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1. Introduction.
1.1. The problem considered in the present paper is that of determining the corn-

mutants of certain Hubert space operators and of some related operator algebras.
The first theorem to be proved contains as special cases two classical interpolation
theorems due to Carathéodory and Pick, and it was this that inspired the title of
the paper. In actuality, the "generalized interpolation" is an operator dilation.

Before any results can be stated precisely, it will be necessary to introduce some
notations. Let C be the unit circle and D the open unit disk in the complex plane.
Lebesgue measure on C will be denoted by m. The spaces L"(m) will be denoted
simply by Lp, and the corresponding Hardy classes by Hp. The functions in Hp
have natural analytic extensions into D, and when desirable we shall regard these
functions as so extended.

The shift operator is the operator U on L2 defined by (Uf)(z) = zf(z). The opera-
tors we shall study first are projections of U. Let </< be a nonconstant inner function,
and let Kbe the subspace H2 Q i/iH2. The orthogonal projection in L2 with range
K will be denoted by P. Let S be the projection of U onto K, that is, the operator
PU\K. For <j> a function in H °° let (f>(S) denote the projection onto K of the operator
on L2 of multiplication by <f>. When an operator T on K can be written as <f>(S)
for a </> in Hx, we shall say that this <f> interpolates T.

The operators 4>(S) are precisely the operators that commute with S. It is easy
to show that these operators do in fact commute with S; the converse is given by

Theorem 1. IfTis an operator on K that commutes with S, then there is a function
</>inH<° such that \\<f>U = \\T\\ and T=<f>(S).

This theorem is proved in §2. In §§3 and 4 its relation with the Carathéodory and
Pick theorems is discussed. These correspond to the special cases where <p is a
power of z and a finite Blaschke product with distinct zeros. §5 contains some
incomplete results concerning the question of when the function <j> of Theorem 1
is unique. In §6 the condition under which (f>(S) is completely continuous is deter-
mined. §7 pertains to another special case, that where $ is the function
exp [(z+ l)/(z— 1)]. The operator S for this case is closely related to the Volterra
operator on L2[0, 1].

The remainder of the paper, §§8-10, is devoted to obtaining a generalization
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of Theorem 1 in which K is replaced by a space of operator valued functions. The
generalization is stated in §8 and its proof is outlined in §9. Not all the details
will be given, because the arguments are formally the same as those used to prove
Theorem 1.

Our proofs are functional analytic in character, and in particular they exploit
the duality between L1 and L°°. Duality relations have of course been used by
many authors in studying Hp spaces. The main analytic fact needed in the proof
of Theorem 1 is a classical theorem of F. Riesz on the factorization of H1 functions.
To obtain the generalized version of Theorem 1, a generalization of Riesz's theorem
to operator valued functions is needed. A proof of this result is presented in the
concluding §10.

I should like to express my warm thanks to Henry Helson for many valuable
discussions. In particular, the idea for the proof of Proposition 2.1 below arose
from one of these discussions.

1.2. It is perhaps appropriate at this point to present a little background
material. The following remarks will, I hope, suggest some of the considerations
that led me to this study.

Suppose S£ is a Hubert space and S is a semigroup of operators on S£. If ¿f
is a subspace of -£? and Q is the orthogonal projection onto Jf", then Jf is called
semi-invariant under 2 provided QWiQW2Q=QW1W2Q for all Wx and W2 in S.
When this happens, the family of operators {QW\Jf : WeT.} is a semigroup—
called the projection of 2 onto X—and the natural map of 2 onto its projection
is a homomorphism. Of special interest is the case where 2 consists of the positive
powers of some fixed operator W; we then speak simply of a semi-invariant sub-
space of W. If ¿f is semi-invariant under W, then W is called a dilation of its
projection onto ctii.

The semi-invariant subspaces of a semigroup £ are related in a simple way to
its invariant subspaces. Namely, every semi-invariant subspace of 2 is equal to
the orthogonal complement of one invariant subspace of 2 with respect to a
larger one, and every subspace of the latter form is semi-invariant under 2 [32,
Lemma 0]. In particular, the subspaces K of L2 introduced above are semi-invariant
under the shift operator U, and also under the semigroup of multiplication operators
on L2 induced by the functions in H°°.

Now Sz.-Nagy [36] has proved the following remarkable theorem : If A is an
arbitrary contraction operator acting on a Hubert space Jf, then there is a unitary
operator W, acting on a Hubert space that contains «3f as a subspace, such that
X is semi-invariant under W and A is the projection of W onto Jf. In other words,
every contraction has a unitary dilation. Moreover, W can be taken to be minimal,
i.e., such that no proper reducing subspace of W contains ¿f, and with this added
restriction W is essentially unique. The theorem of Sz.-Nagy presents the possi-
bility of using unitary operators to study other kinds of operators, and this possi-
bility has been pursued by many authors.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1967] GENERALIZED INTERPOLATION IN H" 181

It is instructive to approach these matters from a somewhat different direction
by starting with a unitary operator W and trying to identify the operators having
it as their minimal unitary dilation. The above mentioned characterization of
semi-invariant subspaces implies that in order for there to be any such operators
other than W itself, it is necessary and sufficient that W have a nonreducing in-
variant subspace. The simplest unitary operator of the latter sort is the shift opera-
tor U. On the basis of the known structure of the invariant subspaces of U, it is
easy to see that the only operators having U as their minimal unitary dilation are,
to within unitary equivalence, the operator U itself, the operator U\H2 and its
adjoint, and the operators S of Theorem 1. Thus, from the point of view of the
theory of unitary dilations, the operators S are among the simplest contractions,
and it is natural to try to analyze them.

Just how intimate is the relation between a contraction and its minimal unitary
dilation? The answer may depend on the contraction. Theorem 1 indicates that
for the operators S the relation is a very intimate one indeed, in that every operator
commuting with S is the projection of an operator commuting with U and having
K as a semi-invariant subspace. The theorem in §8 establishes the same result for a
wider class of operators. Whether these are but special instances of a general fact
about unitary dilations I would not venture to guess.

2. Proof of Theorem 1.
2.1. Let Hœ(S) denote the family of operators <f>(S) with <j> in H". From the

above remarks on semi-invariant subspaces, it is clear that //"(S) is an algebra,
and that the map of H™ onto //°°(S) that sends <j> onto </>(S) is a homomorphism.
The kernel of this homomorphism is i/«//00. We therefore get a natural (algebraic)
isomorphism from the quotient space H^/ipti™ onto //"(S1). The first step in the
proof of Theorem 1 will be to show that this natural isomorphism preserves norms
and that it is a homeomorphism relative to the weak-star topology of //"/</>//"
and the weak operator topology of H "(S). For this it is necessary to identify
the space whose dual is Z/00/</>//°°.

The annihilator of H" in/,1 is the space Hi, the subspace of//1 consisting of the
functions that vanish at the origin. Thus H™ is the dual of V-jHl. Moreover, the
annihilator of i/iH00 in L1 is $//¿. Hence the annihilator of t/tH™ in L^jHl is
H^ljHl, and we may conclude that the latter space has //™/i/i//œ as its dual.

The following lemma forms the basis for the first part of the proof.

Lemma 2.1. If fis a function in Hi, then there are functions g1 and g2 in K, with
1 Aft S ¡/¡i tmdUallá »/||i, such thai

(1) \Wdm = (<f>(S)gl, g2)

for all (/> in //". Conversely, if gx and g2 are in K, then there is an fin //¿ such that
(1) holds for all </> in Hço.
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Proof. Let / be in Hi- By a well-known theorem of F. Riesz [30], there is a
factorization f=fif2, where /i and f2 are in H2 and H2 respectively, and
l7i|2H/2|2=|/| almost everywhere. For any <j> in H™,

(2) jtffdm = (#i, ^/2).

As/2 is in H21, the function </-/2 is in {<1>H2Y=K® H21. Hence 4f2-P>f>f2 is in
i/2±, and, setting g2=P^f2, we have

(3) W»tfu = Wi,g¿>-
Moreover, the function fx—Pf\ is in tfjH2, and therefore so is the function
tiA-Pfi)- Hence, setting g1=Pf1, we have

(4) Wi, ga) - (fe, *a) = (<f>(S)gl, g2).
Combining equalities (2), (3), and (4), we see that (1) holds for all-in H™. As
obviously || gi || I á 11/111 and || g21| \ S= ||/|| i, the proof of the first part of the lemma is
complete.

To prove the second part of the lemma, suppose gx and g2 are functions in K.
Then </>g2 is in H21, and therefore ijjg2 is in H2. Hence we can achieve (1) simply
by setting f=j>g1g2.

Proposition 2.1. The natural isomorphism of H^l^H™ onto H^iS) is norm
preserving.

Proof. It is obvious that the map in question never increases norms; we must
show that it never decreases norms. Let <j> be a function in H°° such that the coset
(jy + i/jH00 has unit norm in H™\<\>HX. Let e be any positive number. As Hœ ¡t/iHœ
is the dual of <pH¿IH¿, there is an/in H¿ such that ||/||i = 1 and

/
Hfdm > I-,

By Lemma 2.1, there are functions gx and g2 in K, with ||gi||2^ 1 and ||ga||aál,
such that J" <f><jjfdm = (<j>(S)gu g2). It obviously follows that ||0(iS)|| > 1 — e. As £ is
arbitrary we have ||^(S)|| = 1, and the proof is complete.

A standard compactness argument shows that each coset in H"¡if>HM contains
a function whose i/°°-norm achieves the coset norm. Thus the preceding proposi-
tion implies that whenever an operator on K can be interpolated by a function in
H°°, it can be interpolated by a function whose //"-norm equals the norm of the
operator. The remainder of the proof of Theorem 1 is devoted to showing that the
interpolation is in fact possible for any operator commuting with S.

It should be pointed out that Proposition 2.1 is all one really needs to obtain
the interpolation theorems of Carathéodory and Pick. In the cases corresponding
to these theorems the subspace K is finite dimensional, and it is a triviality to
determine the operators that commute with S and to show they can all be inter-
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polated. The problem is to show that the interpolations can be carried out without
increasing norms.

Proposition 2.2. The natural isomorphism of H™ \faH " onto H^iS) is a homeo-
morphism relative to the weak-star topology on H^jfaH"1 and the weak operator
topology on HX{S).

Proof. Suppose {<f>,) is a net in Hm and fa a function in H™ such that
fa(S) -¥■ ¿„(S) in the weak operator topology. By Lemma 2.1, for any / in H¿
we can find functions gx and g2 in K such that (1) holds for all <f> in H°°. It follows
that J faff dm -» J faff dm for all/in H¿, and this means that fa + faH °° ->■<£„ + faH °°
in the weak-star topology of Hm\fH'a.

Suppose on the other hand that {fa} is a net in Hm and fa a function in 7/°°
such that fa + faH" ^fa + </>//" in the weak-star topology of HxlfaH<°. By the
second part of Lemma 2.1, for any functions gx and g2 in K we can find an/in i/o1
such that (1) holds for all <f> in H°°. This implies that (fa(S)gu g2) -> (<f>0(S)g1, g2)
for all gi and g2 in ^, so that ^(S) -* ^oO^) ¡n the weak operator topology. The
proof is complete.

Proposition 2.3. The algebra Ha(S) is the weakly closed algebra generated by S
and the identity.

Proof. We first show that //°°(S) is weakly closed. Suppose {fa} is a net in H™
such that the net {fa(S)} converges weakly to the operator T. If/is a function in
Hq, then by Lemma 2.1 there are functions gx and g2 in K, with ¡gi|lá ||/||i
and ||g21|la 11/111, such that (1) holds for all <f> in Hœ. It follows that

(5) lim   fa>pfdm

exists for all/in H¿ and is no larger in absolute value than ||r|| \\fWx. Moreover,
the limit (5) depends only on the coset of <//in >¡jH¿IH¡. Hence (5) defines a bounded
linear functional on «pHa/Ho, and this functional is induced by a function fa in
Hc0. We thus have fa+faH"> -+fa + faHœ weak-star, and therefore fa(S) -* fa(S)
weakly by Proposition 2.2. Consequently fa(S) = T, and we may conclude that
H "(S) is weakly closed.

It remains to show that the polynomials in S are weakly dense in Hœ(S). But
this is immediate from the fact that the ordinary polynomials are weak-star
dense in Hx. The proof of the proposition is therefore complete.

2.2. We shall complete the proof of Theorem 1 by showing that every operator
commuting with S belongs to the weak closure of the set of polynomials in S.
For this we use some properties of muliple shifts.

For r a positive integer let C denote the Hubert space of r-dimensional complex
column vectors, and let xlt..., xt denote the vectors in the usual orthonormal
basis for C. Let L2 denote the L2-space with respect to the measure m of C-valued
functions on C. For g a function in ordinary L2 and x a vector in C, we let gx
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stand for the function in L2 that at z takes the value g(z)x. Thus each G in L2
has a unique representation of the form

(6) G = g1x1 +■■■ + grxr

with gi,.. .,g, in L2. The space L2 may obviously be regarded as the direct sum
of r copies of L2, and we shall think of it in these terms. The shift of multiplicity r
is the operator on L2 of multiplication by z. We denote this operator by Ur ; it is
the direct sum of r copies of U.

By H? we mean the subspace of L2 consisting of those functions that can be
written in the form (6) with gu ..., gr in H2. We denote by Kr the subspace
H2 © </>H?, which may obviously be identified with the direct sum of r copies of
K; it consists of all G of the form (6) with gi,...,g, in K. For T an operator on
K we let T, denote the direct sum of r copies of T, regarded in the natural manner
as an operator on Kr. In particular, Sr is the projection of Ur onto Kr.

Let L?x r be the space of all essentially bounded r-by-r matrix valued functions
on C. Each function in L™x r induces an operator on L2 by means of multiplication
from the left. By //r" r we mean the space of those functions in Lr°°xr that send H2
into itself. The subspace Kr is semi-invariant under the semigroup of multiplication
operators on L2 induced by the functions in //r"r. For 0 in HrKXT we denote by
&(Sr) the projection onto Kr of the operator on L2 of multiplication by 0.

We shall regard the functions in Hx as also belonging to //r"r by identifying
any function <f> in the former with the function <f>Ir in the latter, where Ir is the
r-by-r identity matrix.

Lemma 2.2. If T is an operator on K that commutes with S, then Tr commutes
with &(Sr)for all 0 in //r°°xr.

The proof of this is routine and will therefore be omitted.
A function in Lfxr is called rigid if its values (regarded as operators on C)

are partial isometries having a fixed initial space. We shall need the following
theorem about the invariant subspaces of Ur.

The invariant subspaces of Ur contained in H? are precisely those of the form
&H2 with 0 a rigid function in Hrœxr.

This is a generalization of Beurling's theorem due originally to Lax [20]. Lax
worked in a different setting from the present one ; for a proof of Lax's theorem in
the form stated above, see Halmos [14] or Helson [15, p. 61].

If 0X and 02 are rigid functions in //r"r, then ®1 is said to divide 02 provided
©!//r2^ 02//r2- This notion of divisibility is equivalent to a natural algebraic one,
but that is not important here.

Proposition 2.4. The invariant subspaces of Sr are precisely those of the form
0(Sr)Kr with 0 a rigid function in H?x r dividing t//.

Proof. If 0 is a rigid function in //r™ r dividing 0, then &H2 n Kr is easily seen
to be an invariant subspace of ST. Conversely, if M is an invariant subspace of Sr,
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then M © ipH? is invariant under Ur and so by Lax's theorem has the form
&H2 for some rigid function 0 in //r" r that divides >p, and we have M= 0//r2 n Kr.
So what we must show is this: if 0 is a rigid function in Hr°°xr dividing </i, then
0//2n Kr=@(Sr)Kr.

Let 0 be as described. Suppose F is a function in H2 such that 0F is in Kr.
Let Pr denote the orthogonal projection of L2 onto KT. Since the subspace i/iH2
is invariant under multiplication by 0, it contains the function &F— ®PrF. The
latter function is therefore annihilated by Pr, and so

&F = Pr@F = PrQPrF = @(Sr)PrF.

This means that ®F is in Q(Sr)Kr, and we have proved the inclusion

0//2 n KT <= Q(Sr)Kr.

Suppose on the other hand that G is a function in Kr. Then @G—PrQG is in
</r//2 and therefore also in 0//2. Hence there is a Gx in H? such that QG-PrQG
= 0Gi, i.e., such that &(Sr)G= &(G-Gi). This means that 0(5r)G is in 0//2 n Ä,,
and we have proved the inclusion ®(Sr)K,^ 0//2 n A,. The proof of the proposi-
tion is complete.

Completion of the proof of Theorem 1. Let T be an operator on K that com-
mutes with 5*. We want to show that T lies in the weak closure of the set of poly-
nomials in S. In other words, we want to show that if glt..., g„ hu ..., hr are
arbitrary functions in K, then there is a polynomial p such that

(7) \(Tgk, hk)-(p(S)gk, hk)\ < 1,       k=\,...,r.

From this we form the function G=g1x1+ ■ ■ ■ +grxr in Kr. By Lemma 2.2 and
Proposition 2.4, the operator Tr on Kr leaves invariant every invariant subspace
of Sr. Hence if M is the invariant subspace of Sr generated by G, then TG lies in M.
Since M is spanned by the set of functions p(Sr)G with p a polynomial, there is
some polynomial^ such that \\TrG—p(Sr)G\\2<min (l/||Afc||2), and this p obviously
satisfies (7). The proof of Theorem 1 is complete.

3. The Carathéodory interpolation problem. The interpolation problem of
Carathéodory asks : given n complex constants c0, cu ..., cn, can one find a func-
tion analytic and with nonnegative real part in the unit disk whose power series
begins with the terms c0 + cxz+ ■ ■ ■ + cnzn? The condition for interpolation can be
expressed as follows.

77ie Carathéodory problem has a solution if and only if the matrix

Co "(" Co       ¿i ¿2       ■ ' *        cn

C1 Co + C0 Cj • • •        Cn_i

c2 Ci       Cq + Cq    • • •      cn _ 2

•-     cn cn-l cn-2 " '      ^0 + ^0-"

is nonnegative definite.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



186 DONALD SARASON [May

Carathéodory originally expressed the interpolation condition in different terms
[1], [2]; the above formulation was pointed out by Toeplitz [38]. The Carathéodory
problem has been studied by many authors from many different points of view;
see Carathéodory and Fejer [3], Fischer [9], Frobenius [10], Gronwall [12], F.
Riesz [27, pp. 58-61], [28], [29], Schur [34], [35], and Szegö [11, pp. 56-60].

To see how the Carathéodory problem fits into the present context, we consider
the case where f(z) = zn+1. In this case the subspace K is (« + l)-dimensional, and
it has an orthonormal basis consisting of the functions ek(z)=zk, k=0, ...,n.
The operator S is the shift with respect to this basis: Sek = ek + 1 for k<n and
Sen=0. It is easy to see that an operator on K commutes with S if and only if its
matrix with respect to the basis e0,...,en has the form

(8)

["Co   0        0
Ci   c0       0

C2     C\ Cq

c„- Co-1

Further, a function in Hm interpolates the operator on K having the matrix (8)
if and only if its power series begins with the terms c0 + cxz+ ■ ■ ■ +cnzn. Therefore,
on the basis of Proposition 2.1, we can draw the following conclusion: In order
for there to exist a function in HK of norm less than or equal to 1 whose power series
begins with the terms c0 + CxZ+ ■ ■ ■ + cnzn, it is necessary and sufficient that the
matrix (8) have norm less than or equal to 1 as an operator on an (n+ l)-dimensional
Hubert space. This result, although it concerns interpolation by bounded functions
rather than by functions with nonnegative real parts, is equivalent to Carathéodory's
theorem. To see this, one has only to apply a suitable transformation from the
disk to the right half-plane. We omit the details and state the final conclusion:
In order for there to exist a function analytic and with nonnegative real part in the
unit disk whose power series begins with the terms Co + cxz + ■ ■ ■ +cnzn, it is necessary
and sufficient that the matrix (8) have a nonnegative real part as an operator on an
(n + \)-dimensional Hubert space. This obviously coincides with the Carathéodory-
Toeplitz interpolation condition.

Another aspect of the Carathéodory problem is to study the class of functions
that perform a given interpolation. For example, in the context of interpolation by
bounded functions one might ask the following question: given c0, c1(..., cn, what
is the nature of the function of minimum //"-norm whose power series begins
with the terms Cq + CíZ-I-• • •+cnzn? This problem will be handled with the
techniques of the present paper in §5.

4. The Nevanlinna-Pick interpolation problem. An interpolation problem
related to that of Carathéodory was first studied independently by Nevanlinna [22]
and Pick [24]. It asks: given n distinct points zlt.. .,zn in the unit disk and n
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complex numbers wu..., wn, can one find a function analytic and with non-
negative real part in the unit disk that takes at zu..., zn the respective values
wlt..., wn? Nevanlinna and Pick used quite different techniques in studying this
problem, and they found quite different interpolation conditions. The condition
of Pick is the one of interest here :

The Nevanlinna-Pick problem has a solution if and only if the matrix

(9)

Wx + Wi       W1-\-W2 Wx + Wn

w2 + w1    w2 + w2 w2 + wn
1 — Z2Zj    1 — z2z2 1 — z2zn

■ I — zn^l      1 — zn^2 1 -z.z-J

is nonnegative definite.
The Nevanlinna-Pick problem has been studied further by Denjoy [4],

Nevanlinna [23], Pick [25], [26], Sz.-Nagy and Korányi [37], and Walsh [39,
Chapter X].

To put the Nevanlinna-Pick problem into the context of the present paper, we
consider the case where tfi is the finite Blaschke product having simple zeros at
zu ..., zn. For this case the subspace K is «-dimensional, and it is spanned by
the functions gk(z) =1/(1— zkz), k = 1,..., n. The function gk is the kernel function
for the functional on H2 of evaluation at zk (in other words, (g, gk)=g(zk) for all
g in H2).

It is a little easier to work with the operator S* than with S. The functions
gi,...,gn are eigenvectors of S* with the respective eigenvalues iu..., zn. Hence
an operator T on K commutes with S if and only If ft,..., gn are eigenvectors of
T*. Further, if T is the operator on K defined by

(10) T*gk = wkgk,       k = !,...,»,

then a function <j> in H°° interpolates T if and only if 4>{zk) = wk, k=l,..., n.
The following conclusion therefore follows immediately from Proposition 2.1:
In order for there to exist a function in //œ of norm less than or equal to 1 that
takes at zlt..., zn the respective values wx,..., wn, it is necessary and sufficient
that the operator T on K defined by (10) have norm less than or equal to 1. As in the
case of the Carathéodory problem, we can transform this, by means of a map
from the disk onto the right half-plane, into a result about interpolation by func-
tions with nonnegative real parts, namely : In order for there to exist a function
analytic and with nonnegative real part in the unit disk that takes at zx,..., zn the
respective values wu ..., wn, it is necessary and sufficient that the operator T on K
defined by (10) have a nonnegative real part.
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If Tis the operator on K defined by (10) and g = a1g1 + ■ ■ ■ +a„gn is an arbitrary
function in K, then

2Re(Tg,g) = (T*g,g) + (g,T*g)

n n

=   2   aJäkWt{gi,gk)+   2   a}äkwk{gj,gk)

y   a,äk(w, + Wk)
Uk=l        l~Zjzk

Thus T will have a nonnegative real part if and only if the matrix (9) is nonnegative
definite. This shows that the interpolation condition just stated is equivalent to
the one given by Pick.

5. Uniqueness. In this section we consider the question of when the function
<f> of Theorem 1 is uniquely determined by the operator T. For the Nevanlinna-Pick
problem corresponding to an infinite sequence of points in the disk, a necessary
and sufficient condition for a given interpolation to have a unique solution has
been given by Denjoy [4]. This in principle has a bearing on our problem in the
case where f is an infinite Blaschke product. However, the condition of Denjoy
is very implicit, and it does not have any obvious reformulation in terms of the
associated operator T. What one would hope for is some simple condition on T
equivalent to the uniqueness of fa although there is no a priori reason for expecting
such a condition to exist. Nevertheless, it is very easy to obtain a simple sufficient
condition for uniqueness, which applies, in particular, whenever T is completely
continuous.

By a maximal vector for an operator T we shall mean a unit vector whose image
under Thas norm equal to \\T\\.

Proposition 5.1. Let T be an operator on K of unit norm that commutes with S,
and assume that T has a maximal vector. Then there is a unique function <f> in Hx
such that || <£ || „o = l and faS) = T. This function <j> is an inner function, and it is the
quotient of two functions in K.

Proof. Take any <f> in Hm such that ||^|| M = 1 and faS) = T. Let g be a maximal
vector for T. Then

1 = ||rg|a = \\Pfg\U Ú Ugh S «fia = I-

It follows that P<f>g = (f>g, and that the modulus of <j> cannot be less than 1 on a set
of positive measure. In other words, fa=Tg/g and <f> is inner. This proves the
proposition.

The following corollary applies in particular to the Carathéodory and Nevan-
linna-Pick problems.
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Corollary. Assume f is a finite Blaschke product, and let T be a nonzero
operator on K that commutes with S. Then there is a unique <f> in //°° of norm \T\
that interpolates T. This <f> is a rational function having constant modulus on the
unit circle, and it has fewer zeros than does fa

Proof. Under the present hypotheses the subspace K is finite dimensional, and
so T has a maximal vector. We may thus conclude by the preceding proposition
that <f> is unique, that it has constant modulus on the unit circle, and that it is the
quotient of two functions in K. Now the nonzero functions in K are easily seen
to be rational functions whose numerators have degrees less than the degree of the
numerator of fa Hence </> is a rational function whose numerator has a degree less
than that of the numerator of f (i.e., <j> has fewer zeros than fa.

Thus when f is a finite Blaschke product, each operator in H°°(S) has a unique
interpolating function of minimum norm. However, Walsh [39, pp. 292-293]
has proved in the context of the Nevanlinna-Pick problem that this is no longer
the case when f is an infinite Blaschke product. A trivial modification of Walsh's
reasoning will enable us to handle the case where </> has a singular factor as well.

Proposition 5.2. Assume f is not a finite Blaschke product. Then there is an
operator T in //°°(5) of unit norm which is interpolated by two distinct functions in
Hx of unit norm.

Proof. Since f is not a finite Blaschke product it has a singularity on the unit
circle, which, without loss of generality, we may assume occurs at z=l. Let Q.
be the open set {z : |z| +-^| 1 — z| < 1}. It is not hard to show that Í2 is a Jordan
domain contained in the unit disk D, and that the point z = 1 lies on the boundary
of Q (see [39] for the details). Let fa be a conformai map of D onto Q, say with
fa{\)=\. We then have

(11) |*i(z)|+*IWi(z)| < 1,       zeD.

Let T=<f>1(S). Then since ||<^1|00 = 1, we have ||r||Sl. On the other hand, the
point z=l is in the spectrum of T. For otherwise, the operator (T—1)_1 would
commute with 5 and so would have the form <f>(S) for some <f> in //°°. The function
fafa.— 1) would then interpolate the identity operator on K, so we would have

fafa-\)= l+#
for some h in //°°. But the latter is absurd, because fa_{z) —> 1 as z -> 1 and 0
is a cluster value of f at z= 1. This proves the assertion that z = 1 belongs to the
spectrum of T, and we may conclude that || T || = 1.

Now let

^3  =  ^1+^(1-^1)-

By (11) we have ||<£2||„ = 1, and obviously fa(S) = T. The proof is complete.
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The following question, related to that of uniqueness, seems worth mentioning.
Suppose T is an operator on K that commutes with S and has norm less than or

equal to 1. Can one describe the family of functions in H°° that interpolate T and
have norms less than or equal to 1 ?

In other words, if a coset in HXI^HX has norm less than or equal to 1, can one
describe the family of functions in this coset whose norms are less than or equal
to 1 ? Nevanlinna [22], [23] has obtained beautiful results for the case where ^
is a Blaschke product (see also Pick [26]). It seems probable that Nevanlinna's
results extend to the case where <p has a singular factor, even though his proofs
do not.

In particular, one would like to know the following : if T is an operator on K
that commutes with S and has norm less than or equal to 1, can The interpolated
by an inner function? In other words, does every coset in H^I^H™ of norm less
than or equal to 1 contain an inner function? Nevanlinna [23, Satz 7] has shown
that the answer is yes when ^ is a Blaschke product.

The latter question seems of interest for the theory of unitary dilations. An
affirmative answer would mean that every contraction on K commuting with S
can be dilated by a unitary operator on L2 that commutes with U.

6. Complete continuity. In this section we derive a necessary and sufficient
condition on </> for the complete continuity of <f>(S). Let # denote the space of
continuous complex valued functions on the unit circle.

Theorem 2. Let <f> be a function in //°°. Then <f>(S) is completely continuous if
and only if>fi</> belongs to H^+tf.

Proof. Suppose first that ^nf> is in Hm +c€. Then there is a <j>0 in the coset <f> + \/iH°°
such that <p4>o is in If. So we loose no generality in assuming that <\ij> is itself in c€.
We thus have <j> = i¡>w with w in '€.

Let {wn} be a sequence of trigonometric polynomials that converges uniformly
to w. For each n let Tn be the projection onto K of the operator on L2 of multi-
plication by </iwn. We then obviously have Tn -»■ <£(S) in operator norm.

Now the subspace ifiH2 has an orthonormal basis consisting of the functions
>/i, Uiji, U2i/i, — From this it is clear that the linear manifold PUki/iH2 is finite
dimensional for any integer k. Hence the linear manifolds Pi/jwnK are all finite
dimensional, and it follows that each operator Tn is of finite rank. Thus <f>(S)
is the norm limit of a sequence of operators of finite rank, and so </>(S) is completely
continuous. This proves the first half of the theorem.

To prove the other half of the theorem, suppose <f>(S) is completely continuous.
Let A be the subspace of ^ consisting of those functions whose Fourier coefficients
with negative indices vanish. By the F. and M. Riesz theorem, Hi is the annihilator
of A in <ë*, and so H¿ is the dual of^/A. Also, Lœ///œ is the dual of Hi, and hence
is the bidual of Ïï/A. The canonical embedding of V/A into L^jH™ sends a coset
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of the form w + A (we ft) onto the coset w + H*. What we want to prove, there-
fore, is that the coset ffa+H™ lies in the canonical image of WjA. For this it will
suffice to show that the functional induced by faf> on Hi—call it A—is continuous
with respect to the weak-star topology of Ho as the dual of ^¡A. For the latter,
in turn, it will be enough to show that the kernel of A is weak-star sequentially
closed [8, Theorem 1 on p. 426 and Theorem 7 on p. 429].

Suppose {/„} is a sequence in the kernel of A which converges weak-star to the
function/ By the factorization theorem used in the proof of Lemma 2.1, there are
for each n functions/ln and/2n in H2 and //02 respectively such that |/i„|2 = |/2„|2
= |/„| and /„ =fmf2n. As the sequence {/„} is bounded in //-norm, both of the
sequences {fln} and {f2n} are bounded in L2-norm. So by passing to a subsequence,
we may assume that each of the sequences {fln} and {/2n} converges weakly in L2,
say to /i and f2 respectively. The sequence {/i„/2n} is then bounded in //-norm
and converges to fxf2 at each point of the open unit disk. This implies that
/m/an ->/i/2 weak-star, and so we have fj2=f

Let
gl = Pfi, gi* = Pfm,-
ga  = Pfh, g2n = Pffïn-

By the reasoning used in the proof of Lemma 2.1,

(12) (faS)gl, g2) = ffofdm = A(/),

(12') (faS)gln, g2n) = jfofn dm = A(/n) = 0,       n=l,2.

Moreover, we obviously have gin-+gi and g2n^-g2 weakly in L2. Since faS)
is completely continuous, it follows that </>(S)gln -^<f>(S)g1 in L2-norm. Con-
sequently (<f>(S)gln, g2n) -> (faS)g1, g2). This together with (12) and (12') implies
that A(/)=0, which is the desired conclusion. The proof of the theorem is complete.

On the basis of the identification of L™///°° as the bidual oftf/A, it is a simple
matter to show that the linear manifold H°° +& is closed in L°°. This fact seems to
have been hitherto overlooked. (See for example the question raised by Devinatz
at the 1965 Lexington Symposium [Bull. Amer. Math. Soc. 71 (1965), Problem B
on p. 855].) One consequence is that Ha'+<ë is an algebra, and this algebra
appears to have interesting properties. For instance, its maximal ideal space is
obtained from the maximal ideal space of H" by deleting the unit disk.

7. The Volterra operator.
7.1. In this section we consider the case where f is the inner function

exp [(z+l)/(z—1)]. The operator S for this f is closely related to the Volterra
operator, that is, to the operator V on L2[0, 1] defined by

(Vg)(x) = [g(t)dt.
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In fact, let Wx be the isometry of L2 onto L2(-00,00) defined by

and let W be the Fourier-Plancherel transformation on L\—00,00). Then WWX
sends L2 isometrically onto L2(—00,00) and sends K isometrically onto L2[0, 1]
(regarded as the subspace of L2{—00,00) consisting of the functions that vanish
outside of [0, 1]). Moreover, WWX transforms S into the operator (1 — V)(i + V)'1
(see [31]). Thus, an operator on K commutes with S if and only if its transform
under WWX commutes with V. Theorem 1 therefore characterizes the commutant
of V. If we let //"(—00,00) denote the space of boundary functions on the real line
for functions bounded and analytic in the upper half-plane, we can re-express the
content of Theorem 1 for the present special case as follows.

IfTis an operator on L2[0, 1] that commutes with V, then there is a function <f> in
H™(—00,00) in terms of which T is given by

(13) (Tg)(x) = {W<f>W-lg){x),       Oi^l.

Moreover, <f> can be chosen such that \\(f>\\x = \\T\\.
When an operator T on L2[0, 1] and a function <j> in //"(—00,00) are related

as in (13), we shall say that <j> interpolates T. Notice that two functions in
H°°(—00,00) interpolate the same operator onL2[0, 1] if and only if their difference
is divisible, in the algebra //"(—00,00), by the function eix.

Henceforth we shall identify the functions in //"(—00,00) with their natural
analytic extensions into the upper half-plane.

7.2. The convolution operators on Z.2[0, 1] induced by measures on [0, 1)
obviously commute with V. However, not all operators in the commutant of V
arise in this way. In fact, if T is the operator on L2[0, 1] of convolution with the
measure ¡j. on [0, 1), then T is interpolated by the inverse Fourier transform of ¡x,
say <f>0. Clearly linij,...,.«, <£o(00 = m({0})- If <j> is any function in //°°(—00,00) that
interpolates T, then </> — <f>0 is divisible by eiz, and so limj,-.,.« <j>(iy) = M{0}) also.
Therefore, to obtain an operator that commutes with V and is not the operator
of convolution with a measure, it suffices to take an operator interpolated by a
function in //"(—00,00) that does not approach a limit as z -*oo along the positive
imaginary axis.

The object in mentioning the foregoing is to contrast the Volterra operator on
L2[0, 1] with the Volterra operator on L}[0, 1]. The latter operator has been studied
by Dixmier [6], and he has found that the operators commuting with it are precisely
the convolution operators induced by measures on [0, 1).

7.3. It is well known that the operator F belongs to a one-parameter semigroup,
and so, in particular, it has an nth root for every positive integer n [18, pp. 663 ff.].
As an application of some of the above results, I shall show that V has precisely
n nth roots.
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The operator V is interpolated by the inverse Fourier transform of Lebesgue
measure on [0, 1], i.e., by the function

tfi)-(*•■-l)/fr.
It follows from a lemma of deLeeuw and Rudin [21, Lemma 1.4] that the function
ei2-l is outer (in //°°(-oo,oo)). Therefore <j> is also outer, and this fact will be
needed.

Let fa_ be an nth root of <f> (n a positive integer exceeding 1), and let 7\ be the
operator on L2[0, 1] interpolated by fa. Obviously Tx is an nth root of V. Let T2
be any nth root of V. Then T2 commutes with V and so it is interpolated by some
function fa in //°°(—00,00). The functions fa and <f>2 then both interpolate V,
and so fa—fal is divisible by eiz.

Let w be a primitive nth root of unity. Then we can write

4i-ti = n i^-^fa).
fc=0

For fc=0,..., n— 1 let ak be the largest nonnegative number such that <¡>2 — cukfa
is divisible by the inner function <j>k(z) — exp (iakz). The sum of the ak% is then at
least 1. For each k there is a function fk in //"(—00,00) such that fa — okfa=<pkfk.
Thus if j and k are distinct we have

ti = (M-<A*/*)/("fc-"').

If both üj and ak were nonzero it would follow that fa_ is divisible by a nonconstant
inner function. But that is impossible because fai = <t> is outer. Hence at most one
of the ak's is nonzero. This particular ak is then at least 1, so that fa - aPfa^ is
divisible by eiz. In other words, for some k we have T2 = u>kTx, as desired.

7.4. The operator V is completely continuous. Therefore, by Proposition 5.1,
the operator V\ \ V \ can be interpolated by an inner function fa. The proof of
Proposition 5.1 tells us how to find fa,. Namely, the first step is to find a maximal
vector for V. This is equivalent to finding an eigenvector for the largest eigenvalue
of V* V. A simple calculation shows that the function

g(x) = cos (ttx/2),       Oí jS 1,

is such an eigenvector. The same calculation shows that | V\\ =2\tt\ moreover

(Vg)(x) = -sin^-

The function fa is equal to H\G, where G is the inverse Fourier transform of g
and H is the inverse Fourier transform of -rrVgß. A computation gives

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



194 DONALD SARASON [May

Hence
(2fe/7rV+l

Uz) =   e*-2fe/*r "

We shall prove the following properties of <£0-
77/e function <j>0 is an infinite Blaschke product {for the upper half-plane) with

simple zeros. Its zeros cluster only at oo.
Proof. It is trivial to check that <f>0 is continuous on the real axis. Hence the only

singular functions that can possibly divide it are the functions eiaz, a^O. But
obviously, if a>0 then e'iaz<f>Q(z) is unbounded on the positive imaginary axis.
Hence </>0 is not divisible by any nonconstant singular function, i.e., it is a Blaschke
product. As <f>0 is continuous on the real axis, its zeros can cluster only at oo.

To go further we need the following lemma.

Lemma 7.1. The equation

(14) eis = 2/z/tt-

has precisely two solutions on the real axis, none in the upper half-plane, and in-
finitely many in the lower half-plane.

Proof. It is trivial that the only solutions of (14) on the real axis are z— ±ir/2.
If we can prove that there are no solutions in the upper half-plane, then it will
follow by Picard's theorem (applied to the function ci2/z) that there must be in-
finitely many solutions in the lower half-plane. Now the solutions of (14) are
precisely the zeros of the denominator in the above expression for <f>0. Any such
zero in the upper half-plane must also be a zero of the numerator (because <f>0 is
analytic in the upper half-plane). But a simple computation shows that the only
common zeros of the numerator and denominator are at z = + ?r/2. This proves the
lemma.

We can now complete the discussion of <f>0. Obviously, if z is a solution of (14)
then — z is a zero of the numerator in the expression for <j>0. Hence, by the lemma,
the numerator has infinitely many zeros in the upper half-plane. Moreover, the
lemma implies that none of these is a zero of the denominator. Thus <f>0 itself
has infinitely many zeros in the upper half-plane. A trivial computation shows
that the numerator of <f>0 has no zeroes in common with its derivative, and thus the
zeros of rf>0 are simple. All the asserted properties of <f>0 have now been proved.

Notice that the function —e~iz^>0 is continuous on the one-point compactification
of the real line and takes the value 1 at oo. From this it is not hard to show that
eiz and — <f>0 have the same cluster values atoo. In particular, if {zn} is a sequence
in the upper half-plane converging to oo, then lim e™<> exists if and only if
lim - <f>0(zn) exists, and when these limits exist they are equal. It seems remarkable
that there is a Blaschke product that behaves in the same way as eiz at oo.

8. The operator valued theorem. We shall be concerned in what follows with
functions on the unit circle C whose values are vectors in a separable Hubert space,
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and with functions on C whose values are bounded operators on a separable
Hubert space. Without mentioning it explicitly each time, we shall always assume
that any such functions we consider are weakly measurable [18, §3.5]. An equality
between two of these functions is to be interpreted as holding modulo null sets.

For y a separable Hubert space, we let L2[f] denote the space of i^-valued
functions G on C satisfying

j\\G(z)\\2dm(z)<œ.

The space L2[f~] is a Hubert space under the inner product

(<?x, G2) = JtG^z), G2(z)) dm(z).

(The ambiguity in notation between the inner products in "T and in L2[f~] will
not cause confusion in practice.) A function G in L2{f~] is called analytic if the
scalar function (G(z), y) belongs to H2 for each vector y in "f. The analytic functions
in L2[t~] form a subspace, which we denote by H2^].

The space of bounded operators on "V will be denoted by 3S{ir). We let
Lm [^(t^)] denote the space of essentially bounded á?(f)-valued functions on C
with the essential supremum norm. A function 0 in ^[âS^f)] is called analytic
if the scalar function (0>{z)x, y) is in H™ for each pair of vectors x and y in "V.
The space of analytic functions in L0O[J'(-r)] will be denoted by Hx\3S{f)\.

We now suppose that y\ and y2 are two separable Hubert spaces, and we con-
sider the space ^ O^i, t^2) of Hilbert-Schmidt operators of f2 into 'V^. The
space 3tf{ir1,y2) is a separable Hubert space under the inner product

(ßi, ß2) = HQiQt)
[33, pp. 29 ff.]. The space Z,2[^(t^'1, y2)\ provides the natural setting for general-
izing Theorem 1. The functions in Z,00 [ ̂ (l^)] operate on L2[^(f1,-r'2)] by
means of multiplication from the left, and those in L™ W(i/~2)] operate on
L\3^'{^rx, ^2)] by means of multiplication from the right. The functions in
Hx[^(i/'1)] and H<°[@(-r2)] send H2\^(fx, y2)] into itself.

As in the scalar case, we consider a nonconstant inner function <¡> in H", and
we form the subspace

K = H2\œ{rx, r2)) © ^H2\œ{ru r2)].

The subspace K is semi-invariant under the left multiplications by functions in
//"[^(•^i)] and under the right multiplications by functions in //"[^(^V,)]-
For $ in //"[^(i^)] we let Ae denote the projection onto K of the operator on
L2[je(fu -T2)\ of left multiplication by 0>, and we let JS? denote the class of all
such operators X0. Similarly, for 0 in //"[J'O^)] we let p0 denote the projection
onto K of the operator on L2pf {fx, f 2)] of right multiplication by <E>, and we
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let SI denote the class of all such operators p4. The classes & and 3/t are algebras
and they commute with each other.

Theorem 3. The algebras 3? and 3% are commutants of each other. Further, ifT
is an operator in £f then there is a function 0 in Hx[SS{ir1)} with ||0|| M = ||r|| such
that Áq = T. The analogous conclusion holds for Si.

The proof of this theorem will be sketched in the next section. Some special
cases should perhaps be commented on.

(a) Theorem 1 is precisely the special case of Theorem 3 in which

dim-Ti = dimy2 = 1.

(b) In case dim'^1=ni<oo and dim ir2=n2«x>, the space L2[3^{'fu f2)]
can be naturally identified with the space of ni-by-n2 matrix valued functions on
C having square-summable entries. The subspace K consists of all such matrix
functions whose entries belong to H2 © faH2 (the K of Theorem 1).

(c) If dim -T2= 1, then L\X{fx, Y~2)\ can be naturally identified with L2\TX\.
The subspace K can in this case be identified with a direct sum of copies of
H2 0 faH2, the number of direct summands being equal to the dimension of irx.
The algebra Si is generated by a single operator, which is a direct sum of copies
of the operator S of Theorem 1.

Theorem 3 of course enables one to prove operator valued generalizations of the
interpolation theorems of Carathéodory and Pick. These, however, can be ob-
tained more simply by other means. Sz.-Nagy and Korányi [37] have proved the
operator valued Pick theorem by an ingenious elementary argument, and a modi-
fication of their reasoning yields the Carathéodory theorem as well. I do not know
whether the method of Sz.-Nagy and Korányi can be applied to obtain any of the
other results of this paper.

It is natural to ask whether there is a version of Theorem 3 that holds when the
scalar inner function f is replaced by an operator inner function [15, p. 68].
This question may be difficult.

9. Sketch of the proof of Theorem 3.
9.1. The main ideas for the proof of Theorem 3 are already contained in the

proof of Theorem 1. The proof that Si is the commutant of ¿P, for example, in-
volves two steps:

(a) the proof that Si is weakly closed ;
(b) the proof that every operator commuting with ü? lies in the weak closure

of^.
We describe step (b) first.

One first needs the following generalization of the theorem of Lax that was used
in the proof of Theorem 1 :

The subspaces of H\3^{^"^ ^2)] invariant under right multiplication by all
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functions in Ha[39(-r2)] are precisely those of the form <dH2\X{fu y2)] with 0
a rigid function in H"[3S(fx)\.

This follows in trivial fashion from the theorem Halmos proves in [14] (see also
[15, p. 61]). (The Halmos theorem is just the special case where dim i^2 = l.)
From it and the argument used to prove Proposition 2.4, one can characterize the
invariant subspaces of Si :

The invariant subspaces of SI are precisely those of the form À^K with 0 a rigid
function in H^SSif x)\.

In particular, therefore, an operator commuting with 3? leaves invariant every
invariant subspace of St. In order now to show that every operator commuting
with J£? lies in the weak closure of 9t, one can proceed just as in the proof of
Theorem 1. The idea is to use the preceding result, but with ir1 replaced by a
direct sum of copies of itself.

The same argument of course shows that every operator commuting with Si
lies in the weak closure of 2?.

9.2. To complete the proof of Theorem 3, one must show that -Sf and SI are
weakly closed and that the interpolations in question can be carried out without
increasing norms. For this, as is easily seen, one may assume without loss of
generality that irx = V2. We shall therefore suppose from now on that yx and "K2
are the same Hubert space V, and we shall write 3tf(f) in place of 3tf(f, ~f~).
As in the scalar case, we have natural algebraic isomorphisms of Hx[39(f)]\
faHx[3S{T)] onto Si and &. The proof of Theorem 1 suggests that we should try
to identify H«'[3ä(i/')]lfaH'x'[9g(ir)] as a dual space. This is precisely what we shall
do.

Let S~(f) be the space of trace class operators on ~f [33, pp. 36 ff.]. The trace
norm of an operator Q in F(f) will be denoted by || ß||x- With this norm, 9~(f)
is a separable Banach space, and 36(f) is its dual under the duality

<C. ß> = tr(ß'ß),        Q'eâS(-T),       Q e^(f.

Let V-[^(f)] be the space of ^(f)-valued functions F on C such that

1^1= j\\F(z)ldm(z)< oo.

Under the indicated norm, V-[T(f)] is a Banach space. Let Hx[T(f)] be the
subspace of functions F in L1[S'(ir)] with the property that for every pair of vectors
x and y in V, the scalar function (F(z)x, y) is in H1. Define Hl\S~{f)\ analogously.
Then the following properties hold,

(i) The space U>\@(V)\ is the dual of Lx[^(i^)] under the duality

<<p, F> = itr(0(z)F(z)) dm(z),       4> e L°° [Off)],       F e D\T(r)\

andHx\SS(r)\ is weak-star closed in L" [39(f)].
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(ii) The annihilator of Hx\3S{y)\ in L\F{f)\ is Hl\^{T)\, and consequently
Hx\SS{r)\\^H^\äS{f)\ is the dual of^H^(rr)]IH¡[^(fr)].

(iii) IfFx and F2 are in H2\^{f)\ then FXF2 is in Hx[^{f)].
(iv) The orthogonal complement of H2\^(f)\ in L2[Jf(-r)] is Hi*^^)]

(the space of pointwise adjoints of functions in H2\JP{f)\, the latter space being
defined in the obvious way).

(v) Each function F in H1^^)] has a factorization F=F1F2, where Fx and F2
are in H2\^i^)\ and

F?F2 = (F*Ff2,       FfF, = F2F$.

For the case where "f~ is finite dimensional, properties (i)—(iv) are very easy
consequences of the scalar theorems that they generalize. When ~V is infinite
dimensional their proofs are rather more difficult, but not so much so as to require
their inclusion here. Property (v) is a generalization of the factorization theorem
of F. Riesz used in the proof of Lemma 2.1 ; its proof will be given in the next
section.

Properties (ii)—(v) are operator valued versions of the basic facts about H1, H2,
and H" that were used in §2.1. With their aid, the arguments of §2.1 can be lifted
to the present context. The first step is to prove the obvious generalization of
Lemma 2.1. This requires properties (iii)-(v). Then, using (ii), one can show that
the natural isomorphisms of H™[&(1r)]l<liH'D[&(1r)] onto £ and ^ are norm
preserving, and that JSP and ^ are weakly closed. In this way one completes the
proof of Theorem 3.

10. Factorization of analytic operator functions.
10.1. We prove now the factorization theorem stated in the preceding section

as property (v). In fact, we shall prove a somewhat more general result, as this can
be done without any extra effort.

Let "V be a separable Hubert space. In what follows we shall refer to ^"-valued
functions on C as vector functions and to 3$(f~)- valued functions on C as operator
functions. An operator function A on C is called integrable if

[\\A{z)\\dm{z) <oo.

Square-integrability is defined analogously. An integrable operator function A
is called analytic if the scalar function {A{z)x, y) is in H1 for every pair of vectors
x and y in ir.

The following is the factorization theorem.

Theorem 4. Let A be an analytic integrable operator function on C. Then A
has a factorization A=AXA2, where Ax andA2 are analytic square-integrable operator
functions such that A2'A2 = (A*A)1'2 and A%AX=A2A%.
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This has been proved by Devinatz [5, Theorem 7.1] under the additional con-
ditions that A be invertible almost everywhere and that the operator function
log A*A be integrable. Earlier, Helson and Lowdenslager proved the same result
for the case where 'f is finite dimensional [16, Theorem 10]. The improvement
given by the theorem above is the elimination of assumptions on the invertibility of
A. The latter is of course essential for the purposes of the present paper.

The proof of Theorem 4 is based largely on results and ideas of Helson and
Lowdenslager. Certain preliminaries are necessary before the proof can be given.

10.2. An operator function is called positive if its values almost everywhere are
nonnegative Hermitian operators. A positive integrable operator function R is
called factorable if it can be written as R = B*B with B an analytic square-integrable
operator function. The first part of the proof of Theorem 4 will be devoted to
showing that if A is an analytic integrable operator function, then (A*A)112 is
factorable. This will first be done for the case where A has finite rank almost
everywhere by using a theorem of Helson and Lowdenslager, which is stated
below as Lemma 10.1. The general case will then be settled by appealing to a
theorem of Douglas (Lemma 10.2 below). The idea of basing the factorization
theorem for analytic operator functions on the factorization theorem for positive
operator functions is due to Helson and Lowdenslager.

For Q a Hermitian operator of finite rank on "T, we let A[g] denote the determi-
nant of the restriction of Q to its range.

Lemma 10.1. Let R be a positive integrable operator function such that the rank
of R(z) is finite for almost all z. Then R is factorable if and only if its range function
is conjugate analytic and

(log A[/?(z)] dm(z) > -oo.

Originally, Helson and Lowdenslager proved this under the stronger condition
that "f itself be finite dimensional [17, Theorem 13]. However, the proof in Helson's
book establishes the result stated above [15, pp. 120-123]. (The reader is referred
to Helson's book also for the definition of a range function.)

The result of Douglas we need can be stated as follows [7, Theorem 4].

Lemma 10.2. Let R be a positive integrable operator function. Suppose there is a
sequence {Rn} of positive operator functions such that Rn(z) ^ R(z)for all n and almost
all z, each Rn is factorable, and Rn(z) -> R(z) strongly almost everywhere. Then R
is factorable.

A vector polynomial is a vector function G on C of the form

G(z) = x0+zxx-\-+znxn,

where x0,...,xn are vectors in V. For B an analytic square-integrable operator
function, we let M(B) denote the subspace of H2[f] spanned by all the functions
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BG with G a vector polynomial. The function B is called an outer function if the
closure of the range of B(z) is almost everywhere a fixed subspace if of "V, and
if M{B) = H2[Hr]. Our final preliminary lemma is proved in Helson's book
[15, p. 121].

Lemma 10.3. If the positive integrable operator function R is factorable, then it
has a factorization of the form R = B*B with B an outer function.

10.3. We can now begin the proof of Theorem 4.

Lemma 10.4. Let A be an analytic integrable operator function such that A(z)
has finite rank for almost all z. Then (A* A)112 is factorable.

Proof. Consider first the case where A is bounded. In this case, if R = (A*A)112,
then R2 is factorable, and so it satisfies the necessary and sufficient conditions of
Lemma 10.1. From this it is immediate that R satisfies these conditions also, and
therefore R is factorable.

Now consider the general case. By a classical theorem of Szegö [19, p. 53],
there is an outer function h in H" such that

|«(z)|2 = 1 where \\A(z)\\ è 1,

= 1 /1| A(z) I       elsewhere.

The operator function h2A is then bounded and analytic, and so \h\2(A*A)112 is
factorable by what we just proved. Therefore, there is an analytic operator function
B0 such that \h\2{A* A)1'2 = B% B0. Setting B=h'1B0, we have (A*A)1I2 = B*B, and
it only remains to show that B is analytic. Now if x and y are vectors in ir, then the
scalar function (B(z)x, y) is in I?, and it is equal to the H™ function (B0(z)x, y)
divided by the outer function h. This implies by a well-known property of outer
functions that (B(z)x, y) is in H2 [19, p. 75], and so B is analytic, as desired. The
proof of the lemma is complete.

Lemma 10.5. Assume "f is infinite dimensional, and let A be an analytic integrable
operator function. Then (A* A)112 is factorable.

Proof. Choose an orthonormal basis for V, and for each positive integer n
let Pn be the orthogonal projection onto the subspace spanned by the first n basis
vectors. Each operator function PnA is then integrable and analytic. Therefore
(A*PnA)112 is factorable for each n, by Lemma 10.4. Now A(z)*PnA(z)úA(z)*A(z)
for all z, and the inequality is preserved upon taking square roots [13, p. 168].
Further, A{z)*PnA(z) ->• A(z)*A(z) strongly for all z, and this is easily seen to
imply that (A(z)*PnA(z))112 •+ (A(z)*A(z))112 strongly. The factorability of (A* A)112
therefore follows by Lemma 10.2.

Completion of the proof of Theorem 4. From this point the proof follows the
lines laid out in [16] and [5]. Minor modifications are necessitated by the possible
noninvertibility of our function.
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Let A be an analytic integrable operator function, and let R = (A*A)112. By
Lemmas 10.3-10.5 we have a factorization R = A%A2 with A2 an outer analytic
square-integrable operator function. Also, by the polar decomposition theorem,
we have a factorization A =JR, where J(z) is for each z a partial isometry whose
initial space equals the closure of the range of R(z) and whose range equals the
closure of the range of A(z). (A standard argument shows that J is measurable.)
If we set AX=JA%, then we have A=AXA2. It remains to show that Ax is analytic
and that A\AX = A2A%.

The latter fact will be proved first. We have

(15) AUi - A2J*JAt

For any z, the operator J(z)*J(z) is the orthogonal projection in "F~ onto the range
of J(z)*. The range of J(z)* is the initial space of J(z), which equals the closure of
the range of R(z). But the equality R = A$A2 shows that the ranges of R(z) and
A2(z)* have almost everywhere the same closures. Hence J(z)*J(z) is almost every-
where the projection onto the closure of the range of A2(z)*, and we have
J*JA% = A%. This together with (15) yields the desired equality AfAx=A2At-

To prove that Ax is analytic, we note that because A2 is outer, the closure of the
range of A2(z) is almost everywhere a fixed subspace W of'f. The equality Ax =JA%
shows that the null space of Ax(z) is equal almost everywhere to #"1. Hence it
will be enough to show that the scalar function (Ax(z)x, y) is in H1 for all x in
if and y in "V. Let such an x and such a y be given, and let x be regarded as a
constant function in H2\f\. Because M(A2) = H2\f], there is a sequence {Gn}
of vector polynomials such that A2Gn -*■ x in the norm of L2\f\ A simple
application of Schwarz's inequality gives

j\(Ax(z)x, y)-(A(z)Gn(z), y)\ dm(z)

< \\y\\[j\\Ax(z)\\2 dm(z)y2(j\\x-A2(z)Gn(z)\\2 dm^".

It follows that (A(z)Gn(z), y)^-(Ax(z)x, y) in L1. But each of the functions
(A(z)Gn(z), y) is in Hl because A is analytic, and consequently (Ax(z)x, y) is in H1.
The proof of the theorem is complete.
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