
Generalized inverse methods for the best least squares solution of
systems of non-linear equations

By R. Fletcher*

It is shown how many previous methods for the exact solution (or best least squares solution) of
systems of non-linear equations are all based upon simple cases of the generalized inverse of the
matrix of first derivatives of the equations. The general case is given and algorithms for its
application are suggested, especially in the case where the matrix of first derivatives cannot be
calculated. Numerical tests confirm that these algorithms extend the range of practical problems
which can be solved.

1. Introduction
The solution of a number of equations in as many
variables occurs frequently in scientific problems. The
derivation of best approximations by minimizing the
sum of squares of differences between two functions
(residuals) occurs even more widely. Both can be posed
as the problem of obtaining the best least squares approxi-
mation to a set of m simultaneous equations in n variables.

Methods of solution are well known for linear equa-
tions. However, in the case where the equations are ill-
conditioned or even singular in some way, methods
described in this paper may be used to advantage.
Primarily, though, we shall be concerned with the far
more general, and more difficult, problem of non-
linear equations.

There is a whole group of methods available which
are based on approximating to the non-linear situation
by a linear one and solving the problem iteratively.
They all involve in some way an inverse connected with
the matrix of first derivatives of the equations. When
there are as many equations as unknowns then Newton's
method (see Broyden, 1965) is best known and may be
used if derivatives of the equations can be evaluated.
If this is not so, or is inconvenient, then methods such
as the Secant method (Wolfe, 1959) or those of Barnes
(1965) and Broyden (1965) can be used. When there are
more equations than unknowns, a best least squares
solution may be obtained using the Generalized Least
Squares method (sometimes called the Gauss or Gauss-
Newton method: see Powell (1965)); unless derivatives
cannot be evaluated in which case the method given by
Powell (loc. cit.) can be used.

One aim of this paper is to describe a method involving
the "generalized inverse" of the matrix of first derivatives
of the equations, and also to show how the methods
mentioned in the previous paragraph are all special cases
of this new method. The generalized inverse is a con-
cept which has been developed rapidly in recent times
and which is often linked with the solution of linear
least squares problems—see for example Greville (1959).
A brief introduction to the generalized inverse is given
at the beginning of Section 3, followed by formulation
of the method for the straightforward case when deri-
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vatives can be evaluated. An important property of the
method which implies stability is also presented. In
Section 4 it is shown that when derivatives cannot be
evaluated, then the generalized inverse can be approxi-
mated using differences and used in a very similar way.
In both cases the connection with previous methods is
explained. Numerical results on a representative range
of problems are then presented and discussed. Finally
an appendix is given on how a simple algorithm for
computation of the generalized inverse might readily be
deduced from the ideas of Section 4.

A further objective has been to examine the con-
vergence of inverse type methods. Previous methods
often fail when the matrix of first derivatives becomes
of non-maximum rank and the required inverses cannot
be calculated. Problems do occur which exhibit this
behaviour in various ways and unfortunately it is not
generally possible to tell beforehand that this is likely to
happen. The effect of loss of rank on these methods is
discussed in the last section and reasons are given as to
why convergence breaks down. It is shown how the
generalized inverse formulation caters automatically for
these problems. There is only one proviso, namely
that in methods such as these, where stability is obtained
by ensuring that the sum of squares is decreased at each
iteration, convergence may take place to a local rather
than a global minimum of the sum of squares.

2. Notation
Conventional matrix notation will be used with A, b

and c representing matrix, column vector and scalar
respectively. The transpose of A will be denoted by A'.
A set of m non-linear simultaneous algebraic equations
in n variables x = (x,, x2 • • • xn)', can be written
AOO = 0, Mx) = 0, . . . ,fm(x) = 0, or collectively
f(x) = 0. The vector of function values (residuals) for
any particular x will be denoted by/(jc) or more often/.
The m X n matrix of first partial derivatives / (Jacobian)
has elements J,j = d/./djc, and continuity of / and/will
be assumed. A special case of these are linear equations

f(x) = Jx-b = O (1)

in which / is a constant matrix of coefficients.
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Non-linear equations

Given certain conditions, an exact unique solution of
a set of non-linear equations will only occur if there are n
equations in n unknowns. If m > n then there are
usually too many equations to determine an exact solu-
tion (overdetermined equations) and if m < n then too
few equations, so that the solution is not unique (under-
determined). In all cases, however, we can talk sensibly
of a solution as that x which minimizes a scalar function
F (a norm) of the residuals. In particular the least
squares norm F(x) = / ' / = ( / ? + / | + . . . + / J ) will
be used. In what follows "solution" will refer to a best
least squares solution, and "exact solution" to one with
zero sum of squares. Finally the gradient of F with
respect to x will be denoted by g{x), and can be calculated
using the relation g = U'f.

In the case of linear equations we can use the property
that the gradient will be zero at the solution, and together
with (1) we get

J'Jx = J'b (2)

as a necessary and sufficient condition that x is a solution.
Methods for solution of non-linear equations are

generally iterative, and subscripts will be used to identify
members of an iterative sequence, e.g. Ku K2,. . ., K,.
If Xi, x2, • • -, x, are a sequence of n-dimensional column
vectors they will be denoted collectively as the n x i
matrix [x,]. A projection matrix P (see for example
Householder, 1953), can be denned for a set of vectors
[Xj], such that Py is the projection of any vector y on
the sub-space [JC,-], and v — Py the component of y
orthogonal to [x,]. P is idempotent and symmetric and
if the vectors [x,] are linearly independent we have the
relationship /* = [x,] ([x^'fx,])"1 [x,]'. A comple-
mentary projection matrix P = I — P can also be
denned so that Py becomes the component of y ortho-
gonal to [x,]. If the x, are linearly independent, we can
consider P as being derived from a set of vectors
JC|, x2, • . ., xn_,- or [-*„_,•] which span the sub-space
orthogonal to [JC,-].

Finally, differences between vectors are often required,
and the notation Ax,- = xi+, — JC, is used. If the
equations are linear then the relation

^fi = (3)
is of importance.

3. The generalized inverse method
The generalized inverse is an extension of the concept

of an inverse for matrices which are singular or rect-
angular. If A is a real m X n matrix, then the generalized
inverse of A is a real n X m matrix, denoted by A +

which satisfies the equations

AA+A = A A+AA+=A+ (4a, b)

(4c, d)

In the more general problem of complex matrices,
Penrose (1955) showed that the solution of these equa-
tions for A+ is unique. If A is square non-singular, then

A+ = A~l (the ordinary inverse) and if m > n and
rank(/4) = n then A+ = (A'A)'1 A'. Both these can be
verified by substitution in (4), as also can 0+ = 0 for
null matrices, and A+ = A'/tra.ce(A'A) for matrices of
unit rank. More complicated formulae, however, can
be derived for all cases. A simple method suitable for
computation is described in the Appendix. Finally
A+A is the projection matrix for rows of A, and AA +

for columns of A.
If we have any set of linear equations with matrix /

as in (1) above, then the associated generalized inverse
/+ enables us to find the best least squares solution
directly. If we are given any JC, and calculate

AJC = - J+J{x) (5)

then JC + AJC is a solution of (1). This we can readily
show, as from (5) and (I),

x + AJC = x - J+Jx + J+b

so
/'/(JC + Ax) = J'Jx - J'JJ+Jx + J'JJ+b

= J'JJ+b from (4a)
= J'(JJ+)'b from (4d)
= (JJ+J)'b.

Thus using (4a) again we get

/'/(JC + Ax) = J'b

showing that x + Ax satisfies the conditions (2) for a
best least squares solution. If m > n and rank(/) = n
then we obtain the well known

x = (J'J)~lJ'b

as a unique solution. If rank(/) < n, then by virtue of
(5), the solution (not unique) obtained is that whose
component outside the column space of /+ (row space
of/) is the same as that of the initial approximation.

This form of a solution of a set of linear simultaneous
equations (i.e. (5)) is readily adapted to an iterative
method for non-linear equations, as it requires only that
the residuals and the matrix of first partial derivatives
be evaluated. For reasons of stability we can consider
(5) as not defining a difference, but a direction s thus

s = - J+f.

We can then ensure that the sum of squares of residuals
F(x) is reduced at each iteration by minimizing it along
the direction 5 through the current approximation x.

Thus we might have:

(i) given x, set i = 1;
(ii) compute /„ /,• and s-, = — /+/);

(iii) set x I + , = x,- + a;5; choosing a; so that a,- > 0
and F(x,+ j) is the minimum of F(x) in the direction
5, through x;;

(iv) set / = / + 1 and repeat from (ii) until conver-
gence;

as the basis of a suitable algorithm.
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Non-linear equations

It will now be shown that this is in fact an extension
of two other well known methods. In the case where
«? > n and rank(/) = n then / + becomes (J'J)-*J' and
the algorithm reduces to the generalized least squares
method in which s, is obtained from — (// / , )- ' / / /• or
equivalently by solving (7//,)j, = —•///}. If the further
restriction is made that m — n (i.e. as many equations
as unknowns) then / + becomes J"1 and the algorithm
becomes Newton's method, where st is obtained from
—Jrlfi o r again by solving /,5, = —/).

The convergence of the generalized least squares and
Newton methods is limited to regions of x-space for
which the condition that rank(7) = n is satisfied, for
otherwise the required inverses could not be calculated.
Use of the generalized inverse, however, extends this
method to all situations. This is not to say that we
expect to solve many linear problems in which rank(/) <n,
that is when the solution is not unique. However, there
exist non-linear problems where J evaluated at the solu-
tion is not of maximum rank. Of equal importance, /
evaluated at any approximation x to the solution may
not be of maximum rank, even though it may be at the
solution, especially if that approximation is poor. Thus
the case of rank(J) < n cannot be neglected from a
practical viewpoint. (The problem of underdetermined
non-linear equations is also covered by the theory,
although these problems do only occur rarely.)

A most important property of the generalized inverse
formulation is that in all circumstances, even when the
generalized least squares method would fail, the directions
of search generated are downhill, and so an improve-
ment can always be made to the sum of squares (assuming
that the approximation is not already a stationary point).
For as the gradient g = 2J'f and the direction of search
s = — J+f, so — g's =f'JJ+f. But JJ+ is a projection
matrix for columns of / and is therefore positive semi-
definite, showing — g's to be non-negative. As the
approximation is not stationary, so g =̂ 0 and hence
J'f # 0. Thus / is not orthogonal to all columns of J
and the projection matrix cannot annihilate / . Hence
—g's is strictly positive, showing that 5 has a positive
component along the negative gradient and so is downhill.

Apart from computation of the generalized inverse,
described in the Appendix, the only other practical
points in setting up an algorithm concern the linear
search for a minimum, and testing for convergence.
When derivatives are available a process of cubic inter-
polation can be used, described for example by Fletcher
and Powell (1963). Two different approaches to this
can be seen in ALGOL procedures by Wells (1965) and
Fletcher (1966). In the case to be studied below where
derivatives are not available, a method based on quad-
ratic interpolation can be used. Further references can
be found in Fletcher (1965). This is more efficient than
the Fibonnaci search (see for example Spang (1962))
when high accuracy is not required. Convergence can
be tested for either by finding no improvement in the
sum of squares in an iteration (n iterations when the
inverse is being formed by differencing) or by finding

the elements of s = — J+f to be less in absolute magni-
tude than some preassigned vector e which measures the
tolerance allowed in x at the solution. These have been
tried and found suitable although other strategies also
suggest themselves.

4. Difference formulation
Frequently it is required to solve systems of non-linear

equations when the matrix of first derivatives J and
hence 7+ cannot be computed directly. An expression
for /+ in terms of differences between function values
could then be used. One approach would be to take
differences about the current approximation, calculate
/+ , and proceed as in the previous section. This would
be an inefficient way to use function evaluations and it is
worthwhile to consider other possibilities.

Previous work has proceeded by taking an approxi-
mate matrix and updating it at each iteration in accor-
dance with information about the function obtained
during that iteration. Powell's method, which is related
to the generalized least squares method, essentially
updates approximations to (J'J)~l and J', and finds
directions of search from s = (J'J)~ lJ'f. Related to
Newton's method are the Secant method and Barnes'
and Broyden's methods, differing chiefly in how the
approximating matrix is handled. In the Secant method,
an augmented form of J^1 is calculated from points
JC| . .. xn+i and corresponding residuals/, . . . /n + 1 , and
is subsequently updated at each iteration; in Barnes'
method an approximation to /is updated using differences
in x and / ; and in Broyden's method an approxi-
mation to J~l is updated using differences. In all three
methods, however, the approximating matrix is used in
the appropriate way at each iteration to calculate
directions of search from s = — J~'/.

This section shows how an approximating matrix can
be used with the generalized inverse formulation
described in the previous section. An approximation to
J+ rather than J will be considered, as this limits the
amount of computation at each iteration to order mn
rather than mn2. Formulae for /+ in terms of differences
are given and it is also shown how an arbitrary matrix
of the correct dimensions can be updated, so that after
n iterations of an iterative process it has become the
generalized inverse of the differences A/, . . . A/n obtained
from the steps Ax, . . . Axn taken at each iteration.
Finally details of how this approximating matrix can be
used to calculate directions of search from s = — /+ / in
a general iterative scheme are described.

Consider therefore the matrices [A/n] and [Axn] (of
order m x n and n X ri) whose columns are the differ-
ences above, and assume that they are related by (3)
with a matrix of first derivatives /. Of necessity we can
only consider linear equations (i.e. (1)) in this analysis
but the results are in suitable form for iterative use in
the non-linear case. The aim is to state the formula
for / which these differences imply, and hence that for
/+ . Assume that the Ax,- are linearly independent so
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Non-linear equations

that [Axn] is non-singular.
have

Then by virtue of (3) we

If the rank of J and hence [A/n] is n, and m > n, then

/ + = [Axn] ( [A/J ' [A/J)-> [A/J ' .

which can be verified by substitution in (4a-d).
This has properties

= 0

j<n (6a)

j<m-n. (6b)

(6a) is complementary to (3), and (6b) shows how / +
multiplies with vectors A/j- from any basis orthogonal
to [A/n]. (See notation.)

This, however, is only a special case of the general
problem in which the rank of / and hence [Afn] is r,
where r < n. The importance of this case when we
extend to non-linear equations was discussed in the
previous section and applies equally here. In this case
we can pick r vectors [Axr] for which the corresponding
[Afr] are linearly independent (if necessary by permuting
the columns of the original [Axn], [Afn]). Then

From the remaining n — r columns of [Axn] we can,
by removing the appropriate linear combinations of the
columns of [Axr], obtain a set of linearly independent
column vectors [ijn_r], for which the corresponding
changes in / would be zero (remember this analysis
assumes linearity), and these can further be considered
mutually orthonormal without loss of generality. Thus

[0«_ r] = J[r)n_ r] (8)

and as the partitioned matrix ([Axr]; [r)n_ J ) is still
non-singular, we have

If N is a projection matrix (see notation) for this "null"
sub-space spanned by columns of [rjn_r] and N = I — N
is a complementary projection matrix which removes the
components in this sub-space, then we can write /
without partitions as

/ = [Afr]([Axr]'N[Axr])-^[Axr]'N

which can be verified by substitution in (7) and (8). The
generalized inverse is then

/+ = #[Ax,]([A/r]WJ)-WJ'
which can be verified by substitution in (4a-d), with

JJ+ = [A/J([A/r]'[A/J)-'[A/r]'

the projection matrix for columns of [A/J, and

J+J = N[Axr]([^r]'N[Axr])-^[Axr]'N

the projection matrix for columns of N[Axr] (from
which we can further deduce that J+J = N).

Finally / + has the following properties (which are
sufficient to define it uniquely)

J+Af. =

j *

j<

: n

; n

: m

— r

- r

(9a)

(9b)

(9c)J+Afj = 0

with regard to individual vectors of differences. All
these formulae reduce to those for the simpler case by
setting r = «, when there is no "null" sub-space and
N= I.

It will now be shown how an arbitrary n X m matrix
say K\ can be taken and updated to give K2, K3 etc.,
using differences obtained during an iteration, so that
after the «th iteration Kn+l will have all the properties
(9a-c) with regard to the differences obtained. Denote
by Kj the matrix at the beginning of the ith. iteration, and
by Tj the rank of [Afj]. Let the "null" subspace at the
beginning of the ith iteration be spanned by orthogonal
vectors t]} (1 < y < i — /•,_,) with projection matrix N,-
and let N, = I — Nt. Finally assume that Kt satisfies
properties (9a, b) with respect to the first i — 1
differences, that is

Kj'Vj = 0 j <i

(10a)

(10*)

Then it will be shown that Ki+\ satisfies these properties
with / + 1 replacing /. We shall need vectors z; and yt

obtained by orthogonalization of Ax,- with respect to
[Ax,_!] and A/) to [A/]_,]. Either of two possibilities
may then occur.

If A// is linearly independent of columns [A/)_,]
(i.e. y, =£ 0) then Ni+l — Nt (no change in the "null"
sub-space), /•,• = r!_i + 1, and we can update Kt by

^;+ i —

where v and w are non-trivial m-vectors orthogonal to
[Ay]_,] but not to A/)-. It can readily be verified that
Ki+l satisfies the properties (10a, b). The simplest
choice for v and w which satisfies the required conditions
is v = w = y,. Then the simpler formula

is used to update Kt.

(12)

is dependent on columns of [A/._ i], (i.e. y-, = 0)
then there is a new vector t]-,-,^ = A ,̂AJC,- — AT,A/)
which extends the null sub-space and is orthogonal to
previous vectors in the null sub-space. K-, is then
updated from

( 1 3 )

where -q refers to ->7,_r<_1. The rank of [A/)] is un-
changed so r, = /-,-_! so it can be verified that K,^.x
satisfies (10a, b) in this case.
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Non-linear equations

By an inductive argument, as (10a, b) imply no con-
ditions on Ku so Kn+ x satisfies (10a, b) and hence (9a, b).
As yet (9c) is not satisfied by Kn+,. However, after the
wth iteration we can readily calculate a sequence of
orthonormal vectors A/, . . . A/m_, which complete
the space of rank r spanned by columns of [A/n] and
are orthogonal to it (e.g. by using suitably projected unit
vectors). Then Kn+, can be corrected by

Kn+ ,=
/ = I

(14)

and as this process does not have any effect on (9a, b),
so Kn+, now satisfies all of (9a, b, c) and is the generalized
inverse corresponding to the differences obtained.

We are now in a position to state an algorithm for the
solution of sets of non-linear equations for which the
derivatives are not available. It is based on the repetition
of the above updating process in cycles each of n itera-
tions. An approximation x to the solution and an
approximation K to the generalized inverse of the matrix
of first derivatives are assumed available at the start of
each cycle. These are initially arbitrary but approxi-
mations at the end of one cycle will naturally be used
to start the next. Following Section 3, at each iteration
in the cycle, K will be used to generate a direction of
search by st = — Kjft. As [Axn] must be non-singular,
however, the linear independence of st must be tested.
This concept of linear independence is fundamental and
must be preserved, even in the linear case: for example

consider solving/(x) = (- ft)x from an initial approxi-
mation xx = (0, 1), with K{ as the unit matrix. [It is
also wise to act when S; becomes nearly dependent on
[Ax,_i] in order to keep the computation well-condi-
tioned. An empirical rule has been used, namely that
if the length of s, is reduced to less than 10% when the
projection on to [AJC,_,] is removed, a component is
added to st to restore this degree of independence.]

The iteration then involves estimating xi+l as the
point at which the sum of squares of residuals Fis mini-
mized along sh then calculating A_/} and Ax,- and finally
updating K, by either (12) or (13). Operations with
projection matrices, represented conveniently for the
theoretical discussion by JV/Ax, for instance, are most
readily accomplished by removing components of the
rjj by which N, is defined, using the Gram-Schmidt
orthogonalization. After the nth iteration, the cycle is
completed by applying (14) to give K all the properties
(9a-c) of the generalized inverse. If the equations are
linear as in (1) then K becomes J+ after the first cycle
and convergence occurs on the next iteration. In the
general non-linear case, the cycle is repeated until
convergence occurs.

This is the simplest, but by no means the only, way in
which differences can be used in a generalized inverse
type method. The ultimate method to aim at is one
based not on a cyclic method, but on always having K
to be the generalized inverse of the differences from the
last n iterations. This could be done by calculating K

afresh at each iteration, of course, but the advantage of
the method described above is that only updating of a
matrix is needed, rather than the complete calculation
which requires of order n times as much calculation. It
seems likely that any "ideal" updating formula, even if
possible, would be far more complicated than the simple
formulae (12), (13) and (14) given here.

5. Numerical examples
Although algorithms for both derivative and non-

derivative problems have been described, numerical
tests have been restricted for the present to the more
difficult problem of the non-derivative case. This is the
more important in the sense that any problem can be
solved in this way. It is expected that as results become
available, the assessment of generalized inverse algorithms
for the derivative case will parallel that for the non-
derivative case. With this in mind, an algorithm of the
type described in Section 4 was tested on various problems
from the literature.

The well known "parabolic valley" equations (Powell,
1965)

/ , = 10(x2 - x*)

A = 1 - *i

with solution x — (1, 1) were considered, from the usual
initial approximation JC, = (—1-2, 10). To obtain the
solution as accurately as possible, required from 30 to
90 function evaluations, depending upon how Kx was
chosen, and on how the theory was implemented. A
second problem chosen was the best least squares esti-
mation of parameters a and b in the function aeby to
data values d taken at five different values of y. Here
there are five equations

/ , = aei>y' — d, 1 < i < 5

in the two unknowns a and b. This problem was readily
solved from a good initial guess.

The minimization test functions "Chebyquad" intro-
duced by Fletcher (1965) were used as test functions for
non-linear equations in the form

A,(x) = 0 1 < i < n

from the initial estimate x{ = ( 1 , 2 , . . . n)/(n + 1),
(loc. cit., p. 36). These equations have the property
that an exact solution exists only for n = 1(1)7 and 9.
For other values of n the best least squares solution is
not exact, and hence has a singular Jacobian. This is
the type of problem which is covered by the theory given
in this paper, and particular interest is centred in the
case n = 8. The initial choice of A" was the zero matrix,
the program being so arranged that this caused co-
ordinate directions to be used in the first cycle of the
iteration. The result of solving these equations to 4
and 6 decimal places accuracy in x (corresponding to
about 8 and 12 decimal places in the sum of squares of
residuals F) is shown in the Table 1.
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Table 1

Number of function evaluations required when solving
Chebyquad test problems

n

2
4
6
8
9

ACCURACY OF SOLUTION

4 DECIMAL
PLACES

15
40
73

340
174

6 DECIMAL
PLACES

19
40
92

838
181

Finally the equations given by Freudenstein and
Roth (1963)

x\ 5x\ — 2x2 - 13

f2 = x\ + x\ - - 29

from Xi = (15, —2), were considered. These again
exhibit the behaviour that a local best least squares
solution with singular Jacobian is reached by descending
from the given approximation. With K chosen initially
as the zero matrix, 121 function evaluations were
required to obtain six significant figures accuracy in x.
The location of this solution is at x = [53 — 4-\/(22),
2 - V22]/3, or about (11.4, -0-9).

Consideration of the table shows that the Chebyquad
n = 8 case is clearly anomalous in that very many more
function evaluations are required for solution than
would be expected from the other cases. Similarly the
121 function evaluations required to solve the Freuden-
stein and Roth equations from what is quite a good
initial approximation, compare badly with those required
to solve the parabolic valley equations, which have a
far worse initial approximation. It would therefore
seem that we can divide problems into well-behaved and
badly-behaved classes, according to whether or not the
solution has a Jacobian matrix of maximum rank (or
more generally, has continuity in rank at the solution).

Only problems which fall into the well-behaved class
have been solved by previous methods of inverse type.
Results both there (see source papers and also a com-
parison by Box (1966)) and also in this paper, show that
methods based on an inverse type formulation are
considerably superior to those based solely on a mini-
mization approach. Badly behaved problems (in the
above sense) have not previously been reported as having
been solved and tests with a program based on Broyden's
method did indeed fail on the Chebyquad n = 8 problem.
I understand also that a version of Powell's method also
failed on this problem. Results given here show that a
program based on the generalized inverse of a Jacobian
does converge in this sort of problem, but that the rate
of convergence is much less impressive. It seems likely

that this is due to the discontinuity which exists in the
generalized inverse in these cases.

An interesting practical point which occurs is the
numerical recognition of the linear dependence of one
vector upon others. The approach used when pro-
gramming has been that of assuming linear independence
in A/, unless its orthogonal component y, is exactly zero.
It could be argued, however, that because of both round-
ing and truncation errors, one should not look for zero,
but rather for quantities less than some error bound.
This can make a considerable difference in the elements
of K, as the elements of a generalized inverse are dis-
continuous with regard to variation from near singular
to exactly singular. Two further numerical tests were
therefore made using Freudenstein and Roth's equations,
looking for zero in j>; to 6 decimal places and then to
3 decimal places. Although the elements of K varied
from test to test, little variation in the overall rate of
convergence was noticed. Conversely a corresponding
reduction was found in the accuracy to which the solution
could be located, so study of these possibilities was
discontinued.

6. Summary and discussion
The problem of solving systems of m non-linear

algebraic equations in n variables has two aspects,
depending upon whether or not / , the m X n matrix of
first derivatives of the equations, can be calculated
readily from an algebraic formula. The aim of this
paper has been to show that methods for finding a best
least squares solution of either problem can be based
on the concept of the generalized inverse of a matrix
and to suggest possible algorithms whereby these ideas
might be implemented. In particular /+ the generalized
inverse of 7 is used to generate directions of search s
from the vector of residuals of the equations / by
s = — J+f. The current approximation x can then be
improved by searching along s for a minimum of the
sum of squares of residuals.

Previous work on both aspects of the problem has
used one of two types of method, both of which involve
special cases of /+ . When there are n equations in n
unknowns and J is non-singular, then the generalized
inverse /+ becomes the ordinary inverse / - ' , and the
above scheme becomes Newton's method when deriva-
tives can be evaluated. Based on this in the non-
derivative case is the Secant method, in which an aug-
mented form of the inverse is updated at each iteration;
also Barnes' method, in which an approximation to J is
updated using differences, and Broyden's method, in
which an approximation to J~l is updated using
differences. For the more general case of m equations
in n unknowns (with m > n) then the generalized inverse
becomes (JV)~'7'if / is of rank n. The generalized least
squares method uses this version in the case when
derivatives are available, and Powell's method is based
on this in the non-derivative case, essentially by updating
approximations to both (/'•/)"' and / ' at each iteration
using differences.
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All previous methods then, are based on the condition
that / shall be of maximum rank. In practice, however,
this is by no means always so and cases have been
described in Section 5 where J is singular at a solution.
Furthermore, even if the solution is well-behaved, J
evaluated at a poor approximation may well not be,
and there is a distinct inadequacy in previous methods
to cater for these cases. The derivative methods break
down directly because the inverses which they require
cannot be calculated. The analysis of Section 3 shows
how use of the true generalized inverse in these cases
circumvents this problem, and furthermore, causes
downhill directions of search to be chosen, thus implying
that the method is stable. In non-derivative methods
loss of rank in an approximation to / can be fatal for
this same reason, as also can loss of rank of an approxi-
mation K to an inverse. For then directions generated
by s = — Kf (or its equivalent) span only a sub-space
of x-space, in which the solution will not generally lie.

However, the adverse effects of loss of rank can be
alleviated to some extent in these non-derivative methods
by forcing the approximating matrix to have maximum
rank even if the true matrix does not. Powell ensures
that of the differences Ax; and A/j- which are obtained
in the iterative process, those which are retained are
linearly independent in both cases. Hence the special
case of the generaUzed inverse which he uses can always
be calculated. Broyden tackles the problem empirically,
showing that when updating an approximate matrix K
by a formula of type (11), with v = w = z,, then choice
of z, = A/Ax, leads to a reliable method whereas
zt = Af, does not. This reliability can be accounted
for theoretically, however, by showing that it implies
that K can never become singular. For singularity,
Ki+\ in (11) must have the property Ki+i q = 0 for
some non-trivial vector q which, from (11), must there-
fore satisfy

q + = 0.

For such a q to exist implies that both q = A/j — K,r' Ax,
and z\q = z'^fj. Hence z, must satisfy z\Kfx Ax,- = 0.
It can be seen that Broyden's choice of z, = .AT/Ax, can
never cause this condition to be satisfied and hence K
can never become singular. Unfortunately this choice
of Z; does not satisfy the conditions on v and w in (11)
which cause convergence for linear equations from
arbitrary K in n + 1 iterations.

This device of forcing K to have maximum rank
covers, to a large extent, cases where / is badly-behaved
remote from the solution, but still fails when J at the
solution has not maximum rank. The reason is seen by
considering that at the solution / / = 0 by virtue of the
minimum sum of squares. However K being of maximum
rank causes s = — Kfnot to be zero at the solution. In
fact a "spurious" component is introduced into the
direction of search s which causes convergence to break
down. The generalized inverse always has the property
that s = — J+f= 0 at the solution. Previous methods
do not allow K to converge to this generalized inverse.

Of course, allowing K to have non-maximum rank means
that an alternative means of generating directions must
be available to ensure that differences Ax do not approach
linear dependence. So long as s = — Kf is used when-
ever possible, no serious effect on rates of convergence
is likely.

A further inadequacy of previous non-derivative
methods is that they use differencing techniques, followed
by inversion to obtain the initial approximation to K.
Unfortunately this wastes function evaluations which
could be used in making progress to the solution and,
more seriously, might well lead to failure on inversion.
Most methods could be improved to include the feature
that initially K be chosen arbitrarily, and subsequently
updated in the appropriate way to take differences
obtained into account. This means that crude approxi-
mations to derivatives can be used if available and
furthermore, that if a sequence of related problems is
to be solved, then K from the first solution can be used
to start the next, and so on. For this device to be
successful, however, the method must have the property
that linear equations are solved in n + 1 iterations, else
a realistic inverse may never be obtained from a poor
initial K. The generalized inverse formulation in
Section 4 has this property.

The techniques used by various authors to effect the
linear search and also to test for convergence seem to be
satisfactory. In no method is the obtaining of an exact
minimum of the sum of squares of residuals F in the
direction of search necessary to the successful updating
of K. Thus alternatives such as discussed by Broyden,
in which a minimum is not sought, are equally valid
and their merit will depend upon empirical evaluation.
It seems essential, however, that one must insist that F
is not increased in any iteration. Although this may
lead to no progress for some directions of search,
information obtained about changes in / along that
direction can and should be used to update K.

Speed of convergence of the generalized inverse
method is neither significantly better nor worse than for
other inverse methods, for well-behaved problems where
these other methods work satisfactorily. However, the
tests on Freudenstein and Roth's equations and Cheby-
quad n = 8, in which consideration of rank is critical,
show that convergence can be obtained with a generalized
inverse method. The only regret is that the rate of con-
vergence is less rapid, probably on account of the dis-
continuity in the elements of the generalized inverse.

Appendix
Computation of the generalized inverse

The algorithm of Section 4 can be adapted to calculate
the generalized inverse of an arbitrary m X n matrix A.
We can assume m > n: if this is not so we can transpose
A and use (A')+ = (A+)'. The method then involves
the updating of an arbitrary matrix Kx as though the
equations / = Ax = 0 were being solved. The matrix
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Kn+, after one cycle of n iterations is then the generalized
inverse A+. For simplicity each difference AJC; is taken
as the ith unit vector with jth element Sl7. Then A/;

becomes the /th column of A. Also no storage need be
assigned to the rj sub-space because Ax, is automatically
orthogonal to [Ax,_,], SO JV,AX, = AX,. Further
simplicity accrues by taking A", as the zero matrix. The
computation to force ATA/= 0 is then not required
because this condition holds automatically. Further-
more after the /th iteration, Ki+l will have rows / + 1
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Book Review
Approximation of Functions: Theory and Numerical Methods,

by G. Meinardus (Translated by L. L. Schumaker),
1967; 198 pages. (Berlin, Heidelberg, New York:
Springer, DM.54.0, US SI3.50.)

This is a slightly expanded translation of a book that was
first published in German three years ago. The author's aim
is "to collect essential results of approximation theory which
on the one hand makes possible a fast introduction to the
modern development of this area, and on the other hand
provides a certain completeness to the problem area of
Tchebycheff approximation". In this Professor Meinardus
has succeeded brilliantly and Dr. Schumaker's excellent
translation now makes this text available to the English-
speaking world.

The whole concern of the book is the study of "best"
approximations to functions by simpler functions (usually
polynomials or rational functions). In recent years this topic
has received considerable stimulus from the widespread use
of computers: it has also undergone a revolution through the
introduction of the methods of functional analysis. It is

this elegant application of the most powerful tools of pure
mathematics to problems of considerable practical concern
that makes modern numerical analysis so attractive.

Part I treats Linear Approximation. The first five chapters
deal with the theoretical problem, covering uniqueness, the
minimax properties, error estimates, and a host of related
problems. The last two chapter of this section go into more
detail about approximation by polynomials and the numerical
determination of best approximations. Points of interest for
the computer user are the derivation of very good starting
approximations for the exchange methods of Remez and
Stiefel, and the derivation that the Remez algorithm has
second order convergence. Non-linear approximation is the
subject of Part II. This is mostly concerned with approxi-
mation by rational functions although there is also a brief
section on exponential approximation.

All in all, this is a book that can be recommended without
reservation to those interested in approximation theory.

P. A. SAMET (London)
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