent literature, follow the pattern of optimizing the “meta-parameters” of the training process by
nesting one or more inner loops in an outer training loop. Such nesting enables training a model for
several steps, evaluating it, calculating or approximating the gradients of that evaluation with respect
to the meta-parameters, and subsequently updating these meta-parameters.

This paper makes three contributions. First, we propose a formalization of this general process,
which we call Generalized Inner Loop Meta-Learning (GIMLI), and show that it subsumes several
recent approaches. The proposed formalism allows us to describe the meta-optimization process in
general terms and analyse its requirements. Second, we derive a general algorithm that supports
the implementation of various kinds of meta-learning fitting within the GIMLI framework and its
requirements. Third, based on this analysis and algorithm, we describe a lightweight PyTorch li-
brary that enables the straightforward implementation of any meta-learning approach that fits within
the GIMLI framework in canonical PyTorch, such that existing codebases require minimal changes,
supporting third party module implementations and a variety of optimizers. Through a set of indica-
tive experiments, we showcase the sort of research directions that are facilitated by our formalization
and the corresponding library.

The overarching aim of this paper is not—emphatically—to purport some notion of ownership or
precedence in any sense over existing efforts by virtue of having proposed a unifying formulation.
Rather, in pointing out similarities under such unification, it provides theoretical and practical tools
for facilitating further research in this exciting domain.

2 GENERALIZED INNER LOOP META-LEARNING

Whereby “meta-learning” is taken to mean the process of “learning to learn”, we can describe it as a
nested optimization problem according to which an outer loop optimizes meta-variables controlling
the optimization of model parameters within an inner loop. The aim of the outer loop should be to
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improve the meta-variables such that the inner loop produces models which are more suitable ac-
cording to some criterion. In this section, we will formalize this process, which we call Generalized
Inner Loop Meta-Learning (GIMLI). We will define our terms in Section 2.1, give a formal descrip-
tion of the inner and outer loop’s respective optimization problems in Section 2.2 and 2.3, followed
by a description and proof of the requirements under which the process can be run in Section 2.4.
Finally, in Section 2.5 we describe an algorithm which permits an efficient and exact implementation
of GIMLI, agnostic to the model and optimizers used.

2.1 DEFINITIONS

Let us assume we wish to train a model parameterized by θ. Let ϕ describe some collection of possi-
bly unrelated “meta-parameters” describing some aspect of the process by which we train our model.
These could be, for example the learning rate or some other real-valued hyperparameters, task loss
weights in multi-task learning, or perhaps the initialization of the model weights at the beginning of
training. For disambiguation, we will refer to the subset of ϕ describing optimization parameters by
ϕopt, and those meta-parameters which parameterize aspects of the training loss calculation at every
step (e.g. the loss itself, the task mixture, regularization terms, etc) by ϕloss, i.e. ϕ = ϕopt ∪ ϕloss.
We will give several concrete examples in Section 3.

Let Ltrain be a function of θ and ϕ corresponding to the overall training objective we seek to
minimize directly or indirectly (e.g. via an upper bound, a Monte Carlo estimate of an expectation,
etc). Other elements of the objective such as the dataset, and hyperparameters or other aspects
of training not covered by ϕ, are assumed to be implicit and held fixed in Ltrain for notational
simplicity. With this, the process by which we train a model to obtain test-time parameters θ∗ can
be formalized as shown in Equation 11.

θ∗ = argmin(θ;Ltrain(θ, ϕ)) (1)

We assume that this search will be performed using an iterative gradient-based method such as some
form of gradient descent as formalized in Section 2.2, and thus that the derivative ∇θL

train(θ, ϕ)
exists, as an obvious requirement.

Furthermore, let Lval be a function exclusively of θ (except the specific case where ϕ describes
some aspect of the model, e.g. initialization, as is done in MAML (Finn et al., 2017)) describing
some objective we wish to measure the post-training performance of the model against. This could
be a validation set from the same task the model was trained on, from a collection of other tasks, or
some other measure of the quality of the model parameterized by θ∗. Typically, the aforementioned
iterative process is not run to convergence, but rather to the point where an intermediate set of model
parameters is considered satisfactory according to some criterion (e.g. best model under Lval for a
fixed budget of training steps, or after no improvement is seen for a certain number of training steps,
etc.), and these intermediate parameters will serve as θ∗.

2.2 TRAINING

The process by which we typically approximate θ∗ against Ltrain decomposes into a sequence
of updates of θ. At timestep t, we compute θt+1 from θt by first computing a step-specific loss
ℓtraint (θt, ϕ

loss). Note that this loss may itself also be a function of step-specific factors, such
as the training data used for that timestep, which we leave implicit here for notational simplic-
ity. Following this, we typically compute or approximate (e.g. as in reinforcement learning) the
gradients ∇θtℓ

train
t (θt, ϕ

loss) of this loss with regard to θt, by using algorithms such as backpropa-
gation (Rumelhart et al., 1985). We then typically use an optimizer to “apply” these gradients to the
parameters θt to obtain updated parameters θt+1. As such, optimization processes such as e.g. Ada-
grad (Duchi et al., 2011) may be stateful, in that they exploit gradient history to produce adaptive
“local” learning rates. Because some aspects of the optimization process may be covered by our

1Throughout this paper, we will write argminx in functional form as follows to facilitate formalizing nested
optimization, with x a variable and E an expression (presumably a function of x):

argmin(x;E) := argmin
x

E
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choice of ϕ, we denote this optimization step at time-step t by optt as shown in Equation 2, where
timestep-specific attributes of the optimizer are left implicit by our use of the step subscript.

θt+1 = optt(θt, ϕ
opt, Gt) where Gt = ∇θtℓ

train
t (θt, ϕ

loss) (2)

For example, where we might use SGD as an optimizer, with the learning-rate being a meta-variable
ϕopt, we could instantiate equation 2 as follows:

optt(θt, ϕ
opt, Gt) := θt − ϕopt ·Gt where Gt = ∇θtℓ

train
t (θt, ϕ

loss)

The estimation of θ∗ from Equation 1 using T +1 training updates according to Equation 2 yields a
double recurrence in both θt and Gt (as it is a function of θt, as outlined in Equation 3).

θ∗ ≈ optT (θT , ϕ
opt, GT ) = optT (PT , ϕ

opt,∇θT ℓ
train
T (PT , ϕ

loss))

where PT = optT−1(θT−1, ϕ
opt, GT−1) = optT−1(PT−1, ϕ

opt,∇θT−1
ℓtrainT−1 (PT−1, ϕ

loss))

...

where P1 = opt0(θ0, ϕ
opt, G0) = opt0(θ0, ϕ

opt,∇θ0ℓ
train
0 (θ0, ϕ

loss)) (3)

From this we see that the optimization process used to train a variety of model types, with a variety
of optimization methods, can be described as a function yielding test-time model parameters θ∗

potentially as a function of parameter history θ1, . . . , θT and of meta-parameters ϕ (if any exist).
While this may seem like a fairly trivial formalization of a ubiquitous training process, we will see
in Section 2.4 that if a few key requirements are met, this process can be nested as the inner loop
within an outer loop containing—amongst other things—a meta-training process. From this process,
described in Section 2.3, we estimate values of ϕ which improve our training process against some
external metric.

2.3 META-TRAINING

We now describe the outer loop optimization problem which wraps around the inner loop described
in Section 2.2. Through this process, we seek a value ϕ∗ which ensures that the training process
Ltrain(θ, ϕ∗) produces parameters θ∗ which perform best against some metric Lval(θ∗) which we
care about. The formalization and decomposition of this “meta-training process” into nested opti-
mization problems is shown in Equation 4.

ϕ∗ = argmin
(

ϕ;Lval(θ∗)
)

= argmin
(

ϕ;Lval
(

argmin
(

θ;Ltrain (θ, ϕ)
)))

(4)

In this section, we introduce a formalization of an iterative process allowing us to approximate this
nested optimization process. Furthermore, we describe a general iterative algorithm by which the
process in Equation 4 can be approximated by gradient-based methods while jointly estimating θ∗

according to the process in Equation 1.

An iterative process by which we can estimate ϕ∗ given Equation 4 following the sort of decomposi-
tion of the training process described Equation 1 into the training process described in Equations 2–
3 is described below. Essentially, an estimate of θ∗ is obtained following T + 1 steps training
as outlined in Equation 3, which is then evaluated against Lval. The gradient of this evaluation,
∇ϕL

val(θ∗) is then obtained through backpropagation, and used to update ϕ. Using τ as time-step
counter to symbolize the time-scale being different from that used in the “inner loop”, we formalize
this update in Equation 5 where metaoptτ denotes the optimization process used to update ϕτ

using Mτ at that time-step.

ϕτ+1 = metaoptτ (ϕτ ,Mτ ) where Mτ = ∇ϕτ
Lval(θ∗) (5)

= metaoptτ (ϕτ ,∇ϕτ
Lval(optT (PT , ϕ

opt, GT )))

where PT = optT−1(PT−1, ϕ
opt,∇θT−1

ℓtrainT−1 (PT−1, ϕ
loss))

...

where P1 = opt0(θ0, ϕ
opt, G0)
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2.4 KEY REQUIREMENTS

For gradient-based meta-learning as formalized in Section 2.3—in particular through the process
formalized in Equation 5—to be possible, a few key requirements must be met. We enumerate them
here, and then discuss the conditions under which they are met, either analytically or through choice
of model, loss function, or optimizer.

I. Lval is a differentiable function of its input, i.e. the derivative ∇θ∗Lval(θ∗) exists.

II. The optimization process opt in Equation 2 is a differentiable2 function of θ and G3.

III. Either or both of the following conditions hold:

(a) there exist continuous optimization hyperparameters (e.g. a learning rate α) covered by
ϕopt (e.g. α ⊆ ϕopt) and opt in Equation 2 is a differentiable function of ϕopt, or

(b) the gradient Gt for one or more time-steps in Equations 1–3 is a function of ϕloss (i.e. the
derivative ∇ϕlossℓtrain(θ, ϕloss) exists).

In the remainder of this section, we show that based on the assumptions outlined in Section 2.1,
namely the existence of gradients on the validation objective Lval with regard to model parameters
θ and of gradients on the training objective Ltrain with regard to both model parameters θ and meta-
parameters ϕ, there exist gradients on the validation objective Lval with regard to ϕ. We will then,
in the next section, demonstrate how to implement this process by specifying an update algorithm
for meta-variables.

Implementing an iterative process as described in Equation 5 will exploit the chain rule for partial
derivatives in order to run backpropagation. The structure of the recurrence means we need to ensure
that ∇θtL

val(θ∗) exists for t ∈ {0, . . . , T} in order to compute, for all such θt, gradient paths
(∇θtL

val(θ∗)) · (∇ϕθt). We can prove this exists in virtue of the chain rule for partial derivatives
and the requirements above:

1. By the chain rule, ∇θtL
val(θ∗) = (∇θ∗Lval(θ∗)) · (∇θtθ

∗) exists if ∇θ∗Lval(θ∗) ex-
ists (and it does, by Requirement I) and ∇θtθ

∗ = ∇θtθT+1 exists.

2. Idem, ∇θtθT+1 = (∇θt+1
θT+1) · (∇θtθt+1) exists by recursion over t if for all i ∈ [1, T ],

∇θiθi+1 exists, which is precisely what Requirement II guarantees.

Therefore ∇θtL
val(θ∗) exists for t ∈ {0, . . . , T}, leaving us to demonstrate that ∇ϕθt is defined

for all relevant values of t as a consequence of requirements I–III. We separately consider the case
of ϕloss and ϕopt as defined in Section 2.1:

1. For ∇ϕoptθt, the gradients trivially exist as a consequence of Requirement IIIa.

2. For ∇ϕlossθt, by the chain rule, ∇ϕlossθt = (∇Gt−1
θt) · (∇ϕlossGt−1). From Re-

quirement II, it follows that ∇Gt−1
θt exists, and from Requirement IIIb, it follows that

∇ϕlossGt−1 exists, therefore so does ∇ϕlossθt.

Putting these both together, and having covered the union of ϕopt and ϕloss by exhaustion, we
have shown that the gradients ∇ϕL

val(θ∗) can be obtained by composition over the gradient paths

(∇θtL
val(θ∗))(∇ϕθt) for all t ∈ [1, T ]. In Section 2.5 we show how to implement the exact and

efficient calculation of ∇ϕL
val(θ∗). To complete this section, we indicate the conditions under

which requirements I–III hold in practice.

Requirement I is simply a function of the choice of evaluation metric used to evaluate the model
after training as part of Lval. If this is not a differentiable function of θ∗, e.g. BLEU (Papineni et al.,
2002) in machine translation, then a proxy metric can be selected for meta-training (e.g. negative

2For stateful optimizers, we assume that, where the state is itself a function of previous values of the network
parameters (e.g. moving averages of parameter weights), it is included in the computation of gradients of the
meta-loss with regard to those parameters.

3This requirement is typically only satisfied by deterministic optimizers. However, for stochastic optimizers,
if there exists a reparameterization trick (see Kingma & Welling, 2013) for the distribution from which gradients
or other components of the update are sampled, the requirement may also be satisfied.
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log-likelihood of held out data), or gradient estimation methods such as REINFORCE (Williams,
1992) can be used.

Requirement II is a function of the choice of optimizer, but is satisfied for most popular optimizers.
We directly prove that this requirement holds for SGD (Robbins & Monro, 1951) and for ADA-
GRAD (Duchi et al., 2011) in Appendix A, and prove it by construction for a wider class of common
optimizers in the implementation and tests of the software library described in Section 4.

Requirement IIIa is a function of the choice of hyperparameters and optimizer, but is satisfied for at
least the learning rate in most popular optimizers. Requirement IIIb is a function of the choice of loss
function ℓtrain (or class thereof), in that ∇θtℓ

train
t (θt, ϕ

loss) needs to exist and be a differentiable
function of ϕ. Usually, this requirement is held where ϕ is a multiplicative modifier of θt. For
algorithms such as Model Agnostic Meta-Learning (Finn et al., 2017, MAML), this requirement is
equivalent to saying that the Hessian of the loss function with regard to the parameters exists.

2.5 THE GIMLI UPDATE ALGORITHM

In Algorithm 1, we present the algorithm which permits the computation of updates to meta-
variables through the nested iterative optimization process laid out above. To clearly disentangle
different gradient paths, we employ the mathematical fiction that is the “stop-gradient” operator,
which is defined as an operator which maintains the truth of the following expression:

J−K
stop(x)

: ∀f

[(

Jf(x)K
stop(x)

= f(x)

)

∧

(

∇xJf(x)K
stop(x)

= 0

)]

As will be shown below, this will allow us to decompose the computation of updates to the meta-
variables through an arbitrarily complex training process, agnostic to the models and optimizers
used (subject to the requirements of Section 2.4 being satisfied), into a series of local updates pass-
ing gradient with regard to the loss back through the inner loop steps. This is akin to backpropagation
through time (BPTT; Rumelhart et al., 1985), a method which has been adapted to other nested op-
timization processes with various constraints or restrictions (Andrychowicz et al., 2016; Franceschi
et al., 2017; 2018).

Algorithm 1 The GIMLI update loop

Require: Current model parameters θt, meta-parameters ϕτ

Require: Number of meta-parameter updates I , length of unrolled inner loop J
1: for i = 0 to I − 1 do
2: Segment meta-parameters ϕ

opt
i , ϕloss

i ← split(ϕτ+i)
3: Copy model state θ′0 ← θt, optimizer state opt′0 ← optt
4: for j = 0 to J − 1 do
5: Compute inner gradient Gj ← ∇θ′

j
ℓtraint+j (θ′j , ϕ

loss
i ) and retain gradient graph state

6: Update inner model θ′j+1 ← opt′j(θ
′

j , ϕ
opt
i , Gj)

7: end for
8: Initialize accumulators: A

opt
i ← zerosLike(ϕopt

i ); Aloss
i ← zerosLike(ϕloss

i )

9: Compute BJ ← ∇θ′
J
L

val(θ′J)

10: for j′ = J − 1 to 0 do
11: Compute optimizer-gradient derivative Oj′ ← ∇Gj′

opt′j′(θ
′

j′ , ϕ
opt
i , Gj′)

12: Update A
opt
i ← A

opt
i +Bj′+1 · (∇ϕ

opt
i

opt′j′( Jθ′j′K
stop(ϕ

opt
i

)

, ϕ
opt
i , JGj′K

stop(ϕ
opt
i

)

))

13: Update Aloss
i ← Aloss

i +Bj′+1 ·Oj′ · (∇ϕloss
i
∇θ′

j′
ℓtraint+j′ ( Jθ′j′K

stop(ϕloss
i

)

, ϕloss
i ))

14: Compute Bj′ ← Bj′+1 · ((∇θj′
opt′j′(θ

′

j′ , ϕ
opt
i , JGj′K

stop(θj′ )

)) +Oj′ · (∇
2
θ′
j′
ℓtraint+j′ (θ′j′ , ϕ

loss
i )))

15: end for
16: Update meta-parameters ϕτ+i+1 ←metaopt(ϕτ+i, join(A

opt
i , Aloss

i ))
17: end for
18: return Updated meta-parameters ϕτ+I

Each iteration through the loop defined by lines 1–17 does one gradient-based update of meta-
parameters ϕ using the optimizer employed in line 16. Each such iteration, we first (line 3) copy
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the model and optimizer state (generally updated through some outer loop within which this update
loop sits). We then (lines 4–7) compute a series of J updates on a copy of the model, preserving
the intermediate gradient computations G0, . . . , GJ−1, intermediate model parameters θ′0, . . . , θ

′

J

(sometimes confusingly referred to as “fast weights”, following Hinton & Plaut (1987), within
the meta-learning literature), and all associated activations. These will be reused in the second
stage (lines 10–15) to backpropagate higher-order gradients of the meta-loss, computed on line 9
through the optimization process that was run in lines 4–7. In particular, in lines 12 and 13, local
(i.e. time step-specific) gradient calculations compute part of the gradient of ∇ϕ

opt

i
Lval(θ′J) and

∇ϕloss
i

Lval(θ′J), which is stored in accumulators which contain the exact respective gradients by

the end of loop. What permits this efficient local computation is the dynamic programming calcula-
tion of the partial derivative Bj′ = ∇θ′

j′
as function of only Bj′+1 and timestep-specific gradients,

implementing a second-order variant of BPTT through reverse-mode differentiation.

3 EXAMPLES AND RELATED WORK

In this section, we highlight some instances of meta-learning which are instances of GIMLI, before
discussing related approaches involving support for nested optimization, with applications to similar
problems. The aim is not to provide a comprehensive literature review, which space would not
permit. Rather, in pointing out similarity under our GIMLI formulation, we aim to showcase that
rich and diverse research has been done using this class of approaches, where yet more progress
indubitably remains to be made. This is, we believe, the strongest motivation for the development
of libraries such as the one we present in Section 4 to support the implementation of algorithms that
fall under the general algorithm derived in Section 2.

3.1 EXAMPLES

Many of the papers referenced below contain excellent and thorough reviews of the literature most
related to the type of meta-learning they approach. In the interest of brevity, we will not attempt such
a review here, but rather focus on giving examples of a few forms of meta-learning that fit the GIMLI

framework (and thus are supported by the library presented in Section 4), and briefly explain why.

One popular meta-learning problem is that of learning to optimize hyperparameters through
gradient-based methods (Bengio, 2000; Maclaurin et al., 2015; Luketina et al., 2016; Franceschi
et al., 2017), as an alternative to grid/random search (Bergstra & Bengio, 2012) or Bayesian Opti-
mization (Mockus et al., 1978; Pelikan et al., 1999; Bergstra et al., 2011; Snoek et al., 2012). Here,
select continuous-valued hyperparameters are meta-optimized against a meta-objective, subject to
the differentiability of the optimization step, and, where relevant, the loss function. This corresponds
to Requirements II and IIIa of Section 2.4 being met, i.e. GIMLI being run with select optimizer hy-
perparameters as part of ϕopt. To give a simple concrete example, in the approaches of Bengio
(2000) and Maclaurin et al. (2015), the only meta-variable is the learning rate α, i.e. ϕ = ϕopt = α.

A related problem is that of learning the optimizer wholesale as a parametric model (Hochreiter
et al., 2001; Andrychowicz et al., 2016; Duan et al., 2016), typically based on recurrent architec-
tures. Again, here the optimizer’s own parameters are the optimizer hyperparameters, and constitute
the entirety of ϕopt as used within GIMLI. Requirements II and IIIa are trivially met through the pre-
condition that such optimizers models have parameters with regard to which their output (and losses
that are a function thereof) is differentiable. As a concrete example, in the work of Andrychowicz
et al. (2016), an RNN with parameters φ is meta-learned, and models the updates made to parameters
during training. In our formalism, this would correspond to setting as meta-variable the parameters
of this update network, i.e. ϕopt = φ.

More recently, meta-learning approaches such as MAML (Finn et al., 2017; Antoniou et al., 2018)
and its variants/extensions have sought to use higher-order gradients to meta-learn model/policy
initializations in few-shot learning settings. In GIMLI, this corresponds to setting θ0 = ϕloss, which
then is not an explicit function of ℓtrain in Equation 3, but rather is implicitly its argument through
updates to the inner model over the unrolled optimization. All requirements in Section 2.4 must
be satisfied (save IIIa, with Requirement IIIb further entailing that ℓtrain be defined such that the
second derivative of the function with regard to θ exists (i.e. is non-zero).
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Finally, recent work by Chebotar et al. (2019) has introduced the ML3 framework for learning
unconstrained loss functions as parametric models, through exploiting second-order gradients of
a meta-loss with regard to the parameters of the inner loss. This corresponds, in GIMLI, to learning
a parametric model of the loss parameterized by ϕloss.

3.2 RELATED WORK

In a sense, many if not all of the approaches discussed in Section 3.1 qualify as “related work”,
but here we will briefly discuss approaches to the general problem of formalizing and supporting
implementations of problems that fit within the nested optimization specified by GIMLI.

The first is work by Franceschi et al. (2018) which describes how several meta-learning and hyper-
parameter optimization approaches can be cast as a bi-level optimization process, akin to our own
formalization in 2.3. This fascinating and relevant work is highly complementary to the formal-
ization and discussion presented in our paper. Whereas we focus on the requirements according to
which gradient-based solutions to approaches based on nested optimization problems can be found
in order to drive the development of a library which permits such approaches to be easily and scal-
ably implemented, their work focuses on analysis of the conditions under which exact gradient-based
solutions to bi-level optimization processes can be approximated, and what convergence guarantees
exist for such guarantees. In this sense, this is more relevant to those who wish to analyze and extend
alternatives to first-order approximations of algorithms such as MAML, e.g. see work of Nichol &
Schulman (2018) or Rajeswaran et al. (2019).

On the software front, the library learn2learn (Arnold et al., 2019) addresses similar problems
to that which we will present in Section 4. This library focuses primarily on providing implemen-
tations of existing meta-learning algorithms and their training loops that can be extended with new
models. In contrast, the library we present in Section 4 is “closer to the metal”, aiming to sup-
port the development of new meta-learning algorithms fitting the GIMLI definitions with as little
resort to non-canonical PyTorch as possible. A recent parallel effort, Torchmeta (Deleu et al., 2019)
also provides a library aiming to assist the implementation of meta-learning algorithms, supply-
ing useful data-loaders for meta-training. However, unlike our approach described in 4, it requires
re-implementation of models using their functional/stateless building blocks, and for users to reim-
plement the optimizers in a differentiable manner.

4 THE unnamedlib LIBRARY

In this section, we provide a high-level description of the design and capabilities of unnamedlib,4

a PyTorch (Paszke et al., 2017) library aimed at enabling implementations of GIMLI with as little
reliance on non-vanilla PyTorch as possible. In this section, we first discuss the obstacles that would
prevent us from implementing this in popular deep learning frameworks, how we overcame these in
PyTorch to implement GIMLI. Additional features, helper functions, and other considerations when
using/extending the library are provided in its documentation.

4.1 OBSTACLES

Many deep learning frameworks offer the technical functionality required to implement GIMLI,
namely the ability to take gradients of gradients. However, there are two aspects of how we imple-
ment and train parametric models in such frameworks which inhibit our ability to flexibly implement
Algorithm 1.

The first obstacle is that models are typically implemented statefully (e.g. torch.nn in PyTorch,
keras.layers in Keras (Chollet et al., 2015), etc.), meaning that the model’s parameters are
encapsulated in the model implementation, and are implicitly relied upon during the forward pass.
Therefore while such models can be considered as functions theoretically, they are not pure functions
practically, as their output is not uniquely determined by their explicit input, and equivalently the
parameters for a particular forward pass typically cannot be trivially overridden or supplied at call

4We will publicly release the library described in this section in the coming weeks under the Apache li-
cense. References to the library name have been anonymized throughout the paper to preserve the double-blind
reviewing process.
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time. This prevents us from tracking and backpropagating over the successive values of the model
parameters θ within the inner loop described by Equation 3, through an implicit or explicit graph.

The second issue is that, as discussed at the end of Section 2.4 and in Appendix A, even though the
operations used within popular optimizers are mathematically differentiable functions of the param-
eters, gradients, and select hyperparameters, these operations are not tracked in various framework’s
implicit or explicit graph/gradient tape implementations when an optimization step is run. This is
with good reason: updating model parameters in-place is memory efficient, as typically there is no
need to keep references to the previous version of parameters. Ignoring the gradient dependency
formed by allowing backpropagation through an optimization step essentially makes it safe to re-
lease memory allocated to historical parameters and intermediate model states once an update has
been completed. Together, these obstacles essentially prevent us from practically satisfying Require-
ment II of Section 2.4.

4.2 MAKING STATEFUL MODULES STATELESS

As we wish to track and backpropagate through intermediate states of parameters during the inner
loop, we keep a record of such states which can be referenced during the backward pass stage of
the outer loop in Algorithm 1. The typical way this is done in implementations of meta-learning
algorithms such as MAML is to rewrite a “stateless” version of the inner loop’s model, permitting
the use, in each invocation of the model’s forward pass, of weights which are otherwise tracked
on the gradient graph/tape. While this addresses the issue, it is an onerous and limiting solution,
as exploring new models within such algorithms invariably requires their reimplementation in a
stateless style. This typically prevents the researcher from experimenting with third-party codebases,
complicated models, or those which requiring loading pre-trained weights, without addressing a
significant and unwelcome engineering challenge.

A more generic solution, permitting the use of existing stateful modules (including with pre-loaded
activations), agnostic to the complexity or origin of the code which defines them, is to modify the
run-time instance of the model’s parent class to render them effectively function, a technique of-
ten referred to as “monkey-patching”. The high-level function unnamedlib.monkeypatch()
does this by taking as argument a torch.nn.Module instance and the structure of its nested
sub-modules. As it traverses this structure, it clones the parent classes of submodule instances, leav-
ing their functionality intact save for that of the forward method which implements the forward
pass. Here, it replaces the call to the forward method with one which first replaces the stateful pa-
rameters of the submodule with ones provided as additional arguments to the patched forward,
before calling the original class’s bound forward method, which will now used the parameters
provided at call time. This method is generic and derived from first-principles analysis of the
torch.nn.Module implementation, ensuring that any first or third-party implementation of para-
metric models which are subclasses of torch.nn.Module and do not abuse the parent class at
runtime will be supported by this recursive patching process.

4.3 MAKING OPTIMIZERS DIFFERENTIABLE

Again, as part of our need to make the optimization process differentiable in order to satisfy Re-
quirement II of Section 2.4, the typical solution is to write a version of SGD which does not modify
parameters in-place, but treated as a differentiable function of the input parameters and hyperpa-
rameters akin to any other module in the training process. While this, again, is often considered
a satisfactory solution in the meta-learning literature due to its simplicity, it too is limiting. Not
only does the inability to experiment with other inner loop optimizers prevent research into the ap-
plicability of meta-learning algorithms to other optimization processes, the restriction to SGD also
means that existing state-of-the-art methods used in practical domains cannot be extended using
meta-learning methods such as those described in Section 3, lest they perform competitively when
trained with SGD.

Here, while less generic, the solution provided by the high-level func-
tion unnamedlib.get diff optim() is to render a PyTorch optimizer instance differentiable
by mapping its parent class to a differentiable reimplementation of the instance’s parent class. The
reimplementation is typically a copy of the optimizer’s step logic, with in-place operations being
replaced with gradient-tracking ones (a process which is syntactically simple to execute in PyTorch).

8
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To this, we add wrapper code which copies the optimizer’s state, and allows safe branching off
of it, to permit “unrolling” of the optimization process within an inner loop (cf. the recurrence
from Equation 3) without modifying the initial state of the optimizer (e.g. to permit several such
unrolls, or to preserve state if inner loop optimizer is used elsewhere in the outer loop). Most of the
optimizers in torch.optim are covered by this method. Here too, a runtime modification of the
parent optimizer class could possibly be employed as was done for torch.nn.Modules, but this
would involve modifying Python objects at a far finer level of granularity. We find that supporting a
wide and varied class of optimizers is a sufficient compromise to enable further research.5

5 EXPERIMENTS

In this section, we briefly present some results of experiments using select existing methods from
Section 3.1, to show case how unnamedlib can be used to simply implement ablation studies and
searches over model architectures, optimizers, and other aspects of an experiment. This could, natu-
rally, be done without appeal to the library. However, in such cases, changing the model architecture
or optimizer requires re-implementing the model functionally or optimization step differentiably.
Here such changes require writing no new code (excluding the line where the model is defined).

5.1 META-LEARNING LEARNING RATES WITH HIGHER GRANULARITY

As the first application for unnamedlib, we set up a simple meta-learning task where we meta-
optimize the learning rate. Employing a handcrafted annealing schedule for learning rates has been
the de facto approach to improving a learning algorithm. While scheduled annealing can help to
boost the final performance, it usually requires significant hand-tuning of the schedule. In con-
trast, we adjust learning rates automatically using meta-learning, which unnamedlib enables for
arbitary models and optimizers.

We take an image classification model DenseNet-BC(k=12) (Huang et al., 2016), that provides
competitive state-of-the-art results on CIFAR10, and modify its training procedure by replacing the
multi-step annealing schedule of learning rate with a meta-optimizer. Specifically, we treat learning
rate for each inner optimizer’s parameter group as a separate meta-parameter that we will meta-
learn. Doing so allows individual model parameters to have finer learning rates, that are adjusted
automatically. The GIMLI algorithm provides for a clean implementation of such training procedure.
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Figure 1: Comparison of meta-learned learning rates against fixed and multi-step annealed for train-
ing DenseNet-BC(k=12) on CIFAR10. We observe convergence near state-of-the-art with better
sample complexity that using a hand-designed annealing schedule.

We first train two baseline variants of DenseNet-BC(k=12) using setup from (Huang et al.,
2016). In the first variant we keep the learning rate fixed to 0.1 for all 300 epochs, while the second
configuration takes advantage of a manually designed multi-step annealing schedule, which drops
learning rate by 10 after 150 and 225 epochs. For the meta-learning variant, we split the training set
into two disjoint pieces, one for training and another for validation, in proportion of 99 : 1. We then
use per parameter group learning rates (299 in total) for meta-optimization, initializing each learning
rate to 0.1. We perform one meta-update step after each epoch, where we unroll inner optimizer for

5 We also provide documentation as to how to write differentiable third party optimizers and supply helper
functions such as unnamedlib.register optim() to register them for use with the library at runtime.
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Table 1: Results from ablating MAML++ architecture and inner optimizers. “Our base” results are
from our VGG model trained with SGD in our MAML++ variant, and “our best” results show the
best test accuracy found, with the best model/optimizer combination shown in the text below.

omniglot test accuracy miniImageNet test accuracy
5 Way 20 Way 5 Way

Approach 1 Shot 5 Shot 1 Shot 5 Shot 1 Shot 5 Shot

MAML++ (Antoniou et al., 2018) 99.53 ± 0.26% 99.93 ± 0.09% 97.65 ± 0.05% 99.33 ± 0.03% 52.15 ± 0.26% 68.32 ± 0.44
MAML++ (Our base) 99.62 ± 0.08% 99.86 ± 0.02% 97.21 ± 0.11% 99.13 ± 0.13% 56.33 ± 0.27% 75.13 ± 0.67%
MAML++ (Our best) 99.91 ± 0.05% 99.87 ± 0.03% 99.00 ± 0.33% 99.76 ± 0.01% 56.33 ± 0.27% 76.73 ± 0.52%

resnet-4+SGD resnet-4+SGD resnet-12+SGD resnet-8+SGD vgg+SGD resnet-8+SGD

15 steps using batches from the training set, and compute meta-test error on the validation set over
10 batches from the validation set. We use batch size of 16 for meta-update, rather than 64 as in
the base training loop. We use Adam (Kingma & Ba, 2014) with default parameters as a choice for
meta-optimizer. We average results over 3 random seeds. Figure 1 demonstrates that our method is
able reach the state-of-the-art performance faster.

5.2 ABLATING MAML’S MODEL ARCHITECTURE AND INNER OPTIMIZER

The unnamedlib library enables the exploration of new MAML-like models and inner-loop opti-
mizers, which historically has required non-trivial implementations of the fast-weights for the model
parameters and inner optimizers as done in Antoniou et al. (2018); Deleu et al. (2019). These ab-
lations can be important for squeezing the last few bits of accuracy on well-established tasks and
baselines that are already near-optimal as shown in Chen et al. (2019), and is even more important
for developing new approaches and tasks that deal with different kinds of data and require adaptation
to be done over non-standard operations.

To illustrate how easy unnamedlib makes these ablations, in this section we take a closer look
at different model architecture and optimizer choices for the MAML++ approach (Antoniou et al.,
2018). MAML++ uses a VGG network with a SGD inner optimizer for the the Omniglot (Lake
et al., 2015) and Mini-Imagenet (Vinyals et al., 2016; Ravi & Larochelle, 2016) tasks. We start
with the official MAML++ code and evaluation procedure and use unnamedlib to ablate across
VGG, ResNet, and DenseNet models and SGD and Adam optimizers. We provide more details
about these in Appendix B. We denote the combination of model and inner optimizer choice with
<model>+<opt>. One finding of standalone interest is that we have kept most of the features
from MAML++, except we significantly increase the base VGG+SGD performance by using batch
normalization in training mode everywhere as in (Finn et al., 2017) instead of using per-timestep
statistics and parameters as MAML++ proposes. In theory, this enables more inner optimization
steps to be rolled out at test time, which otherwise is not possible with MAML++ because of the per-
timestep information, for simplicity in this paper we have not explored this and keep every algorithm,
optimizer, and mode to five inner optimization steps. When using Adam as the inner optimizer, we
initialize the first and second moment statistics to the statistics from the outer optimizer, which is
also Adam, and learn per-parameter-group learning rates and rolling average β coefficients. Our
results in Table 1 show that we are able to push the accuracy of MAML++ slightly up with this
ablation. We note that this pushes the performance of MAML++ closer to that of state-of-the-art
methods such as LEO (Rusu et al., 2018). Appendix B shows our full experimental results, and we
note that in some cases Adam slightly outperforms SGD for a particular model.

6 CONCLUSION

To summarize, we have presented GIMLI, a general formulation of a wide class of existing and
potential meta-learning approaches, listed and proved the requirements that must be satisfied for
such approaches to be possible, and specified a general algorithmic formulation of such approaches.
We’ve described a lightweight library, unnamedlib, which extends PyTorch to enable the easy
and natural implementation of such meta-learning approaches at scale. Finally we’ve demonstrated
some of its potential applications. We hope to have made the case not only for the use of the
mathematical and software tools we present here, but have also provided suitable encouragement
for other researchers to use them and explore the boundaries of what can be done within this broad
class of meta-learning approaches.
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A OPTIMIZER DIFFERENTIABILITY

A.1 SGD

∇ϕθt+1 = ∇ϕSGD(θt, Gt) = ∇ϕ[θt − αGt] = ∇ϕθt −Gt∇ϕα− α∇ϕGt

where α is the learning rate, and ∇ϕα is defined iff α ⊆ ϕ else Gt∇ϕα = 0

∇θtθt+1 = ∇θtSGD(θt, Gt) = ∇θt [θt − αGt] = ∇θtθt − α∇θtGt = 1− α∇2
θt
ℓtraint (θt, ϕ)
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B MAML++ EXPERIMENTS: ADDITIONAL INFORMATION

Table 2 shows all of the architectures and optimizers we ablated. The table is missing some rows as
we only report the results that successfully completed running three seeds within three days on our
cluster.

We use the following model architectures, which closely resemble the vanilla PyTorch examples for
these architectures but are modified to be smaller for the few-shot classification setting:

• vgg is the VGG architecture (Simonyan & Zisserman, 2014) variant used in MAML++
(Antoniou et al., 2018)

• resnet-N is the ResNet architecture (He et al., 2016). resnet-4 corresponds to the
four blocks having just a single layer, and resnet-8 and resnet-12 have respectively
2 and 3 layers in each block

• densenet-8 is the DenseNet architecture (Huang et al., 2017) with 2 layers in each block

We follow TADAM (Oreshkin et al., 2018) and do not use the initial convolutional projection layer
common in the full-size variants of the ResNet and DenseNet.

We can also visualize how the learning rates and rolling momentum terms (with Adam) change
over time when they are being learned. We show this in Figure 2 and Figure 3 for the 20-way
1-shot Omniglot experiment with the resnet-4 architecture, which is especially interesting as
Adam outperforms SGD in this case. We find that most of the SGD learning rates are decreased
to near-zero except for a few select few that seem especially important for the adaptation. Adam
exhibits similar behavior with the learning rates where most except for a select for are zeroed for the
adaptation, and the rolling moment coefficients are particularly interesting where the first moment
coefficient β1 becomes relatively evenly spread throughout the space while β2 splits many parameter
groups between low and high regions of the space.
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Table 2: Full MAML++ model and inner optimizer sweep search results.

mean acc std
dataset nway kshot model inner optim

mini imagenet full size 5 1 densenet-8 SGD 46.08 1.40
resnet-12 SGD 51.06 1.51
resnet-4 Adam 49.71 3.71

SGD 54.36 0.23
resnet-8 SGD 54.16 1.35
vgg Adam 47.93 11.64

SGD 56.33 0.27
5 densenet-8 SGD 65.29 0.98

resnet-12 Adam 37.40 3.64
SGD 69.14 3.19

resnet-4 Adam 76.33 0.71
SGD 74.48 0.77

resnet-8 Adam 68.03 15.19
SGD 76.73 0.52

vgg Adam 72.82 2.36
SGD 75.13 0.67

omniglot dataset 5 1 densenet-8 SGD 99.54 0.33
resnet-4 SGD 99.91 0.05
vgg Adam 99.62 0.08

SGD 99.62 0.08
5 densenet-8 SGD 99.86 0.05

resnet-4 SGD 99.87 0.03
vgg Adam 99.86 0.04

SGD 99.86 0.02
20 1 densenet-8 SGD 93.20 0.32

resnet-12 SGD 99.00 0.33
resnet-4 Adam 98.31 0.09

SGD 96.31 0.15
resnet-8 SGD 98.50 0.15
vgg Adam 96.15 0.16

SGD 97.21 0.11
5 densenet-8 SGD 97.24 0.26

resnet-12 SGD 99.69 0.17
resnet-4 Adam 99.44 0.23

SGD 99.71 0.03
resnet-8 SGD 99.76 0.01
vgg Adam 98.74 0.04

SGD 99.13 0.13
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Figure 2: The learning rates during a training run of a VGG network with SGD as the inner optimizer
for 20-way 1-shot mini-imagenet classification. The colors show the parameter groups within the
model.
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Figure 3: The learning rates during a training run of a VGG network with Adam as the inner opti-
mizer for 20-way 1-shot mini-imagenet classification. The colors show the parameter groups within
the model.
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