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We generalize the standard method of solving inverse optimization problems to allow for the solution of

inverse problems that would otherwise be ill-posed or infeasible. In multi-objective linear optimization, given

a solution that is not a weakly efficient solution to the forward problem, our method generates objective

function weights that make the given solution a near-weakly efficient solution. Our generalized inverse opti-

mization model specializes to the standard model when the given solution is weakly efficient and retains

the complexity of the underlying forward problem. We provide a novel interpretation of our inverse formu-

lation as the dual of the well-known Benson’s method, and by doing so, develop a new connection between

inverse optimization and Pareto surface approximation techniques. We apply our method to prostate cancer

data obtained from Princess Margaret Cancer Centre in Toronto, Canada. We demonstrate that clinically

acceptable treatments can be generated using a small number of objective functions and inversely optimized

weights – current treatments are designed using a complex formulation with a large parameter space in a

trial-and-error re-optimization process. We also show that our method can identify objective functions that

are most influential in treatment plan optimization.

Key words : inverse optimization; multi-objective linear optimization; radiation therapy treatment planning

1. Introduction

An inverse problem takes as input the actual observations from a system and determines parameter

values for a model that describe the system dynamics and are consistent with the original observa-
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tions. Analogously, an inverse optimization problem determines the values of the cost coefficients

given a feasible solution to the original “forward” optimization problem. For example, given a fea-

sible solution x̂ to the forward linear program LP(ĉ) =min
x

{ĉ′x |Ax≥ b}, the inverse optimization

problem seeks to find a cost vector c such that x̂ is optimal for LP(c) (Ahuja and Orlin 2001).

Determining such a vector c amounts to finding a feasible solution (p,c) to the system p′b= c′x̂

(strong duality),p′A= c′, p≥ 0 (dual feasibility). Alternatively, one can use the complementary

slackness conditions in place of strong duality, as was done in Ahuja and Orlin (2001). To choose

between potentially multiple c satisfying the system, one may add an objective function that mini-

mizes ||c− ĉ||1 or ||c− ĉ||∞. Using either objective function, the above inverse optimization problem

is a linear program.

We consider an inverse optimization problem where the given solution x̂ is not a candidate to

be an optimal solution to the forward problem. One possibility is that x̂ is an interior point of a

full-dimensional feasible region. Such an input would cause the standard inverse model to return

the (uninteresting) zero vector, or would render the problem infeasible should the zero vector

be excluded from the inverse feasible region. A second possibility is that x̂ is infeasible for the

forward problem. In this paper, we develop a generalized inverse optimization model that returns a

meaningful, nonzero solution to the inverse problem for any initial x̂, regardless of whether x̂ is on

the boundary of the forward feasible region, is an interior point, or is even an infeasible solution.

Instead of formulating the inverse optimization problem using strong duality as a constraint, we

introduce a duality gap that is to be minimized. By relaxing the strong duality constraint, we

simultaneously relax the assumption that x̂ must be on the boundary of the forward feasible region.

This framework generalizes many existing inverse optimization models and, we believe, opens

the door for much broader and more effective application of inverse optimization in practice.

There is no guarantee that a given input x̂ for an inverse problem will be on the boundary of

the corresponding forward feasible region. Previously, one might focus effort on modifying the

constraints of the forward problem so that the boundary of its feasible region contains x̂. Instead,

our general framework does not require any modification of the forward problem to accommodate
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the input vector x̂. Another attractive feature of our generalized inverse optimization model is that

it retains the underlying complexity of the forward problem, like the standard inverse linear (Ahuja

and Orlin 2001) and conic (Iyengar and Kang 2005) optimization models. Furthermore, it specializes

to the standard inverse optimization model when x̂ is on the boundary of the forward feasible

region. Thus, there is little downside to adopting this more generalized framework when solving

inverse optimization problems.

We develop this inverse methodology in a multi-objective linear optimization context, which has

not been considered previously, and develop connections with established multi-objective optimiza-

tion literature, especially Pareto surface approximation techniques. Both the multi-objective and

generalization aspects of this research are motivated by a practical problem in radiation therapy

treatment planning.

Intensity-modulated radiation therapy (IMRT) is an advanced cancer treatment technology that

uses beams of high energy x-rays to deliver radiation to a tumor. In IMRT, each radiation beam

is modeled as a set of many small beamlets, whose intensities are optimized to deliver a dose

of radiation that conforms to the shape of the tumor. The resulting beamlet intensity profile is

converted into a collection of deliverable aperture shapes using a multileaf collimator (MLC). Since

treatments need to balance conflicting goals such as delivering a high dose to the tumor while

keeping healthy tissue dose low, IMRT treatment planning is typically modeled as a multi-objective

optimization problem.

The standard approach to solving a multi-objective IMRT optimization problem is to construct

a single composite objective function by taking a weighted sum of the individual objectives. The

weight values assigned to the objective functions are referred to as “importance factors” in the

medical literature (Webb 1994, Xing et al. 1999). The effect of varying objective function weights

can be quite significant, with different sets of weights resulting in significantly different dose dis-

tributions (Shepard et al. 1999). Despite the critical role of weights in optimizing a radiation

therapy treatment, the process of determining appropriate weight values is typically done in a

trial-and-error manner in practice, with minimal scientific guidance.
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As an application of our generalized inverse optimization methodology, we demonstrate how

to determine appropriate objective function weights in prostate cancer IMRT. Given a historical

treatment plan, our method determines objective function weights that make the given plan nearly

optimal with respect to a given set of objective functions, which are not necessarily identical to

the ones used to create the plan. Clinical treatment planning formulations have a large number

of objective functions and vary from institution to institution. As a result, a treatment plan from

one institution is not guaranteed to be optimal (or even feasible) for another, as measured by the

latter’s formulation. We demonstrate that with intelligently chosen weights, treatments of clinical

quality can be created using many fewer objective functions than currently used in practice. We also

show how our methodology can determine which objective functions most heavily influence a final

treatment. While our approach is motivated by radiation therapy applications, the methodology

we develop is intended to solve general inverse (multi-objective) optimization problems.

1.1. Relevant literature and contributions

Inverse optimization. Early research in inverse problems was driven by geophysical scientists

who wanted to estimate model parameters such as transmission times of seismic waves, using actual

observations of earthquake data (Tarantola 2005). Since Burton and Toint (1992) introduced the

inverse shortest path problem for seismic tomography, an increasing amount of attention in the

optimization community has been devoted to inverse optimization. Early work focused on inverse

network and combinatorial optimization problems (e.g., Burton and Toint (1992), Zhang and Liu

(1996), Hochbaum (2003)) – a comprehensive survey is provided by Heuberger (2004). Recently,

inverse optimization methods for general integer programming (Schaefer 2009) and mixed integer

programming (Wang 2009) have been developed. Ahuja and Orlin (2001) presented a general

framework for inverse linear programming, which has been extended to other convex optimization

problems (Iyengar and Kang 2005, Zhang and Xu 2010). Keshavarz et al. (2011) propose a similar

idea to ours for inverse convex optimization by allowing the KKT conditions to be satisfied with

some positive residuals, and focus on computational examples to demonstrate their approach.
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Inverse optimization methods have been developed for a variety of applications including demand

management (Carr and Lovejoy 2000), auctions (Beil and Wein 2003), production planning (Troutt

et al. 2006), health care decision making (Erkin et al. 2010) and finance (Bertsimas et al. 2012).

Iterative approaches to weight determination. Most research in radiation therapy treat-

ment planning with a weighted objective function views the weights as a tunable parameter. With

the goal of creating “good” dose distributions, weights are iteratively updated in a forward man-

ner. For example, Yu (1997), Xing et al. (1999), Cotrutz and Xing (2002), and Wu et al. (2003)

present algorithms that adjust weights in an inner loop while an outer loop evaluates various scoring

functions associated with the dose distribution generated by those weights.

Pareto treatments. The use of weights in IMRT optimization is also prevalent in the construc-

tion of sets of Pareto optimal treatments (Cotrutz et al. 2001, Hamacher and Küfer 2002, Romeijn

et al. 2004, Craft et al. 2006). Instead of generating one acceptable treatment, a set of Pareto opti-

mal solutions is obtained by solving the multi-objective IMRT optimization problem with many

different sets of weights. A final treatment is chosen based on the clinical expertise of the treatment

planner as s/he navigates the Pareto surface.

Pareto surface approximation. Many methods exist to approximate the Pareto surface of a

multi-objective optimization problem. For example, Das and Dennis (1998) developed a method to

generate a “well-distributed” set of points that provide a good approximation to the Pareto surface.

Benson (1998) and Shao and Ehrgott (2008) devised algorithms to find supporting hyperplanes of

the Pareto surface in multi-objective linear programming. “Sandwich algorithms” to approximate

the Pareto surface have also been widely studied (e.g., Klamroth et al. (2002), Craft et al. (2006),

Karasakal and Köksalan (2009), Rennen et al. (2011), Bokrantz and Forsgren (2013)). Some of

these methods end up having close connections with our inverse optimization method.

Our specific contributions in this paper are as follows:

1. We generalize the standard inverse optimization framework by allowing an arbitrary solution

to the forward problem, even an infeasible one, to be used as input. We characterize the theoretical

properties and geometry of the resulting inverse solutions.
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2. We develop the first inverse optimization approach for multi-objective linear optimization. We

elucidate connections between inverse optimization and established multi-objective optimization

theory, especially with Pareto surface approximation techniques.

3. We develop the first inverse optimization methodology applied to IMRT treatment planning.

Determining the most critical objective functions and optimized starting values for their weights

may provide new insight into the design of future treatments.

Unless otherwise indicated, omitted proofs can be found in the Appendix.

2. A Motivational Clinical Example

2.1. Prostate cancer and radiation therapy

Prostate cancer is the most commonly diagnosed cancer among men in North America (American

Cancer Society 2012, Canadian Cancer Society 2012). Radiation therapy is one of the most common

forms of treatment for prostate cancer (Foroudi et al. 2003). While survival from prostate cancer

post-IMRT is generally high (Zelefsky et al. 2006), radiation-induced toxicity of the healthy organs

near the tumor, referred to as organs-at-risk (OARs), is still an important concern. The ability to

better differentiate between OAR objectives and encourage treatments to focus on the most critical

ones has the potential to reduce secondary toxicity while maintaining tumor dose levels, which is

the primary clinical challenge in treating prostate cancer currently.

2.2. Radiation therapy treatment plan optimization

Figure 1 depicts the typical anatomical geometry surrounding the prostate. The clinical target

volume (CTV) is the volume suspected to contain the primary disease – the prostate in this case.

The planning target volume (PTV) encompasses the CTV and accounts for uncertainties such as

possible organ movement or variations in the position of the patient on the treatment unit. The

PTV inner ring (PIR) is a shell around the CTV defined as the set difference between the PTV and

CTV (i.e., PIR = PTV\CTV). The PTV outer ring (POR) is a shell outside the PTV that is used

to promote conformality of the dose around the target. Around the prostate, there are multiple
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Figure 1 Anatomy of prostate site.

Table 1 Objective functions and weights in the clinical treatment planning formulation for a prostate case.

Obj. # Structure Metric Dose (Gy) Percent Weight
1 CTV Min dose 78.65 50
2 CTV Max dose 81.90 38
3 PIR Min dose 74.75 50
4 PIR Max dose-volume 78.00 2 38
5 POR Max dose 74.10 38
6 Bladder Max dose-volume 47.45 50 1
7 Rectum Max dose-volume 47.45 50 1
8 Bladder Max dose-volume 59.15 29 1
9 Rectum Max dose-volume 59.15 29 1
10 Left femur Max dose-volume 52.00 4 1
11 Right femur Max dose-volume 52.00 4 1
12 Bladder Mean dose 42.90 1
13 Rectum Mean dose 44.20 1
14 Bladder Max dose 78.00 1
15 Rectum Max dose 78.00 1

healthy organs that need to be spared including the bladder, rectum, and left and right femoral

heads (the tops of the femur bones).

Certain clinical criteria must be met in order for a radiation therapy treatment to be acceptable.

The clinical criteria are expressed in the form of dosimetric conditions such as “the minimum dose

to the tumor needs to be at least x Gy” or “at most y% of the bladder can receive more than

x Gy”. The latter is known as a partial dose-volume constraint, which can be formulated exactly

using binary variables to choose the volume elements that meet the dose threshold (Lee et al.

2003, Preciado-Walters et al. 2004). In this paper, we address such criteria using a more tractable
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alternative, as outlined in Section 5. Table 1 outlines the objectives used to plan a prostate IMRT

treatment at Princess Margaret Cancer Centre in Toronto, Canada. Each row corresponds to an

objective function that is combined into the composite objective using the weight indicated in the

last column. The “Metric” column indicates the functional form of each criterion. For example,

the first two criteria require the dose to every part of the CTV to be between 78.65 and 81.90

Gy. Criteria listed as “Max dose-volume” indicate partial dose-volume criteria. For example, the

eighth criterion requires that no more than 29% of the bladder receive more than 59.15 Gy. While

the criteria shown in Table 1 read like constraints, they are formulated as objectives by penalizing

violations of the criteria. For example, objective 1 is formulated as an one-sided penalty, charging

a positive penalty to parts of the CTV that receive less than 78.65 Gy, proportional to the square

of the difference between the delivered and prescription dose. The tumor objectives receive the

highest priority. However, there is no differentiation between the importance of the OAR objectives,

even though it is well-known that different organs respond differently to radiation (Marks 1996).

In addition, the weight values seem to be chosen subjectively.

2.3. The planning process

In practice, an iterative, trial-and-error process is used to determine a final, acceptable treatment

plan. The optimization problem represented by Table 1 is solved once. Then the corresponding dose

distribution is evaluated to see if it meets the clinical criteria prescribed by the oncologist. If the

plan is unacceptable, the treatment planner re-optimizes the plan with different parameter settings.

This back and forth process continues until an acceptable treatment plan is found. For complex

cases, this process may take days to complete, potentially delaying the start of treatment. Even

though many modifications are possible during the re-optimization step (e.g., add new objective

functions, modify dose limits, etc.), our focus in this paper is on the determination of the weights.

3. Inverse optimization methodology

The derivation of our inverse optimization methodology is based on the canonical multi-objective

linear programming formulation (Zeleny 1974). Let x∈R
n,A∈R

m×n,b∈R
m, and K be the set of
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objective functions. Then the multi-objective optimization problem can be written as

FOP(α) : minimize
x

α
′Cx

subject to Ax= b,

x≥ 0,

(1)

where each row of C∈R
|K|×n represents a different linear objective function associated with x and

α ∈R
|K|, assumed nonnegative, denotes the weight vector. Without loss of generality, we assume

Cx∈R
|K|
+ for every feasible x (Ehrgott 2005).

3.1. Preliminaries

Let X= {x∈R
n |Ax= b,x≥ 0} be the set of feasible solutions to formulation (1), assumed non-

empty. The set of attainable objective function values will be denoted Z = {Cx ∈ R
|K|
+ |x ∈ X}.

Following the convention of Ehrgott (2005), X is a subset of the decision space and Z is a subset

of the criterion space. Let Z+ = {z ∈R
|K|
+ |z≥ ẑ, ẑ ∈Z}. A point Cx̂ ∈Z is a non-dominated point

of Z if there is no Cx ∈ Z satisfying (ck)′x ≤ (ck)′x̂ for all k ∈ K with at least one k such that

(ck)′x< (ck)′x̂. A point Cx̂ ∈ Z is a weakly non-dominated point of Z if there is no Cx ∈ Z such

that (ck)′x < (ck)′x̂ for all k ∈ K. A (weakly) non-dominated point of Z+ is defined similarly.

We denote the set of non-dominated points and the set of weakly non-dominated points of Z

(Z+) by ZN and ZWN (Z+
N and Z+

WN), respectively. Note that Z+
WN ⊃ ZWN ⊃ Z+

N = ZN (see

Figure 2). A solution x̂∈X corresponding to a (weakly) non-dominated point of Z is an (weakly)

efficient solution to problem (1). The following is a fundamental result of multi-objective linear

programming (see Ehrgott (2005)).

Proposition 1. In a multi-objective linear program, a vector x∈X is a weakly efficient solution

if and only if there exists a nonzero α≥ 0 such that x is an optimal solution to FOP(α).

Proposition 1 suggests that if Z is full-dimensional and ẑ ∈ int(Z), there is no nonzero α ≥ 0

such that x̂ is optimal for FOP(α) and ẑ=Cx̂. If ẑ ̸∈ Z, there will also be no α that makes the

corresponding x̂ optimal, because x̂ is infeasible.



T. C. Y. Chan et al.: Generalized Inverse Multi-objective Optimization

10 Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!)

Figure 2 Geometry of criterion space.

3.2. An inverse formulation

Given x̂∈X, we formulate the inverse problem associated with the forward problem (1) as

IOP(C, x̂) : minimize
α,p

0

subject to A′p≤C′
α,

α
′Cx̂= b′p,

α
′e= 1,

α≥ 0.

(2)

The first and second constraints correspond to dual feasibility and strong duality, respectively.

We add the third constraint to prevent the trivial solution (α,p) = (0,0) from being a feasible

solution. We note that other constraints, such as b′p= 1 or α′Cx̂= 1 would also serve this purpose.

However, for the generalized inverse optimization formulations we present later, using α
′e= 1 in

formulation (2) facilitates the analysis. Omitting an objective function simplifies the exposition

without fundamentally affecting the structure of the inverse problem. As we will see in Corollary 2,

it is unlikely that a specific objective function is needed.
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3.3. A generalized inverse formulation

By Proposition 1, IOP(C, x̂) is feasible if and only if x̂∈X is a weakly efficient solution. We now

modify IOP(C, x̂) to ensure that it remains feasible, given any x̂, be it a weakly efficient solution,

a solution corresponding to an interior point of Z, or even an infeasible solution. We will assume

that x̂ is such that Cx̂∈R
|K|
+ .

Since Cx ∈ R
|K|
+ for all x ∈ X, the forward problem (1) has a finite optimal solution for any

nonzero α ≥ 0. Therefore, the set of feasible solutions to the dual formulation is non-empty for

any nonzero α ≥ 0. However, the strong duality constraint α
′Cx̂ = b′p in formulation (2) holds

if and only if a given solution x̂ ∈ X is weakly efficient. So if we have a feasible x̂ that is not

weakly efficient, instead of enforcing strong duality, we can allow a duality gap and aim to find

a feasible solution to the corresponding inverse problem with as small a duality gap as possible.

This idea is also appropriate when x̂ is an infeasible solution, as will be shown later. We consider

two different types of duality gaps: (i) a relative duality gap ϵr > 0, leading to the constraint

α
′Cx̂= ϵr b

′p, and (ii) an absolute duality gap ϵa, leading to the constraint α′Cx̂= b′p+ ϵa. We

denote the two corresponding generalized inverse optimization problems (GIOP) by GIOPr and

GIOPa, respectively.

Given any x̂∈R
n satisfying Cx̂∈R

|K|
+ and ϵr > 0, the relative GIOP is

GIOPr(C, x̂, ϵr) : minimize
α,p

0

subject to A′p≤C′
α,

α
′Cx̂= ϵr b

′p,

α
′e= 1,

α≥ 0.

(3)

In formulation (3), ϵr > 0 is a parameter. Formulation (3) can be solved repeatedly with varying ϵr

until the smallest ϵr, denoted ϵ∗r, is found such that (3) is feasible. A univariate search technique

such as the bisection or golden section algorithm may be used. The following result provides an

upper bound on ϵ∗r, which can be used as an initial value of ϵr in the search.
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Proposition 2. Let zI = (zI1 , ..., z
I
|K|), where zIk = min

z∈Z
{zk} for all k ∈ K. Assume zIk > 0 for at

least one k ∈K. If Cx̂∈Z+, ϵ∗r ≤ min
{k∈K|zI

k
>0}

{

(ck)′x̂

zI
k

}

. If Cx̂ ̸∈Z+, ϵ∗r ≤ 1.

Note that instead of solving formulation (3) multiple times with varying ϵr, by writing ϵr =

α
′Cx̂/b′p, a single linear program can be solved to find ϵ∗r:

minimize
α,p

α
′Cx̂

subject to A′p≤C′
α,

b′p= 1,

α≥ 0.

(4)

In formulation (4), we have to omit the constraint α′e= 1 when introducing the constraint b′p= 1.

Thus, an optimal solution to formulation (4) must be normalized post-hoc. If we let ᾱ be an optimal

solution to formulation (4), then ϵ∗r = ᾱ
′Cx̂. Thus, this formulation simultaneously generates the

optimal weight vector and the minimal duality gap. Going forward, we will use relative GIOP

formulations (3) and (4) interchangeably, depending on which is more convenient for the context.

In particular, the theoretical analysis will focus on formulation (3), while the computational results

will be based on formulation (4).

Given any x̂∈R
n satisfying Cx̂∈R

|K|
+ , the absolute GIOP is

GIOPa(C, x̂) : minimize
α,p,ϵa

ϵa

subject to A′p≤C′
α,

α
′Cx̂= b′p+ ϵa,

α
′e= 1,

α≥ 0.

(5)

Let ϵ∗a be the optimal value of problem (5). If ϵ∗r = 1 or ϵ∗a = 0, then the two GIOP formulations

become the standard inverse formulation (2). In other words, the GIOP formulations can identify a

weakly efficient solution x̂ to the forward problem. Otherwise, as we show next, ϵ∗r and ϵ∗a measure

how far a given solution Cx̂ is from the set of weakly non-dominated points, with respect to two

particular distance metrics induced by the two duality gaps considered.
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3.4. Structure of optimal inverse solutions

If x̂ is not weakly efficient, then solving any GIOP formulation will return an α
∗ such that

FOP(α∗) generates a weakly efficient solution x∗ ̸= x̂. Recall that if x∗ is optimal for FOP(α∗),

then IOP(C,x∗) is feasible. Therefore, solving a GIOP formulation with x̂ as input can be viewed

as solving IOP(C,x∗) for an x∗ that has been suitably perturbed from x̂. In this section, we study

the relationship between the x∗ that generates α
∗ from IOP(C,x∗) and an x̂ that generates the

same α
∗ from a GIOP formulation. Standard inverse optimization models typically assume that

the given x̂ is a feasible solution to the forward problem. First, Proposition 3 shows that even if x̂

is infeasible, the inverse problem can be feasible.

Proposition 3. Let x̃ /∈X and Cx̃∈R
|K|
+ . IOP(C, x̃) is feasible if and only if Cx̃∈ (R

|K|
+ \Z+)∪

(Z+
WN \ZWN).

Proof (⇐) Let y, π, and σ be the dual variables corresponding to the first three sets of con-

straints, respectively, of IOP(C, x̃). With suitable sign changes, the following formulation is equiv-

alent to the dual of IOP(C, x̃):

−minimize
y,π,σ

σ

subject to Ay= πb,

Cy≤ πCx̃+σe,

y≥ 0.

(6)

To show that IOP(C, x̃) is feasible, it suffices to show that formulation (6) has a finite optimal

solution. Moreover, if formulation (6) has a finite optimal solution, its optimal cost is zero by strong

duality. Note that (y, π, σ) = (0,0,0) is feasible for formulation (6). We can assume π ≥ 0 because

the strong duality constraint in IOP(C, x̃) can be written as a less than or equal to inequality

(weak duality is already guaranteed). Consider the change of variables y= πx. The second set of

constraints in formulation (6) becomes

σ≥ πmax
k∈K

((ck)′x− (ck)′x̃). (7)
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If Cx̃∈R
|K|
+ \Z+, there exists Cx∈ZWN such that (ck)′x̃< (ck)′x for at least one k ∈K. Therefore,

max
k∈K

((ck)′x− (ck)′x̃)> 0. If Cx̃∈Z+
WN \ZWN , there exists Cx∈ZWN such that (ck)′x̃= (ck)′x for

at least one k ∈K, so max
k∈K

((ck)′x− (ck)′x̃)≥ 0. In both cases, σ is bounded below by 0, as required.

(⇒) If IOP(C, x̃) is feasible, then formulation (6) is also feasible with optimal cost σ∗ = 0.

Suppose there exists Cx∈Z such that (ck)′x− (ck)′x̃< 0, ∀k ∈K. It follows from equation (7) that

σ can become arbitrarily negative for sufficiently large π, which is a contradiction. Hence, there

cannot be Cx∈Z satisfying (ck)′x< (ck)′x̃, ∀k ∈K. As x̃ /∈X, it must be that Cx̃∈ (R
|K|
+ \Z+)∪

(Z+
WN \ZWN), as required. �

The next result draws an equivalence between the IOP model and the GIOP models for a related

pair of input vectors.

Proposition 4. (a) A solution (α,p) is a feasible solution to GIOPr(C, x̂, ϵr) if and only if

(α,p) is a feasible solution to IOP(C,x∗) where x∗ is such that Cx∗ =Cx̂/ϵr.

(b) Suppose ϵa ≤mink∈K(c
k)′x̂. A solution (α,p, ϵa) is a feasible solution to GIOPa(C, x̂) if and

only if (α,p) is a feasible solution to IOP(C,x∗) where x∗ is such that Cx∗ =Cx̂− ϵae.

Corollary 1. (a) For ϵr > 0 sufficiently large, GIOPr(C, x̂, ϵr) is feasible.

(b) GIOPa(C, x̂) is always feasible.

Corollary 1 suggests that if Cx̂∈Z and ϵr is sufficiently large, then Cx̂/ϵr ∈R
|K|
+ \Z+ and solving

GIOPr(C, x̂, ϵr) will return a vector α such that α′Cx̂/ϵr ≤α
′Cx for all Cx∈Z. In other words,

α defines a separating hyperplane between the point Cx̂/ϵr and the nonempty, closed, convex set

Z. However, since α is generated from a point that is an infeasible solution to the forward problem

(that is, the pre-image of Cx̂/ϵr is infeasible in decision space), there is no way to recover the

pre-image of the point Cx̂/ϵr by solving FOP(α).

The main result of this section states that when the duality gap is minimized, an optimal solution

α
∗ to either the relative or absolute inverse problem defines a supporting hyperplane of Z+, and

is also an optimal solution to the standard original inverse optimization problem for a suitably

perturbed input vector.
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Figure 3 Adjustments of a point Cx̂ as an input for GIOP to a non-dominated point Cx∗.

Theorem 1. (a) If (α∗,p∗) is an optimal solution to GIOPr(C, x̂, ϵ∗r), then it is an optimal

solution to IOP(C,x∗) where Cx∗ =Cx̂/ϵ∗r, and Cx∗ ∈Z+
WN .

(b) If (α∗,p∗, ϵ∗a) is an optimal solution to GIOPa(C, x̂), then it is an optimal solution to

IOP(C,x∗) where Cx∗ =Cx̂− ϵ∗ae, and Cx∗ ∈Z+
WN .

Proof For part (a), given any ϵr, there is a one-to-one correspondence between the feasible

solutions of GIOPr(C, x̂, ϵr) and IOP(C,x∗), by Proposition 4. Thus, if (α∗,p∗) is optimal for

GIOPr(C, x̂, ϵ∗r), it is optimal for IOP(C,x∗). Lastly, recall that ϵ∗r is the smallest value of ϵr such

that GIOPr(C, x̂, ϵr) remains feasible. The case of ϵ∗r = 1 is trivial, so assume that ϵ∗r ̸= 1. Suppose

to the contrary that Cx∗ = Cx̂/ϵ∗r /∈ Z+
WN . There are two possibilities: either Cx∗ ∈ int(Z+) or

Cx∗ ∈ R
|K|
+ \Z+. In the first case, IOP(C,x∗) cannot be feasible by Proposition 3. In the second

case, there must exist ϵ̄r such that Cx∗ =Cx̂/ϵ∗r <Cx̂/ϵ̄r ≤Cx for some Cx ∈ Z+
WN . Thus Cx̄=

Cx̂/ϵ̄r ∈R
|K|
+ \Z+ and IOP(C, x̄) is feasible by Proposition 3, which contradicts the minimality of

ϵ∗r. The proof for part (b) is similar and is omitted. �

The significance of this result is that there is an exact relationship between the two generalized

inverse optimization problems with Cx̂ as an input, and the original inverse optimization problem

with a modified input Cx∗ ∈ Z+
WN (see Figure 3). For GIOPr, if we connect the point Cx̂ ∈ Z+

with a line segment to the origin (i.e., along the direction vector −Cx̂), then Cx̂/ϵ∗r is where the
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line segment intersects Z+
WN . Moreover an optimal solution to GIOPr(C, x̂, ϵ∗r) is also an optimal

solution to IOP(C,x∗) where Cx∗ =Cx̂/ϵ∗r. Similarly, for GIOPa, if we draw a line moving away

from a point Cx̂ ∈ Z+ in the direction of −e, then where this line intersects Z+
WN is the point

Cx̂− ϵ∗ae and an optimal solution to GIOPa(C, x̂) is also optimal for IOP(C,x∗) where Cx∗ =

Cx̂− ϵ∗ae. If Cx̂ ̸∈ Z+, then the direction of the adjustment is +Cx̂ in the relative case and +e

in the absolute case. Moving away from Cx̂ in a direction other than ±Cx̂ (±e) may result in a

closer non-dominated point (e.g., in l2 distance), but the relative (absolute) duality gaps have the

nice interpretation in the multi-objective context of adjusting all the objective function values by

the same relative (absolute) amount. The optimal relative and absolute gaps are thus a measure of

the distance between Cx̂ and Z+
WN along these two direction vectors. Note that if Cx̂ ∈ int(Z+),

then ϵ∗r > 1 and ϵ∗a > 0. If Cx̂∈R
|K|
+ \Z+, then ϵ∗r < 1 and ϵ∗a < 0.

In multi-objective linear optimization, both Z and Z+ are polyhedra (Zeleny 1974). If a point

Cx∈Z+
WN is a vertex of Z+, then many weight vectors α can generate Cx. The same is true if two

or more constraints defining Z+ are active at Cx. This observation leads to the following result,

whose proof is omitted.

Corollary 2. An optimal solution α
∗ to IOP(C,x∗) is unique if and only if Cx∗ ∈Z+

WN lies on

the relative interior of a facet of Z+.

Starting from an arbitrary point Cx̂ and traveling in the direction ±Cx̂ or ±e, the likelihood

of intersecting Z+
WN at anything other than the relative interior of a facet of Z+ is low, which

is verified in our computational results. A practical implication is that an objective function to

minimize ||α− α̂||1, for example, is generally not needed in either GIOP formulation.

3.5. Validating GIOP solutions

Let α∗ be an optimal solution to GIOPr(C, x̂, ϵ∗r). Because Z+ is a polyhedron and Cx̂/ϵ∗r may lie

on the relative interior of a facet of Z+, solving FOP(α∗) is not guaranteed to recover Cx̂/ϵ∗r –

it is only guaranteed to return an x∗ ∈X such that (α∗)′Cx∗ = (α∗)′Cx̂/ϵ∗r. The same is true for
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GIOPa(C, x̂). Thus, solving FOP(α∗) to validate an optimal solution α
∗ from GIOPr or GIOPa

may not be sufficient. Instead, dual information can be used to validate α
∗.

Proposition 5. (a) Let α
∗ be an optimal solution to GIOPr formulation (4), ϵ∗r = α

∗′Cx̂,

and ydual
r be the optimal dual variables associated with the constraints A′p≤C′

α. Then the vec-

tor xdual
r = ydual

r /ϵ∗r satisfies Cxdual
r ∈ ZWN , (ck)′xdual

r = (ck)′x̂/ϵ∗r for k such that α∗
k > 0 and

(ck)′xdual
r ≤ (ck)′x̂/ϵ∗r for k such that α∗

k = 0.

(b) Let α
∗ be an optimal solution to GIOPa formulation (5) and xdual

a be the optimal dual

variables associated with the constraints A′p≤C′
α. Then the vector xdual

a satisfies Cxdual
a ∈ZWN ,

(ck)′xdual
a = (ck)′x̂− ϵ∗a for k such that α∗

k > 0 and (ck)′xdual
a ≤ (ck)′x̂− ϵ∗a for k such that α∗

k = 0.

Proposition 5 implies that once a GIOP formulation is solved with a given Cx̂, the optimal solution

α
∗ can be validated by looking up the appropriate optimal dual variables. Note that for both

relative and absolute cases, if α∗ > 0, then Cxdual ∈ZN .

4. Benson’s method and Pareto surface approximation techniques

By minimizing the duality gaps in the relative and absolute GIOP formulations, we are taking a

point Cx̂ in criterion space and projecting it on to Z+
WN along the two associated direction vectors.

Note that by projecting Cx̂ on to Z+
WN , the GIOP formulations can also be used to find the normals

of the hyperplanes that define Z+
WN , which is the goal of many Pareto surface approximation

techniques. In this section, we briefly describe some of these techniques and highlight a connection

with our GIOP formulations.

Benson’s method (Benson 1978) is a well-known method to identify efficient solutions in a multi-

objective optimization problem. Given Cx̂∈Z, Benson’s formulation is

maximize
x,ϵ

ϵ
′e

subject to Cx≤Cx̂− ϵ,

Ax= b,

x≥ 0, ϵ≥ 0.

(8)
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Formulation (8) attempts to find a point on the efficient frontier that (weakly) dominates x̂. Let

(x∗,ϵ∗) be an optimal solution to formulation (8). The point x̂ is efficient if and only if the optimal

cost ϵ
∗′e equals 0. If 0 < ϵ

∗′e <∞, then x∗ is an efficient solution and (weakly) dominates x̂. If

problem (8) is unbounded, then no efficient solutions exist.

Variants of formulation (8) have been widely used in Pareto surface approximation tech-

niques (Das and Dennis 1998, Benson 1998, Shao and Ehrgott 2008, Ehrgott et al. 2011). For

example, given an interior point Cx̂ of Z+ and a vertex ẑ of S⊃ Z+, Benson (1998) first used a

univariate search technique to find the point Cx∗ where the line segment connecting Cx̂ and ẑ

intersects Z+
WN . Then, the dual of formulation (8) was solved to find a supporting hyperplane of

Z+ at Cx∗. Shao and Ehrgott (2008) improved the method in Benson (1998) by using a variant of

formulation (8) to find Cx∗ ∈Z+
WN , instead of using univariate search. A second LP was still used

to find the supporting hyperplane of Z+ at Cx∗. Next, we draw a connection between our GIOP

formulations and formulation (8), which allows us to find both Cx∗ and the associated supporting

hyperplane by solving a single LP.

The dual of GIOPa(C, x̂) formulation (5) can be written as

maximize
x,σ

σ

subject to Cx≤Cx̂−σe,

Ax= b,

x≥ 0.

(9)

Notice that formulations (8) and (9) produce equivalent optimal solutions if ϵ= σe. In other words,

the GIOPa method is the dual of Benson’s method, in the case where the components of ϵ are

constrained to be equal. Similarly, the GIOPr method is the dual of Benson’s method, in the case

where the components of ϵ are constrained to be proportional to the components of Cx̂. While the

GIOP methods attempt to find a weakly non-dominated point Cx∗ in a particular direction from

Cx̂, Benson’s method tries to find a non-dominated point that is furthest from Cx̂ as measured

by the 1-norm, and that (weakly) dominates Cx̂. Theorem 2, whose proof is straightforward and

omitted, formalizes these ideas.
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Theorem 2. Let x̂∈X.

(a) Let ϵ= σCx̂ in formulation (8) and let λ∗
r be an optimal dual vector associated with the first

constraint in formulation (8). Let α
∗
r be an optimal solution to GIOPr formulation (4). Then a

solution is optimal for FOP(λ∗
r) if and only if it is optimal for FOP(α∗

r).

(b) Let ϵ= σe in formulation (8) and let λ∗
a be an optimal dual vector associated with the first

constraint in in formulation (8). Let α∗
a be an optimal solution to GIOPa formulation (5). Then a

solution is optimal for FOP(λ∗
a) if and only if it is optimal for FOP(α∗

a).

Theorem 2 suggests that the two steps – the first step to find a point on the non-dominated

frontier and the second step to find a supporting hyperplane at that point – used in some of the

previous Pareto surface approximation techniques can be combined into a single step, by solving

formulation (8) with a given direction vector and simply evaluating its dual variables. While ideas

from inverse optimization may lead to new results in Pareto surface approximation, the main

purpose of the preceding discussion is to elucidate a connection between these two areas.

5. Computational Results

In this section, we demonstrate the use of our GIOP formulations in the context of radiation

therapy treatment planning.

5.1. A multi-objective forward formulation

We formulate a multi-objective forward problem that emulates the clinical IMRT treatment plan-

ning formulation presented in Table 1. Since the tumor dose criteria are given very high weights

and typically only a small amount of violation is allowed, we model them as hard constraints.

Putting only the OARs in the objective function allows for better differentiation between the OAR

criteria. We consider two types of objective functions for the OARs: (a) a linear penalty objective

function that penalizes delivering dose to any part of the OAR above a certain dose threshold level,

and (b) an objective that minimizes the maximum dose delivered to the OAR. These two types

of OAR objective functions are motivated by the classification of organs into parallel and serial
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organs (Dale and Olsen 1997, Thieke et al. 2002). For a parallel organ, a high dose to a small

volume can typically be tolerated if the rest of the organ is protected, and therefore minimizing

the total (or average) dose delivered to the overall organ is an appropriate clinical objective. For

serial organs, a high dose to a small portion of the organ can result in dysfunction, and therefore it

is important to minimize the maximum dose delivered (objective function type (b)). As organs are

typically somewhere in between these extremes, an objective function that penalizes dose above

some threshold dose is often used (type (a)).

Let B be the set of beamlets and wb be the intensity delivered by beamlet b ∈ B. The patient’s

anatomy is discretized into volume elements called voxels. We denote by Dv,b the dose deposited

to voxel v from unit intensity of beamlet b. Let I be the set of OAR objectives of type (a), J be

the set of OAR objectives of type (b), and K := I ∪J be the set of all objectives. For any k ∈K,

let Ok be the set of voxels in the OAR associated with objective k. We also let T and V be the sets

of voxels in the target structures (i.e., the CTV and PIR) and the whole anatomy, respectively.

Lastly, let αk ≥ 0 denote the weight assigned to objective k. The complete forward formulation is

minimize
w

∑

i∈I

αi

|Oi|

∑

v∈Oi

max

{

0,
∑

b∈B

Dv,bwb − θiv

}

+
∑

j∈J

αj max
v∈Oj

∑

b∈B

Dv,bwb,

subject to
∑

b∈B

Dv,bwb ≥ ℓv, ∀v ∈ T ,

∑

b∈B

Dv,bwb ≤ uv, ∀v ∈ V ,

β1

|B|

∑

b′∈B

wb′ ≤ wb ≤
β2

|B|

∑

b′∈B

wb′ , ∀b∈B,

wb ≥ 0, ∀b∈B,

(10)

where ℓv is a lower bound on the dose to voxel v ∈ T , uv is an upper bound on the dose to

voxel v ∈ V, and θiv denotes a dose threshold on voxel v ∈ Oi, i ∈ I above which overdosing is

linearly penalized. The third set of constraints forces every beamlet intensity to be within a certain

multiple of the average beamlet intensity (β1 < 1<β2), which discourages a highly heterogeneous

intensity map. These constraints act as a proxy for the smoothing of the intensity map that clinical

hardware and software enforce. Such a simple smoothing mechanism seems to work well for simple

geometries like the prostate, but may be insufficient for complex cases where heterogeneity can be
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useful, especially in the case of motion. Smoothing methods like constraining/optimizing the total

variation or sum-of-positive gradients may be more applicable in other cases (Zhu et al. 2008, Craft

et al. 2007b). More sophisticated CVaR constraints (Romeijn et al. 2006), general piece-wise linear

objective functions (Craft et al. 2007a), and linear EUD objectives (Thieke et al. 2002) can also be

incorporated. However, our computational results suggest that this simple formulation is sufficient

to replicate clinical-quality plans. Formulation (10) can be linearized in a standard fashion and

represented as FOP(α) formulation (1) by introducing auxiliary variables and constraints. The

values of these auxiliary variables need to be determined in order to be used as input in our GIOP

models. These values are uniquely determined by a given beamlet intensity profile ŵ or a dose

distribution that specifies the dose to every voxel v, dv =
∑

b∈BDv,bŵb, through a direct application

of the two max expressions in formulation (10).

We consider three different instances of formulation (10), each with a different number of objec-

tives: (A) four objectives, (B) six objectives, and (C) 18 objectives. In model (A), only one objective

per OAR is included. It has been shown that one objective per OAR is sufficient in generating

clinically acceptable treatments at low computational overhead (Craft 2011). Because of the low

volume tolerance for the femoral head criteria, we modeled those objectives using a maximum dose

objective (type (b)). The bladder and rectum objectives were modeled using the linear penalty

objective function (type (a)), with thresholds θi = 50 for both. In all models, we assume all voxels

in OAR objective i (of type (a)) have a common dose threshold θi = θiv for all v ∈Oi. In model (B),

we add a mean dose objective, which can be modeled with a linear penalty function and θi = 0, for

both the bladder and rectum to the four objectives from model (A). In model (C), we introduce

a linear penalty objective for the bladder and rectum for each of the values of θi ∈ {0,10, . . . ,70}.

The objective with θi = 70 can be viewed as an approximate maximum dose objective. The femoral

head objectives remain the same as in models (A) and (B).

In all instances, Table 1 was used to guide the parameter settings. We set ℓv = 78.0 for v ∈CTV

and ℓv = 74.1 for v ∈ PIR. We set V to be the union of the PTV and all OARs, as the remaining

unclassified tissue had little impact on the final dose distribution. We let uv = 81.9 for v ∈ V \POR,
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Table 2 Problem sizes and solution times for the FOP and GIOP formulations (model (A)).

FOP GIOPr GIOPa

Number of variables 4,326 98,219 98,220
Number of constraints 98,215 4,327 4,328
Solution time (s) 211 318 303

Table 3 Results from GIOPr for model (A).

OAR α
∗
r ϵ∗r Cx̂ Cx∗

r Cxdual
r Cx̂/Cx∗

r Cx̂/Cxdual
r

Bladder 0.248

1.098

8.280 7.539 7.540 1.098 1.098
Rectum 0.746 9.625 8.765 8.765 1.098 1.098
L.Fem 0.002 51.611 47.127 47.001 1.095 1.098
R.Fem 0.004 57.398 52.320 52.271 1.097 1.098

Table 4 Results from GIOPa for model (A).

OAR α
∗
a ϵ∗a Cx̂ Cx∗

a Cxdual
a Cx̂−Cx∗

a Cx̂−Cxdual
a

Bladder 0.326

0.846

8.280 7.434 7.434 0.846 0.846
Rectum 0.670 9.625 8.779 8.779 0.846 0.846
L.Fem 0.002 51.611 50.787 50.765 0.824 0.846
R.Fem 0.002 57.398 56.545 56.552 0.853 0.846

and let uv = 78.0 for v ∈ POR. Lastly, we chose β1 = 0.5 and β2 = 1.5, which were guided by

discussions with medical physicists at Princess Margaret Cancer Centre.

5.2. Reproducing a clinical plan with fewer objectives

We obtained treatment plans for 12 prostate cancer patients who had previously received radiation

therapy at Princess Margaret Cancer Centre. Details about these patients and their treatments

are provided in Appendix B. An initialization step to process the clinical data is described in

Appendix C. We consider model (A) and demonstrate the use of the GIOP models in recreating a

plan of clinical quality using inversely optimized weights for patient #1. All optimization problems

were solved using CPLEX 12.0 on a computer with a quad-core 2.66 GHz Intel Xeon W3520

processor and 6 GB of memory. We solved formulation (4) for GIOPr, and (5) for GIOPa. The

sizes of the FOP, GIOPr, and GIOPa formulations for patient #1 are shown in Table 2 along with

solution (CPU) times.

Tables 3 and 4 show the objective function weights, α∗
r and α

∗
a, that result from solving GIOPr

and GIOPa, respectively, using patient #1’s treatment as input. As discussed in Section 3.5, using
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dual information to validate the weights is the most accurate method. In Table 3, using the defi-

nition of xdual
r from Proposition 5, the component-by-component ratio Cx̂/Cxdual

r is precisely ϵ∗r,

as expected (Proposition 4 and Theorem 1). Similar results are seen in Table 4 for GIOPa. The

weights are similar but not identical between the two GIOP formulations, which suggests that

Cxdual
r and Cxdual

a are sitting on nearby facets of Z+. We also solved the GIOP formulations with

objective functions of the form ||α− α̂||1, for many different α̂. Each time, the same α
∗ was gen-

erated, which suggests that the solutions Cxdual
r and Cxdual

a lie in the relative interiors of facets

of Z+. If we validate α
∗
r (α∗

a) by solving FOP(α∗
r) (FOP(α∗

a)), then we obtain the results in the

columns associated with Cx∗
r (Cx∗

a). In this case, the component-wise ratios Cx̂/Cx∗
r (and dif-

ferences Cx̂−Cx∗
a) are very similar but not identical. This observation again reinforces the idea

that Cxdual
r and Cxdual

a lie in the relative interiors of facets of Z+. Moreover, the similarity in the

component-wise ratio/difference is indicative of the facets being very small. The duality gap values

ϵ∗r > 1 and ϵ∗a > 0 indicate that the given solution was an interior point of Z+.

While dual information is more accurate in validating the inversely optimized weights, solving

the forward problem with the optimal weights does provide additional information that is clinically

relevant and useful in validating the GIOP results. For example, by solving FOP(α∗
r) we can

generate an entire dose distribution (as opposed to just the objective function values) and compare

it to the clinically achievable one used as input to GIOPr. The treatment plan and dose distribution

that result from solving FOP(α∗
r) will be referred to as the inversely optimized plan and inversely

optimized dose distribution, respectively. A common way to evaluate an IMRT treatment plan is

via a dose-volume histogram (DVH). A DVH shows what fraction of a particular structure receives

a certain level of dose or higher. Figure 4 plots the DVHs of the CTV, PTV, and four OARs for

both the clinically achievable and inversely optimized plans using weights from GIOPr.

The DVHs match fairly well for the bladder and rectum, indicating that the dose distributions

are similar in the clinical and inversely optimized plans for these organs. For the femoral heads,

the DVHs of the inversely optimized plan mostly dominate the clinical plan. Overall, the inversely

optimized treatment plan seems to be at least as good as the clinical one, which suggests that the
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(a) CTV.
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(b) PTV.
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(c) Bladder.
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(d) Rectum.
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(e) Left femoral head.
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(f) Right femoral head.

Figure 4 DVHs of the clinically achievable and inversely optimized plans for patient #1 using GIOPr.

clinical plan is feasible but not on the efficient frontier of the forward problem. Figure 5 shows the

similar-looking clinical and inversely optimized dose distributions on a CT image.

Lastly, we present a quantitative comparison in Table 5. The criterion V x≤ y% (V x≥ y%) is

a partial-volume metric, evaluating whether the volume of the structure that receives x Gy or

more is at most (at least) y%. It can be seen that the clinically achievable and inversely optimized

plans satisfy all clinical requirements. In fact, the inversely optimized plan dominates the clinically

achievable one in the bladder and rectum metrics. The inversely optimized plan is equivalent to

the clinical one in the femoral head criteria, though a reduction in the maximum dose delivered is

evident in Table 3. Similar results to those shown in this section were obtained for the remaining

11 patients. A summary of the GIOPr results for all 12 patients is provided in Table 6. The GIOPa

results were similar and omitted.
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(a) Clinically achievable dose distribution. (b) Inversely optimized dose distribution.

Figure 5 Dose distributions of the clinically achievable and inversely optimized plans for patient #1 using GIOPr.

Table 5 Dose metrics computed from inversely optimized plans.

Structure Metric
Target Clinical Inversely optimized plan (%)
level (%) plan (%) Model (A) Model (B) Model (C)

CTV V78.0 ≥ 99 100.00 100.00 100.00 100.00
PTV V74.1 ≥ 99 100.00 100.00 100.00 100.00
PTV V81.9 ≤100 100.00 100.00 100.00 100.00
Bladder V70.0 ≤ 30 21.72 20.53 21.13 21.27
Bladder V54.3 ≤ 50 36.90 34.54 36.03 36.09
Rectum V70.0 ≤ 30 26.79 24.65 26.26 26.29
Rectum V54.3 ≤ 50 41.15 38.31 39.97 39.87
L. femoral head V52.0 ≤ 5 0.00 0.00 0.00 0.00
R. femoral head V52.0 ≤ 5 0.01 0.01 0.02 0.02

Table 6 Summary of results from GIOPr model (A) for all 12 patients.

Pat. ϵ∗r
α

∗
r Time

Blad Rect L.Fem R.Fem (s)
1 1.098 0.248 0.746 0.002 0.004 318
2 1.087 0.616 0.380 0.001 0.003 347
3 1.205 0.088 0.906 0.004 0.002 463
4 1.107 0.007 0.989 0.001 0.003 238
5 1.067 0.963 0.023 0.012 0.002 844
6 1.108 0.972 0.011 0.006 0.011 465
7 1.073 0.297 0.695 0.006 0.002 366
8 1.071 0.672 0.315 0.007 0.006 329
9 1.091 0.980 0.010 0.007 0.003 363
10 1.231 0.833 0.147 0.010 0.010 238
11 1.164 0.956 0.040 0.002 0.002 491
12 1.063 0.918 0.066 0.006 0.010 388
Gray cells indicate a weight greater than 0.10.
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Table 7 Summary of results from GIOPr model (C) for all 12 patients.

Pat. ϵ∗r
θi = 0 θi = 10 θi = 20 θi = 30 θi = 40 θi = 50 θi = 60 θi = 70 Max Time

Bl Re Bl Re Bl Re Bl Re Bl Re Bl Re Bl Re Bl Re LF RF (s)
1 1.027 0.58 0.06 - - - - - - - - 0.06 0.01 - - 0.27 - 0.01 0.01 1094
2 1.027 0.54 0.01 - - - - - - 0.08 - 0.26 0.09 - - - - 0.01 0.01 1702
3 1.092 0.41 0.01 - - - - - - - - - - 0.05 - 0.51 ∼0.00 0.01 0.01 1813
4 1.092 0.01 ∼0.00 - - - 0.01 - - - - - - - 0.98 - - ∼0.00 ∼0.00 1188
5 1.038 0.18 - - - - - - - - - 0.66 - 0.12 0.02 - ∼0.00 0.01 0.01 2973
6 1.047 0.73 - - - - - - - - - 0.23 - - - - - 0.01 0.03 2445
7 1.063 0.08 - - - - - - - - - 0.37 0.47 - 0.07 - - 0.01 ∼0.00 1570
8 1.033 0.62 0.02 - - - - - - 0.31 - - 0.01 - - - - 0.02 0.02 1488
9 1.068 0.15 ∼0.00 - - - - - - - - 0.52 - - ∼0.00 0.32 - 0.01 ∼0.00 1785
10 1.076 0.94 - - - - - - - 0.02 - - - - - - 0.01 0.02 0.01 1111
11 1.041 0.62 - - - - - - - - - 0.36 - - - - ∼0.00 0.01 0.01 1863
12 1.034 0.23 - - - - - - - - - 0.07 0.03 0.64 - - - 0.01 0.02 1564
Bl = bladder, Re = rectum, LF = left femoral head, RF = right femoral head. Gray cells indicate a weight greater than 0.10.

Dashes indicate a weight of zero.

5.3. Identifying important objective functions

Treatment planners often do not know which objective functions influence the optimization the

most and which are the most crucial in designing a high quality, clinically acceptable treatment for

a particular patient. This leads to clinical treatment planning formulations that have many more

objectives than needed and a large parameter space to search over when iteratively designing a

treatment. In this section, we demonstrate how our GIOP methodology can identify important (or

redundant) objectives from a large family of candidate objectives.

Consider the forward formulation (C). The results from solving the associated GIOPr for each

of the 12 patients is shown in Table 7. Notice that the values of ϵ∗r in Table 7 are less than their

corresponding values in Table 6. This is expected because the objective functions used in model (C)

contain the ones used in model (A). Analogous to a regression, there are simply more “explanatory

variables” in model (C). Therefore we expect the duality gap to be smaller as more of the variation

in the dose distribution is explained by the increased number of objective functions. However,

having more objective functions and a smaller duality gap does not necessarily imply that the final

treatment using the inversely optimized weights will result in better clinical performance. Table 5

shows the dose criteria corresponding to the inversely optimized plan for patient #1 using the 18

objective functions (model (C)), as well as the four objective functions from the previous section
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(model (A)). In this case, we see that model (A) performs slightly better than model (C). We

believe this is due to the fact that model (C) is “overfitting” patient #1’s input. Having more

objective functions makes it easier to fit the entire dose distribution, but may actually put undue

emphasis on parts of the dose distribution that are less relevant clinically. For example, given that

the primary bladder and rectum criteria are partial dose-volume criteria above 54.3 and 70.0 Gy,

including additional objectives may confound the optimization.

Table 6 shows that in model (A), roughly 98-99% of the objective function weights are placed on

the bladder and rectum objectives. When additional bladder and rectum objectives are included,

Table 7 shows that most of the weights remain on the bladder and rectum objectives (95-99%).

Among the bladder and rectum objectives, only a few receive nonzero weights and the top two

account for 80-99% of the weight. For almost all patient cases, the two most heavily weighted

objective functions for the bladder and rectum are the mean dose objective (θi = 0) and one of

the ones corresponding to θi = 50,60,or 70. The objectives corresponding to θi = 10,20,30,and 40

generally receive little to no weight, and therefore do not play a central role in driving the opti-

mization. These results are aligned with the choice of objectives for the bladder and rectum in the

clinical treatment planning formulation (cf. Table 1).

To further explore this issue, we modified the forward problem to only include six objective

functions (model (B)). Inversely optimized weights derived from solving the corresponding GIOPr

for all 12 patients are shown in Table 8. Note that the values of ϵ∗r from Table 8 are very similar

to those in Table 7, indicating that the six objectives in model (B) are capturing almost all the

explanatory power of the 18 objectives from model (C). We performed further validation by solving

the forward problem with the inversely optimized weights. Results for patient #1 are shown in

Figure 6. Even with a different number of objective functions, the dose distributions from model

(B) and (C) are virtually identical. The dose criteria achieved by the two models are also nearly

identical (Table 5).
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Table 8 Summary of results from GIOPr model (B) for all 12 patients.

Pat. ϵ∗r
θi = 0 θi = 50 Max Time

Blad Rect Blad Rect L.Fem R.Fem (s)
1 1.027 0.704 0.073 0.192 0.007 0.012 0.012 426
2 1.027 0.518 0.002 0.371 0.093 0.006 0.010 517
3 1.093 0.710 0.013 0.258 - 0.011 0.008 527
4 1.105 0.030 0.003 - 0.961 0.002 0.004 286
5 1.039 0.198 - 0.784 0.005 0.010 0.003 990
6 1.047 0.730 - 0.231 - 0.010 0.029 651
7 1.063 0.087 - 0.393 0.510 0.007 0.003 494
8 1.033 0.737 0.014 0.199 0.009 0.020 0.021 478
9 1.068 0.213 0.005 0.766 0.002 0.011 0.003 519
10 1.076 0.968 - - - 0.017 0.015 349
11 1.041 0.622 - 0.369 - 0.003 0.006 511
12 1.035 0.366 - 0.553 0.044 0.014 0.023 502
Gray cells indicate a weight greater than 0.10. Dashes indicate a weight of zero.
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Figure 6 DVHs of inversely optimized plans from model (B) (six objectives) and model (C) (18 objectives).

5.4. Implications for prostate cancer treatment design

As shown in the previous section, almost all objective function weights are placed on bladder and

rectum objectives. This suggests that these objectives are the most important ones in determining

the final clinical treatment plan, and therefore, should not receive the same weight as the femoral

head objectives. However, whether the bladder or rectum is more important depends on the patient,

which reinforces the idea that no one set of weights will be universally applicable to each patient.
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Classifying patients based on their anatomical geometry (e.g., the size of the rectum and bladder

or their proximity to the prostate) may be an appropriate way to stratify patients. The inversely

optimized weights can be thought of as being proportional to the level of difficulty in achieving

the corresponding criteria, reflecting the anatomical geometry inherent in prostate cancer cases.

As shown in Figure 1, the bladder and rectum are in close proximity to the target, overlapping

the PTV, whereas the femoral heads are located farther from the target. Determining a statistical

relationship between objective function weights and geometric quantities such as the distance

between the prostate and OAR centroids, and the volume of overlap between the prostate and

OARs, would provide insight into the impact of different geometries on treatment planning. A useful

measure of geometry that could be used is the overlap volume histogram (OVH), which measures

the cumulative overlap volume between an OAR and the PTV as a function of an expanding

PTV (Wu et al. 2009).

As an immediate consequence of the concentration of weight values in a few objectives, it seems

that current clinical treatment planning formulations may have more objective functions than

needed to generate acceptable treatment plans. This has potential efficiency and effectiveness impli-

cations. From an operational efficiency point of view, having a large number of objectives may

result in a large parameter space to search through when designing treatments. Because of the

iterative nature of treatment planning, it may take longer to design a treatment. Simplification

of the treatment planning process would be useful for new institutions starting prostate cancer

treatments and new treatment planners being trained in treatment planning. The benefit of faster

planning is amplified for adaptive radiation therapy (Yan et al. 1997), an increasingly popular

paradigm where a plan is re-optimized regularly over the course of a multi-week treatment (instead

of the current paradigm of creating a single treatment that is delivered daily over many weeks).

Furthermore, having a smaller model may allow us to take uncertainty into account (e.g., through

stochastic programming or robust optimization) without the resulting model being overly large.

Also, a smaller number of objectives makes it easier to construct and visualize the Pareto frontier,

which is becoming a popular approach clinically. It could be argued that having a large number of
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objectives may compensate for the sensitivity in the choice of weights, and thus it would be easier

to find appropriate weights compared to a simpler formulation. We conducted a sensitivity analysis

(Appendix D) and showed that having more objectives could actually increase the sensitivity of

the solution. From the clinical effectiveness point of view, having more objective functions could

lead to a treatment that is less able to satisfy clinical criteria, as shown in the previous section. The

results in this paper should be taken as a starting point for investigating potential improvements in

the treatment planning process, but more research is needed to clearly demonstrate clinical impact

in this area.

The results in Section 5.3 also highlight a connection with the equivalent uniform dose (EUD)

concept (Niemierko 1997). The idea behind EUD is to encapsulate in a single number a measure

of the biological impact of a heterogeneous dose distribution. The EUD is the equivalent dose that

if delivered uniformly to a structure would have the same biological impact as some heterogeneous

dose distribution. Mathematically, given a vector d whose components dv represent the dose to

voxel v in some structure O, the EUD is

EUD(d;a) =

(

1

|O|

∑

v∈O

dv
a

)
1

a

, (11)

where a is a structure-specific parameter that describes the biological dose-volume effect. If a< 1,

then lower doses are given greater weight and the EUD function is used for the tumor and other

target structures. If a≥ 1, the EUD function is used for OARs. Note that if a= 1, then the EUD

is simply the mean dose. As a→∞, the EUD approaches the maximum dose.

Consider the following linearization of the EUD function (11) for OARs (Thieke et al. 2002):

EUDL(d;λ) = λdmean +(1−λ)dmax. (12)

Here, dmean and dmax represent the mean and maximum dose delivered to the OAR, respectively,

and λ∈ [0,1] is an OAR-specific parameter. It has been shown that by optimizing EUDL instead of

the original EUD function (11), comparable treatments can be created (Thieke et al. 2002). Note

that for a tumor or target structure, dmax would be replaced by dmin, the minimum dose to the
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structure. The results in Section 5.3 show that by generalizing the idea of the EUDL beyond mean,

minimum and maximum doses, and allowing a convex combination of the mean dose objective and

some linear penalty objective, clinical quality treatments can still be generated.

6. Conclusion

This paper adds to the growing literature on inverse optimization by developing a new methodology

to address the situation where the input data renders the inverse problem infeasible, a topic that has

received little attention to date. In the context of a multi-objective forward optimization problem,

given a feasible solution that is not weakly efficient, our method determines objective function

weights that make the given solution approximately optimal (weakly efficient) with as small a

duality gap as possible. Our method generalizes the standard inverse optimization methodology

and retains the underlying complexity of the forward problem. Thus, there is little downside to

adopting the more generalized approach when solving inverse optimization problems in practice.

We also elucidate a connection between our generalized inverse optimization approach and Pareto

surface approximation techniques from the literature.

We applied our generalized inverse optimization method to historical prostate cancer radiation

therapy treatments in order to determine the objective functions and corresponding weights that

most heavily influenced the optimization of the treatments. Being able to demonstrate value in

prostate IMRT provides a springboard to address more complex sites such as head and neck

cancers, where the number and importance of nearby OARs increase significantly. Applying inverse

optimization to historical data can help identify a small, but relevant set of objectives for multi-

objective IMRT planning methods, such as Pareto surface navigation methods. Overall, we believe

that inverse optimization has potential to quantify the implicit preferences of decision makers in

clinical settings using historical data.

Many directions for future research exist. For example, the solution of an inverse multi-objective

optimization problem induces a prioritization of the objectives, which may be used in a prioritized

optimization approach such as preemptive or lexicographic goal programming. Methods to effi-

ciently explore or approximate the Pareto surface can be augmented using inverse optimization to
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identify search directions that focus on only the most relevant parts of the Pareto surface. Lastly,

extending our method to general convex optimization opens the door for much broader application.

Appendix

A. Proofs

Proof of Proposition 2 Let Cx̂ ∈ Z+ and Cx∗ = Cx̂/ϵ∗r. By Theorem 1, Cx∗ ∈ Z+
WN . By the

definition of zI , zI ≤ Cx for any Cx ∈ Z. Therefore, zI ≤ Cx∗ ≤ Cx̂. For any k ∈ K such that

zIk > 0, ϵ∗r = (ck)′x̂/(ck)′x∗ ≤ (ck)′x̂/zIk. If Cx̂ ̸∈ Z+ then by Theorem 1 Cx∗ ≤Cx̂, and therefore

ϵ∗r ≤ 1. �

Proof of Proposition 4 For part (a), (α,p) satisfies α
′Cx̂ = b′pϵr if and only if it satisfies

α
′Cx = b′p for Cx = Cx̂/ϵr. Since all other constraints are the same between the formula-

tions GIOPr(C, x̂, ϵr) and IOP(C,x), the statement holds. The proof for part (b) is similar and

omitted. �

Proof of Corollary 1 Consider GIOPr(C, x̂, ϵr). For ϵr sufficiently large, 0 ≤ Cx̂/ϵr ≤ Cx for

some Cx∈Z+
WN . Thus, Cx̂/ϵr ∈R

|K|
+ \Z+. Let x̃ satisfy Cx̃=Cx̂/ϵr. By Proposition 3, IOP(C, x̃)

is feasible and then by Proposition 4, GIOPr(C, x̂, ϵr) is feasible, as required. The proof for part

(b) is similar and omitted. �

Proof of Proposition 5 For part (a), let γ be the dual variable associated with the first set of

constraints in formulation (4). Then the dual of formulation (4) can be written as:

maximize
y,γ

γ

subject to Ay= γb,

Cy≤Cx̂,

y≥ 0.

(13)

Let (ydual
r , γ∗) be an optimal solution to formulation (13). By strong duality, γ∗ = ϵ∗r. Then from

formulation (13), the vector xdual
r = ydual

r /ϵ∗r must satisfy

ϵ∗r ≤min
k∈K

(ck)′x̂

(ck)′xdual
r

. (14)
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By complementary slackness, ϵ∗r = (ck)′x̂/(ck)′xdual
r for k ∈ K such that αk > 0 and ϵ∗r ≤

(ck)′x̂/(ck)′xdual
r for k ∈K such that αk = 0. Lastly, since Cxdual

r ≤Cx̂/ϵ∗r ∈Z+
WN (Theorem 1) and

xdual
r ∈X (from formulation (13)), Cxdual

r ∈ZWN .

The proof for part (b) is similar and omitted. �

B. Patient Data

The 12 patient datasets obtained from Princess Margaret Cancer Centre each had a CTV com-

prising the prostate gland (± proximal 10 mm of seminal vesicles) and a PTV defined as the CTV

plus a 10 mm margin (7 mm posteriorly). All treatments were delivered with seven 6 MV step-

and-shoot intensity-modulated x-ray fields at angles 40◦, 80◦, 110◦, 250◦, 280◦, 310◦, and 355◦.

We excluded patients who had previous prostatectomy, pelvic lymph node irradiation, and atyp-

ical anatomic features including proximal small bowel, pelvic kidneys, and prosthetic hips. We

used CERR (Computational Environment for Radiotherapy Research) to read and analyze the

data (Deasy et al. 2003). Treatment data was exported from the Philips Pinnacle treatment plan-

ning system in DICOM (Digital Imaging and COmmunications in Medicine) and RTOG (Radiation

Therapy Oncology Group) formats, and read into MATLAB via CERR.

As an example, patient #1 had 18,549 voxels in the CTV, 54,964 in the PIR, 294,075 in the

POR, 6,926 in the bladder wall, 8,959 in the rectum wall, 47,061 in the left femoral head, and

47,102 in the right femoral head. The voxel grid resolution of the CT image, and thus our data, was

1 mm × 1 mm × 2 mm. The voxel grid resolution used for prostate treatment planning at Princess

Margaret Cancer Centre is 2 mm × 2 mm × 2 mm. To improve tractability, while accounting for

the clinical planning resolution, we sampled voxels at a rate of 1:4 in all structures. We found the

difference in the resulting dose distributions to be negligible. To further speed up the computation,

we considered sampling the POR at a rate of 1:10, since it was the largest structure by far. Again,

we found negligible differences in the resulting dose distributions. A total of 354 beamlets were

used for patient #1 across the seven beams. The resolution of each beamlet was 5 mm × 5 mm.
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C. Data Initialization

Two pieces of data are needed to solve the GIOPs: the delivered beamlet intensities, and the

patient-dependent clinical dose influence matrix, Dclin (see formulation (10)). The clinical plans

exported by Pinnacle did not contain either of these quantities, but instead had a delivered dose

value for each voxel (i.e., the dose distribution, denoted dclin), anatomical information such as

contours and three dimensional voxel coordinates, and the beam angles used for the treatment.

To overcome the lack of Dclin, we used CERR’s IMRTP function to generate a new dose influence

matrix, DCERR. All the structure information and beam environment parameters were set to match

the clinical plan. However, because CERR uses a different method to calculate dose influence

matrices than a commercial treatment planning system, DCERR is different from Dclin (Jeraj et al.

2002). As a result, the exact clinical dose distribution obtained using Dclin may not be “achievable”

using DCERR. That is, there may not exist w such that dclin =DCERRw. To find such a w, we

solve an auxiliary optimization problem to find a dose distribution that is close to dclin and that

is achievable using DCERR:

minimize
w

∑

v∈V

(

∑

b∈B

DCERR
v,b wb − dclinv

)2

subject to constraints from problem (10).

(15)

In Section 5, we treat the achievable dose distribution and DCERR as being the clinical dose

distribution and dose influence matrix, respectively. Note that because our GIOP formulations

can handle input vectors that are infeasible for the forward problem, the second part of the data

initialization (solving formulation (15)) can be omitted.

D. Sensitivity of the formulation to weights

We found through computational experiments that having more objectives did not reduce the sen-

sitivity of the formulation to the objective function weights, and could even increase its sensitivity.

We generated weight vectors by randomly perturbing each component of an inversely-optimized

weight vector plus or minus 0.1 (ensuring the resulting value was between 0 and 1), and then

re-normalizing the weight vector. We did this 100 times for each patient, solved models (A), (B),
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and (C) with these new weights, and plotted the resulting DVHs. Results for one patient are shown

in Figure 7.

Each line represents one forward optimization run using a simulated α vector. The thickness

of the cloud of lines indicates how sensitive the dose distribution of the organ is to the choice of

weights. The cloud of lines for model (A) seems to be about the same thickness or even thinner than

the corresponding clouds for models (B) and (C). Similar results were seen for the other patients.

Here, placing even a small non-zero weight on some of the objectives that were excluded from model

(A) seems to result in more sensitivity of the final treatment. We believe this observation reinforces

the idea from Section 4.3 that having more objective functions may result in undue emphasis being

placed on objectives that are not as critical to the ultimate quality of the treatment. However,

it is also worth noting that when comparing models (B) and (C), model (B) seems to be slightly

more sensitive. Overall, it seems that the number of objectives may not be an ideal indicator of

the sensitivity of the solution to the choice of weights.

The sensitivity of the bladder and rectum, especially in the higher dose region, seems to be much

lower than the femoral heads. This is likely due to the proximity of the bladder and rectum to the

PTV – the requirement to deliver a certain dose to the PTV provides less flexibility to reduce dose

to nearby organs (or organs that overlap the PTV). This is the subject of ongoing research.
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Hamacher, H. W., K. H. Küfer. 2002. Inverse radiation therapy planning – a multiple objective optimization

approach. Discrete Appl. Math. 118(1–2) 145–161.

Heuberger, C. 2004. Inverse combinatorial optimization: A survey on problems, methods, and results. J.

Comb. Optim. 8(3) 329–361.

Hochbaum, D. S. 2003. Efficient algorithms for the inverse spanning-tree problem. Oper. Res. 51(5) 785–797.

Iyengar, G., W. Kang. 2005. Inverse conic programming with applications. Oper. Res. Lett. 33(3) 319–330.

Jeraj, R., P. J. Keall, J. V. Siebers. 2002. The effect of dose calculation accuracy on inverse treatment

planning. Phys. Med. Biol. 47(3) 391–407.
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