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A b s t r a c t. The generalized inverse L† of the Laplacian matrix of
a connected graph is examined and some of its properties are established.
In some physical and chemical considerations the quantity rij = (L†)ii +
(L†)jj− (L†)ij− (L†)ji is encountered; it is called resistance distance. Based
on the results obtained for L† we prove some previously known and deduce
some new properties of the resistance distance.
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1. Introduction

In this work we are concerned with simple graphs, i.e., graphs without
multiple or directed edges, and without loops. Let G be such a graph and
let n be the number of its vertices, n ≥ 2 . Denote the vertices of G by
v1, v2, . . . , vn . Throughout this paper it is assumed that G is connected.

The degree di of the vertex vi is the number of first neighbors of this
vertex. Then the Laplacian matrix L = L(G) = ||Lij || of the graph G is
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defined as a square matrix of order n whose (i, j)-entry is given by

Lij =





di if i = j
−1 if i 6= j and the vertices vi and vj are adjacent

0 if i 6= j and the vertices vi and vj are not adjacent .
(1)

Consequently, the Laplacian matrix is real and symmetric. Because the sum
of each row and of each column is zero, this matrix is singular.

In what follows all matrices encountered are supposed to be square, of
order n . If M is such a matrix, then M t denotes its transpose and M−1 its
inverse (provided it exists). By I is denoted the unit matrix, whereas by J
and O the matrices whose all elements are, respectively, equal to unity and
to zero.

The eigenvectors and eigenvalues of L(G) are said to be the Laplacian
eigenvectors and Laplacian eigenvalues of the graph G . The Laplacian
eigenvalues of the graph G will be denoted by µk and the corresponding
eigenvectors by uk , k = 1, 2, . . . , n , so that the equality

L(G) uk = µk uk

holds for k = 1, 2, . . . , n . In addition, uk = (u1k, u2k, . . . , unk)t for k =
1, 2, . . . , n .

As usual, the Laplacian eigenvalues are labeled so that µ1 ≥ µ2 ≥ · · · ≥
µn .

For details of Laplacian graph spectral theory see the surveys [1–7] and
the recent paper [8]. Of the known results in this field we need the following.

It is always possible to choose the Laplacian eigenvectors to be real,
normalized and mutually orthogonal. Throughout this paper we assume
that this is the case.

Then U = (u1, u2, . . . , un) = ||uij || is an orthogonal matrix, i.e., U U t =
U t U = I , implying

n∑

k=1

uki ukj =
n∑

k=1

uik ujk = δij (2)

where, as usual, δij = 1 for i = j and δij = 0 for i 6= i .
Because of U t L(G) U = diag (µ1, µ2, . . . , µn) , we further have

Lij =
n∑

k=1

µk uik ujk . (3)
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For all graphs, µn = 0 . For all connected graphs, µn−1 > 0 . The eigen-
vector corresponding to µn is of the form un = 1√

n
(1, 1, . . . , 1)t . Because

the eigenvectors uk , k = 1, 2, . . . , n− 1 , are orthogonal to un , the relations

n∑

j=1

ujk = 0 (4)

are obeyed for k = 1, 2, . . . , n− 1 .
Let M = ||Mij || be a square matrix, λ1, λ2, . . . , λn its eigenvalues and

ck = (c1k, c2k, . . . , cnk)t its eigenvector, corresponding to λk , k = 1, 2, . . . , n .
Let the eigenvectors of M be real, normalized and mutually orthogonal.
Then,

Mij =
n∑

k=1

λk cik cjk

and if f(λk) exists for all values of k , then the matrix f(M) = ||(f(M))ij ||
is defined as

(f(M))ij =
n∑

k=1

f(λk) cik cjk .

In particular, if no eigenvalue of M is equal to zero,

(M−1)ij =
n∑

k=1

1
λk

cik cjk .

If the matrix M is singular (i.e., some of its eigenvalues are equal to zero)
then it has no inverse. For such matrices one defines the so-called generalized
inverse [9,10] M † = ||(M †)ij || , as

(M †)ij =
n∑

k=1

g(λk) cik cjk

where

g(λk) =

{
1/λk if λk 6= 0

0 if λk = 0 .

In the special case of the Laplacian matrix of a connected graph, the
generalized inverse L† = L†(G) = ||(L†)ij || is defined via

(L†)ij =
n−1∑

k=1

1
µk

uik ujk . (5)
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Formula (5) is equivalent to U t L†(G) U = diag (1/µ1, 1/µ2, . . . , 1/µn−1, 0) ,
and implies that u1, u2, . . . , un−1, un are the eigenvectors of L† with eigen-
values 1/µ1, 1/µ2, . . . , 1/µn−1, 0 , respectively.

2. Elementary Results

From (5) it immediately follows:

Lemma 1. The generalized inverse L† of the Laplacian matrix of a
connected graph is a real and symmetric matrix.

Lemma 2. The Laplacian matrix and its generalized inverse satisfy the
relations

LJ = J L = O ; L† J = J L† = O .

P r o o f. The relations stated in Lemma 2 are direct consequences of the
fact that the sum of each row and each column of both L and L† is equal to
zero. For the Laplacian matrix this is evident from its definition, Eq. (1).
For the sum of the elements in a row of L† we get

n∑

j=1

(L†)ij =
n∑

j=1

n−1∑

k=1

1
µk

uik ujk =

(
n−1∑

k=1

1
µk

uik

) 


n∑

j=1

ujk




which is equal to zero because of relations (4). 2

Lemma 3. If L and L† pertain to a connected graph on n vertices, then

LL† = L† L = I − 1
n

J .

P r o o f. In view of Eqs. (3) and (5), and taking into account (2),

(LL†)ij =
n∑

h=1

Lih (L†)hj =
n∑

h=1

(
n∑

k=1

µk uik uhk

) (
n−1∑

`=1

1
µ`

uh` uj`

)

=
n∑

k=1

n−1∑

`=1

µk

µ`
uik uj`

(
n∑

h=1

uhk uh`

)
=

n∑

k=1

n−1∑

`=1

µk

µ`
uik uj` δk`

=
n−1∑

`=1

ui` uj` =
n∑

`=1

ui` uj` − uin ujn = δij − 1
n

because of uin = ujn = 1√
n

. 2
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3. An Auxiliary Matrix

Whereas the Laplacian matrix L of a connected graph is singular, the
matrix L + 1

n J is non-singular.

Theorem 4. Let G be a connected graph, with Laplacian eigenvectors
u1, u2, . . . , un and Laplacian eigenvalues µ1, µ2, . . . , µn−1, µn = 0 . Then
u1, u2, . . . , un are also the eigenvectors of the matrix L(G)+ 1

n J with eigen-
values µ1, µ2, . . . , µn−1, 1 .

P r o o f. Let k < n . Then
(

L +
1
n

J

)
uk = Luk +

1
n

J uk = µk uk

because, as a consequence of (4), J uk = (0, 0, . . . , 0)t .
Let k = n . Then Lun = (0, 0, . . . , 0)t whereas J un = nun because of

un = 1√
n
(1, 1, . . . , 1)t . Therefore,

(
L +

1
n

J

)
un =

1
n

J un = un

and thus the eigenvalue of the matrix L + 1
n J , corresponding to the eigen-

vector un , is equal to 1. 2

Theorem 5. If G is a connected graph, then the inverse of the matrix
L(G) + 1

n J exists and is equal to L†(G) + 1
n J .

P r o o f. The existence of (L(G) + 1
n J)−1 is guaranteed by Theorem 4.

Using Lemmas 2 and 3, and the fact that J2 = n J , we have
(

L +
1
n

J

) (
L† +

1
n

J

)
= LL† +

1
n

J L† +
1
n

LJ +
1
n2

J2

=
(

I − 1
n

J

)
+ O + O +

1
n

J = I . 2

In what follows we denote the matrix (L(G) + 1
n J)−1 by X . This ma-

trix was studied in an earlier work [11] where also Theorem 4 was proven.
According to Theorem 5 we now have

X = L† +
1
n

J . (6)



20 I. Gutman, W. Xiao

4. A Connection to Physics and Chemistry

In theoretical chemistry the notion of resistance distance was recently
introduced [12]. This quantity is conceived in the following manner. To
a connected graph G an electric network N (G) is associated, so that each
edge of G is replaced by a resistor of unit resistance. Then the resistance
distance between two distinct vertices vi and vj of the graph G , denoted
by rij , is the effective electrical resistance between the corresponding two
nodes of the network N (G) . By standard methods of the theory of electrical
networks (using the Ohm and Kirchhoff laws) is can be shown that [13–15]

rij = (L†)ii + (L†)jj − (L†)ij − (L†)ji (7)

which holds for i 6= j . If, in addition we set rii = 0 for all i = 1, 2, . . . , n ,
then (7) formally holds also in this case, and we may define the resistance
matrix as R = R(G) = ||rij || .

The resistance distance and the resistance matrix were much studied in
the recent mathematico–chemical literature; for details see [11,16–20] and
the references cited therein. Using the results from the preceding sections,
we can now easily deduce some previously known and some hitherto not
communicated relations for the resistance distance.

First of all, because of the symmetry of the generalized inverse (Lemma
1), formula (7) is simplified as

rij = (L†)ii + (L†)jj − 2 (L†)ij . (8)

Combining (8) with (5) we obtain

rij =
n−1∑

k=1

1
µk

(uik uik + ujk ujk − 2uik ujk) =
n−1∑

k=1

1
µk

(uik − ujk)
2 ,

a formula earlier deduced in [19], but in a completely different (and more
complicated) manner. Combining (8) with (6) we obtain

rij = Xii + Xjj − 2Xij ,

also a formula earlier deduced in [11], again in a completely different and
more complicated manner.

Theorem 6. If the matrices L , L† , and R pertain to a connected graph,
then

LR L = −2L (9)
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and
L†R L† = −2 (L†)3 . (10)

P r o o f. We first deduce the identity (10).

(L†R L†)ij =
n∑

k=1

n∑

`=1

(L†)ik rk` (L†)`j

=
n∑

k=1

n∑

`=1

(L†)ik

[
(L†)kk + (L†)`` − 2 (L†)k`

]
(L†)`j

=
n∑

k=1

(L†)ik (L†)kk

(
n∑

`=1

(L†)`j

)
+

n∑

`=1

(L†)`j (L†)``

(
n∑

k=1

(L†)ik

)

− 2
n∑

k=1

n∑

`=1

(L†)ik (L†)k` (L†)`j .

By Lemma 2,
n∑

`=1

(L†)`j = 0 and
n∑

k=1

(L†)ik = 0

and therefore,

(L†R L†)ij = −2
n∑

k=1

n∑

`=1

(L†)ik (L†)k` (L†)`j = −2 [(L†)3]ij

which is tantamount to Eq. (10).
Now, multiplying (10) by L2 from both left and right we get

L2 L†R L† L2 = −2L2(L†)3 L2 .

By Lemmas 2 and 3,

L2 L† = L (LL†) = L

(
I − 1

n
J

)
= L

L† L2 = (L† L) L =
(

I − 1
n

J

)
L = L .

Therefore
L2 L†R L† L2 = LR L
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and
L2(L†)3 L2 = LL† L =

(
I − 1

n
J

)
L = L .

Formula (9) follows. 2

Theorem 7. In the case of connected graphs, the generalized inverse of
the Laplacian matrix can be expressed in terms of the resistance matrix:

L† = −1
2

[
R− 1

n
(R J + J R) +

1
n2

J R J

]
.

P r o o f. Multiply (10) by L from both left and right, and use the same
way of reasoning as in the proof of Theorem 6. 2
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