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1. Introduction

The concept of an inverse of a singular matrix seems to have been first intro-
duced by Moore [1], [2] in 1920. Extensions of these ideas to general operators
have been made by Tseng [3], [4], [5], but no systematic study of the subject
was made until 1955 when Penrose [6], [7], unaware of the earlier work, re-
defined the Moore inverse in a slightly different way. About the same time one of
the authors, Rao [8], gave a method of computing what is called a pseudoinverse
of a singular matrix, and applied it to solve normal equations with a singular
matrix in the least squares theory and to express the variances of estimators.
The pseudoinverse defined by Rao did not satisfy all the restrictions imposed by
Moore and Penrose. It was therefore different from the Moore-Penrose inverse,
but was useful in providing a general theory of least squares estimation without
any restriction on the rank of the observational equations. In a later paper,
Rao [9] showed that an inverse with a much weaker definition than that of
Moore and Penrose is sufficient in dealing with problems of linear equations.
Such an inverse was called a generalized inverse (g inverse) and its applications
were considered by Rao in [10], [11], [12], [13], and [14].
Some of the principal contributors to the subject since 1955 are Greville [15],

Bjerhammer [16], [17], [18], Ben-Israel and Charnes [19], Chipman [20], [21],
Chipman and Rao [22], and Scroggs and Odell [23]. Bose [24] mentions the use
of g inverse in his lecture notes, "Analysis of Variance" [24]. Bott and Duffin
[25] defined what is called a constrained inverse of a square matrix, which is
different from a g inverse and is useful in some applications. Chernoff [26]
considered an inverse of a singular nonnegative definite (n.n.d.) matrix, which
is also not a g inverse but is useful in discussing some estimation problems.
The g inverse satisfying the weaker definition given by Rao [9] is not unique

and thus presents an interesting study in matrix algebra. In a publication in
1967 [27], Rao showed how a variety of g inverses could be constructed to suit
different purposes and presented a classification of g inverses. The work was
later pursued by Mitra [28], [29], who introduced some new classes ofg inverses,
and Mitra and Bhimasankaram [30], [31]. Further applications of g inverses
were considered in a series of papers, Mitra and Rao [32], [33], [34], and Rao
[35].
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In the present paper we discuss a calculus of g inverses and show how it pro-
vides an elegant tool for the discussion of the Gauss-Markov problem of linear
estimation, multivariate analysis when the variables have a singular covariance
matrix, maximum likelihood estimation when the information matrix is singular,
and so forth.
A systematic development of the calculus of generalized inverses and their

applications are given in a forthcoming book by the authors, entitled Generalized
Inverse of Matrices and Its Applications (Wiley. 1971).

2. Generalized inverse of a matrix

If A is an m x m nonsingular matrix, then there exists an inverse A` with
the property AA-l = A - 'A = I. If A is an m x n rectangular matrix with
rank n _ m then (A*A)-' exists, and defining A`' = (A*A)1-'A* we find that
A''A = I. In such a case AL is called a left inverse ofA. Similarly a right inverse
ofA exists if its rank is m . n with the property AA ' = I. When A -, A L,or
AR' exists we can express a solution ofthe equationAx = yin the formx = A -'y
or AL 'y, or AR 'y. When such inverses do not exist, can we represent a solution
of the consistent equation Ax = y (where A may be rectangular or a square
singular) in the form x = Gy? If such a G exists, we call it a generalized inverse
of A, and represent it by A -.
We provide three equivalent definitions of a g inverse.
DEFINITION 2.1. An n x m matrix G is said to be a g inverse of an rn x n

matrix A if x = Gy is a solution to the equation Ax = y for any y such that the
equation Ax = y is consistent.

DEFINITION 2.2. G is a g inverse of A if AGA = A.
DEFINITION 2.3. G is a g inverse of A if AG is idempotent and R(AG) = R(A)

or GA is idempotent and R(GA) = R(A), where R( ) denotes the rank of the
matrix.
A matrix G satisfying any one of these definitions is denoted by A- and is

called a g inverse. The following theorems establish the existence of A - and its
applications in solving equations, obtaining projections, and so forth. The proofs
of some of these theorems are omitted as they are contained in Rao [27], and
proofs of other theorems will appear in the forthcoming book by the authors,
already cited.
THEOREM 2.1. Let A be an m x n matrix. Then A- exists. The entire class

of g inverses is generated from any given inverse A- by the formula

(2.1) A- + U-A-AUA A

where U is arbitrary, or by the formula

(2.2) A- + V(I - AA-) + (I - A-A)W

where V and W are arbitrary. Further a matrix is uniquely determined by the class
(2.1) or (2.2) of its g inverses.
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THEOREM 2.2. Let Ax = y be a consistent equation andA - be a g inverse ofA.
(i) Then x = A-y is a solution.
(ii) The class of all solutions is provided by A -y + (I - A A)z, z arbitrary.
(iii) Let q be an n vector. Then q'x has a unique value for all solutions x of

Ax = y if and only if q' = q'A -A or q E k(A'), the vector space generated by the
columns of A'.
THEOREM 2.3. Let A be an m x n matrix and At(A) c gm, The projection

operator P onto A1(A) can be expressed in the form

(2.3) P = A(A*MA)-A*M,
where the inner product in gm is defined as (y, x) = x*My, M being a positive
definite matrix and (A * MA) - is any g inverse of A *MA. Further P is unique for
any choice of (A*MA)-.

It would be useful to recognize the situations in which a g inverse behaves
like a regular inverse. Theorem 2.4 contains the main result in this direction.
THEOREM 2.4. A necessary and sufficient condition that BA -A = B is that

B = DA for some D. Similarly for B = AA -B to hold, it is necessary and sufficient
that B = AD.

The following results are consequences of Theorem 2.4:
(a) A(A*A) - (A*A) = A ;
(b) (A*A)(A*A)-A* = A*;
(c) A(A* VA)- (A* VA) = A and (A* VA) (A* VA)-A* A* for any matrix V

such that R(A*VA) =R(A);
(d) A(A*VA)-A* is invariant for any choice of (A*VA)- and is of rank

equal to the rank of A if R(A * VA) = R(A). Further, A(A * VA)-A * is hermitian
ifA* VA is hermitian.
We provide a decomposition theorem involving g inverses of matrices which

has a number of applications.
Let A be a matrix of order m x n, and let Ai, Bi be matrices of order m x Pi,

n x qi, i = 1, ,k. Write A = (A1 Ak) andB = (B1 - Bk). Consider
the following statements:

(2.4) A?*ABj = 0 for all i # j.

(2.5) G = EBi(A:ABi)-A*
is a g inverse of A where (AiABi)- is any g inverse.
THEOREM 2.5. (i) Statement (2.4) implies statement (2.5) if and only if

R(A*AB) = R(A).
(ii) Statement (2.5) implies statement (2.4) ifand only if X R(A*A) = E R(ABi) =

R(A).
An interesting corollary to Theorem 2.5 is the following.
COROLLARY 2.1. Let Ai be an m x pi matrix of rank ri, i = 1, k such

that , ri = m. Further, let A be a positive definite (p.d.) matrix. Then the following
two statements are equivalent:



604 SIXTH BERKELEY SYMPOSIUM: RAO AND MITRA

(2.6) A~IAAJ = 0 for all i + j.
(2.7) A` = EAi(A!*AAi)-A-*.
The true inverse of a nonsingular square matrix has the property that the

inverse of the inverse is equal to the original matrix. This may not hold for any
g inverse as defined in this section. We shall however show that a subclass of
g inverses possesses an analogous property. We give the following definition.

DEFINITION 2.4. An n x m matrix G i.s said to be a reflexive g inverse of an
m x n matrix A if

(2.8) AGA = A and GAG = G.

We use the notation An- to denote a reflexive g inverse.
THEOREM 2.6. Any two of the following conditions irnply the third
(i) A = AGA,
(ii) G = GAG.
(iii) R(G) = R(A).
For a proof of this theorem see Mitra [27]. It is seen that a reflexive g inverse

could be equivalently defined by any two of the conditions (i). (ii) and (iii) in
the theorem. Frame [36] uses the term semi-inverse to denote a matrix G obeying
(i) and (iii).

3. Three basic types of g inverses

3.1. Mathematical preliminaries and notations. Let gm represent an m dimen-
sional vector space furnished with an inner product. The symbol (x, y) is used
to denote the inner product between vectors x and y. The norm of a vector x is
denoted by |lxii = [(x, x)]1"2.

Let A be an ni x n matrix mapping vectors of e" into (&m. The adjoint of A
denoted by A ' is defined by

(3.1) (Ax,y)m = (x, A#y).
where ( .-)m and ( denote inner products in om and &n, respectively. If
(y x). =x*My and (y, x)n = x*Ny where M and N are positive definite
matrices and * denotes the conjugate transpose of a matrix, then relation (3.1)
reduces to

(3.2) x*A*My = x*NA#y = NA# = A*M.

IfA is an m x m square matrix mapping Et into Em. then MA# = A*M.
We denote PB the projection operator onto the space X(B) generated by the

columns of B. It is characterized by the conditions:
(a) it is idempotent PBPB = PB;
(b) it is selfadjoint PB = PB.

If the inner product (y. x)m = x*My, then condition (b) is equivalent to MPB
being hermitian.
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3.2. The g inverse for minimum norm solution. It has been shown that x = Gy
is a solution of the consistent equation Ax = y for any g inverse G ofA (that is,
satisfying the condition A GA = A), and the general solution is x = Gy +
(I - GA)z where z is arbitrary from, Theorem 2.2 (ii). We raise the question
whether there exists a choice of G independently of y such that the solution Gy
has a minimum norm in the class of all solutions of Ax = y. If such a G exists

(3.3) |IGYII . ||Gy + (I - GA)zJI for all z and ye .#(A),
that is,

(3.4) ||GAxll . |IGAx + (I - GA)zII for all z and x.

This implies (GAx. (I - GA )z) = 0 for all z and x which implies in turn

(3.5) (GA)#(I - GA) = 0 or (GA)# = (GA).
We now state the conditions for a g inverse G to provide a minimum norm
solution of a consistent equation Ax = y.
THEOREM 3.1. Let Ax = y be a consistent equation and G be a g inverse ofA

such that Gy is a minimum norm solution. Then it is necessary and sufficient that
any one of the following equivalent conditions is satisfied:

(i) AGA = A, (GA) = (GA)#,
(ii) AGA = A. (GA)*N = N(GA) if (y, x)n = x*Ny,
(iii) GA = PA#.
Condition (i) is already established and the equivalences of conditions (ii) and

(iii) with (i) follow from the definitions of adjoint and projection operators.
We denote a g inverse which provides a minimum norm solution of Ax = y

by Am- or more explicitly Am-(N), where N defines the inner product as in con-
dition (ii), and refer to it as minimum N norm g inverse. Such an inverse exists;
for example, G = N-'A*(AN-'A*)- satisfies the conditions of the theorem
for any choice of the g inverse (AN- 'A*)-.

3.3. The g inverse for a least square solution. Let Ax = y be an inconsistent
equation in which case we seek a least squares solution by minimizing IAx -y
We raise the question whether there exists a matrix G such that x = Gy is a least
squares solution. If such a G exists

(3.6) IIAGy -y || < lAx - y| for allx, y.

This implies (Aw, (AG - I)y) = 0 for all y, and w = x - Gy implies
A * (AG - I) = 0. Thus

(3.7) AG = (AG)#, AGA = A.

THEOREM 3.2. Let Ax = y be a possibly inconsistent equation, and let G be a
matrix such that Gy is a least squares solution of Ax = y. Then each of the fol-
lowing equivalent conditions is necessary and sufficient:

(i) AGA = A. (AG) = (AG)#,
(ii) AGA = A. (AG)*M = M(AG) if (y, x). = x*My,
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(iii) AG = PA
Condition (i) is already established, and the equivalences of conditions (ii) and

(iii) with (i) follow from the definitions. We denote a g inverse which provides a
least squares solution ofAx = y byA or more explicitlyAIM), whereM defines
the inner product as in condition (3.10), and refer to it as an M least squares g
inverse. Such an inverse exists; for example, G = (A*MA)-A*M satisfies the
condition of the theorem.

3.4. The g inverse for minimum norm least squares solution. A least squares
solution of an inconsistent equation Ax = y may not be unique, in which case
we may seek for a matrix G such that Gy has minimum norm in the class of least
squares solutions. If such a G exists,

(3.8) IIGyII" _ ||I|I, {': IIA -YIm- IlAx - yIlm for all x} for all y
where || m and 11 II, denote norms in gm and gn, respectively. The condition
(3.8) may be written

(3.9) IIGYII < 111,{1:A#Ac =A*y} forally.

This implies A# (I - AG) = 0 and G# (I - GA) = 0 which in turn imply
(3.10) AGA = A, (AG) = (AG)#, GAG = G, (GA) = (GA)#.

THEOREM 3.3. Let Ax = y be a possibly inconsistent equation and x = Gy
be a minimum norm least squares solution. Then each of the following equivalent
conditions is necessary and sufficient:

(i) AGA = A, GAG = G, AG = (AG)#, GA = (GA)#;
(ii) AGA = A, GAG = G, (AG)*M = MAG, (GA)*N - NGA,

when (y, X)m = x*My and (y, x)" = x*Ny;
(iii) AG= PA, GA = PG

A matrix G satisfying any one of the above conditions is unique.
Conditions (i) are already established and the equivalences of (ii) and (iii)

with (i) follow from the definitions. The uniqueness of G follows from the fact
that a minimum norm solution of a linear equation is unique.
We denote the g inverse which provides a minimum norm least squares solution

ofAx = y byA + or more explicitly byA'MN, where M, N are matrices defining the
inner products in gm, & n as in condition (ii). Such an inverse exists; for example

(3.11) G = A#A(A#AA#A)-A# = A#(A#AA#)-A# = PA*A-PA

satisfies the conditions ofTheorem 3.3. We refer to A'MN as the minimum N norm
M least squares g inverse.

3.5. Duality relationships between different g inverses. An important theorem
which establishes a duality relationship between minimum norm and least
squares g inverses and which plays a key role in the Gauss-Markov theory of
linear estimation is as follows.
THEOREM 3.4. Let A be an m x n matrix and (y, x)m = x*My. Then

(3.12) (A*)m(M) = [A I)]
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PROOF. Let G be a minimum M norm g inverse ofA*. Then using condition
(ii) of Theorem 3.1,

(3.13) A*GA* = A*, (GA*)*M = MGA*.

Taking transposes and rewriting, (3.13) becomes

(3.14) AG*A = A, (AG*)*M-1 = M-1(AG*)

which, using condition (ii) ofTheorem 3.2, shows that G* is anM1 least squares
g inverse of A. Then equation (3.12) is true. The duality result (3.12), in the
special case when M = I, is also noted by Sibuya [37].

Another important theorem which has application in linear estimation is as
follows.
THEOREM 3.5. Let A be an m x n matrix and (y, X)m = x*My and (y, X)n =

x*Ny. Then,

(3.15) (A*)+M = (AM-1N-I)*
The result follows from condition (ii) of Theorem 3.3.
The different types ofg inverses considered in Sections 2 and 3 and the proper-

ties characterising them are given in Table I.

TABLE I

SOME TYPES OF g INVERSES

Px denotes projection operator onto }(X), # denotes adjoint.

Symbol Equivalent Conditions Purpose

A - A GA = A solving consistent equations
A - AOA = A, GAG = 0 solving consistent equations
A,,, (i) AGA = A, (GA)# = GA minimum norm solution

(ii) GA = PA#
Al (i) AGA = A, (AG)# = AG least squares solution

(ii) AG = PA
A+ (i) AGA = A, GAG = G minimum norm least squares solution

(GA)# = GA, (AG)# = AG
(ii) AG = PA, GA = PG

In Theorems 3.1 to 3.3, we used norms defined by p.d. matrices M and N. We
can extend the results to cases where M and N are n.n.d. matrices. In such a case
we will be minimizing seminorms. Some results in this direction will appear in a
forthcoming paper in Sankhyi.

3.6. Singular value decomposition. Let A be an m x n matrix of rank r and
M and N are p.d. matrices of orderm and n, respectively. ThenA can be expressed
in the form

(3.16) MAN = a11* + * + r

where al , ar are the nonzero eigenvalues of A*MA with respect to N-
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or ofANA * with respect to M - 1:- i is the eigenvector of ANA * with respect to
M- corresponding to the eigenvalue a3 and i is the eigenvector of A*MA
with respect to N 1 corresponding to the eigenvalue a,2. The representation (3.16)
is called the singular value decomposition of A with respect to M and N. Using
such a decomposition we can compute A'N as

(3.17) AMN = al iqj,1 + + ar`?1rq*

4. Constrained inverse

Bott and Duffin [25] introduced what is called a constrained inverse of a
square matrix, which is different from a g inverse, and considered its application
in mechanics and in network theory. In this section we extend the concept of a
constrained inverse to a general matrix and give some applications.

Let A be a matrix of order m x n. V and 6W be subspaees in &'" and em.
respectively. In what follows we shall impose constraints of two different types
to define a constrained inverse G of A.
CONSTRAINTS OF TYPE 1.
C: G maps vectors of dim into 'V
r: G* maps vectors of e' into W.
CONSTRAINTS OF TYPE 2.
C: GA is an identity in '*,
R: (AG)* is an identity in W.

Inverses obtained by choosing various combinations of these constraints are
listed below in Table II along with necessary and sufficient conditions for exist-
ence, and explicit forms, where F and E are matrices such that V = 1#(E) and
V ,I1(F*).

TABLE 11
CONSTRAINED INVERSES OF XARIOUS TY'PES

V and U are arbitrary matrices.

N.S. Condition Algebraic Reference
Notation for Existence Expression to Theorem

AcC R(AE) = R(E) E(AE)- 4.1
A,R R(FA) = R(F) (FA)-F 4.3
ACR R(FAE) = R(F) E(FAE)-F + E[I - (FAE)-FAE]U 4.5
Arc R(FAE) = R(E) E(FAE)-F + V[I - FAE(FAE)-]F 4.6
Ac,CR R(FAE) = R(F) = R(E) E(FAE)-F 4.7

THEOREM 4.1. ACC exists if and only if R(AE) = R(E). In such a case ACC is
of the form E(AE) -.

PROOF. Using constraint c, G = EX for some matrix X. Then constraint C
gives

(4.1) EXAE = E.



GENERALIZED INVERSES 609

Equation (4.1) is solvable only ifR(AE) = R(E) in which case, (4.1) is equivalent
to AEXAE = AE, or

(4.2) X = (AE)- => G = E(AE)-.
The "if" part is trivial.
THEOREM 4.2. A is a g inverse of A,c but not necessarily the other way. ACC is

a g inverse ofA if and only if R(AE) = R(A).
PROOF. Theorem 4.2 follows from Theorems 4.1 and 2.4. Theorems 4.3 and

4.4 follow on similar lines.
THEOREM 4.3. A,R exists if and only if R(FA) = R(F). In such a case A,R is

of the form (FA)-F.
THEOREM 4.4. A is a g inverse ofA,R but not necessarily the other way. A,R is

a g inverse of A if and only if R(FA) = R(A).
THEOREM 4.5. ACR exists if and only if R(FAE) = R(F). In such a case ACR is

of the form

(4.3) E(FAE)-F + E[I - (FAE)-FAE]U,
where U is arbitrary.

PROOF. Using constraint c, G = EX, for some matrix X. Then constraint
R gives

(4.4) FAEX = F.

Equation (4.4) is solvable if and only if R(FAE) = R(F), in which case a general
solution is given by

(4.5) X = (FAE)-F + [I - (FAE)-FAE]U,

where U is arbitrary. The "if" part is easy. Thus Theorem 4.5 is established.
Theorem 4.6 can be proved on similar lines.
THEOREM 4.6. Arc exists if and only if R(FAE) = R(E). In such a case Arc

is of the form,

(4.6) E(FAE)-F + V[I -FAE(FAE)-]F,
where V is arbitrary.
THEOREM 4.7. ACrCR exists if and only if R(FAE) = R(F) = R(E). In such a

case AcrCR is unique and is given by the expression E(FAE) -F.
PROOF. The "if" part is trivial. The necessity of the rank condition follows

as in Theorems 4.5 and 4.6. The uniqueness follows, since under the condition
R(FAE) = R(F) = R(E) both ACR and Arc are uniquely determined by the ex-
pression E(FAE) -F. Look for example at the expression (4.3), for ACR and check
that when R(FAE) = R(E),
(4.7) FAE[I - (FAE)-FAE] = 0 O E[I - (FAE)-FAE] = 0.

NOTE 1. LetE1 andF1 be matrices such that .AY(E1) = }# (E) and d#(F1) =
,#(F), where F and E are as defined in Theorem 4.1. Then
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(4.8) R(AE) = R(E) => R(AE1) = R(E1).

(4.9) R(FAE) = R(E) => R(F,AE1) = R(E,),
(4.10) E1(FPAE,)-F, = E(FAE)-F,
so that AcrCR is unique for any choice of the matrices generating the subspaces
' and V.
NOTE 2. In particular let P and Q be projection operators onto *' and /,

respectively. Then

(4.11) AcrCR = P(QAP)Q.
NOTE 3. A is g inverse of AcrCR but the converse is true only under the

additional condition R(FAE) R(A).
NOTE 4. When V = 1#(A#) and V = .4(A), AcrCR coincides with AMIN. It

may be of some historical interest to observe that Moore [1], [2] introduced his
general reciprocal of a matrix as a constrained inverse of the type we are con-
sidering in this section.
Now we consider the special case whereA is an m x m (square) matrix and the

subspaces Y" and V are the same and discuss it in some detail. The constrained
inverse G in such a case may be defined by the following conditions:

(a) G* maps vectors of gm into the subspace ' c gm:
(b) GA is an identity in V.
This is a special case of Ar,c but we shall represent a matrix G satisfying the

above two conditions by T, following the notation used by Bott and Duffin. (In
condition (i) above Bott and Duffin used G instead of G*, which does not
characterize the matrix T used by them. Their definition leads to an inverse ofthe
type ACC which is not unique and so on.)
THEOREM 4.8. Let E be a matrix such that V = X1(E). Then T exists if and

only if R(E*AE) = R(E) in which case it is unique, and is of the form

(4.12) T = E(E*AE)-E*.

Further T is independent of the choice of E.
The proof is on the same lines as in Theorem 4.7.
THEOREM 4.9. Let P be the projection operator onto *- and R(PAP) = R(P).

Then

(4.13) T = P(PAP)-P = P(AP + I - P)-1.
PROOF. The first part of equation (4.13) follows from Theorem 4.8 as we

can choose E to be P. For the second part, it is easy to see that (AP + I - P)
is nonsingular and admits a regular inverse when R(PAP) = R(P). Further

(4.14) [P(PAP)-P -P(AP + I-P)-'](AP + I-P) = 0

giving P(PAP)-P = P(AP + I - P)-' which is the expression used by Bott
and Duffin.
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THEOREM 4.10. Let A be an m x m matrix and T be the constrained inverse
as obtained in Theorem 4.8. Then:

(i) any arbitrary vector h admits a unique decomposition h = Au + w, u E '
and w E V';

(ii) the quadratic function Q = (v - e)*A(v - e) - 2f*v, where e and f are
given vectors, attains a stationary value for variations of v in ". IfA is an n.n.d.
matrix, Q attains the minimum.
PROOF. (i) Let h = Au + w. Multiplying by T on both sides Th = TAu +

Tw = u. Then w = h - ATh. It is easily checked that ThEcK and h - ATh Ec 1'.
Further, if Au1 + w1 is another decomposition, 0 = A(u - u1) + w - w1.
Multiplying both sides by T, u - u1 = 0 and hence w - w1 = 0, so that the
decomposition is unique.

(ii) Substituting v = vo + 6, vo E ', 6 E f, and retaining only linear terms
in 6, the quadratic form becomes

(4.15) (vO- e)*A(vo - e) - 2f*vo - 26*(f + Ae - Avo).
Then vo is a stationary point if * (Avo- f - Ae) = orAvo + w = Ae + f =
h, say, where w E i"`. Applying result (i) of the theorem, vo exists and has the
value vo = Th = T(Ae + f).
To show that Q attains a minimum at vo when A is n.n.d., let us observe that

for any v E *,

(4.16) (v - e)*A(v - e) - 2f*v = (vo- e)*A(vo - e) - 2f*vo
+ (v - vo)*A(v - vo).

This completes the proof of Theorem 4.10.

5. Method of least squares

We show how Theorem 3.4 expressing the duality between minimum norm
and least squares inverses provides a simple and an elegant demonstration of
the minimum variance property of least squares estimators in the Gauss-Markov
model. It also shows how the least squares method comes in a natural way while
seeking for minimum variance estimators.
The Gauss-Markov model is characterized by the triplet (Y, X,B, A) where Y

is n x 1 vector of random variables such that E(Y) = Xf, D(Y) = A (variance-
covariance matrix of Y).

5.1. Unbiased estimation. Letp'/ be a parametric function where p E .#(X').
We wish to find a linear function L'Y of Y such that E(L'Y) =-p' and the
variance V(L'Y) = L'AL is a minimum. The condition on expectation gives that
L'Xl = p'fl X'L = p. The eciuation X'L = p is consistent and what we need
is a minimum norm solution, norm being defined as IIL|| = L'AL. The optimum
value of L is obviously, using a minimum A norm g inverse

(5.1 ) L = (X')mm(A)P,



612 SIXTH BERKELEY SYMPOSIUM: RAO AND MITRA

giving the minimum variance linear estimator

(5.2) L'Y = P'[(X')Mnm(A)]'Y = P'X(A_ )Y = P'f
using the duality Theorem 3.4, where , is the A-1 least squares solutions of the
equation Y = Xfl, that is, which minimizes

(5.3) IIY -X#12 = (Y - X#)*A-l(Y - Xf3).
5.2. Minimum bias estimation. If p 0 #(X'), the parametric function p',B

does not admit an unbiased linear estimator. The magnitude of bias in L'Y is
(X'L - p)'fi. The bias may be minimized by choosing L such that

(5.4) IIX'L _ p112 = (X'L - p)'N(X'L -P)
is a minimum, where N is a specified positive definite matrix. Subject to mini-
mum bias we wish to minimize the variance L'AL. The problem then is that of
finding minimum A norm N least squares solution of the equation X'L = p.
Then the optimum value of L is

(5.5) L = (X )NAP,
giving the least bias minimum variance linear estimator

(5.6) L'Y = PA[(X')NA]'Y = P'XA-IN-1Y = Pf3
using Theorem 3.5, where, is the N1 norm A`1 least squares solution of the
equation Y = Xfl.

6. Maximum likelihood estimation when the information matrix is singular

Let p(x, 0) be the probability density, where x stands for observed data and
0 for n unknown parameters 01, * * *, O.. Then

(6.1) L(0, x) = log p(x, 0)
as a function of 0 for given x is known as the log likelihood of parameters. Let
fi(x, 0) or simply fi be defined by

aL
(6.2) fi = , i=1, n,

and let the vector (ff,* , f")' be f. The information matrix on 0 is defined by
(6.3) H = E(ff')
The maximum likelihood m.l. estimate of 0 is usually obtained from the

equationf = 0, and the asymptotic theory of estimation is well known when the
matrix H is not singular in the neighborhood of the true value.

If L(0, x) depends essentially on s < n independent functions 4 , * * of
0, then H becomes singular and not all the parameters 01, * * *, 0,, are estimable.
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Only 4), * , 4 and their functions are estimable. In such a case we can define
the log likelihood L(0, x) in terms of fewer parameters as L(0, x) where O' =
(O1, ** 4)) such that J, the information matrix on 4, is nonsingular. Then the
usual theory would apply. Of course, there is some arbitrariness in the choice of
¢ but this does not cause any trouble. However, the calculus ofg inverses enables
us to deal with the likelihood as a function of the original parameters and obtain
their m.l. estimates and the associated asymptotic variance-covariance matrix.
When all the parameters are not estimable, the individual estimates and the
variance-covariance matrix so obtained are not meaningful, but they are useful
in computing m.l. estimates and standard errors of estimable parametric
functions. (We have learned from H. Rubin at the Symposium that he considered
such an approach and obtained results similar to ours.)

6.1. Method of scoring with a singular information matrix. The m.l. estimates
are obtained by solving the equations

(6.4) fi(x, 0) = o,i=l0 , n.

The equations (6.4) are usually complicated in which case one obtains solutions
by successive approximations using a technique such as Fishers' method of
scoring (see Rao [10], pp. 302-309). Let 00 be an approximate solution and 60
the correction. Then neglecting higher order terms in 60

(6.5) -f(x, 0,) = H60,
where H is computed at 00. Since H is singular, there is no unique solution to
(6.5) and therefore, the question of choosing a suitable solution arises. A natural
choice is a solution with a minimum norm

(6.6) 60 = -H f(x, Oo)
We may terminate the iterative procedure when the correction needed is
negligible. Let 0 be the approximate solution thus obtained and H - any g inverse
ofH computed at 0. As observed earlier 0 and H - are not meaningful when H is
singular.
A parametric function i/(0) is said to be estimable if 4., the vector ofderivatives

of f(0) with respect to 1, * * - 0,, belongs to A(H). For such a function f(0),
q(0) is the unique m.l. estimate for any choice 0 of m.l. estimate of 0 and the
asymptotic variance of O(O) is

(6.7) 4dH - (@
which is unique for any choice of the g inverse of H.

Chernoff [26] defined in inverse of a singular information matrix, which is
not a g inverse in our sense. For instance, when no individual parameter is esti-
mable, Chernoff's inverse does not exist (all the entries become infinite), while
H - exists and can be used as in formula (6.7) to find standard errors of estimable
parametric functions.



614 SIXTH BERKELEY SYMPOSIUM: RAO AND MITRA

7. Distribution of quadratic functions in normal variates

In this section we shall study the distribution of a quadratic function Y'AY ±
2b'Y + c in normally distributed variables Y1, Y2, * * *, Y. and obtain conditions
under which such a function would have a chi square (X2) distribution (central
or noncentral). We denote a central x2 distribution with k degrees, offreedom by
X2(k) and the noncentral distribution with parameter 3 by X2(k, 3). Also we
denote ap variate normal distribution by Np(y, 1) where u is the mean vector and
I is the dispersion matrix which may be singular (see Rao [10], p. 437).
THEOREM 7.1. Let Y - N"(u, I). Then

(7.1) 1AiYj2 + 22biYi + c _ X2(k, 3)
if and only if

(i) each Ai is either 0 or 1,
(ii) bi =O if Ai = 0, and
(iii) c = bt

in which case the number of degrees offreedom is k = FAi and the noncentrality
parameter 3 = lAi(yj + bi)2.

PROOF. The theorem is easy to establish by comparing the characteristic
function of El= i)iYi2 + 2 El= 1 biYi + c and of I1 (Xi + vi)2 where the Xi
are independent standard univariate normal variables.
THEOREM 7.2. Let Y - N"(u, I). Then

(7.2) Y'AY + 2b'Y + c _ X2(k, 3)
if and only if

(i) A2 = A,
(ii) b e- (A), and
(iii) c = b'b, in which case the d.f., k = R(A) = trA and

(7.3) 3 = (b + u)'A(b + tu).

PROOF. There exists an orthogonal matrix P such that A = P'AP where A
is diagonal. Under the transformation Z = PY

(7.4) Y'AY + 2b'Y + c = Z'AZ + 2(Pb)'Z + c.

Further Z - N (Pit, I). Hence by Theorem 7.1

(7.5) Y'AY + 2b'Y + c _ X2(k, 3)
if and only if

(i) each diagonal element of A is either 0 or 1, that is, A2 = A or equivalently
A2 = A;

(ii) the ith coordinate of Pb is 0 if the ith diagonal element of A is 0, that is,
Pb E .#(A) is equivalent to b E }(A); and

(iii) c = (Pb)'Pb = b'b.
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Check that k = tr A = tr A = R(A) and

(7.6). (5= (Pb + Pu)'A(Pb + Pp) = (b + y)'A(b + u).

THEOREM 7.3. Let Y - N.(jy, 1) where I could be singular. Then

(7.7) Y'AY + 2b'Y + c _ X2(k, 6)

if and only if
(i) LA4AL = LA4 or equivalently (ZA )3 = (LA )2,
(ii) Z(Au + b) Ei.,(ZAI),
(iii) (Ap + b)'Y.(A,p + b) = 'AM + 2b'p + c, in which case k = trAY.,

6 = (b + A4u)'LA4(b + AM).
PROOF. We express Y = I + FZ, where F is an n x r matrix of rank r such

that I = FF' and Z - N,(0, I). In terms of Z we have

(7.8) Y'AY + 2b'Y + c = Z'F'AFZ + 2(Ap + b)'FZ + 'Au + 2b'p + c.

Applying Theorem 7.2 to the quadratic function in Z we have therefore the
following necessary and sufficient conditions for X2(k, () distribution:

(i) (F'AF)2 = F'AF c* LA4AL = LAj. (£A)3 = (LA)2,
(ii) F'(AM + b) E #(F'AF) * I(A + b) E .#(IA ), and
(iii) (AM + b)'£(Au + b) = 'AM + 2b'u + c.

Observe that k = tr F'AF = tr AI and

(7.9) ( = (AM + b)'FF'AFF'(AM + b) = (AMu + b)'L41(AMA + b)

COROLLARY 7.1. Let Y - N (M, 1). Then Y'7J-Y - X2(k, () if and only if
'( - E-----) = O in which case k = R(:) and 6 = p'lM-It.
The required condition is satisfied for all p if I is a reflexive inverse of v and

is satisfied for all I if and only if u E }(E). We note further that if u E #(I)
then Y E .#(1) with probability 1. In such a case with probability 1, Y' - Y is
invariant with respect to choice of 1-.

It has come to our notice after the Berkeley Symposium that Bhapkar [38]
has obtained the result stated in the Corollary 7.1 to our Theorem 7.3. But the
result ofTheorem 7.3 is more general and that ofthe corollary is only a particular
case.

Condition (i), EAZAl = LA4, of Theorem 7.3 seems to have been found
first by Ogasawara and Takahashi [39].

8. Discriminant function in multivariate analysis
8.1. Singular multivariate normal distribution. The book Linear Statistical

Inference and its Applications [10] develops a density free approach to study the
distribution and inference problems associated with a multivariate normal distri-
bution. The approach is more general than the usual one since it includes the
study of the normal distribution with a singular covariance matrix which does
not admit a density in the usual sense. The elegance of the density free approach
was further demonstrated by Mitra [40]. However, in some problems, as in the
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construction of a discriminant function, it is useful to have an explicit expression
for the density. The density function of a multivariate normal distribution, as
it is usually written, involves the inverse of the variance-covariance (dispersion)
matrix, which necessitates the assumption that the dispersion matrix is non-
singular. In this section we demonstrate how the g inverse is useful in defining the
density function and in extending some of the results developed for the non-
singular case to the singular distribution.

Let Y be ap x 1 vector random variable. In Rao [10], Y is defined to have a
p variate normal distribution if m'Y has a univariate normal distribution for
every vector m E MP". In such a case it is shown that the distribution is charac-
terized by the parameters

(8.1) , = E(Y), E = E[(Y - p)(Y -)],
called the mean vector and the dispersion matrix of Y, respectively; the symbol
Np(1I, X) is used to denote the p variate normal distribution. The distribution is
said to be singular if R(X) = p < p in which case p is called the rank of the
distribution and we may use the symbol Np(p, Y((p)) to specify the rank in addition
to the basic parameters.

Let N bep x (p - p) matrix of rankp - p such that N'N = I, N'X = Oand
A be ap x p matrix of rank p such that N'A = 0 and A'A = I. By construction
(N: A) is an orthogonal matrix. We make the transformation

(8.2) Z = N'Y, Z2 = A'Y.

Then E(Z1) = N'j, E(Z2) = A #,
(8.3) D(Z1) = N'EN = 0, D(Z2) = A'XA.
It follows that there exists a constant vector C such that

(8.4) Z1 = N'Y = N't = C.
with probability 1 and since A'EA is nonsingular Z2 has the p variate normal
density

(8.5) (27)-P'21A'J A 1-1/2 exp {-2(Z2 - A',)'(A'XA)-1 (Z2 -A'p)
We observe that

(8.6) A'XAI = .. AP
where Al, AP,L are the nonzero eigenroots of E and

(8.7) (Z2 - A'1t)'(A'A)- '(Z2 - A'p) = (Y - A)'Y (Y - k)
where .- is any g inverse of S. Thus the density of Y on the hyperplane
N'(Y - ju) = 0 or N'Y = 4 is defined by

(8.8) (AI... AP)i'/2 exp {-2(Y - 1)'0 7-(Y
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which is an explicit function of the vector Y and its associated parameters p and
S. The expression (8.8) was considered by Khatri [41] in deriving some distri-
butions in the case of a singular normal distribution.

8.2. Discriminant function. The density function derived in (8.8) can be used
in determining the discriminant function (ratio of likelihoods) for assigning an
individual as a member of one of two populations to which it may belong.

Let Y be a p x 1 vector of observations which has the distribution NA[pY,
11(P,)] in the first population and Np(p2, 12(P2)) in the second population. We
shall construct the discriminant function applicable to different situations.

Case 1. 11 = 12 = , R(M) = p < p, N'u1 ¢ N'p2.
The distribution of Y consists of two parts as shown in (8.4) and (8.5) of

which (8.4) is the almost sure part. If N'p1 + N'Y2,
(8.9) N'Y = N'p I = C I with probability 1

if Y comes from the first population, and

(8.10) N'Y = N'p2 = C21 with probability 1

if Y comes from the second population. Then the discriminant function is N'Y,
and in fact it provides perfect discrimination. No use need be made of the other
part (8.5) of the distribution of Y.

Case 2. -1 = S2 = , R(Y) = p < p, N'p1 = N'p2.
In this case N'Y does not provide any discrimination and we have to consider

the density (8.8). The log densities for the two populations are (apart from a
constant)

(8.11) -2 log (l ...*,) - I(Y - 1)E (Y -1),
and

(8.12) -j log (A1 ...*,) - 2(Y - P2)'E(Y - 12)-

Taking the difference and retaining only the portion depending on Y we obtain
the discriminant function

(8.13) 6E-Y, where 6 = tl- /12

which is of the same form as in the nonsingular case (6' - 'Y). Now
(8.14) V(X-Y) = 6'-6

which is the analogue of Mahalanobis distance D2(= 3'- 6) in the singular
case.

Case 3. 11 * 12, '#(E) # #(E2)-
The discrimination is perfect as in Case 1. Let N be a matrix of maximum

rank such that N'11N = 0 = N'12N, and let A be a matrix of maximum rank
such that (N: A)'11 = 0, and let B be a matrix of maximum rank such that
(N: B)'I2 = 0. Finally let C be such that (N:A: B: C) is ap x p matrix of rank
p. Consider the transformation
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(8.15) Z, = N'Y, Z2 = A'Y, Z3 = BHY, Z4 = C'Y

The distributions of these variables in the two populations are given in Table III.

TABLE III

DISTRIBUTION OF THE DISCRIMINANT VARIABLES

Case 3.

Population Z, Z2 Z3 Z4

I 411 = N'p1 C12 = A'p, N(B'u1.B'X1B) N(C',iu, C'X1C)
with prob. I with prob. 1 422 = B 82
C21 = N\ 2 N(A'p2. A'X2A) with prob. 1 N(C'p2. CC2C)

2 with prob. 1

It is seen that the variables Z1, Z2 and Z3 provide perfect discrimination unless
Cll = C21, A = O and B = 0, which can happen only when M((X1) = -(E2).

Case 4. X1 ¢ -2, M(1) = -(Y2)
Let N be as defined in Case 3 and consider N'Y which is a constant for both

the populations. If N'p,1 * N'92, then we have perfect discrimination. If N'1il =
N'1i2, then we have to consider the densities

(8.16) (/i * )12 exp {- (Y -Y 1)' (Y -U1)
and

(8.17) (2' *- )-l2 exp {-4(Y - i2)'FI(Y-2
where 2A,* * *,, are the nonzero eigenvalues of X-1, A', **, A' are those of
2 and j, E are any g inverses of X1, -2 . Taking logarithm of the ratio of
densities and retaining only the terms depending on Y we have the quadratic
discriminant function

(8.18) (Y - /1)1Y (Y - Pi) - (Y - /2)' 2(Y -2)
analogous to the expression in the nonsingular case.
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