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Inverse optimization has recently received a growing amount of attention as a data-

driven approach to determining parameter values for an optimization problem. In this

thesis, we study new inverse optimization methodologies that generalize the traditional

method of solving inverse optimization problems and accommodate data that makes the

standard method ill-posed. We apply the proposed methodologies to prostate cancer

therapy data and provide novel insights for radiation therapy treatment planning.

In the first part of the thesis, we briefly review recent theoretical development of

inverse optimization and discuss how this thesis contributes to the literature. In the sec-

ond part of the thesis, we describe a motivational example in radiation therapy treatment

planning and illustrate the problem settings and clinical data.

In the third part of the thesis, we develop generalized inverse linear optimization

models. We characterize the relationship between the generalized models and the stan-

dard model in the literature. By building on the models in general inverse multiobjective

optimization problems, we establish a new connection between inverse optimization and

existing multiobjective optimization techniques. We show how our methods can be used

for determining objective function weights for radiation therapy treatment planning.

Next, we present a clinical application of the results from the previous part of the

thesis, by proposing a statistical model that relates the objective function weights to
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a patient’s anatomical characteristics. Using the statistical relationship, we propose a

prediction model that infers objective function weights from patient anatomy and provide

a proof of concept of automated, knowledge-based weight determination for radiation

therapy treatment planning.

Finally, we extend the theory of the second part of the thesis by developing generalized

inverse convex optimization models. In the multiobjective optimization framework, we

propose inverse convex optimization models that preserve the preference ordering among

different objectives that is encoded by given data, and compare our models to existing

inverse optimization models using prostate cancer therapy data. We present a unifying

framework that encompasses many of the inverse optimization models in the literature.
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Chapter 1

Introduction

Inverse optimization has recently received a growing amount of attention as a data-

driven approach to determining the values of modeling parameters for an optimization

problem. Traditional inverse optimization typically assumes that the functional form

of the optimization problem used in the actual system from which data is obtained

is known a priori. In this thesis, we develop new inverse optimization methodologies

that accommodate data obtained from an unknown system, and demonstrate that our

methodologies lead to novel insights for cancer therapy treatment planning.

1.1 Inverse optimization

An inverse problem takes observations from a certain system as input and determines

parameter values for a model that describe the system dynamics and are consistent with

the original observations. Its history dates back at least to the 19th century when an

inverse problem for the calculus of variations was first posed by Darboux (1894). Since

then, inverse problems have found a wide range of applications including geophysical

science and medical imaging. A well-known inverse problem faced by geophysicists is

reconstructing the unobservable transmission time of the seismic waves within a certain

area of the Earth’s interior using past earthquake patterns (Tarantola, 1987). In medical

1
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imaging, the inverse problem is used to reconstruct an image of an organ inside the

human body from noninvasive measurements such as x-ray absorption (Arridge, 1999).

In the last two decades, there has been an increasing amount of interest in inverse

optimization problems in the operations research community. The inverse optimization

problem seeks to determine the values of the parameters of an optimization problem –

e.g., the cost coefficients, right-hand-side vector, and constraint matrix – that make a

given feasible solution optimal. The original optimization problem for which such pa-

rameters are determined is referred to as the “forward” optimization problem. General

frameworks for inverse linear optimization and inverse convex optimization were pre-

sented by Ahuja and Orlin (2001) and Iyengar and Kang (2005), respectively. A review

of inverse optimization theory is provided in Chapter 2.

One common assumption in the majority of the literature on inverse optimization

is that the functional form of the objective function and the feasible region of the for-

ward formulation that was used to generate a given solution are known a priori. Since

an inverse optimization problem is directly derived from the optimality conditions for

the underlying forward optimization formulation, this assumption implies that the corre-

sponding inverse optimization problem can always find some cost vector that makes the

given solution exactly optimal. However, in practice, there is no guarantee that such in-

formation is available – one can only guess the functional form of the forward formulation,

which may be an approximation to the actual system that generated the given solution.

Moreover, the given solution may have been adjusted post-hoc before implementation

in a practical application and no longer be optimal for the forward formulation. The

mismatch between the assumed and actual forward formulations and the noise or errors

in a given solution cause the inverse optimization problem to be ill-posed or infeasible.

In this thesis, we address this issue by generalizing the traditional approach to solving

inverse optimization problems, so that even if the data does not “fit” the assumed for-

ward model, the inverse optimization problem would still be able to return meaningful
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solutions.

1.2 Intensity-modulated radiation therapy treatment

planning

Throughout the thesis, we apply the proposed generalized inverse optimization methods

to prostate cancer therapy data. We specifically use data from intensity-modulated

radiation therapy (IMRT). IMRT is an advanced cancer treatment technology that uses

external beams of high energy x-rays to deliver radiation to a tumour, and is one of

the primary treatment techniques for prostate cancer (Foroudi et al., 2003). In IMRT,

each radiation beam is modeled as a set of many small beamlets, whose intensities can be

optimized to construct a dose of radiation that conforms to the shape of the tumour. The

resulting beamlet intensity profile is converted into a collection of deliverable aperture

shapes using a multileaf collimator (MLC). In IMRT treatment planning, optimization

plays a crucial role in determining various treatment configurations such as the number

of radiation beams, the angles of the beams, and the intensity of the beamlets that

constitute a beam (Shepard et al., 1999). In our applications, we assume the number

and the angles of beams are fixed and focus on optimizing the beamlet intensities. For a

review of IMRT, see Bortfeld (2006).

Since treatments need to balance conflicting goals such as delivering a high dose to

the tumour while keeping healthy tissue dose low, IMRT treatment planning is typically

modeled as a multiobjective optimization problem. The standard approach to solving

these problems is to construct a single composite objective function by taking a weighted

sum of the individual objectives (Webb, 1994; Xing et al., 1999). The weight values

assigned to the objective functions are referred to as “importance factors” in the medical

literature (Webb, 1994; Xing et al., 1999). The effect of varying objective function weights

can be quite significant, with different sets of weights resulting in significantly different
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dose distributions (Shepard et al., 1999). Despite the critical role of weights in optimizing

a radiation therapy treatment, the process of determining appropriate weight values is

typically done in a trial-and-error manner in practice, with minimal scientific guidance.

Moreover, treatment planners often do not know which objectives are most influential to

the final treatment quality, which leads to a system with a large number of objectives,

i.e., a large parameter space to search over. A more thorough description of the treatment

planning system can be found in Chapter 3.

We apply our inverse optimization methodologies to historical IMRT treatment plans

to reverse-engineer the most influential objectives and the corresponding weights. We

show that the use of inverse optimization can support the development of knowledge-

based treatment planning, which is an increasingly popular planning paradigm that uses

a database of historical treatments to derive dose objectives and plan parameters for a

new patient (Wu et al., 2011; Moore et al., 2011; Chanyavanich et al., 2011).

1.3 Contributions

We view our contributions as follows:

1. We generalize the standard method of solving the inverse linear and convex op-

timization problems in situations that would otherwise lead to an ill-posed or in-

feasible inverse problem. Our generalized inverse optimization models retain the

complexity of the corresponding forward optimization models as well as the stan-

dard inverse optimization models, and specialize to the standard models when the

given data perfectly “fits” the underlying forward model. We perform theoretical

analysis of the generalized inverse process and characterize the relationship between

our generalized models and the standard models in the literature.

2. We develop the first inverse optimization methodology for linear and convex multi-

objective optimization. We incorporate the idea of preserving the decision maker’s
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initial preference ordering among different objectives into the general inverse opti-

mization framework. We establish a connection between inverse optimization and

existing multiobjective optimization techniques.

3. We present the first application of inverse optimization to radiation therapy treat-

ment planning. We show how inverse optimization can be used to identify the

most critical objectives as well as the corresponding objective function weights for

prostate cancer treatment planning.

4. We develop the first statistical model that relates objective function weights for

radiation therapy treatment planning to a patient’s anatomical characteristics. We

build a prediction model that infers the weights for prostate cancer treatment plan-

ning from patient anatomy and provide a proof of concept of automated, knowledge-

based weight determination.

1.4 Overview of thesis

The structure of the thesis is as follows. In Chapter 2, we review the literature on inverse

optimization and elucidate its connection to inverse problems in other fields of research as

well as other optimization techniques. In Chapter 3, we describe a motivational example

in radiation therapy treatment planning and illustrate the clinical problem settings and

data.

Chapter 4 is an expanded version of the paper “Generalized inverse multiobjectve

optimization with application to cancer therapy,” which has been published in Oper-

ations Research, Vol. 62. No. 3, 680–695, 2014. In this chapter, we generalize the

standard inverse linear optimization approach. We characterize the relationship between

our generalized inverse linear optimization models and the standard model of Ahuja and

Orlin (2001). We develop our models in the multiobjective framework and establish a

new connection between inverse optimization and existing multiobjective optimization
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techniques. The multiobjective aspect was motivated by the problem of determining ob-

jective function weights for IMRT treatment planning, which we use for demonstrating

the proposed inverse models.

Chapter 5 is an expanded version of the paper “Predicting objective function weights

from patient anatomy in prostate IMRT treatment planning,” Medical Physics, Vol. 40,

No. 12, 121706, 2013. In this chapter, we present a direct clinical application of the

results from Chapter 4. We propose a statistical model that relates the optimal objective

function weights for prostate cancer treatment planning determined in Chapter 4 to a

patient’s anatomical characteristics. We then use this statistical relationship to build

a weight prediction model for future patients that uses patient anatomy as a predictor.

We demonstrate that inverse optimization can be used for knowledge-based treatment

planning.

Chapter 6 is an expanded version of the paper “Preference preservation in inverse

multiobjective convex optimization,” which is currently under review. In this chapter,

we extend the method presented in Chapter 4 by developing generalized inverse convex

optimization methods. We develop a generalized inverse convex optimization model that

itself is convex, and create a linear approximation to the model as well as apply a suc-

cessive linear programming algorithm based on the approximation to solve the model.

Using data from prostate IMRT treatment planning, we compare our models to exist-

ing inverse convex optimization models and examine how the preferences encoded by a

given solution are maintained by the different models in the multiobjective optimiza-

tion framework. Lastly, we present a unifying framework that encompasses many of the

inverse optimization models in the literature.

In Chapter 7, we summarize the contributions of the thesis, state future work, and

conclude.



Chapter 2

Review of inverse optimization

Since the survey paper on inverse combinatorial optimization by Heuberger (2004), which

captured the early stage of development of inverse optimization methodologies, many

different extensions and applications of inverse optimization have been studied. In this

chapter, we review recent theoretical development of inverse optimization and discuss

how this thesis contributes to the literature.

2.1 Preliminaries

We categorize inverse optimization problems into two classes: inverse continuous op-

timization and inverse discrete optimization. Although some network flow problems

are actually continuous linear programming problems, here we classify them as discrete

optimization problems because most of the inverse combinatorial or network flow opti-

mization problems have been solved by algorithms using combinatorial arguments rather

than pure linear programming approaches. Since the focus of the thesis is inverse linear

and convex optimization, in this chapter we pay more attention to the review of inverse

continuous optimization.

First, we provide a general, compact representation of the inverse optimization prob-

lem. We define our forward optimization problem as FOP(c): minimize
x∈X

f(x; c), where

7
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c ∈ R
K denotes a cost vector and X denotes the feasible region of x.

Given a solution x̂ ∈ X, the standard inverse optimization problem can be written as

follows:

minimize
c

φ(c; ĉ)

subject to f(x̂; c) = min
x∈X

f(x; c),

(2.1)

where ĉ is an estimated cost vector to which the distance from c is minimized, measured

by φ : RK → R. We assume φ(c; ĉ) is minimized when c = ĉ. The objective function

φ(c; ĉ) is used for finding a single inverse solution c that is closest to the initial belief,

when there exist multiple possible c vectors that satisfy constraints of (2.1).

Problem (2.1) has been studied with different forms of φ(c; ĉ). Ahuja and Orlin

(2001) considered
∑K

k=1 |ĉk − ck| (l1 norm) and max
k=1,...,K

|ĉk − ck| (l∞ norm) which are

now standard choices for inverse linear optimization, while Burton and Toint (1992)

and Iyengar and Kang (2005) considered
∑K

k=1(ĉk − ck)
2 (l2 norm). Weighted versions of

these norms, e.g.,
∑K

k=1wk|ĉk − ck| (weighted l1 norm), have also been used (Ahuja and

Orlin, 2001). The Hamming distance objective function has recently received increasing

attention, for example, given an indicator function Ik(c; ĉ) = 1 if ck 6= ĉk and Ik(c, ĉ) = 0

if ck = ĉk, Duin and Volgenant (2006) considered φ(c; ĉ) =
∑K

k=1wkIk(c; ĉ). The choice

of c is often restricted by some constraint such as e′c = 1 where e denotes the vector

of ones, or ℓ ≤ c ≤ u where ℓ and u represent appropriate lower and upper bounds,

respectively (Heuberger, 2004).

2.2 Inverse continuous optimization

2.2.1 Inverse linear optimization

Inverse linear optimization was first studied by Zhang et al. (1995) in the context of

combinatorial optimization. The authors proposed a column generation method for the

inverse shortest path problem which can also be generally used for inverse linear opti-
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mization. Zhang and Liu (1996) and Zhang and Liu (1999) used the linear programming

optimality conditions to derive an inverse formulation for the shortest path problem,

which has quickly become a central idea of general inverse linear optimization. Ahuja

and Orlin (2001) provided a comprehensive survey on inverse linear optimization.

Let A ∈ R
m×n,b ∈ R

m, c ∈ R
n, and x ∈ R

n. Following the convention of Ahuja and

Orlin (2001), the forward linear program is written as follows:

minimize
x

c′x

subject to Ax ≥ b,

x ≥ 0.

(2.2)

A solution x̂ ∈ X is optimal for problem (2.2) if and only if there exists π ∈ R
m such

that:

(1) A′π ≤ c and π ≥ 0,

and either

(2a) (c−A′π)′x̂ = 0 and (Ax̂− b)′π = 0,

or

(2b) c′x̂ = b′π.

The conditions (1), (2a), and (2b) state dual feasibility, complementary slackness

and strong duality, respectively. Using complementary slackness, the inverse linear op-

timization problem that finds c that renders x̂ an optimal solution can be written as



Chapter 2. Review of inverse optimization 10

follows:

minimize
π,c

||c− ĉ||p

subject to
∑

j∈B

ajiπj ≤ ci, ∀i such that x̂i = 0,

∑

j∈B

ajiπj = ci, ∀i such that x̂i > 0,

πj ≥ 0, ∀j ∈ B,

(2.3)

where B = {j |
∑n

i=1 ajix̂i = bj}. Formulation (2.3) can be formulated as a linear

program when p = 1 or p = ∞.

Inverse linear optimization has exploited the structure of the dual of an inverse for-

mulation due to its similar structure to the original forward formulation. Let yi for i

such that x̂i = 0 be the dual variable associated with the first set of constraints in for-

mulation (2.3), and yi for i such that x̂i > 0 be the dual variable associated with the

second set of constraints in formulation (2.3). With some appropriate substitutions and

additional dual variables (Ahuja and Orlin, 2001), the dual of problem (2.3) when p = 1

is

minimize
y

ĉ′y

subject to
n
∑

i=1

ajiyi ≥ 0, ∀j ∈ B,

0 ≤ yi ≤ 1, i ∈ {1, ..., n} such that x̂i = 0,

− 1 ≤ yi ≤ 1, i ∈ {1, ..., n} such that x̂i > 0.

(2.4)

If we replace the y with x− x̂, then formulation (2.4) can be written as

minimize
x

ĉ′x

subject to

n
∑

i=1

ajixi ≥ bj , ∀j ∈ B,

0 ≤ xi ≤ 1, i ∈ {1, ..., n} such that x̂i = 0,

x̂i − 1 ≤ xi ≤ x̂i + 1, i ∈ {1, ..., n} such that x̂i > 0.

(2.5)
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Note that problem (2.5) is very similar to the original forward linear program (2.2).

Coming back to the primal inverse formulation (2.3), (π, c) = (0, 0) is a feasible

solution for (2.3). If x̂ is an interior point of X, then (π, c) = (0, 0) is the only feasible

and thus the unique optimal solution to (2.3). Although it mathematically makes sense

that any feasible solution is an optimal solution if a cost vector is a zero vector (e.g., a

feasibility problem), the zero vector is certainly not an interesting solution. In practice, a

solution given as input to the inverse problem is not always guaranteed to be an optimal

solution to the underlying forward problem, i.e., there may not be a nonzero c that can

make it optimal. This issue has largely been overlooked in the literature.

Troutt et al. (2006) and Troutt et al. (2008) studied problems that can be seen as

approximate inverse linear optimization problems that address the issue described above.

These papers considered a variation of the standard inverse linear program, which is to

determine c that “best-fits” multiple feasible solutions. While it may not be possible to

find c that renders all the given solutions optimal simultaneously, this method employs

the concept of the decisional regret principle to determine c. For each input solution

xt, t = 1, . . . , T , the decisional regret incurred by a certain cost vector c is defined as

c′x̂t − c′x∗(c) in Troutt et al. (2006) and c′x̂t/c′x∗(c) in Troutt et al. (2008), where x∗(c)

denotes the actual optimal solution that would have been obtained from the forward

problem with c as a cost vector. Given multiple data points, this type of problem aims

to find c such that the average or maximum decisional regret over all input solutions is

minimized. If T = 1, i.e., if there is only one input solution, the models of Troutt et al.

(2006) and Troutt et al. (2008) become a direct extension to the model of Ahuja and

Orlin (2001).

A new, generalized inverse linear optimization method that accommodates any input

solution and produces a meaningful inverse solution is one of the major contributions of

this thesis, and will be presented in Chapter 4. Our study is different from the approaches

of Troutt et al. (2006) and Troutt et al. (2008) in that we build on this approach in general
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inverse multiobjective linear optimization problems where objective function weights are

not precisely known. We focus on characterizing the structure of the generalized inverse

solutions and providing geometrical insight into the mechanism of the proposed models.

2.2.2 Inverse conic/convex optimization

Inverse conic optimization was studied by Iyengar and Kang (2005). Following the con-

vention of Iyengar and Kang (2005), the forward conic programming formulation is writ-

ten as follows:

minimize
x

f(x; c)

subject to g(x) �K 0,

Ax ≥ b,

x ≥ 0,

(2.6)

where f(x; c) : Rn → R is a linear or quadratic objective function and g : Rn → R
s is a

differentiable, concave vector-valued function. The partial order �K is defined in a cone

K ∈ R
s.

Let the Lagrangian be L(x,µ,π,ν) = f(x; c) − g(x)′µ − (Ax − b)′π − x′ν, where

µ ∈ R
s
+, π ∈ R

m
+ , and ν ∈ R

n
+. Assume that problem (2.6) satisfies the constraint

qualification. Then a given solution x̂ ∈ X is an optimal solution to (2.6) if and only if

there exist µ �K∗ 0, where K∗ denotes the dual cone of K, and π ∈ R
m
+ such that

(1) ∇xL(x̂,µ,π) = ∇xf(x̂; c)−
∑s

l=1 µl∇xgl(x̂)−A′π − ν = 0,

(2) g(x̂)′µ = 0,

(3) (Ax̂− b)′π = 0, and

(4) x̂′ν = 0.

The inverse optimization problem of Iyengar and Kang (2005) is to find c that satisfies

the above system of equations with respect to a given solution x̂ ∈ X while minimizing
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||c− ĉ||p for some p. While the focus of Iyengar and Kang (2005) is restricted to conic

programs, we note that this model can also be applied to general convex programs. We

refer readers who are interested in inverse optimization for more specialized instances of

convex programming to Xiao et al. (2009) (inverse semi-definite programming), Zhang

et al. (2010) (inverse quadratic programming), and Zhang and Xu (2010) (inverse sepa-

rable convex programming).

Similar to the discussion in the previous section, an arbitrary x̂ need not be a candi-

date optimal solution to the forward problem, in which case the inverse problem of Iyengar

and Kang (2005) returns a zero cost vector as the unique solution. Keshavarz et al. (2011)

presented a problem that can be seen as a generalization of Iyengar and Kang (2005). In

the model of Keshavarz et al. (2011), given x̂ ∈ X, the KKT conditions are relaxed with

residuals as follows:

(1) ∇xf(x̂; c)−
∑s

l=1 µl∇xgl(x̂)−A′π − ν = γ(1),

(2) gl(x̂)µl = γ
(2)
l , l = 1, . . . , s

(3) (
∑n

i=1 ajix̂i − bj)πj = γ
(3)
j , ∀j = 1, . . . , m, and

(4) x̂iνi = γ
(4)
i , i = 1, . . . , n,

which are used as constraints while the objective is to minimize φ(γ(1),γ(2),γ(3),γ(4)),

where φ(γ(1),γ(2),γ(3),γ(4)) = 0 if and only if all the residuals are zeros. The original

version of the formulation in Keshavarz et al. (2011) accommodates multiple input data

points each with their own residuals, but here we simply illustrate their model with a

single data point x̂.

In Chapter 6, we consider a different version of generalized inverse convex optimiza-

tion. We develop our models in the multiobjective framework again. We introduce a

notion of a preference ordering among different objectives, and develop generalized in-

verse convex optimization models that accommodate any given solution as input and
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determine a cost vector that preserves the preference ordering encoded by the input so-

lution. We then compare our models to the model of Keshavarz et al. (2011) and provide

a unifying framework for inverse convex optimization.

2.3 Inverse discrete optimization

2.3.1 Inverse combinatorial optimization

Most studies in inverse combinatorial optimization have focused on whether an inverse

problem for a certain combinatorial problem can be transformed into another combi-

natorial problem for which a solution algorithm is well-established. Among a myriad

number of different inverse combinatorial optimization problems, here we look into two

major applications and provide a list of other applications. An extensive review of inverse

combinatorial optimization can be found in Heuberger (2004).

Inverse shortest path problem

Burton and Toint (1992) solved the inverse shortest path problem under the ℓ2 objective

function via a quadratic programming algorithm. Ahuja and Orlin (2001) showed that

the inverse shortest path problem under ℓ1 norm can be solved simply by solving the orig-

inal forward shortest path problem – existing well-known algorithms such as Dijkstra’s

algorithm can be used. Similarly, the inverse shortest path problem under the weighted

ℓ1 objective function is equivalent to a general minimum cost flow problem and therefore

can be solved by existing efficient algorithms. Duin and Volgenant (2006) proposed an

algorithm that solves the inverse shortest path problem under the min-max weighted

Hamming distance in polynomial time.

Inverse minimum spanning tree problem
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Sokkalingam et al. (1999) showed that the inverse minimum spanning tree problem under

ℓ1 norm is the dual of an assignment problem. Similarly, the weighted ℓ1 problem is also

the dual of a transportation problem. The authors also proposed an algorithm that solves

the ℓ∞ problem in polynomial time. Hochbaum (2003) presented more efficient algorithms

for general inverse minimum spanning tree problems. Inverse minimum spanning tree

problems under the Hamming distance have been studied by He et al. (2005), Zhang

et al. (2006) and Duin and Volgenant (2006).

Other inverse combinatorial optimization problems

Other inverse combinatorial optimization problems that have been studied include inverse

assignment problems (Yang, 1997; Zhang and Liu, 1999; Ahuja and Orlin, 2001), inverse

minimum cost flow problems (Zhang and Liu, 2002; Jiang et al., 2010), inverse minimum

cut/maximum flow problems (Yang et al., 1997; Zhang and Cai, 1998; Ahuja and Orlin,

2002; Liu and Zhang, 2006), inverse traveling salesman problems (Chung and Damange,

2008), and inverse center location problems (Cai et al., 1999; Zhang et al., 2005; Alizadeh

et al., 2009; Alizadeh and Burkard, 2011).

2.3.2 Inverse integer/mixed integer programming

Integer and mixed-integer programming problems have been relatively less studied in

terms of inverse optimization compared to other areas reviewed above. Schaefer (2009)

studied inverse optimization for general integer programming problems. Schaefer (2009)

formulated the problem via superadditive integer programming duality. The author

showed that the inverse integer progam is NP-hard, and proposed algorithms to solve

the problem. Huang (2005) solved an inverse optimization problem for an integer pro-

gramming problem with a fixed number of constraints by reformulating the problem as

an integer shortest path problem.
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Wang (2009) presented a cutting plane method for inverse mixed-integer programs.

We note that the cutting plane algorithm is also applicable to general inverse linear op-

timization problems. In fact, a column generation approach, which is a dual approach

to the cutting plane algorithm, was one of the earliest inverse linear/combinatorial opti-

mization techniques (Zhang et al., 1995; Yang and Zhang, 1999). To address some issues

around computational efficiency and convergence that arose in Wang (2009), Duan and

Wang (2011) proposed a new heuristic algorithm for the cutting plane method.

2.4 Connection to other areas

Among many different types of inverse problems studied in various research areas, the

framework that is closest to inverse optimization is inverse reinforcement learning, or

inverse optimal control, in the computer science community. Inverse reinforcement learn-

ing seeks to recover a reward function of a Markov decision process (MDP) model that

renders an observed behaviour of an expert an optimal solution. Many variations and

extensions to inverse reinforcement learning have been studied in the last decade (Ratliff

et al., 2006; Ramachandran and Amir, 2007; Ziebart et al., 2008). Inverse reinforcement

learning is also used for apprenticeship learning, which is a type of machine learning

technique that uses a reward function approximated by inverse reinforcement learning

to teach an agent (Abbeel and Ng, 2004). As it assumes that the expert is acting opti-

mally in a Markov decision process (MDP), inverse reinforcement learning can be seen

as an inverse MDP problem. The inverse MDP problem was only recently studied in

the operations research community by Erkin et al. (2010) where the underlying MDP

was formulated as a linear program. Although MDPs have been extensively studied in

the operations research community, we conjecture from the lists of citations in inverse

optimization studies that the existence of inverse reinforcement learning has rarely been

exposed to the community. Interestingly, both inverse reinforcement learning and inverse
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optimization began to emerge in the early 2000’s.

Inverse optimization also has a close connection to De Novo programming studied

in Zeleny (1986) and Zeleny (2010). De Novo programming is a technique that is used

to adjust the right-hand-side vector (i.e., b vector) of an optimization formulation un-

der some restriction so that an optimal solution to the modified problem is closest to

a specific desirable solution. For example, in a multiobjective optimization problem,

given an ideal point – a vector of the best objective function values for each objective

independently, which is in general not achievable, – De Novo programming can be used

to adjust the b vector such that the adjusted optimization problem produces a solution

that is closest to the ideal point. We note that this problem can be seen as a generalized

inverse optimization problem of recovering the b vector given the ideal point as input.

If information of the dual solution corresponding to the ideal point is available, then the

problem can be reformulated as the traditional inverse problem where the b vector is

now a cost vector.

Inverse optimization has also turned out to be closely related to multiobjective op-

timization. Wei et al. (2000) showed that the inverse optimization problem for data

envelopment analysis – determining additional inputs such that the current efficiency

level of a system remains the same given some increase in output – is equivalent to a

forward multiobjective optimization problem. Also, in Chan et al. (2014), which is a part

of Chapter 4 of this thesis, the inverse multiobjective optimization problem was shown

to be the dual of a special type of the well-known Benson’s formulation (Benson, 1978).

In general, inverse multiobjective optimization and existing multiobjective optimization

techniques seem to share common interests because they both basically search over the

normals of supporting hyperplanes of the set of feasible objective function values.
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2.5 Summary of contributions to the literature

Our approach to generalizing the standard inverse optimization framework is similar

to Troutt et al. (2006), Troutt et al. (2008), and Keshavarz et al. (2011) in that a given

solution is near-optimal with respect to the inversely determined cost vector. We develop

the first inverse optimization methods for multiobjective linear and convex optimization.

Also, by focusing on theoretical analysis of the structure of the proposed models and

resulting inverse solutions, our study provides a better understanding of how the proposed

generalized models are related to the standard models and how the original preference of

a given solution is retained by the inversely determined cost vector, which has not been

considered in the literature.

This thesis also provides the first applications of inverse optimization to radiation

therapy treatment planning. Erkin et al. (2010) is the only previous application of

inverse optimization in healthcare. In Chapter 4, we demonstrate the application of

inverse optimization to historical prostate cancer treatment to impute optimal treatment

parameters. Then, in Chapter 5, we provide the first study in the medical physics

literature that uses the results of inverse optimization for predicting treatment parameters

from patient anatomy and creating treatment plans for de novo patients.

Throughout this thesis, we strive to make connections to other research fields and

other existing optimization techniques in the literature. In Chapter 4, we elucidate a

relationship between inverse optimization and existing multiobjective optimization tech-

niques. In Chapter 6, we propose a unified framework for inverse optimization that

encompasses many of the existing inverse optimization models as well as our proposed

models. In Chapter 5, we demonstrate how machine learning techniques can build on the

results of our inverse optimization methods. To elaborate more on this point, the recent

development of inverse reinforcement learning was initially motivated by the fact that it is

often rather easy to demonstrate some examples of desirable behaviour and let the agent

learn a reward function from the examples, instead of having the agent blindly learn the



Chapter 2. Review of inverse optimization 19

expert’s behaviour. This motivation for inverse reinforcement learning was actually very

similar to what drove us to apply inverse optimization to radiation therapy treatment

planning, where there are many factors that make the radiation therapy treatment plan-

ning process unpredictable and subjective but there is historical treatment data we can

make use of.



Chapter 3

Clinical motivations and background

In this chapter, we describe the clinical motivation for our work, which is a prostate can-

cer radiation therapy treatment planning problem. We illustrate the current approaches

to formulating a radiation therapy treatment plan optimization problem and the asso-

ciated challenges. We also provide detailed information about our clinical data and the

initialization process that is required before the development of the inverse optimization

framework for radiation therapy treatment planning.

3.1 Prostate cancer and radiation therapy

Prostate cancer is the most commonly diagnosed cancer among men in North Amer-

ica (American Cancer Society, 2014; Canadian Cancer Society’s Advisory Committee on

Cancer Statistics, 2014). Radiation therapy is one of the most common forms of treatment

for prostate cancer (Foroudi et al., 2003). While survival from prostate cancer post-IMRT

is generally high (Zelefsky et al., 2006), radiation-induced toxicity of the healthy organs

near the tumour, referred to as organs-at-risk (OARs), is still an important concern. The

ability to better differentiate between OAR objectives and encourage treatments to focus

on the most critical ones has the potential to reduce secondary toxicity while maintaining

tumour dose levels, which is the primary clinical challenge in treating prostate cancer

20
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Figure 3.1: Anatomy of prostate site.

currently.

Figure 3.1 depicts the typical anatomical geometry surrounding the prostate. The

clinical target volume (CTV) is the volume suspected to contain the primary disease –

the prostate in this case. The planning target volume (PTV) encompasses the CTV and

accounts for uncertainties such as possible organ movement or variations in the position of

the patient on the treatment unit. The PTV inner ring (PIR) is a shell around the CTV

defined as the set difference between the PTV and CTV (i.e., PIR = PTV\CTV). The

PTV outer ring (POR) is a shell outside the PTV that is used to promote conformality

of the dose around the target. Around the prostate, there are multiple healthy organs

that need to be spared including the bladder, rectum, and left and right femoral heads

(the tops of the femur bones).

Certain clinical criteria must be met in order for a radiation therapy treatment to

be acceptable. The clinical criteria are expressed in the form of dosimetric conditions

such as “the minimum dose to the tumour needs to be at least x Gy” or “at most y%

of the bladder can receive more than x Gy”. The latter is known as a partial dose-

volume constraint, which can be formulated exactly using binary variables to choose the

volume elements that meet the dose threshold (Lee et al., 2003; Preciado-Walters et al.,
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Table 3.1: Objective functions and weights in the clinical treatment planning formulation
for a prostate case.

Obj. # Structure Metric Dose (Gy) Percent Weight
1 CTV Min dose 78.65 50
2 CTV Max dose 81.90 38
3 PIR Min dose 74.75 50
4 PIR Max dose-volume 78.00 2 38
5 POR Max dose 74.10 38
6 Bladder Max dose-volume 47.45 50 1
7 Rectum Max dose-volume 47.45 50 1
8 Bladder Max dose-volume 59.15 29 1
9 Rectum Max dose-volume 59.15 29 1
10 Left femur Max dose-volume 52.00 4 1
11 Right femur Max dose-volume 52.00 4 1
12 Bladder Mean dose 42.90 1
13 Rectum Mean dose 44.20 1
14 Bladder Max dose 78.00 1
15 Rectum Max dose 78.00 1

2004). In this thesis, we address such criteria using a more tractable alternative, as

outlined in Sections 4.4 and 6.4. Table 3.1 outlines the objectives used to plan a prostate

IMRT treatment at Princess Margaret Cancer Centre in Toronto, Canada. Each row

corresponds to an objective function that is combined into the composite objective using

the weight indicated in the last column. The “Metric” column indicates the functional

form of each criterion. For example, the first two criteria require the dose to every part

of the CTV to be between 78.65 and 81.90 Gy. Criteria listed as “Max dose-volume”

indicate partial dose-volume criteria. For example, the eighth criterion requires that no

more than 29% of the bladder receive more than 59.15 Gy. While the criteria shown in

Table 3.1 read like constraints, they are formulated as objectives by penalizing violations

of the criteria. For example, objective 1 is formulated as an one-sided penalty, charging

a positive penalty to parts of the CTV that receive less than 78.65 Gy, proportional to

the square of the difference between the delivered and prescription dose. The tumour

objectives receive the highest priority. However, there is no differentiation between the

importance of the OAR objectives, even though it is well-known that different organs
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respond differently to radiation (Marks, 1996). In addition, the weight values seem to be

chosen subjectively.

3.2 The treatment planning process

In practice, an iterative, trial-and-error process is used to determine a final, acceptable

treatment plan. The optimization problem represented by Table 3.1 is solved once.

Next, the corresponding dose distribution is evaluated to see if it meets the clinical

criteria prescribed by the oncologist. If the plan is unacceptable, the treatment planner

re-optimizes the plan with different parameter settings. This back and forth process

continues until an acceptable treatment plan is found. For complex cases, this process

may take days to complete, potentially delaying the start of treatment. Even though

many modifications are possible during the re-optimization step (e.g., add new objective

functions, modify dose limits, etc.), our focus in this thesis is on the determination of the

weights. Here we briefly review the literature on using weights for treatment planning.

Iterative approaches to weight determination (a priori approaches). Most re-

search in radiation therapy treatment planning with a weighted objective function

views the weights as a tunable parameter. With the goal of creating “good” dose

distributions, weights are iteratively updated in a forward manner. For example, Yu

(1997), Xing et al. (1999), Cotrutz and Xing (2002), and Wu et al. (2003) present

algorithms that adjust weights in an inner loop while an outer loop evaluates various

scoring functions associated with the dose distribution generated by those weights.

Pareto treatments (a posteriori approaches). The use of weights in IMRT opti-

mization is also prevalent in the construction of sets of Pareto optimal treat-

ments (Cotrutz et al., 2001; Hamacher and Küfer, 2002; Romeijn et al., 2004; Craft

et al., 2006). Instead of generating one acceptable treatment, a set of Pareto opti-

mal solutions is obtained by solving the multiobjective IMRT optimization problem
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with many different sets of weights. A final treatment is chosen based on the clinical

expertise of the treatment planner as s/he navigates the Pareto surface.

Note that, in the medical physics community, the optimization approach to determin-

ing the optimal beamlet intensities and dose distribution is called “inverse planning.” In

this thesis, we use the terms “inverse optimization” and “inverse planning” to refer to

two distinct problems: inverse optimization determines weights from a given dose dis-

tribution while inverse planning determines a beamlet intensity profile (and thus a dose

distribution) from a given set of weights. We also refer to inverse planning as forward

optimization.

3.3 Clinical data

All of the computational experiments in this thesis are based on treatment data for

prostate cancer patients who had previously received radiation therapy at Princess Mar-

garet Cancer Centre. The patient datasets each had a CTV comprising the prostate

gland (± proximal 10 mm of seminal vesicles) and a PTV defined as the CTV plus a 10

mm margin (7 mm posteriorly). All treatments were delivered with seven 6 MV step-and-

shoot intensity-modulated x-ray fields at angles 40◦, 80◦, 110◦, 250◦, 280◦, 310◦, and 355◦.

We excluded patients who had previous prostatectomy, pelvic lymph node irradiation,

and atypical anatomic features including proximal small bowel, pelvic kidneys, and pros-

thetic hips. We used CERR (Computational Environment for Radiotherapy Research)

to read and analyze the data (Deasy et al., 2003). Treatment data was exported from the

Philips Pinnacle treatment planning system in DICOM (Digital Imaging and COmmu-

nications in Medicine) and RTOG (Radiation Therapy Oncology Group) formats, and

read into MATLAB via CERR.

To represent a patient’s anatomy algebraically, the anatomy is discretized into volume

elements called voxels. As an example, patient #1 had 18, 549 voxels in the CTV, 54, 964
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in the PIR, 294, 075 in the POR, 6, 926 in the bladder wall, 8, 959 in the rectum wall,

47, 061 in the left femoral head, and 47, 102 in the right femoral head. The voxel grid

resolution of the CT image, and thus our data, was 1 mm × 1 mm × 2 mm. The voxel

grid resolution used for prostate treatment planning at Princess Margaret Cancer Centre

is 2 mm × 2 mm × 2 mm. To improve tractability, while accounting for the clinical

planning resolution, we sampled voxels at a rate of 1:4 in all structures. We found the

difference in the resulting dose distributions to be negligible. To further speed up the

computation, we considered sampling the POR at a rate of 1:10, since it was the largest

structure by far. Again, we found negligible differences in the resulting dose distributions.

A total of 354 beamlets were used for patient #1 across the seven beams. The resolution

of each beamlet was 5 mm × 5 mm.

3.4 A multiobjective forward formulation

We formulate a multiobjective forward optimization problem that emulates the clinical

IMRT treatment planning formulation presented in Table 3.1. Since the tumour dose

criteria are given very high weights and typically only a small amount of violation is

allowed, we model them as hard constraints. Putting only the OARs in the objective

function allows for better differentiation between the OAR criteria.

Let B be the set of beamlets and wb be the intensity delivered by beamlet b ∈ B.

As mentioned above, the patient’s anatomy is discretized into volume elements called

voxels. We denote by Dv,b the dose deposited to voxel v from unit intensity of beamlet

b. Let K be the set of all objectives. For any k ∈ K, let Ok be the set of voxels in

the OAR associated with objective k. We also let T and V be the sets of voxels in the

target structures (i.e., the CTV and PIR) and the whole anatomy, respectively. Lastly,

let αk ≥ 0 denote the weight assigned to objective k. The complete forward formulation
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is

minimize
w

∑

k∈K

αkfk(w),

subject to
∑

b∈B

Dv,bwb ≥ ℓv, ∀v ∈ T ,

∑

b∈B

Dv,bwb ≤ uv, ∀v ∈ V,

β1

|B|
∑

b′∈B

wb′ ≤ wb ≤
β2

|B|
∑

b′∈B

wb′, ∀b ∈ B,

wb ≥ 0, ∀b ∈ B,

(3.1)

where ℓv is a lower bound on the dose to voxel v ∈ T and uv is an upper bound on

the dose to voxel v ∈ V. The third set of constraints forces every beamlet intensity

to be within a certain multiple of the average beamlet intensity (β1 < 1 < β2), which

discourages a highly heterogeneous intensity map. These constraints act as a proxy for

the smoothing of the intensity map that clinical hardware and software enforce. Such a

simple smoothing mechanism seems to work well for simple geometries like the prostate,

but may be insufficient for complex cases where heterogeneity can be useful, especially in

the case of motion. Smoothing methods like constraining/optimizing the total variation

or sum-of-positive gradients may be more applicable in other cases (Zhu et al., 2008;

Craft et al., 2007).

For the objective functions fk(w), k ∈ K, in Chapters 4 and 5 we consider penalty-

based linear objective functions, and in Chapter 6 we consider penalty-based convex

objective functions. More sophisticated CVaR constraints (Romeijn et al., 2006), gen-

eral piece-wise linear objective functions (Craft et al., 2007), and linear EUD objec-

tives (Thieke et al., 2002) can also be incorporated. However, our computational results

suggest that formulation (3.1) with objective functions used in this thesis is sufficient to

replicate clinical-quality plans.

In all instances, Table 3.1 was used to guide the parameter settings. We set ℓv = 78.0

for v ∈ CTV and ℓv = 74.1 for v ∈ PIR. We set V to be the union of the PTV and all
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OARs, as the remaining unclassified tissue had little impact on the final dose distribution.

We let uv = 81.9 for v ∈ V \ POR, and let uv = 78.0 for v ∈ POR. Lastly, we chose

β1 = 0.5 and β2 = 1.5, which were guided by discussions with medical physicists at

Princess Margaret Cancer Centre.

3.5 Initialization

Two pieces of data are needed to formulate the inverse optimization models: the delivered

beamlet intensities, and the patient-dependent clinical dose influence matrix, Dclin (see

formulation (3.1)) . The clinical plans exported by Pinnacle did not contain either of these

quantities, but instead had a delivered dose value for each voxel (i.e., the dose distribution,

denoted dclin), anatomical information such as contours and three dimensional voxel

coordinates, and the beam angles used for the treatment.

To overcome the lack of Dclin, we used CERR’s IMRTP function to generate a new

dose influence matrix, DCERR. All the structure information and beam environment

parameters were set to match the clinical plan. However, because CERR uses a differ-

ent method to calculate dose influence matrices than a commercial treatment planning

system, DCERR is different from Dclin (Jeraj et al., 2002). As a result, the exact clinical

dose distribution obtained using Dclin may not be “achievable” using DCERR. That is,

there may not exist w such that dclin = DCERRw. To find such a w, we solve an aux-

iliary optimization problem to find a dose distribution that is close to dclin and that is

achievable using DCERR:

minimize
w

∑

v∈V

(

∑

b∈B

DCERR
v,b wb − dclinv

)2

subject to constraints from problem (3.1).

(3.2)

A common way to evaluate an IMRT treatment plan is via a dose-volume histogram
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(DVH). A DVH shows what fraction of a particular structure receives a certain level

of dose or higher. Figure 3.2 shows fairly good agreement between the DVHs from a

clinical treatment plan (solid lines) and the corresponding achievable plan resulting from

solving (3.2) (dashed lines) for patient #1.

It is not critical that these two dose distributions be identical – in fact, it is probably

impossible to make them so. The goal of this initialization process is simply to generate

a dose distribution that is similar to the clinical one and that can be achieved using

DCERR. The achievable dose distributions satisfy all clinical criteria that the clinical

dose distributions are measured against. Going forward, we treat the achievable dose

distribution and DCERR as being the clinical dose distribution and dose influence matrix,

respectively.

In this chapter, we described the clinical motivation for our work and formulated

the forward treatment plan optimization problem. In the computational results of the

subsequent chapters, we address the problem of finding objective function weights for the

forward problem (3.1) using historical treatment plans as input.
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(a) CTV.
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(b) PTV.
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(c) Bladder.

0 10 20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Dose Volume Histogram

Dose (Gy)

F
ra

c
ti
o

n
a

l 
v
o

lu
m

e

 

 

Clinical

Achievable

(d) Rectum.
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(e) Left femoral head.
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(f) Right femoral head.

Figure 3.2: Comparison of DVHs of the clinical treatment plan and achievable treatment
plan.



Chapter 4

Generalized inverse multiobjective

linear optimization

4.1 Introduction

In this chapter, we develop a generalized inverse linear optimization model that returns

a meaningful, nonzero solution to the inverse problem for any initial x̂, regardless of

whether x̂ is on the boundary of the forward feasible region, is an interior point, or

is even an infeasible solution. Instead of formulating the inverse optimization problem

using strong duality as a constraint as was done in Ahuja and Orlin (2001), we introduce

a duality gap that is to be minimized. By relaxing the strong duality constraint, we

simultaneously relax the assumption that x̂ must be on the boundary of the forward

feasible region.

This framework generalizes many existing inverse optimization models and, we be-

lieve, opens the door for much broader and more effective application of inverse optimiza-

tion in practice. There is no guarantee that a given input x̂ for an inverse problem will

be on the boundary of the corresponding forward feasible region. Previously, one might

focus effort on modifying the constraints of the forward problem so that the boundary of

30
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its feasible region contains x̂. Instead, our general framework does not require any mod-

ification of the forward problem to accommodate the input vector x̂. Another attractive

feature of our generalized inverse optimization model is that it retains the underlying

complexity of the forward problem, like the standard inverse linear (Ahuja and Orlin,

2001) and conic (Iyengar and Kang, 2005) optimization models. Furthermore, it spe-

cializes to the standard inverse optimization model when x̂ is on the boundary of the

forward feasible region. Thus, there is little downside to adopting this more generalized

framework when solving inverse optimization problems.

We develop this inverse methodology in a multiobjective linear optimization context,

which has not been considered previously, and develop connections with established mul-

tiobjective optimization literature, especially Pareto surface approximation techniques.

Both the multiobjective and generalization aspects of this research are motivated by a

practical problem in radiation therapy treatment planning.

As an application of our generalized inverse optimization methodology, we demon-

strate how to determine appropriate objective function weights in prostate cancer IMRT.

Given a historical treatment plan, our method determines objective function weights that

make the given plan nearly optimal with respect to a given set of objective functions,

which are not necessarily identical to the ones used to create the plan. Clinical treatment

planning formulations have a large number of objective functions and vary from institu-

tion to institution. As a result, a treatment plan from one institution is not guaranteed

to be optimal (or even feasible) for another, as measured by the latter’s formulation.

We demonstrate that with intelligently chosen weights, treatments of clinical quality can

be created using many fewer objective functions than currently used in practice. We

also show how our methodology can determine which objective functions most heavily

influence a final treatment. While our approach is motivated by radiation therapy appli-

cations, the methodology we develop is intended to solve general inverse (multiobjective)

optimization problems.
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Our specific contributions in this chapter are as follows:

1. We generalize the standard inverse optimization framework by allowing an arbi-

trary solution to the forward problem, even an infeasible one, to be used as input.

We characterize the theoretical properties and geometry of the resulting inverse

solutions.

2. We develop the first inverse optimization approach for multiobjective linear opti-

mization. We elucidate connections between inverse optimization and established

multiobjective optimization theory, especially with Pareto surface approximation

techniques.

3. We develop the first inverse optimization methodology applied to IMRT treatment

planning. Determining the most critical objective functions and optimized starting

values for their weights may provide new insight into the design of future treat-

ments.

4.2 Inverse optimization methodology

The derivation of our inverse optimization methodology is based on the canonical multiob-

jective linear programming formulation (Zeleny, 1974). Let x ∈ R
n,A ∈ R

m×n,b ∈ R
m,

and K be the set of objective functions. Then the multiobjective optimization problem

can be written as

FOP(α) : minimize
x

α′Cx

subject to Ax = b,

x ≥ 0,

(4.1)

where each row of C ∈ R
|K|×n represents a different linear objective function associated

with x and α ∈ R
|K|, assumed nonnegative, denotes the weight vector. Without loss of

generality, we assume Cx ∈ R
|K|
+ for every feasible x (Ehrgott, 2005).
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4.2.1 Preliminaries

We define notation and illustrate some geometrical properties of the forward optimization

problem (4.1). Let X = {x ∈ R
n |Ax = b,x ≥ 0} be the set of feasible solutions to

formulation (4.1), assumed non-empty. The set of attainable objective function values

will be denoted Z = {Cx ∈ R
|K|
+ |x ∈ X}. Following the convention of Ehrgott (2005),

X is a subset of the decision space and Z is a subset of the criterion space. Let Z+ =

{z ∈ R
|K|
+ | z ≥ ẑ, ẑ ∈ Z}. A point Cx̂ ∈ Z is a non-dominated point of Z if there

is no Cx ∈ Z satisfying (ck)′x ≤ (ck)′x̂ for all k ∈ K with at least one k such that

(ck)′x < (ck)′x̂. A point Cx̂ ∈ Z is a weakly non-dominated point of Z if there is no

Cx ∈ Z such that (ck)′x < (ck)′x̂ for all k ∈ K. A (weakly) non-dominated point of Z+

is defined similarly. We denote the set of non-dominated points and the set of weakly

non-dominated points of Z (Z+) by ZN and ZWN (Z+
N and Z+

WN), respectively. Note

that Z+
WN ⊃ ZWN ⊃ Z+

N = ZN (see Figure 4.1). A solution x̂ ∈ X corresponding to

a (weakly) non-dominated point of Z is an (weakly) efficient solution to problem (4.1).

The following is a fundamental result of multiobjective linear programming (see Ehrgott

(2005)).

Proposition 4.2.1 In a multiobjective linear program, a vector x ∈ X is a weakly ef-

ficient solution if and only if there exists a nonzero α ≥ 0 such that x is an optimal

solution to FOP(α).

Proposition 4.2.1 suggests that if Z is full-dimensional and ẑ ∈ int(Z), there is no nonzero

α ≥ 0 such that x̂ is optimal for FOP(α) and ẑ = Cx̂. If ẑ 6∈ Z, there will also be no α

that makes the corresponding x̂ optimal, because x̂ is infeasible.
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Figure 4.1: Geometry of criterion space.

4.2.2 An inverse linear optimization problem

Given x̂ ∈ X, we formulate the inverse problem associated with the forward problem (4.1)

as

IOP(C, x̂) : minimize
α,p

0

subject to A′p ≤ C′α,

α′Cx̂ = b′p,

α′e = 1,

α ≥ 0.

(4.2)

The first and second constraints correspond to dual feasibility and strong duality, respec-

tively. We add the third constraint to prevent the trivial solution (α,p) = (0, 0) from

being a feasible solution. We note that other constraints, such as b′p = 1 or α′Cx̂ = 1

would also serve this purpose. However, for the generalized inverse optimization for-

mulations we present later, using α′e = 1 in formulation (4.2) facilitates the analysis.

Omitting an objective function simplifies the exposition without fundamentally affecting
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the structure of the inverse problem. As we will see in Corollary 4.2.2, it is unlikely that

a specific objective function is needed.

4.2.3 A generalized inverse linear optimization problem

By Proposition 4.2.1, IOP(C, x̂) is feasible if and only if x̂ ∈ X is a weakly efficient

solution. We now modify IOP(C, x̂) to ensure that it remains feasible, given any x̂, be

it a weakly efficient solution, a solution corresponding to an interior point of Z, or even

an infeasible solution. We will assume that x̂ is such that Cx̂ ∈ R
|K|
+ .

Since Cx ∈ R
|K|
+ for all x ∈ X, the forward problem (4.1) has a finite optimal solution

for any nonzero α ≥ 0. Therefore, the set of feasible solutions to the dual formulation is

non-empty for any nonzero α ≥ 0. However, the strong duality constraint α′Cx̂ = b′p

in formulation (4.2) holds if and only if a given solution x̂ ∈ X is weakly efficient. So if

we have a feasible x̂ that is not weakly efficient, instead of enforcing strong duality, we

can allow a duality gap and aim to find a feasible solution to the corresponding inverse

problem with as small a duality gap as possible. This idea is also appropriate when x̂ is

an infeasible solution, as will be shown later. We consider two different types of duality

gaps: (i) a relative duality gap ǫr > 0, leading to the constraint α′Cx̂ = ǫr b
′p, and

(ii) an absolute duality gap ǫa, leading to the constraint α′Cx̂ = b′p + ǫa. We denote

the two corresponding generalized inverse optimization problems (GIOP) by GIOPr and

GIOPa, respectively.
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Given any x̂ ∈ R
n satisfying Cx̂ ∈ R

|K|
+ and ǫr > 0, the relative GIOP is

GIOPr(C, x̂, ǫr) : minimize
α,p

0

subject to A′p ≤ C′α,

α′Cx̂ = ǫr b
′p,

α′e = 1,

α ≥ 0.

(4.3)

In formulation (4.3), ǫr > 0 is a parameter. Formulation (4.3) can be solved repeatedly

with varying ǫr until the smallest ǫr, denoted ǫ∗r , is found such that (4.3) is feasible.

A univariate search technique such as the bisection or golden section algorithm may be

used. The following result provides an upper bound on ǫ∗r , which can be used as an initial

value of ǫr in the search.

Proposition 4.2.2 Let zI = (zI1 , ..., z
I
|K|), where zIk = min

z∈Z
{zk} for all k ∈ K. Assume

zIk > 0 for at least one k ∈ K. If Cx̂ ∈ Z+, ǫ∗r ≤ min
{k∈K|zI

k
>0}

{

(ck)′x̂

zI
k

}

. If Cx̂ 6∈ Z+, ǫ∗r ≤ 1.

Proof: Let Cx̂ ∈ Z+ and Cx∗ = Cx̂/ǫ∗r. By Theorem 4.2.1, Cx∗ ∈ Z+
WN . By the

definition of zI , zI ≤ Cx for any Cx ∈ Z. Therefore, zI ≤ Cx∗ ≤ Cx̂. For any k ∈ K

such that zIk > 0, ǫ∗r = (ck)′x̂/(ck)′x∗ ≤ (ck)′x̂/zIk . If Cx̂ 6∈ Z+ then by Theorem 4.2.1

Cx∗ ≤ Cx̂, and therefore ǫ∗r ≤ 1. �

Note that instead of solving formulation (4.3) multiple times with varying ǫr, by

writing ǫr = α′Cx̂/b′p, a single linear program can be solved to find ǫ∗r :

minimize
α,p

α′Cx̂

subject to A′p ≤ C′α,

b′p = 1,

α ≥ 0.

(4.4)
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In formulation (4.4), we have to omit the constraint α′e = 1 when introducing the

constraint b′p = 1. Thus, an optimal solution to formulation (4.4) must be normalized

post-hoc. If we let ᾱ be an optimal solution to formulation (4.4), then ǫ∗r = ᾱ′Cx̂. Thus,

this formulation simultaneously generates the optimal weight vector and the minimal

duality gap. Going forward, we will use relative GIOP formulations (4.3) and (4.4)

interchangeably, depending on which is more convenient for the context. In particular,

the theoretical analysis will focus on formulation (4.3), while the computational results

will be based on formulation (4.4).

Given any x̂ ∈ R
n satisfying Cx̂ ∈ R

|K|
+ , the absolute GIOP is

GIOPa(C, x̂) : minimize
α,p,ǫa

ǫa

subject to A′p ≤ C′α,

α′Cx̂ = b′p+ ǫa,

α′e = 1,

α ≥ 0.

(4.5)

Let ǫ∗a be the optimal value of problem (4.5). If ǫ∗r = 1 or ǫ∗a = 0, then the two GIOP

formulations become the standard inverse formulation (4.2). In other words, the GIOP

formulations can identify a weakly efficient solution x̂ to the forward problem. Otherwise,

as we show next, ǫ∗r and ǫ∗a measure how far a given solution Cx̂ is from the set of weakly

non-dominated points, with respect to two particular distance metrics induced by the

two duality gaps considered.

4.2.4 Structure of optimal inverse solutions

If x̂ is not weakly efficient, then solving any GIOP formulation will return an α∗ such

that FOP(α∗) generates a weakly efficient solution x∗ 6= x̂. Recall that if x∗ is optimal

for FOP(α∗), then IOP(C,x∗) is feasible. Therefore, solving a GIOP formulation with x̂
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as input can be viewed as solving IOP(C,x∗) for an x∗ that has been suitably perturbed

from x̂. In this section, we study the relationship between the x∗ that generates α∗ from

IOP(C,x∗) and an x̂ that generates the same α∗ from a GIOP formulation. Standard

inverse optimization models typically assume that the given x̂ is a feasible solution to the

forward problem. First, Proposition 4.2.3 shows that even if x̂ is infeasible, the inverse

problem can be feasible.

Proposition 4.2.3 Let x̃ /∈ X and Cx̃ ∈ R
|K|
+ . IOP(C, x̃) is feasible if and only if

Cx̃ ∈ (R
|K|
+ \ Z+) ∪ (Z+

WN \ ZWN).

Proof: (⇐) Let y, π, and σ be the dual variables corresponding to the first three sets

of constraints, respectively, of IOP(C, x̃). With suitable sign changes, the following

formulation is equivalent to the dual of IOP(C, x̃):

−minimize
y,π,σ

σ

subject to Ay = πb,

Cy ≤ πCx̃+ σe,

y ≥ 0.

(4.6)

To show that IOP(C, x̃) is feasible, it suffices to show that formulation (4.6) has a

finite optimal solution. Moreover, if formulation (4.6) has a finite optimal solution,

its optimal cost is zero by strong duality. Note that (y, π, σ) = (0, 0, 0) is feasible

for formulation (4.6). We can assume π ≥ 0 because the strong duality constraint in

IOP(C, x̃) can be written as a less than or equal to inequality (weak duality is already

guaranteed). Consider the change of variables y = πx. The second set of constraints in

formulation (4.6) becomes

σ ≥ πmax
k∈K

((ck)′x− (ck)′x̃). (4.7)
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If Cx̃ ∈ R
|K|
+ \ Z+, there exists Cx ∈ ZWN such that (ck)′x̃ < (ck)′x for at least one

k ∈ K. Therefore, max
k∈K

((ck)′x−(ck)′x̃) > 0. If Cx̃ ∈ Z+
WN \ZWN , there exists Cx ∈ ZWN

such that (ck)′x̃ = (ck)′x for at least one k ∈ K, so max
k∈K

((ck)′x − (ck)′x̃) ≥ 0. In both

cases, σ is bounded below by 0, as required.

(⇒) If IOP(C, x̃) is feasible, then formulation (4.6) is also feasible with optimal cost

σ∗ = 0. Suppose there exists Cx ∈ Z such that (ck)′x − (ck)′x̃ < 0, ∀k ∈ K. It follows

from equation (4.7) that σ can become arbitrarily negative for sufficiently large π, which

is a contradiction. Hence, there cannot be Cx ∈ Z satisfying (ck)′x < (ck)′x̃, ∀k ∈ K.

As x̃ /∈ X, it must be that Cx̃ ∈ (R
|K|
+ \ Z+) ∪ (Z+

WN \ ZWN), as required. �

The next result draws an equivalence between the IOP model and the GIOP models

for a related pair of input vectors.

Proposition 4.2.4 (a) A solution (α,p) is a feasible solution to GIOPr(C, x̂, ǫr) if

and only if (α,p) is a feasible solution to IOP(C,x∗) where x∗ is such that Cx∗ =

Cx̂/ǫr.

(b) Suppose ǫa ≤ mink∈K(c
k)′x̂. A solution (α,p, ǫa) is a feasible solution to GIOPa(C, x̂)

if and only if (α,p) is a feasible solution to IOP(C,x∗) where x∗ is such that

Cx∗ = Cx̂− ǫae.

Proof: For part (a), (α,p) satisfies α′Cx̂ = b′pǫr if and only if it satisfies α′Cx = b′p

for Cx = Cx̂/ǫr. Since all other constraints are the same between the formulations

GIOPr(C, x̂, ǫr) and IOP(C,x), the statement holds. The proof for part (b) is similar

and omitted. �

Corollary 4.2.1 (a) For ǫr > 0 sufficiently large, GIOPr(C, x̂, ǫr) is feasible.

(b) GIOPa(C, x̂) is always feasible.

Proof: Consider GIOPr(C, x̂, ǫr). For ǫr sufficiently large, 0 ≤ Cx̂/ǫr ≤ Cx for some

Cx ∈ Z+
WN . Thus, Cx̂/ǫr ∈ R

|K|
+ \ Z+. Let x̃ satisfy Cx̃ = Cx̂/ǫr. By Proposition 4.2.3,
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IOP(C, x̃) is feasible and then by Proposition 4.2.4, GIOPr(C, x̂, ǫr) is feasible, as re-

quired. The proof for part (b) is similar and omitted. �

Corollary 4.2.1 suggests that if Cx̂ ∈ Z and ǫr is sufficiently large, then Cx̂/ǫr ∈ R
|K|
+ \Z+

and solving GIOPr(C, x̂, ǫr) will return a vector α such that α′Cx̂/ǫr ≤ α′Cx for all

Cx ∈ Z. In other words, α defines a separating hyperplane between the point Cx̂/ǫr

and the nonempty, closed, convex set Z. However, since α is generated from a point

that is an infeasible solution to the forward problem (that is, the pre-image of Cx̂/ǫr is

infeasible in decision space), there is no way to recover the pre-image of the point Cx̂/ǫr

by solving FOP(α).

The main result of this section states that when the duality gap is minimized, an

optimal solution α∗ to either the relative or absolute inverse problem defines a support-

ing hyperplane of Z+, and is also an optimal solution to the standard original inverse

optimization problem for a suitably perturbed input vector.

Theorem 4.2.1 (a) If (α∗,p∗) is an optimal solution to GIOPr(C, x̂, ǫ∗r), then it is

an optimal solution to IOP(C,x∗) where Cx∗ = Cx̂/ǫ∗r, and Cx∗ ∈ Z+
WN .

(b) If (α∗,p∗, ǫ∗a) is an optimal solution to GIOPa(C, x̂), then it is an optimal solution

to IOP(C,x∗) where Cx∗ = Cx̂− ǫ∗ae, and Cx∗ ∈ Z+
WN .

Proof: For part (a), given any ǫr, there is a one-to-one correspondence between the

feasible solutions of GIOPr(C, x̂, ǫr) and IOP(C,x∗), by Proposition 4.2.4. Thus, if

(α∗,p∗) is optimal for GIOPr(C, x̂, ǫ∗r), it is optimal for IOP(C,x∗). Lastly, recall that

ǫ∗r is the smallest value of ǫr such that GIOPr(C, x̂, ǫr) remains feasible. The case of ǫ∗r = 1

is trivial, so assume that ǫ∗r 6= 1. Suppose to the contrary that Cx∗ = Cx̂/ǫ∗r /∈ Z+
WN .

There are two possibilities: either Cx∗ ∈ int(Z+) or Cx∗ ∈ R
|K|
+ \ Z+. In the first

case, IOP(C,x∗) cannot be feasible by Proposition 4.2.3. In the second case, there

must exist ǭr such that Cx∗ = Cx̂/ǫ∗r < Cx̂/ǭr ≤ Cx for some Cx ∈ Z+
WN . Thus
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Figure 4.2: Adjustments of an input point for GIOP to a non-dominated point.

Cx̄ = Cx̂/ǭr ∈ R
|K|
+ \Z+ and IOP(C, x̄) is feasible by Proposition 4.2.3, which contradicts

the minimality of ǫ∗r . The proof for part (b) is similar and is omitted. �

The significance of this result is that there is an exact relationship between the two

generalized inverse optimization problems with Cx̂ as an input, and the original inverse

optimization problem with a modified input Cx∗ ∈ Z+
WN (see Figure 4.2). For GIOPr,

if we connect the point Cx̂ ∈ Z+ with a line segment to the origin (i.e., along the

direction vector −Cx̂), then Cx̂/ǫ∗r is where the line segment intersects Z+
WN . Moreover

an optimal solution to GIOPr(C, x̂, ǫ∗r) is also an optimal solution to IOP(C,x∗) where

Cx∗ = Cx̂/ǫ∗r. Similarly, for GIOPa, if we draw a line moving away from a pointCx̂ ∈ Z+

in the direction of −e, then where this line intersects Z+
WN is the point Cx̂− ǫ∗ae and an

optimal solution to GIOPa(C, x̂) is also optimal for IOP(C,x∗) where Cx∗ = Cx̂−ǫ∗ae. If

Cx̂ 6∈ Z+, then the direction of the adjustment is +Cx̂ in the relative case and +e in the

absolute case. Moving away from Cx̂ in a direction other than ±Cx̂ (±e) may result in a

closer non-dominated point (e.g., in ℓ2 distance), but the relative (absolute) duality gaps
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have the nice interpretation in the multiobjective context of adjusting all the objective

function values by the same relative (absolute) amount. The optimal relative and absolute

gaps are thus a measure of the distance between Cx̂ and Z+
WN along these two direction

vectors. Note that if Cx̂ ∈ int(Z+), then ǫ∗r > 1 and ǫ∗a > 0. If Cx̂ ∈ R
|K|
+ \ Z+, then

ǫ∗r < 1 and ǫ∗a < 0.

In multiobjective linear optimization, both Z and Z+ are polyhedra (Zeleny, 1974). If

a point Cx ∈ Z+
WN is a vertex of Z+, then many weight vectors α can generate Cx. The

same is true if two or more constraints defining Z+ are active at Cx. This observation

leads to the following result, whose proof is omitted.

Corollary 4.2.2 An optimal solution α∗ to IOP(C,x∗) is unique if and only if Cx∗ ∈

Z+
WN lies on the relative interior of a facet of Z+.

Starting from an arbitrary point Cx̂ and traveling in the direction ±Cx̂ or ±e, the

likelihood of intersecting Z+
WN at anything other than the relative interior of a facet of

Z+ is low, which is verified in our computational results. A practical implication is that

an objective function to minimize ||α − α̂||1, for example, is generally not needed in

either GIOP formulation.

4.2.5 Validating optimal inverse solutions

Let α∗ be an optimal solution to GIOPr(C, x̂, ǫ∗r). Because Z
+ is a polyhedron andCx̂/ǫ∗r

may lie on the relative interior of a facet of Z+, solving FOP(α∗) is not guaranteed

to recover Cx̂/ǫ∗r – it is only guaranteed to return an x∗ ∈ X such that (α∗)′Cx∗ =

(α∗)′Cx̂/ǫ∗r . The same is true for GIOPa(C, x̂). Thus, solving FOP(α∗) to validate

an optimal solution α∗ from GIOPr or GIOPa may not be sufficient. Instead, dual

information can be used to validate α∗.

Proposition 4.2.5 (a) Let α∗ be an optimal solution to GIOPr formulation (4.4),

ǫ∗r = α∗′Cx̂, and ydual
r be the optimal dual variables associated with the constraints
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A′p ≤ C′α. Then the vector xdual
r = ydual

r /ǫ∗r satisfies Cxdual
r ∈ ZWN , (c

k)′xdual
r =

(ck)′x̂/ǫ∗r for k such that α∗
k > 0 and (ck)′xdual

r ≤ (ck)′x̂/ǫ∗r for k such that α∗
k = 0.

(b) Let α∗ be an optimal solution to GIOPa formulation (4.5) and xdual
a be the optimal

dual variables associated with the constraints A′p ≤ C′α. Then the vector xdual
a

satisfies Cxdual
a ∈ ZWN , (ck)′xdual

a = (ck)′x̂ − ǫ∗a for k such that α∗
k > 0 and

(ck)′xdual
a ≤ (ck)′x̂− ǫ∗a for k such that α∗

k = 0.

Proof: For part (a), let γ be the dual variable associated with the first set of constraints

in formulation (4.4). Then the dual of formulation (4.4) can be written as:

maximize
y,γ

γ

subject to Ay = γb,

Cy ≤ Cx̂,

y ≥ 0.

(4.8)

Let (ydual
r , γ∗) be an optimal solution to formulation (4.8). By strong duality, γ∗ = ǫ∗r .

Then from formulation (4.8), the vector xdual
r = ydual

r /ǫ∗r must satisfy

ǫ∗r ≤ min
k∈K

(ck)′x̂

(ck)′xdual
r

. (4.9)

By complementary slackness, ǫ∗r = (ck)′x̂/(ck)′xdual
r for k ∈ K such that αk > 0 and

ǫ∗r ≤ (ck)′x̂/(ck)′xdual
r for k ∈ K such that αk = 0. Lastly, since Cxdual

r ≤ Cx̂/ǫ∗r ∈ Z+
WN

(Theorem 4.2.1) and xdual
r ∈ X (from formulation (4.8)), Cxdual

r ∈ ZWN .

The proof for part (b) is similar and omitted. �

Proposition 4.2.5 implies that once a GIOP formulation is solved with a given Cx̂, the op-

timal solution α∗ can be validated by looking up the appropriate optimal dual variables.

Note that for both relative and absolute cases, if α∗ > 0, then Cxdual ∈ ZN .
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4.3 Benson’s method and Pareto surface approxima-

tion techniques

By minimizing the duality gaps in the relative and absolute GIOP formulations, we are

taking a point Cx̂ in criterion space and projecting it on to Z+
WN along the two associated

direction vectors. Note that by projecting Cx̂ on to Z+
WN , the GIOP formulations can

also be used to find the normals of the hyperplanes that define Z+
WN , which is the goal of

many Pareto surface approximation techniques. In this section, we briefly describe some

of these techniques and highlight a connection with our GIOP formulations.

Benson’s method (Benson, 1978) is a well-known method to identify efficient solutions

in a multiobjective optimization problem. Given Cx̂ ∈ Z, Benson’s formulation is

maximize
x,ǫ

ǫ′e

subject to Cx ≤ Cx̂− ǫ,

Ax = b,

x ≥ 0, ǫ ≥ 0.

(4.10)

Formulation (4.10) attempts to find a point on the efficient frontier that (weakly) domi-

nates x̂. Let (x∗, ǫ∗) be an optimal solution to formulation (4.10). The point x̂ is efficient

if and only if the optimal cost ǫ∗′e equals 0. If 0 < ǫ∗′e < ∞, then x∗ is an efficient

solution and (weakly) dominates x̂. If problem (4.10) is unbounded, then no efficient

solutions exist.

Variants of formulation (4.10) have been widely used in Pareto surface approximation

techniques (Das and Dennis, 1998; Benson, 1998; Shao and Ehrgott, 2008; Ehrgott et al.,

2011). For example, given an interior point Cx̂ of Z+ and a vertex ẑ of S ⊃ Z+, Benson

(1998) first used a univariate search technique to find the point Cx∗ where the line

segment connecting Cx̂ and ẑ intersects Z+
WN . Then, the dual of formulation (4.10)
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was solved to find a supporting hyperplane of Z+ at Cx∗. Shao and Ehrgott (2008)

improved the method in Benson (1998) by using a variant of formulation (4.10) to find

Cx∗ ∈ Z+
WN , instead of using univariate search. A second LP was still used to find the

supporting hyperplane of Z+ at Cx∗. Next, we draw a connection between our GIOP

formulations and formulation (4.10), which allows us to find both Cx∗ and the associated

supporting hyperplane by solving a single LP.

The dual of GIOPa(C, x̂) formulation (4.5) can be written as

maximize
x,σ

σ

subject to Cx ≤ Cx̂− σe,

Ax = b,

x ≥ 0.

(4.11)

Notice that formulations (4.10) and (4.11) produce equivalent optimal solutions if ǫ = σe.

In other words, the GIOPa method is the dual of Benson’s method, in the case where

the components of ǫ are constrained to be equal. Similarly, the GIOPr method is the

dual of Benson’s method, in the case where the components of ǫ are constrained to be

proportional to the components of Cx̂. While the GIOP methods attempt to find a

weakly non-dominated point Cx∗ in a particular direction from Cx̂, Benson’s method

tries to find a non-dominated point that is furthest from Cx̂ as measured by the 1-norm,

and that (weakly) dominates Cx̂. Theorem 4.3.1, whose proof is straightforward and

omitted, formalizes these ideas.

Theorem 4.3.1 Let x̂ ∈ X.

(a) Let ǫ = σCx̂ in formulation (4.10) and let λ∗
r be an optimal dual vector associated

with the first constraint in formulation (4.10). Let α∗
r be an optimal solution to

GIOPr formulation (4.4). Then a solution is optimal for FOP(λ∗
r) if and only if it

is optimal for FOP(α∗
r).
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(b) Let ǫ = σe in formulation (4.10) and let λ∗
a be an optimal dual vector associated

with the first constraint in in formulation (4.10). Let α∗
a be an optimal solution to

GIOPa formulation (4.5). Then a solution is optimal for FOP(λ∗
a) if and only if it

is optimal for FOP(α∗
a).

Theorem 4.3.1 suggests that the two steps – the first step to find a point on the non-

dominated frontier and the second step to find a supporting hyperplane at that point –

used in some of the previous Pareto surface approximation techniques can be combined

into a single step, by solving formulation (4.10) with a given direction vector and simply

evaluating its dual variables. While ideas from inverse optimization may lead to new

results in Pareto surface approximation, the main purpose of the preceding discussion is

to elucidate a connection between these two areas.

4.4 Computational results

In this section, we demonstrate the use of our GIOP formulations in the context of

radiation therapy treatment planning. We consider 12 treatment plans for prostate cancer

patients who had previously received radiation therapy at Princess Margaret Cancer

Centre.

4.4.1 A multiobjective forward formulation

We consider the forward multiobjective problem (3.1) with two types of objective func-

tions for the OARs: (a) a linear penalty objective function that penalizes delivering

dose to any part of the OAR above a certain dose threshold level, and (b) an objec-

tive that minimizes the maximum dose delivered to the OAR. These two types of OAR

objective functions are motivated by the classification of organs into parallel and serial

organs (Dale and Olsen, 1997; Thieke et al., 2002). For a parallel organ, a high dose

to a small volume can typically be tolerated if the rest of the organ is protected, and
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therefore minimizing the total (or average) dose delivered to the overall organ is an ap-

propriate clinical objective. For serial organs, a high dose to a small portion of the organ

can result in dysfunction, and therefore it is important to minimize the maximum dose

delivered (objective function type (b)). As organs are typically somewhere in between

these extremes, an objective function that penalizes dose above some threshold dose is

often used (type (a)).

Let I be the set of OAR objectives of type (a), J be the set of OAR objectives of

type (b), and K := I∪J be the set of all objectives. Then the objective function of (3.1)

can be written as:

∑

k∈K

αkfk(w) =
∑

i∈I

αi

|Oi|
∑

v∈Oi

max

{

0,
∑

b∈B

Dv,bwb − θiv

}

+
∑

j∈J

αj max
v∈Oj

∑

b∈B

Dv,bwb, (4.12)

where θiv denotes a dose threshold on voxel v ∈ Oi, i ∈ I above which overdosing is

linearly penalized.

The forward optimization formulation (3.1) with the objective function (4.12) can

be linearized in a standard fashion by introducing auxiliary variables and constraints
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(Bertsimas and Tsitsiklis, 1997):

minimize
w,ξ,z

∑

i∈I

αi

|Oi|
∑

v∈Oi

ξi,v +
∑

j∈J

αjzj

subject to ξi,v ≥
∑

b∈B

Dv,bwb − θiv, ∀v ∈ Oi, i ∈ I,

zj ≥
∑

b∈B

Dv,bwb, ∀v ∈ Oj, j ∈ J ,

∑

b∈B

Dv,bwb ≥ ℓv, ∀v ∈ T ,

∑

b∈B

Dv,bwb ≤ uv, ∀v ∈ V,

β1

|B|
∑

b′∈B

wb′ ≤ wb ≤
β2

|B|
∑

b′∈B

wb′, ∀b ∈ B,

ξi,v ≥ 0, ∀v ∈ Oi, i ∈ I,

zj ≥ 0, j ∈ J ,

wb ≥ 0, ∀b ∈ B.

(4.13)

Note that, if we let x = (w, ξ, z) and

C =













c1
′
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e′
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,

then with appropriately defined A and b, formulation (4.13) can be written as FOP(α)

formulation (4.1).

Let p,q, r, s, t1 and t2 be the dual variables associated with the six primary con-

straints in formulation (4.13) (t1 and t2 correspond to the left and right parts of the fifth
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constraint, respectively). Given ŵ,

ξ̂v,i = max

{

0,
∑

b∈B

Dv,bŵb − θiv

}

, ∀v ∈ Oi, i ∈ I (4.14)

and

ẑj = max
v∈Oj

∑

b∈B

Dv,bŵb, ∀j ∈ J (4.15)

are uniquely determined by ŵ and used as inputs in the inverse formulation.

Then the corresponding relative inverse formulation represented as GIOPr(C, x̂) is

written as follows:

minimize
p,q, r, s, t1, t2,α

∑

i∈I

αi

|Oi|
∑

v∈Oi

ξ̂v,i +
∑

j∈J

αj ẑj

subject to −
∑

i∈I

∑

v∈Oi

Dv,bpv,i −
∑

j∈J

∑

v∈Oj

Dv,bqv,j +
∑

v∈T

Dv,brv −
∑

v∈V

Dv,bsv

+ t1b −
β1

|B|
∑

b′∈B

t1b′ − t2b +
β2

|B|
∑

b′∈B

t2b′ ≤ 0, ∀b ∈ B,

pv,i ≤
αi

|Oi|
, ∀v ∈ Oi, ∀i ∈ I,

∑

v∈Oj

qv,j = αj , ∀j ∈ J ,

−
∑

i∈I

∑

v∈Oi

θivpv,i +
∑

v∈T

ℓvrv −
∑

v∈V

uvsv = 1,

αk ≥ 0, ∀k ∈ K,

pv,i ≥ 0, ∀v ∈ Oi, ∀i ∈ I,

qv,j ≥ 0, ∀v ∈ Oj , ∀j ∈ J ,

rv ≥ 0, ∀v ∈ T , sv ≥ 0, ∀v ∈ V,

t1b ≥ 0, ∀b ∈ B, t2b ≥ 0, ∀b ∈ B.

(4.16)

We consider three different instances of forward formulation (4.12), each with a differ-

ent number of objectives: (A) four objectives, (B) six objectives, and (C) 18 objectives.
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In model (A), only one objective per OAR is included. It has been shown that one

objective per OAR is sufficient in generating clinically acceptable treatments at low com-

putational overhead (Craft, 2011). Because of the low volume tolerance for the femoral

head criteria, we modeled those objectives using a maximum dose objective (type (b)).

The bladder and rectum objectives were modeled using the linear penalty objective func-

tion (type (a)), with thresholds θi = 50 for both. In all models, we assume all voxels in

OAR objective i (of type (a)) have a common dose threshold θi = θiv for all v ∈ Oi. In

model (B), we add a mean dose objective, which can be modeled with a linear penalty

function and θi = 0, for both the bladder and rectum to the four objectives from model

(A). In model (C), we introduce a linear penalty objective for the bladder and rectum for

each of the values of θi ∈ {0, 10, . . . , 70}. The objective with θi = 70 can be viewed as

an approximate maximum dose objective. The femoral head objectives remain the same

as in models (A) and (B).

4.4.2 Reproducing a clinical plan with fewer objectives

We consider model (A) and demonstrate the use of the GIOP models in recreating a

plan of clinical quality using inversely optimized weights for patient #1. All optimiza-

tion problems were solved using CPLEX 12.0 on a computer with a quad-core 2.66 GHz

Intel Xeon W3520 processor and 6 GB of memory. Note that all the clinical specific

formulations discussed above can be written as compact formulations presented in Sec-

tion 4.2. To facilitate the interpretation of the clinical results and their connection to our

theoretical results, our discussion in this section will be based on the compact inverse

formulations in Section 4.2 with x̂ representing the input vector. We solved formula-

tion (4.4) for GIOPr, and (4.5) for GIOPa. The sizes of the FOP, GIOPr, and GIOPa

formulations for patient #1 are shown in Table 4.1 along with solution (CPU) times.

Table 4.2 shows the objective function weights, α∗
r , that result from solving GIOPr

for patient #1. As discussed in Section 4.2.5, using dual information to validate the
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Table 4.1: Problem sizes and solution times for the FOP and GIOP formulations (model
(A)) for patient #1.

FOP GIOPr GIOPa

Number of variables 4,326 98,219 98,220
Number of constraints 98,215 4,327 4,328
Solution time (s) 211 318 303

Table 4.2: Results from GIOPr for model (A) for patient #1.
OAR α∗

r ǫ∗r Cx̂ Cx∗
r Cxdual

r Cx̂/Cx∗
r Cx̂/Cxdual

r

Bladder 0.248

1.098

8.280 7.539 7.540 1.098 1.098
Rectum 0.746 9.625 8.765 8.765 1.098 1.098
L.Fem 0.002 51.611 47.127 47.001 1.095 1.098
R.Fem 0.004 57.398 52.320 52.271 1.097 1.098

weights is the most accurate method. In Table 4.2, using the definition of xdual
r from

Proposition 4.2.5, the component-by-component ratio Cx̂/Cxdual
r is precisely ǫ∗r , as ex-

pected (Proposition 4.2.4 and Theorem 4.2.1). Similar results are seen in Table 4.3 for

GIOPa. The weights are similar but not identical between the two GIOP formulations,

which suggests that Cxdual
r and Cxdual

a may be sitting on nearby facets of Z+. We also

solved the GIOP formulations with objective functions of the form ||α− α̂||1, for many

different α̂. Each time, the same α∗ was generated, which suggests that the solutions

Cxdual
r and Cxdual

a lie in the relative interiors of facets of Z+. If we validate α∗
r (α∗

a) by

solving FOP(α∗
r) (FOP(α∗

a)), then we obtain the results in the columns associated with

Cx∗
r (Cx∗

a). In this case, the component-wise ratios Cx̂/Cx∗
r (and differences Cx̂−Cx∗

a)

are very similar but not identical. This observation again reinforces the idea that Cxdual
r

and Cxdual
a lie in the relative interiors of facets of Z+. Moreover, the similarity in the

component-wise ratio/difference is indicative of the facets being very small. The duality

Table 4.3: Results from GIOPa for model (A) for patient #1.
OAR α∗

a ǫ∗a Cx̂ Cx∗
a Cxdual

a Cx̂−Cx∗
a Cx̂−Cxdual

a

Bladder 0.326

0.846

8.280 7.434 7.434 0.846 0.846
Rectum 0.670 9.625 8.779 8.779 0.846 0.846
L.Fem 0.002 51.611 50.787 50.765 0.824 0.846
R.Fem 0.002 57.398 56.545 56.552 0.853 0.846
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gap values ǫ∗r > 1 and ǫ∗a > 0 indicate that the given solution was an interior point of Z+.

While dual information is more accurate in validating the inversely optimized weights,

solving the forward problem with the optimal weights does provide additional information

that is clinically relevant and useful in validating the GIOP results. For example, by

solving FOP(α∗
r) we can generate an entire dose distribution (as opposed to just the

objective function values) and compare it to the clinically achievable one used as input to

GIOPr. The treatment plan and dose distribution that result from solving FOP(α∗
r) will

be referred to as the inversely optimized plan and inversely optimized dose distribution,

respectively. Figure 4.3 plots the DVHs of the CTV, PTV, and four OARs for both the

clinically achievable and inversely optimized plans using weights from GIOPr for patient

#1.

The DVHs match fairly well for the bladder and rectum, indicating that the dose

distributions are similar in the clinical and inversely optimized plans for these organs.

For the femoral heads, the DVHs of the inversely optimized plan mostly dominate the

clinical plan. Overall, the inversely optimized treatment plan seems to be at least as

good as the clinical one, which suggests that the clinical plan is feasible but not on the

efficient frontier of the forward problem. The DVH comparison between the clinically

achievable and inversely optimized plans for patients #2 and #3 is shown in Figures 4.4

and 4.5, respectively, which show similar results. Figure 4.6 shows the similar-looking

clinical and inversely optimized dose distributions on a CT image for patient #1.

Lastly, we present a quantitative comparison in Table 4.4. The criterion V x ≤ y%

(V x ≥ y%) is a partial-volume metric, evaluating whether the volume of the structure

that receives x Gy or more is at most (at least) y%. It can be seen that, for patient #1,

the clinically achievable and inversely optimized plans satisfy all clinical requirements. In

fact, the inversely optimized plan dominates the clinically achievable one in the bladder

and rectum metrics. The inversely optimized plan is equivalent to the clinical one in the

femoral head criteria, though a reduction in the maximum dose delivered is evident in
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(a) CTV.
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(b) PTV.
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(c) Bladder.
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(d) Rectum.
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(e) Left femoral head.
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(f) Right femoral head.

Figure 4.3: DVHs of the clinically achievable and inversely optimized plans for patient
#1 using GIOPr Model (A).
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(b) PTV.
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(c) Bladder.

0 10 20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Dose Volume Histogram

Dose (Gy)

F
ra

c
ti
o

n
a

l 
v
o

lu
m

e

 

 

Achievable

Optimized

(d) Rectum.
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(e) Left femoral head.
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(f) Right femoral head.

Figure 4.4: DVHs of the clinically achievable and inversely optimized plans for patient
#2 using GIOPr Model (A).



Chapter 4. Generalized inverse multiobjective linear optimization 55

0 10 20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Dose Volume Histogram

Dose (Gy)

F
ra

c
ti
o

n
a

l 
v
o

lu
m

e

 

 

Achievable

Optimized

(a) CTV.

0 10 20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Dose Volume Histogram

Dose (Gy)

F
ra

c
ti
o

n
a

l 
v
o

lu
m

e

 

 

Achievable

Optimized
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(c) Bladder.
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(d) Rectum.
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(e) Left femoral head.
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(f) Right femoral head.

Figure 4.5: DVHs of the clinically achievable and inversely optimized plans for patient
#3 using GIOPr Model (A).
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(a) Clinically achievable dose distribution.

(b) Inversely optimized dose distribution.

Figure 4.6: Dose distributions of the clinically achievable and inversely optimized plans
for patient #1 using GIOPr.
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Table 4.4: Dose metrics computed from inversely optimized plans for patient #1.

Structure Metric
Target Clinical Inversely optimized plan (%)
level (%) plan (%) Model (A) Model (B) Model (C)

CTV V78.0 ≥ 99 100.00 100.00 100.00 100.00
PTV V74.1 ≥ 99 100.00 100.00 100.00 100.00
PTV V81.9 ≤100 100.00 100.00 100.00 100.00
Bladder V70.0 ≤ 30 21.72 20.53 21.13 21.27
Bladder V54.3 ≤ 50 36.90 34.54 36.03 36.09
Rectum V70.0 ≤ 30 26.79 24.65 26.26 26.29
Rectum V54.3 ≤ 50 41.15 38.31 39.97 39.87
L. femoral head V52.0 ≤ 5 0.00 0.00 0.00 0.00
R. femoral head V52.0 ≤ 5 0.01 0.01 0.02 0.02

Table 4.2. Similar results to those shown in this section were obtained for the remaining

patients. A summary of the GIOPr results for all 12 patients is provided in Table 4.5.

The GIOPa results were omitted.

4.4.3 Identifying important objective functions

Treatment planners often do not know which objective functions influence the optimiza-

tion the most and which are the most crucial in designing a high quality, clinically

acceptable treatment for a particular patient. As a result, clinical treatment planning

formulations may have many more objectives than needed and cause a large parameter

space to search over when iteratively designing a treatment. In this section, we demon-

strate how our GIOP methodology can identify important (or redundant) objectives from

a large family of candidate objectives.

Consider the forward formulation (C). The results from solving the associated GIOPr

for each of the 12 patients is shown in Table 4.6. Notice that the values of ǫ∗r in Table 4.6

are less than their corresponding values in Table 4.5, which is expected because the

objective functions used in model (C) contain the ones used in model (A). Analogous

to a regression, there are simply more “explanatory variables” in model (C). Therefore

we expect the duality gap to be smaller as more of the variation in the dose distribution
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Table 4.5: Summary of results from GIOPr model (A) for all patients.

Pat. ǫ∗r
α∗

r Time
Blad Rect L.Fem R.Fem (s)

1 1.098 0.248 0.746 0.002 0.004 318
2 1.087 0.616 0.380 0.001 0.003 347
3 1.205 0.088 0.906 0.004 0.002 463
4 1.107 0.007 0.989 0.001 0.003 238
5 1.067 0.963 0.023 0.012 0.002 844
6 1.108 0.972 0.011 0.006 0.011 465
7 1.073 0.297 0.695 0.006 0.002 366
8 1.071 0.672 0.315 0.007 0.006 329
9 1.091 0.980 0.010 0.007 0.003 363
10 1.231 0.833 0.147 0.010 0.010 238
11 1.164 0.956 0.040 0.002 0.002 491
12 1.063 0.918 0.066 0.006 0.010 388
Gray cells indicate a weight greater than 0.10.

Table 4.6: Summary of results from GIOPr model (C) for all patients.

Pat. ǫ∗r
θi = 0 θi = 10 θi = 20 θi = 30 θi = 40 θi = 50 θi = 60 θi = 70 Max Time

Bl Re Bl Re Bl Re Bl Re Bl Re Bl Re Bl Re Bl Re LF RF (s)
1 1.027 0.58 0.06 - - - - - - - - 0.06 0.01 - - 0.27 - 0.01 0.01 1094
2 1.027 0.54 0.01 - - - - - - 0.08 - 0.26 0.09 - - - - 0.01 0.01 1702
3 1.092 0.41 0.01 - - - - - - - - - - 0.05 - 0.51 ∼0.00 0.01 0.01 1813
4 1.092 0.01 ∼0.00 - - - 0.01 - - - - - - - 0.98 - - ∼0.00 ∼0.00 1188
5 1.038 0.18 - - - - - - - - - 0.66 - 0.12 0.02 - ∼0.00 0.01 0.01 2973
6 1.047 0.73 - - - - - - - - - 0.23 - - - - - 0.01 0.03 2445
7 1.063 0.08 - - - - - - - - - 0.37 0.47 - 0.07 - - 0.01 ∼0.00 1570
8 1.033 0.62 0.02 - - - - - - 0.31 - - 0.01 - - - - 0.02 0.02 1488
9 1.068 0.15 ∼0.00 - - - - - - - - 0.52 - - ∼0.00 0.32 - 0.01 ∼0.00 1785
10 1.076 0.94 - - - - - - - 0.02 - - - - - - 0.01 0.02 0.01 1111
11 1.041 0.62 - - - - - - - - - 0.36 - - - - ∼0.00 0.01 0.01 1863
12 1.034 0.23 - - - - - - - - - 0.07 0.03 0.64 - - - 0.01 0.02 1564
Bl = bladder, Re = rectum, LF = left femoral head, RF = right femoral head. Gray cells indicate a weight greater than 0.10.

Dashes indicate a weight of zero.
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is explained by the increased number of objective functions. However, having more

objective functions and a smaller duality gap does not necessarily imply that the final

treatment using the inversely optimized weights will result in better clinical performance.

Table 4.4 shows the dose criteria corresponding to the inversely optimized plan for patient

#1 using the 18 objective functions (model (C)), as well as the four objective functions

from the previous section (model (A)). In this case, we see that model (A) performs

slightly better than model (C), which we believe is due to the fact that model (C) is

“overfitting” patient #1’s input. Having more objective functions makes it easier to fit

the entire dose distribution, but may actually put undue emphasis on parts of the dose

distribution that are less relevant clinically. For example, given that the primary bladder

and rectum criteria are partial dose-volume criteria above 54.3 and 70.0 Gy, including

additional objectives may confound the optimization.

Figures 4.7, 4.8, and 4.9 show that the DVHs for the clinically achievable and inversely

determined plans using Model (C) are very similar. Compared to the DVH comparisons

when Model (A) was used (i.e., Figures 4.3, 4.4, and 4.5), the plans generated via Model

(C) look closer to the clinical ones than those generated via Model (A) are. However,

again, Model (C) seems to put undue emphasis on the DVH regions that are not so much

relevant to the clinical acceptability criteria (e.g., regions that correspond to dose less

than 50.0 Gy), i.e., having plans more similar to the clinical plans does not necessarily

imply better treatment quality.

Table 4.5 shows that in model (A), roughly 98-99% of the objective function weights

are placed on the bladder and rectum objectives. When additional bladder and rectum

objectives are included, Table 4.6 shows that most of the weights remain on the bladder

and rectum objectives (95-99%). Among the bladder and rectum objectives, only a few

receive nonzero weights and the top two account for 80-99% of the weight. For almost

all patient cases, the two most heavily weighted objective functions for the bladder and

rectum are the mean dose objective (θi = 0) and one of the ones corresponding to θi =
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(a) CTV.

0 10 20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Dose Volume Histogram

Dose (Gy)

F
ra

c
ti
o

n
a

l 
v
o

lu
m

e

 

 

Achievable

Optimized

(b) PTV.
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(c) Bladder.
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(d) Rectum.
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(e) Left femoral head.

0 10 20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Dose Volume Histogram

Dose (Gy)

F
ra

c
ti
o

n
a

l 
v
o

lu
m

e

 

 

Achievable

Optimized

(f) Right femoral head.

Figure 4.7: DVHs of the clinically achievable and inversely optimized plans for patient
#1 using GIOPr Model (C).
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(b) PTV.
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(c) Bladder.
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(d) Rectum.
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(e) Left femoral head.
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(f) Right femoral head.

Figure 4.8: DVHs of the clinically achievable and inversely optimized plans for patient
#2 using GIOPr Model (C).
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(b) PTV.
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(c) Bladder.
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(d) Rectum.
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(e) Left femoral head.
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(f) Right femoral head.

Figure 4.9: DVHs of the clinically achievable and inversely optimized plans for patient
#3 using GIOPr Model (C).
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Table 4.7: Summary of results from GIOPr model (B) for all patients.

Pat. ǫ∗r
θi = 0 θi = 50 Max Time

Blad Rect Blad Rect L.Fem R.Fem (s)
1 1.027 0.704 0.073 0.192 0.007 0.012 0.012 426
2 1.027 0.518 0.002 0.371 0.093 0.006 0.010 517
3 1.093 0.710 0.013 0.258 - 0.011 0.008 527
4 1.105 0.030 0.003 - 0.961 0.002 0.004 286
5 1.039 0.198 - 0.784 0.005 0.010 0.003 990
6 1.047 0.730 - 0.231 - 0.010 0.029 651
7 1.063 0.087 - 0.393 0.510 0.007 0.003 494
8 1.033 0.737 0.014 0.199 0.009 0.020 0.021 478
9 1.068 0.213 0.005 0.766 0.002 0.011 0.003 519
10 1.076 0.968 - - - 0.017 0.015 349
11 1.041 0.622 - 0.369 - 0.003 0.006 511
12 1.035 0.366 - 0.553 0.044 0.014 0.023 502
Gray cells indicate a weight greater than 0.10. Dashes indicate a weight of zero.

50, 60, or 70. The objectives corresponding to θi = 10, 20, 30, and 40 generally receive

little to no weight, and therefore do not play a central role in driving the optimization.

These results are aligned with the choice of objectives for the bladder and rectum in the

clinical treatment planning formulation (cf. Table 3.1).

To further explore this issue, we modified the forward problem to only include six

objective functions (model (B)). Inversely optimized weights derived from solving the

corresponding GIOPr for all 12 patients are shown in Table 4.7. Note that the values of

ǫ∗r from Table 4.7 are very similar to those in Table 4.6, indicating that the six objectives in

model (B) are capturing almost all the explanatory power of the 18 objectives from model

(C). We performed further validation by solving the forward problem with the inversely

optimized weights. Results for patients #1, 2, and 3 are shown in Figures 4.10, 4.11,

and 4.12, respectively. For all of them, even with a different number of objective functions,

the dose distributions from model (B) and (C) are virtually identical. The dose criteria

achieved by the two models are also nearly identical (Table 4.4).
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(b) PTV.
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(c) Bladder.
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(d) Rectum.

0 10 20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Dose Volume Histogram

Dose (Gy)

F
ra

c
ti
o

n
a

l 
v
o

lu
m

e

 

 

18−obj

6−obj

(e) Left femoral head.
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(f) Right femoral head.

Figure 4.10: DVHs of inversely optimized plans from model (B) (six objectives) and
model (C) (18 objectives) for patient #1.
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(a) CTV.
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(b) PTV.
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(c) Bladder.
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(d) Rectum.
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(e) Left femoral head.
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(f) Right femoral head.

Figure 4.11: DVHs of inversely optimized plans from model (B) (six objectives) and
model (C) (18 objectives) for patient #2.
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(a) CTV.

0 10 20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Dose Volume Histogram

Dose (Gy)

F
ra

c
ti
o

n
a

l 
v
o

lu
m

e

 

 

18−obj

6−obj

(b) PTV.
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(c) Bladder.
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(d) Rectum.
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(e) Left femoral head.
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(f) Right femoral head.

Figure 4.12: DVHs of inversely optimized plans from model (B) (six objectives) and
model (C) (18 objectives) for patient #3.
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4.4.4 Implications for prostate cancer treatment design

As shown in the previous section, almost all objective function weights are placed on

bladder and rectum objectives. This result suggests that these objectives are the most

important ones in determining the final clinical treatment plan, and therefore, should not

receive the same weight as the femoral head objectives. However, whether the bladder or

rectum is more important depends on the patient, which reinforces the idea that no one

set of weights will be universally applicable to each patient. Classifying patients based

on their anatomical geometry (e.g., the size of the rectum and bladder or their proximity

to the prostate) may be an appropriate way to stratify patients. The inversely optimized

weights can be thought of as being proportional to the level of difficulty in achieving the

corresponding criteria, reflecting the anatomical geometry inherent in prostate cancer

cases. As shown in Figure 3.1, the bladder and rectum are in close proximity to the

target, overlapping the PTV, whereas the femoral heads are located farther from the

target. Determining a statistical relationship between objective function weights and

geometric quantities such as the distance between the prostate and OAR centroids, and

the volume of overlap between the prostate and OARs, would provide insight into the

impact of different geometries on treatment planning.

As an immediate consequence of the concentration of weight values in a few objectives,

it seems that current clinical treatment planning formulations may have more objective

functions than needed to generate acceptable treatment plans. This observation has

potential efficiency and effectiveness implications. From an operational efficiency point

of view, having a large number of objectives may result in a large parameter space to

search through when designing treatments. Because of the iterative nature of treatment

planning, it may take longer to design a treatment. Simplification of the treatment

planning process would be useful for new institutions starting prostate cancer treatments

and new treatment planners being trained in treatment planning. The benefit of faster

planning is amplified for adaptive radiation therapy (Yan et al., 1997), an increasingly
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popular paradigm where a plan is re-optimized regularly over the course of a multi-

week treatment (instead of the current paradigm of creating a single treatment that

is delivered daily over many weeks). Furthermore, having a smaller model may allow

us to take uncertainty into account (e.g., through stochastic programming or robust

optimization) without the resulting model being overly large. Also, a smaller number

of objectives makes it easier to construct and visualize the Pareto frontier, which is

becoming a popular approach clinically.

It could be argued that having a large number of objectives may compensate for the

sensitivity in the choice of weights, and thus it would be easier to find appropriate weights

compared to a simpler formulation. We found through computational experiments that

having more objectives did not reduce the sensitivity of the formulation to the objective

function weights, and could even increase its sensitivity. We generated weight vectors

by randomly perturbing each component of an inversely-optimized weight vector plus or

minus 0.1 (ensuring the resulting value was between 0 and 1), and then re-normalizing

the weight vector. We made this adjustment 100 times for each patient, solved models

(A), (B), and (C) with these new weights, and plotted the resulting DVHs. Results for

one patient are shown in Figures 4.13, 4.14, 4.15, and 4.16, for the bladder, rectum, left

femoral head, and right femoral head, respectively.

Each line represents one forward optimization run using a simulated α vector. The

thickness of the cloud of lines indicates how sensitive the dose distribution of the organ

is to the choice of weights. The cloud of lines for model (A) seems to be about the same

thickness or even thinner than the corresponding clouds for models (B) and (C). Similar

results were seen for the other patients. Here, placing even a small non-zero weight

on some of the objectives that were excluded from model (A) seems to result in more

sensitivity of the final treatment. We believe this observation reinforces the idea that

having more objective functions may result in undue emphasis being placed on objectives

that are not as critical to the ultimate quality of the treatment. However, it is also worth
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(a) Bladder, model (A) (4-obj)

0 10 20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Dose Volume Histogram

Dose (Gy)

F
ra

c
ti
o

n
a

l 
v
o

lu
m

e

 

 

Blad

(b) Bladder, model (B) (6-obj)
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(c) Bladder, model (C) (18-obj)

Figure 4.13: DVH clouds for the bladder from 100 sets of weights in the neighborhood
of the inversely optimized weights.
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(a) Rectum, model (A)
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(b) Rectum, model (B)
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(c) Rectum, model (C)

Figure 4.14: DVH clouds for the rectum from 100 sets of weights in the neighborhood of
the inversely optimized weights.
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(a) Left femur, model (A)
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(b) Left femur, model (B)
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(c) Left femur, model (C)

Figure 4.15: DVH clouds for the left femoral head from 100 sets of weights in the neigh-
borhood of the inversely optimized weights.
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(a) Right femur, model (A)
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(b) Right femur, model (B)
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(c) Right femur, model (C)

Figure 4.16: DVH clouds for the right femoral head from 100 sets of weights in the
neighborhood of the inversely optimized weights.
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noting that when comparing models (B) and (C), model (B) seems to be slightly more

sensitive. Overall, it seems that the number of objectives may not be an ideal indicator

of the sensitivity of the solution to the choice of weights. From the clinical effectiveness

point of view, having more objective functions could lead to a treatment that is less able

to satisfy clinical criteria, as shown in the previous section.

The sensitivity of the bladder and rectum, especially in the higher dose region, seems

to be much lower than that of the femoral heads, which is likely due to the proximity

of the bladder and rectum to the PTV. That is, the requirement to deliver a certain

dose to the PTV provides less flexibility to reduce dose to nearby organs (or organs

that overlap the PTV). Sensitivity is the subject of ongoing research. The results in

this chapter should be taken as a starting point for investigating potential improvements

in the treatment planning process, but more research is needed to clearly demonstrate

clinical impact in this area.

The results in Section 4.4.3 also highlight a connection with the equivalent uniform

dose (EUD) concept (Niemierko, 1997). The idea behind EUD is to encapsulate in a

single number a measure of the biological impact of a heterogeneous dose distribution.

The EUD is the equivalent dose that if delivered uniformly to a structure would have the

same biological impact as some heterogeneous dose distribution. Mathematically, given

a vector d whose components dv represent the dose to voxel v in some structure O, the

EUD is

EUD(d; a) =

(

1

|O|
∑

v∈O

dv
a

)
1
a

, (4.17)

where a is a structure-specific parameter that describes the biological dose-volume effect.

If a < 1, then lower doses are given greater weight and the EUD function is used for the

tumour and other target structures. If a ≥ 1, the EUD function is used for OARs. Note

that if a = 1, then the EUD is simply the mean dose. As a → ∞, the EUD approaches

the maximum dose.

Consider the following linearization of the EUD function (4.17) for OARs (Thieke
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et al., 2002):

EUDL(d;λ) = λdmean + (1− λ)dmax. (4.18)

Here, dmean and dmax represent the mean and maximum dose delivered to the OAR,

respectively, and λ ∈ [0, 1] is an OAR-specific parameter. It has been shown that by

optimizing EUDL instead of the original EUD function (4.17), comparable treatments can

be created (Thieke et al., 2002). Note that for a tumour or target structure, dmax would

be replaced by dmin, the minimum dose to the structure. The results in Section 4.4.3

show that by generalizing the idea of the EUDL beyond mean, minimum and maximum

doses, and allowing a convex combination of the mean dose objective and some linear

penalty objective, clinical quality treatments can still be generated.

4.5 Conclusion

This chapter adds to the growing literature on inverse optimization by developing a

new methodology to address the situation where the input data renders the inverse

problem infeasible, a topic that has received little attention to date. In the context

of a multiobjective forward optimization problem, given a feasible solution that is not

weakly efficient, our method determines objective function weights that make the given

solution approximately optimal (weakly efficient) with as small a duality gap as possible.

Our method generalizes the standard inverse optimization methodology and retains the

underlying complexity of the forward problem. Thus, there is little downside to adopting

the more generalized approach when solving inverse optimization problems in practice.

We also elucidate a connection between our generalized inverse optimization approach

and Pareto surface approximation techniques from the literature.

We applied our generalized inverse optimization method to historical prostate cancer

radiation therapy treatments in order to determine the objective functions and corre-

sponding weights that most heavily influenced the optimization of the treatments. Being
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able to demonstrate value in prostate IMRT provides a springboard to address more com-

plex sites such as head and neck cancers, where the number and importance of nearby

OARs increase significantly. Applying inverse optimization to historical data can help

identify a small, but relevant set of objectives for multiobjective IMRT planning methods,

such as Pareto surface navigation methods. Overall, we believe that inverse optimization

has potential to quantify the implicit preferences of decision makers in clinical settings

using historical data.

Many directions for future research exist. As an immediate future research direction

from the results of Section 4.4.3, incorporating the ability of determining the minimum

number of objectives that can capture the real model of data in the inverse optimization

framework may generalize the idea of stepwise regression, which aims to find indepen-

dent variables in a regression model that represent the data. In fact, topics of connecting

statistics and optimization have recently received a growing amount of attention in the

optimization community (e.g., Bertsimas and Mazumder (2014)). Also, the solution of

an inverse multiobjective optimization problem induces a prioritization of the objectives,

which may be used in a prioritized optimization approach such as preemptive or lexi-

cographic goal programming. Methods to efficiently explore or approximate the Pareto

surface can be augmented using inverse optimization to identify search directions that

focus on only the most relevant parts of the Pareto surface. Lastly, our method in this

chapter will be extended to general convex optimization, which will open the door for

much broader application.



Chapter 5

Predicting objective function

weights from patient anatomy in

prostate IMRT treatment planning

5.1 Introduction

Using clinical prostate treatment plans as input, in Chapter 4, the generalized inverse

optimization model determined that the vast majority of the weight was placed on ob-

jectives corresponding to the bladder and rectum, though the exact values varied from

patient to patient. Some patients were heavily rectum-weighted while others were heavily

bladder-weighted. This observation led to the question of whether there is a quantifiable

metric that differentiates patients who are more “rectum-weighted” and patients who

are more “bladder-weighted”. In particular, assuming other factors are controlled for

(same beam angles, same treatment planning team, etc.), it was hypothesized that the

underlying anatomy is responsible for the difference in weights. Thus, in this chapter

we aim to develop a quantifiable relationship between anatomy surrounding the prostate

and optimal objective function weight values.

76



Chapter 5. Predicting weights in prostate IMRT treatment planning 77

Figure 5.1: Illustration of two OARs of which relative spatial information can be obtained
via OVHs.

Recent studies have considered using patient anatomical information to control or

improve IMRT treatment quality, with the ultimate goal of automating the treatment

planning process (Lu et al., 2006; Wu et al., 2009, 2011; Moore et al., 2011; Chanyavanich

et al., 2011; Zhu et al., 2011; Yang et al., 2013). This type of treatment planning is often

referred to as “knowledge-based treatment planning”. These studies focused on the

relationship between the anatomy and achievable dose in order to analyze “what could

have been done” in the past treatments and “what will be possible” for future patients.

The overlap volume histogram (OVH) has recently been proposed to quantify the spatial

relationship between OARs and the planning target volume (PTV) (Wu et al., 2009). The

OVH computes fractional overlap volume of an OAR with PTV expansions of different

amounts and provides a way to compare the relative spatial information between different

patients. For example, an OAR that has more volume around the PTV will result in a

steeper OVH, which implies that the organ is at a higher risk and requires more careful

treatment than other organs (see Figures 5.1 and 5.2). In recent applications of the OVH,

given a new patient, the lowest dose delivered to historical patients who have OVHs as

low as the new patient was found for each OAR, and used as a dose objective for the

new patient (Wu et al., 2009, 2011; Yang et al., 2013).
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Figure 5.2: OVHs of the two organs shown in Figure 5.1.

In this chapter, we demonstrate the use of patient anatomy for determining objective

function weights for treatment planning as a proof of concept. We develop and validate

a statistical model that relates patient anatomy derived from the overlap volume of the

bladder and rectum with the expanded PTV to the optimal weight values derived from

the inverse optimization model. We then apply this model to determine how well it

predicts weights for different (out of sample) patients given their anatomy. We measure

the objective values and dosimetric properties of the treatment plans generated from

these predicted weights compared with the inversely optimized weights for each patient

and the weights averaged over all patients.

5.2 A weight prediction model

5.2.1 Inversely optimized weights

We consider the inverse optimization model (IOM) based on the forward optimization

formulation (3.1) with four objectives – the bladder, rectum, and left and right femoral

heads – described in Section 4.4 (i.e., Model (A)). We applied the IOM to the 24 patient
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Table 5.1: Weights for the four objectives determined by the IOM.

Pat.
IOM weights

Bladder Rectum L.Fem R.Fem
1 0.256 0.679 0.029 0.036
2 0.616 0.380 0.001 0.003
3 0.118 0.879 0.002 0.001
4 0.975 0.006 0.005 0.014
5 0.848 0.143 0.005 0.005
6 0.197 0.798 0.003 0.004
7 0.618 0.376 0.004 0.002
8 0.200 0.773 0.017 0.010
9 0.845 0.126 0.016 0.012
10 0.939 0.052 0.004 0.004
11 0.324 0.639 0.014 0.017
12 0.088 0.906 0.004 0.002
13 0.248 0.746 0.002 0.004
14 0.007 0.989 0.001 0.003
15 0.573 0.412 0.010 0.005
16 0.964 0.023 0.012 0.002
17 0.973 0.011 0.006 0.011
18 0.297 0.695 0.006 0.002
19 0.672 0.314 0.007 0.006
20 0.980 0.010 0.007 0.003
21 0.815 0.147 0.018 0.020
22 0.431 0.545 0.011 0.012
23 0.926 0.061 0.004 0.008
24 0.892 0.091 0.011 0.006
Average 0.565 0.418 0.009 0.008

datasets and obtained 24 different sets of weights, which we refer to as “IOM weights”.

Table 5.1 shows the IOM weights for all 24 patients as well as the average weight vector.

For the detailed information about the inverse optimization formulation and clinical data,

we refer the readers to Chapter 4.

5.2.2 Quantifying patient geometry

For each patient, we generated OVHs for the bladder and rectum at PTV expansion

distances from 0 cm to 2 cm. We then computed the ratio of the rectum overlap to

bladder overlap at a particular PTV expansion, which we hypothesize is correlated with
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the IOM weights in Table 5.1. We denote the overlap volume ratio at PTV expansion

distance X cm as “OVX”. Figures 5.3 and 5.4 show scatterplots of the rectum and

bladder weights, respectively, versus OVX at different values of X .

5.2.3 A regression model

Next, we developed a regression model that predicts the rectum weight given an OVX

value. Because of the consistently low IOM femoral head weights (see Table 5.1), we

fixed the left and right femoral head weights at 0.01. Due to its strong linear relationship

to the corresponding rectum weight (see Figure 5.5), the bladder weight was obtained

by subtracting the sum of the rectum weight and two femoral head weights from 1. We

assume that 0.01 is the minimum weight for both the bladder and rectum objectives.

Thus, the maximum weight for the bladder and rectum objectives is 0.97. An S-shaped

logistic function was used for the regression model, ensuring that the predicted rectum

weight is between 0.01 and 0.97. The functional form of the regression equation is

αR = 0.01 +
0.96

1 + e(−θ1 OVX+θ2)
, (5.1)

where αR denotes the rectum weight.

Since the OVX values are correlated in X , we choose to use only a single value of OVX ,

X = 0, 0.5, 1, 1.5, or 2.0, in the model. For each value of OVX and each patient, we

determined the optimal values of parameters θ1 and θ2 using the nls function in R with

the data from the other 23 patients (R Core Team, 2013). Then, for the given OVX value

and patient, we computed the sum of squared errors between the predicted weights and

the weights determined from the IOM. We repeated this computation for all 24 patients

and computed the total error. Using this leave-one-out approach, the sums of squared

errors for the models with predictors OV0, OV0.5, OV1, OV1.5, and OV2 were 1.31, 0.57,

0.42, 1.01, and 1.77, respectively. As a result, we chose OV1 as the independent variable
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Figure 5.3: Scatterplots of the rectum weight and rectum-bladder OVH point ratios at
different PTV expansion distances.
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Figure 5.4: Scatterplots of the bladder weight and rectum-bladder OVH point ratios at
different PTV expansion distances.
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Figure 5.5: Scatterplots of the bladder weight and rectum weight.

for model (5.1). We also tried many models with multiple OVX values as predictors, but

the results were similar to the case with only OV1.

Once the structure of the model was determined (using OV1 as the independent vari-

able), the predictive ability of the model was evaluated by comparing treatment plans gen-

erated from the IOM weights and treatment plans generated from the predicted weights.

Again, we used a leave-one-out approach to generate weights for an out-of-sample pa-

tient. For example, for patient #1, we trained the model using the other 23 patients to

determine values of θ1 and θ2. Then, we used the OV1 of patient #1 to determine the

“predicted weights”. For each patient, dose distributions were generated through inverse

planning using the treatment plan optimization formulation (3.1) with the individual’s

IOM weights (“IOM plan”), the individual’s predicted weights (“predicted plan”) and an

average of all 24 IOM weight vectors (“average plan”). We measured objective values,

V54.3 Gy and V70.0 Gy for both the bladder and rectum, and V54.3 Gy for the femoral

heads. The clinical acceptability criteria were V54.3 Gy ≤ 50% and V70.0 Gy ≤ 30% for
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the bladder and rectum, and V54.3 Gy ≤ 5% for the femoral heads.

5.3 Results

5.3.1 Prediction of weights

Because of the leave-one-out method employed, model (5.1) has different parameter values

θ1 and θ2 for each patient, as shown in Table 5.2. Similar θ1 and θ2 values across

the patients suggest that model (5.1) using OV1 is robust across different training sets.

Figure 5.6 shows the regression line with patient #1 left out, as an example.

Table 5.2 shows the ℓ2 distance between the IOM weight vector and the predicted

weight vector for all 24 patients, as well as the distance between the IOM weight vector

and the average weight vector. The difference between the IOM and predicted weights

was smaller for 20 out of the 24 patients, and the average difference was smaller by

roughly a factor of six.

5.3.2 Plan comparison: objective values

The IOM, predicted and average treatment plans were compared with respect to the

attained objective values. Table 5.3 shows the absolute differences in the rectum and

bladder objective values between the IOM and predicted treatment plans as well as

between the IOM and average treatment plans for all patients. For both the bladder

and rectum, the median difference between the IOM and predicted objective values was

smaller than the median difference between the IOM and average objective values. These

differences were statistically significant at the 95% level (p-values of 0.003 for both the

bladder and rectum) according to a one-sided sign test (Walpole et al., 2006).
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Table 5.2: Summary of predicted weights.

Pat.
Regress. params.

OV1
Predicted weights Weight comparison

θ1 θ2 Bladder Rectum L.Fem R.Fem ||αI −α∗||2 ||αI − ᾱ||2
1 -10.600 9.720 1.263 0.163 0.817 0.010 0.010 0.029 0.165
2 -10.112 9.261 1.093 0.487 0.493 0.010 0.010 0.030 0.004
3 -10.060 9.166 1.620 0.018 0.962 0.010 0.010 0.017 0.413
4 -9.991 9.100 0.612 0.958 0.022 0.010 0.010 0.001 0.337
5 -10.119 9.214 0.856 0.877 0.103 0.010 0.010 0.003 0.158
6 -9.775 8.880 1.232 0.238 0.742 0.010 0.010 0.005 0.280
7 -10.212 9.276 1.002 0.695 0.285 0.010 0.010 0.014 0.005
8 -10.404 9.505 1.345 0.091 0.889 0.010 0.010 0.025 0.260
9 -10.071 9.172 0.854 0.877 0.103 0.010 0.010 0.002 0.164
10 -9.500 8.685 0.954 0.770 0.230 0.010 0.010 0.067 0.273
11 -10.525 9.639 1.222 0.223 0.757 0.010 0.010 0.025 0.105
12 -10.062 9.168 1.513 0.028 0.952 0.010 0.010 0.006 0.466
13 -9.609 8.685 1.161 0.379 0.601 0.010 0.010 0.038 0.209
14 -9.595 8.710 1.353 0.107 0.873 0.010 0.010 0.023 0.638
15 -10.824 9.823 0.933 0.816 0.164 0.010 0.010 0.121 0.000
16 -9.846 8.970 0.820 0.897 0.083 0.010 0.010 0.008 0.314
17 -9.967 9.078 0.703 0.944 0.036 0.010 0.010 0.002 0.332
18 -9.774 8.815 1.112 0.483 0.497 0.010 0.010 0.074 0.149
19 -9.947 9.075 1.033 0.623 0.357 0.010 0.010 0.004 0.022
20 -9.718 8.856 0.852 0.871 0.109 0.010 0.010 0.022 0.338
21 -9.707 8.907 1.024 0.627 0.353 0.010 0.010 0.078 0.135
22 -10.737 9.702 1.000 0.719 0.261 0.010 0.010 0.164 0.035
23 -9.795 8.926 0.878 0.851 0.129 0.010 0.010 0.010 0.257
24 -9.564 8.750 0.976 0.716 0.264 0.010 0.010 0.061 0.213

Average 0.035 0.219

αI , α∗, and ᾱ denote the IOM weights, predicted weights, and average IOM weights, respectively.
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Table 5.3: The absolute differences in objective values between the IOM, predicted, and
average treatment plans.

Bladder Rectum
Pat. |IOM-Pred| |IOM-Avg| |IOM-Pred| |IOM-Avg|
1 0.27 0.50 0.43 0.20
2 0.15 0.11 0.02 0.01
3 0.85 0.34 0.01 0.31
4 0.03 0.06 0.23 0.64
5 0.09 0.48 0.16 0.24
6 0.05 0.23 0.09 0.33
7 0.07 0.08 0.13 0.04
8 0.18 0.35 0.16 0.29
9 0.15 0.19 0.05 0.61
10 0.09 0.20 0.18 0.29
11 0.01 0.32 0.23 0.05
12 0.58 0.26 0.03 0.13
13 0.11 0.24 0.05 0.33
14 0.44 0.78 0.09 0.27
15 0.06 0.02 0.19 0.01
16 0.06 0.29 0.30 0.50
17 0.03 0.40 0.37 1.28
18 0.09 0.09 0.10 0.24
19 0.05 0.32 0.01 0.16
20 0.08 0.33 0.37 0.68
21 0.13 0.07 0.44 0.61
22 0.01 0.04 0.05 0.06
23 0.09 0.37 0.11 0.47
24 0.07 0.26 0.60 1.04
Median 0.09 0.26 0.14 0.29
Mean 0.16 0.26 0.18 0.37
SD 0.19 0.18 0.16 0.32
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Figure 5.6: Regression line with patient #1 left out.

5.3.3 Plan comparison: OAR sparing

The actual dose distributions resulting from the weights provide a more clinically relevant

interpretation of the weights. Figures 5.7 and 5.8 compare Vx Gy values achieved in the

IOM, predicted, and average treatment plans. For all patients, the difference between the

metrics achieved in the IOM and predicted plans was less than 5 percentage points for

both the bladder and rectum (and less than 4 percentage points for all but one patient).

The predicted V54.3 Gy values for the femoral heads were also within 5 percentage points

of the IOM V54.3 Gy values, except for one patient. V78.0 Gy and V74.1 Gy for the

CTV and PTV, respectively, were below 1% for all patients. It can be seen in Figures 5.7

and 5.8 that for most of the patients, the bladder and rectum Vx Gy values for the

predicted plan are closer than the average plan to the IOM plan. For both bladder

criteria, the absolute difference between the IOM and predicted plans was smaller than

the absolute difference between the IOM and average plan for 18 patients. For both

rectum criteria, 19 patients exhibited a smaller absolute difference between the IOM and
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predicted plans.

5.3.4 Plan comparison: DVHs

To examine the similarity of the overall dose distributions, DVHs for the IOM and pre-

dicted treatment plans for each individual patient were compared. Figures 5.9, 5.10, 5.11,

and 5.12 show the DVH comparison for patients #1, 3, 4, and 22, respectively. These

four patients are representative of various anatomical geometries measured by OVH1.

DVHs for the IOM and predicted treatment plans were also compared to those for other

Pareto optimal treatment plans in order to verify their relative proximity with respect

to other achievable treatment plans. A thin solid line in Figures 5.9, 5.10, 5.11, and 5.12

corresponds to one Pareto optimal treatment plan. The DVH cloud generated by the

thin lines represents a set of Pareto optimal dose distributions for each OAR. We gen-

erated the Pareto optimal treatments by solving the forward optimization problem (3.1)

with 20 different normalized weight vectors, with components between 0.005 and 0.985.

Figures 5.9, 5.10, 5.11, and 5.12 show that the predicted treatment plan is more similar

to the IOM plan than most of the other Pareto optimal treatment plans. The agreement

of the femoral head DVHs between the predicted and IOM treatment plans was not as

strong, but still acceptable in almost all patients. Because the vast majority of the weight

was placed on the bladder and rectum objectives for each patient, some fine tuning of

the femoral head weights might improve the femoral head DVHs without substantially

affecting the bladder and rectum DVHs. For almost all patients, femoral head weights

of 0.01 seemed to suffice. Note that the DVH clouds do not represent a complete set of

Pareto optimal set treatments; our purpose is simply to visualize the similarity between

the IOM and predicted treatment plans compared to other optimized treatment plans.
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Figure 5.7: Comparison of Vx Gy values for the IOM, predicted, and average treatment
plans for the bladder.
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Figure 5.8: Comparison of Vx Gy values for the IOM, predicted, and average treatment
plans for the rectum.
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Figure 5.9: Comparison of DVHs from the IOM and the predicted weights within an
approximate Pareto optimal set: patient #1
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Figure 5.10: Comparison of DVHs from the IOM and the predicted weights within an
approximate Pareto optimal set: patient #3
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(a) Patient #4: Bladder

0 10 20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Dose (Gy)

 

 

Achievable set

IOM

Predicted

(b) Patient #4: Rectum

0 10 20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Dose (Gy)

 

 

Achievable set

IOM

Predicted

(c) Patient #4: Left femoral head
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Figure 5.11: Comparison of DVHs from the IOM and the predicted weights within an
approximate Pareto optimal set: patient #4
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(a) Patient #22: Bladder
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(c) Patient #22: Left femoral head
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Figure 5.12: Comparison of DVHs from the IOM and the predicted weights within an
approximate Pareto optimal set: patient #22
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5.4 Discussion

Since our model “learns” from historical treatments plans, the model should acquire more

expertise over time as more patient data is used to train the model. Furthermore, treat-

ment plans obtained from the predicted weights will exhibit a trade-off preference that

is consistent with historical treatments. Thus, such a prediction model may have value

as a starting point for treatment planning by reducing variability in treatment quality

and improve standardization of the planning process without sacrificing personalization.

Personalization is still highly relevant because only the initial weights are derived from

the statistical model, which would be followed by the clinical inverse planning process.

Because the objective values and dose metrics achieved by the predicted weights are

similar to those achieved by the IOM weights, predicted weights may provide a starting

point for a priori treatment planning approaches. The similarity in the objective values

suggests that predicted weights may also be useful in a posteriori approaches that explore

the surface of Pareto optimal treatment plans (i.e., the set of non-dominated treatment

plans in the objective space) (Craft et al., 2006).

One interpretation of the predicted weights is that they focus on the OAR that is

harder to spare. Consider patient #3, who had the highest value of OV1. One might

expect that it would be harder to generate a dose distribution that satisfies the rectum

criteria for this patient. Despite such a high predicted weight for the rectum objective,

the rectum metrics achieved by the predicted weight for this patient are much higher

(i.e., more likely to violate the acceptability limits) than the achieved bladder metrics,

whose corresponding weight was very low. Similar observations can be made for other

patients with high OV1 values (e.g., #8, 12, and 14). On the other hand, patient #4

had the smallest OV1 value and the achieved Vx Gy values for the rectum were very

low (similar for other patients with low OV1 values such as #16 and 17). Thus, one can

interpret the prediction model as simultaneously determining how difficult it is to spare

a certain OAR based on the patient anatomy and determining the appropriate weight to
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accomplish this sparing.

Figure 5.13 shows the highest (i.e., worst) values of Vx Gy between the bladder and

rectum for the IOM, predicted, and average treatment plans. For most of the patients

(22 patients for V54.3 Gy and 19 patients for V70.0 Gy), the highest value comes from

the average treatment plan. In other words, using average weights puts more patients at

risk of violating a clinical acceptability criterion. This observation again suggests that

the treatment planners who created the original plans had put more emphasis on sparing

the “harder to spare” of the two primary OARs, and the predicted weights captured this

clinical intention based on each patient’s geometry.

If the predicted weights are similar to the IOM weights, then the resulting objective

values and dose distributions will of course be similar. When the weights are not sim-

ilar, however, there are some patients who still have similar objective values and dose

distributions. The four patients who had the largest (absolute) deviation between the

predicted and IOM rectum weights were patients #10, 15, 21, and 22. However, for these

patients, the dose distributions generated from the predicted weights were still similar to

those from the IOM weights (see Figures 5.7 and 5.8; also see Figures 5.12(a) – 5.12(d)

for patient #22). Notice in Table 5.2 that these four patients all had OV1 values close to

1 (0.95, 0.93, 1.02, and 1.00, respectively). That is, about the same amount of bladder

and rectum overlapped the PTV at a 1 cm expansion. For such cases, it may be that the

final dose distribution is less sensitive to the exact weight values. Sensitivity of the dose

distribution to weights and patient anatomy is an important topic for future study and

likely depends on the tumour site.

The approach described in this chapter has some limitations. The primary limitation

is that the regression model currently only applies to the case where one (or two via

normalization) weight is to be predicted. This limitation may be acceptable for a site

like prostate with minimal anatomic variability, but a site that involves more complex

trade-offs like head-and-neck may require a multinominal regression model where multiple
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Figure 5.13: Comparison of the worst Vx Gy values for the IOM, predicted, and average
treatment plans.
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weights are simultaneously predicted. Of course, such a model would require a much

larger database of patients to train the model. We also note that the IOM weights would

not be the same for different types of objective functions. That is, if we change the

functional forms of the objective functions used in the inverse planning model, we may

need to re-examine the geometrical factors that relate to the weight values and re-train a

new prediction model. Similarly, the weights would also change given different treatment

plan geometries (i.e., the number of beams, beam orientations, etc.). Lastly, the overlap

volume of OARs with the PTV that we used as a predictor may not be able to detect

complicated spatial characteristics of the anatomy. For example, two OARs that have

the same overlap volume may be exposed to significantly different amount of radiation

due to beam angles, which may lead to significantly different OAR weight values.

Overall, our goal in this chapter is to demonstrate a proof of concept, which we believe

this simple model achieves for the prostate site. The results presented should be taken as

a starting point for knowledge-base, geometry-driven weight determination in treatment

planning, but further study with a larger patient database is needed to address complex

sites with many more objectives.

5.5 Conclusion

In this chapter, we developed a statistical model to relate patient anatomy to weight

values used in IMRT treatment planning for prostate cancer. In particular, we developed

and validated an S-shaped relationship between the overlap volume ratio of the rectum to

the bladder with a 1 cm PTV expansion and an optimal weight value of a penalty-based

objective function for the rectum. By applying our model to 24 patients, we found that

dose distributions generated from weights predicted by the model were similar to those

generated by the optimal weights determined from a previously developed inverse opti-

mization method. We found that the predicted weights outperform the average weights
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and we believe that the predicted weights better quantify the treatment planner’s original

intention.

This study provides a proof of concept of geometry-driven weight determination,

which may find application in various MCO approaches to treatment planning. The

weights could be used as an informed starting point for the treatment planning process,

which would hopefully converge more quickly as a result. The weights may also provide

information about the most clinically relevant region of the Pareto surface to explore,

again possibly reducing the search time to determine a final treatment plan. Overall, our

model demonstrates that patient anatomy can be used to predict appropriate weights

for treatment planning, which has implications for both standardization and personaliza-

tion. From the standardization perspective, the model ensures that patients with similar

anatomies will start off with similar weight values in the treatment planning process.

However, because a full inverse planning process is still carried out with these weight

values, the final treatment plan is still personalized for the patient at hand.



Chapter 6

Preference preservation in inverse

multiobjective convex optimization

6.1 Introduction

To overcome noisy observations that cause the standard inverse optimization models to

be ill-posed, Keshavarz et al. (2011) and Chapter 4 of this thesis proposed generaliza-

tions of existing inverse models of Iyengar and Kang (2005) and Ahuja and Orlin (2001),

respectively. Keshavarz et al. (2011) imputes the parameters of a convex objective func-

tion to make an input solution approximately optimal. Solutions that are candidates

to be optimal will be optimal under the imputed parameters, while solutions that are

not candidates to be optimal will be suboptimal under the imputed parameters. Instead

of enforcing the exact Karush-Kuhn-Tucker (KKT) conditions like Iyengar and Kang

(2005), Keshavarz et al. (2011) introduce a vector of “residuals” in the KKT conditions.

By minimizing these residuals, the inverse problem determines parameters that make a

given solution “minimally” suboptimal. The objective function was parameterized as a

weighted linear combination of pre-specified convex functions, with the weights being the

parameters being imputed. Thus, this problem can be seen as an inverse multiobjective

100
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optimization problem.

In Chapter 4, we considered inverse multiobjective linear optimization. In the linear

case, the KKT residuals amount to a scalar that measures the duality gap induced by a

given solution: a zero duality gap for a feasible solution on the boundary of the criterion-

space polyhedron and a nonzero duality gap for interior or exterior points. It was shown

that solving the residual-based inverse problem with a non-boundary point is equiva-

lent to projecting the non-boundary point on to the boundary and solving the resulting

standard inverse problem. The induced projection maintained the relative importance of

each objective as encoded by the given solution in the overall weighted objective function,

which we refer to as the “preference ordering” in this chapter. In other words, the ob-

jective values achieved by the inversely optimized weights were adjusted proportionally

(component-wise) from the objective values corresponding to the given solution.

In multiobjective optimization, the decision maker’s preferences are often represented

by weights in the objective function. A solution that is generated by solving a multiob-

jective (forward) optimization problem implicitly encodes these preferences. Therefore,

when inverse optimization is applied to a multiobjective problem and there are multiple

sets of weight vectors that are optimal for the inverse problem, it may be desirable to

choose a weight vector that maintains the initial preference ordering as closely as possible.

Consider the following example from radiation therapy treatment planning for cancer,

which is a multiobjective problem. The variables are the intensities of the beams that

deliver radiation while the parameters include the weights of the conflicting objectives

(i.e., spare healthy organs, irradiate the tumor, etc.). A historical treatment that was

clinically acceptable and delivered to a patient encodes the final trade-offs between the

objectives (e.g., organs) that the oncologist is willing to make. Thus, inversely optimized

weights derived from such historical treatments should maintain those preferences if they

are used to treat similar patients in the future (see Chapter 5).

In this chapter, we bring together the ideas of Keshavarz et al. (2011) and Chap-
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ter 4 of this thesis to develop a general inverse optimization model for multiobjective

convex optimization that (1) is convex, (2) accommodates any input solution, includ-

ing one that cannot be optimal for the forward problem, and (3) determines a nonzero

weight vector that maintains the preference ordering of the input solution. We propose

a linear approximation to the convex model that can approximately preserve the pref-

erence ordering, and demonstrate that a successive linear programming algorithm can

bridge the exact and approximate methods. We elucidate a connection between our ap-

proach and existing inverse models, and propose a general inverse convex programming

framework that encompasses many of the inverse models discussed. Lastly, we present

computational experiments that demonstrate our models using data from prostate cancer

radiation therapy.

6.2 Inverse optimization methodology

We first define a canonical multiobjective convex optimization problem as the forward

problem. Then, we briefly review the inverse optimization models from Iyengar and Kang

(2005) and Keshavarz et al. (2011).

6.2.1 Preliminaries

Let fk : Rn → R, k = 1, . . . , K and gl : R
n → R, l = 1, . . . , L be convex functions. Let

x ∈ R
n,A ∈ R

m×n, and b ∈ R
m. We define the forward optimization problem as

FOP(α) : minimize
x

K
∑

k=1

αkfk(x)

subject to gl(x) ≤ 0, l = 1, . . . , L,

Ax = b,

(6.1)
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where αk is the weight for the k-th objective function. Let X be the feasible region of

problem (6.1). We assume α ∈ R
K
+\{0}, fk(x) > 0, k = 1, . . . , K for x ∈ X, and A has

full rank. We also assume that Slater’s condition holds (Boyd and Vandenberghe, 2004).

We define Ω(α) to be the set of optimal solutions to FOP(α) and Ω :=
⋃

α∈RK
+ \{0}Ω(α).

A solution x ∈ X is weakly Pareto optimal if there is no other y ∈ X such that fk(y) <

fk(x), for all k = 1, . . . , K. On the other hand, a solution x ∈ X is strictly Pareto optimal

if there is no other y ∈ X such that fk(y) ≤ fk(x), for all k = 1, . . . , K. It is known

that for a convex multiobjective optimization problem, the set Ω consists of all (both

weakly and strictly) Pareto optimal solutions (Ehrgott, 2005). Throughout this chapter

references to “Pareto optimal solutions” include both weak and strict types, unless a

specific type is specified. For any S ⊆ X, we write f(S) = {(f1(x), . . . , fK(x)) |x ∈ S}.

We denote f(X) as the feasible region in criterion space and the set f(Ω) as the Pareto

surface.

6.2.2 Inverse conic optimization by Iyengar and Kang (2005)

We begin by illustrating the approach of Iyengar and Kang (2005) using our forward

problem (6.1). Given a solution x̂ ∈ X, a weight vector that makes x̂ optimal can be

found by solving the following problem:

minimize
α,σ,π

0

subject to

K
∑

k=1

αk∇xfk(x̂) +

L
∑

l=1

σl∇xgl(x̂)−A′π = 0,

σlgl(x̂) = 0, l = 1, . . . , L,

α ≥ 0, σ ≥ 0.

(6.2)

Constraints in problem (6.2) correspond to the KKT conditions for the forward prob-

lem (6.1) with Lagrange multipliers σ and π. If α∗ is an optimal solution that arises from

solving (6.2), then x̂ ∈ Ω(α∗). Although an objective function ||α − α̂|| was included
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in Iyengar and Kang (2005), where α̂ is some given weight vector, we omit it here and in

subsequent inverse formulations to allow for an objective of minimizing “residuals” to be

introduced. Note that an arbitrary x̂ need not be in Ω, in which case formulation (6.2)

returns α∗ = 0 as the unique solution (see Example 6.2.1).

Example 6.2.1 Consider the following bi-objective convex optimization problem:

minimize
x

α1f1(x1, x2) + α2f2(x1, x2)

subject to (x1 − 2)2 + (x2 − 2)2 − 1 ≤ 0,

(6.3)

where f1(x1, x2) = 4x2
1 + x2

2 and f2(x1, x2) = x2
1 + 4x2

2. Constraints of the corresponding

inverse problem given an input solution x̂ are

(4α1 + α2)x̂1 + (x̂1 − 2)σ = 0,

(α1 + 4α2)x̂2 + (x̂2 − 2)σ = 0,

((x̂1 − 2)2 + (x̂2 − 2)2 − 1)σ = 0,

α ≥ 0, σ ≥ 0.

(6.4)

Consider the following three solutions: x̂a = ((4 −
√
2)/2, (4 −

√
2)/2) ∈ Ω, x̂b =

(1.7, 1.3) ∈ X \Ω, and x̂c = (1, 1) 6∈ X (see Figure 6.1). For x̂a, constraints (6.4) become

(4−
√
2)(4α1 + α2)−

√
2σ = 0,

(4−
√
2)(α1 + 4α2)−

√
2σ = 0,

α ≥ 0, σ ≥ 0,

(6.5)
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Figure 6.1: Illustration of Example 6.2.1

which hold when α1 = α2 ≥ 0. For x̂b, constraints (6.4) become

1.7(4α1 + α2)− 0.3σ = 0,

1.3(α1 + 4α2)− 0.7σ = 0,

α ≥ 0, σ = 0,

(6.6)

which are satisfied only when α1 = α2 = 0. For x̂c, constraints (6.4) become

(4α1 + α2)− σ = 0,

(α1 + 4α2)− σ = 0,

α ≥ 0, σ = 0,

(6.7)

which again are satisfied only when α1 = α2 = 0.

6.2.3 Objective function imputation by Keshavarz et al. (2011)

Keshavarz et al. (2011) explicitly considered noise or modeling errors in imputing an

objective function from a convex model so that the observed data from an unknown,

complex system is as consistent as possible with the proposed model. They relaxed the
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KKT conditions by allowing positive “residuals,” which are then minimized by solving

the following problem:

KES(x̂) : minimize
α,σ,π,δ,γ,ρ

φ(δ,γ,ρ)

subject to

K
∑

k=1

αk∇xfk(x̂) +

L
∑

l=1

σl∇xgl(x̂)−A′π = δ,

σlgl(x̂) = γl, l = 1, . . . , L,

πj(a
′
jx̂− bj) = ρj , j = 1, . . . , m,

α1 = 1,

α ≥ 0, σ ≥ 0,

(6.8)

where a′
j denotes the j-th row of A and φ(δ,γ,ρ) = 0 if and only if δ = 0, γ = 0, and

ρ = 0 (e.g., φ(δ,γ,ρ) = ||δ||22+||γ||22+||ρ||22). The fourth constraint ensures that α = 0 is

not a feasible solution and serves to implicitly normalize the resulting weight vector. The

original version of formulation (6.8) in Keshavarz et al. (2011) accommodated multiple

input data points each with their own residuals, but we simply illustrate their method

with a single data point x̂. The extension to multiple input data points is straightforward.

The original model also excluded the ρ residual as the focus was on x̂ ∈ X, but we include

it here to emphasize the applicability of the model to points x̂ 6∈ X. As noted in their

paper, the choice of φ impacts the solution. However, how the weights are normalized

can also have a large impact, as we demonstrate later.

In multiobjective optimization applications, a solution x̂ ∈ Ω implicitly encodes a

preference ordering among the objectives, namely the weight vector that generated it.

Thus, for x̂ 6∈ Ω it may be desirable for the inverse formulation to derive weights that not

only are as consistent as possible with the observation x̂ (i.e., minimized residuals), but

also preserve the preference ordering as much as possible (i.e., a particular projection on

to Ω).
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Example 6.2.2 We revisit Example 6.2.1 and apply formulation (6.8) with x̂b:

minimize
α,σ,δ,γ

δ21 + δ22 + γ2

subject to 1.7(4α1 + α2)− 0.3σ = δ1,

1.3(α1 + 4α2)− 0.7σ = δ2,

− 0.42σ = γ,

α1 = 1,

α ≥ 0, σ ≥ 0.

(6.9)

The optimal solution is (α∗
1, α

∗
2, σ

∗, δ∗1, δ
∗
2, γ

∗) = (1, 0, 0, 6.8, 1.3, 0). The correspond-

ing FOP(α∗) generates the optimal solution x∗ = (1.067, 1.641). Comparing f(x̂b) =

(13.250, 9.650) to f(x∗) = (7.244, 11.910) we see that preferences are not maintained:

one objective value decreases while the other increases. Furthermore, if the normal-

ization constraint is changed to α2 = 1, then the optimal weight vector changes to

α∗ = (0, 1) and the new optimal solution is x∗ = (1.641, 1.067) with objective vector

f(x∗) = (11.910, 7.244), which is completely opposite to the previous case.

6.2.4 A preference-preserving inverse optimization model

Our goal is to formulate a convex inverse model that determines a weight vector α∗

and corresponding optimal solution x∗ to FOP(α∗) that preserve the preference ordering

encoded by a given x̂. We begin with a definition to formalize our idea of preference

preservation.

Definition 6.2.1 (Perfect relative preference preservation) A solution x perfectly

preserves the relative preference ordering encoded by x̂ if for some ǫ > 0, fk(x) = ǫfk(x̂)

for all k = 1, . . . , K. We will also use this definition to describe α, if a preference-

preserving solution x is in the set Ω(α).
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Definition 6.2.1 says that the objective values achieved by a preference-preserving x

are adjusted component-wise by the same relative amount from those achieved by x̂.

Geometrically, this definition means that f(x) lies on the line joining f(x̂) and the origin.

Since our focus is on identifying preference-preserving Pareto optimal solutions, we are

interested in identifying where the line joining f(x̂) and the origin intersects the Pareto

surface, if at all.

The following formulation, which is called the inverse optimization problem (IOP),

provides a necessary and sufficient condition for whether there exists a preference-preserving

x∗ ∈ Ω:

IOP(x̂) : minimize
ǫ,x

ǫ

subject to ǫfk(x̂) ≥ fk(x), k = 1, . . . , K,

gl(x) ≤ 0, l = 1, . . . , L,

Ax = b.

(6.10)

Theorem 6.2.1 There exists a solution in Ω that perfectly preserves the preference or-

dering encoded by x̂ if and only if there exists a solution (ǫ∗,x∗) that is optimal for IOP(x̂)

with the first K constraints being tight.

Proof: The part of the result related to preference preservation follows directly from the

definition. So the proof focuses on the optimality portion.

(⇐) Let (ǫ∗,x∗) be an optimal solution to IOP(x̂), which implies x∗ ∈ X. All that

remains is to prove x∗ ∈ Ω. Let α ≥ 0, σ ≥ 0, and π be the Lagrange multipliers asso-

ciated with the first, second, and third sets of constraints of problem (6.10), respectively.

Consider the Lagrangian associated with problem (6.10):

L(α,σ,π, ǫ,x) = ǫ+

K
∑

k=1

αk(fk(x)− ǫfk(x̂)) +

L
∑

l=1

σlgl(x)− π′(Ax− b). (6.11)

A solution (ǫ∗,x∗) is optimal for problem (6.10) if and only if there exists (α,σ,π) ∈
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R
K
+ × R

L
+ × R

m that satisfies the following system of equations:

1−
K
∑

k=1

αkfk(x̂) = 0, (∇ǫL(α,σ,π, ǫ∗,x∗) = 0)

K
∑

k=1

αk∇xfk(x
∗) +

L
∑

l=1

σl∇xgl(x
∗)−A′π = 0, (∇xL(α,σ,π, ǫ∗,x∗) = 0)

αk(ǫ
∗fk(x̂)− fk(x

∗)) = 0, k = 1, . . . , K,

σlgl(x
∗) = 0, l = 1, . . . , L.

(6.12)

The second and fourth sets of equations in (6.12) are equivalent to the KKT conditions

for the original forward optimization problem (6.1). Thus, if a solution x∗ is optimal for

problem (6.10), x∗ ∈ Ω.

(⇒) Let (ǫ∗,x∗) satisfy ǫ∗f(x̂) = f(x∗) and x∗ ∈ Ω. The KKT conditions for the

forward problem imply there exists (α∗,σ∗,π∗) that satisfies the second and fourth set

of equations in (6.12). What remains is to show that the first and third set of equations

in (6.12) are also satisfied. The third set of equations is satisfied since x∗ is preference-

preserving. The first equation can be satisfied through a re-scaling of α∗, which is

possible since α∗ cannot be identically zero (by complementary slackness). Thus, (ǫ∗,x∗)

is optimal for (6.10). �

The previous result implies that an optimal x∗ to (6.10) is also optimal for the forward

problem. The next result identifies the optimal weight vector that x∗ is optimal with re-

spect to. The proof is omitted because it follows directly from the proof of Theorem 6.2.1.

Corollary 6.2.1 Let α∗ be a vector of optimal Lagrange multipliers associated with the

first set of constraints in formulation (6.10). An optimal solution x∗ to (6.10) satisfies

x∗ ∈ Ω(α∗).

Thus, solving IOP(x̂) can simultaneously identify a preference-preserving x∗ ∈ Ω as

well as a corresponding optimal weight vector α∗. Note that the complementary slackness
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conditions associated with problem (6.10) provide us with a simple and intuitive condition

for when preferences are perfectly preserved.

Corollary 6.2.2 Let x∗ be an optimal solution to IOP(x̂) and α∗ be a vector of optimal

Lagrange multipliers associated with the first set of constraints in formulation (6.10). If

α∗
k > 0 for all k = 1, . . . , K, then x∗ perfectly preserves the relative preference ordering

encoded by x̂.

It is also well known from multiobjective optimization that if α∗ > 0, then solving

FOP(α∗) generates a strictly Pareto optimal solution (Ehrgott, 2005). Thus, when

α∗ > 0, we are guaranteed a preference-preserving, strictly Pareto optimal solution.

The following example illustrates that if there is at least one k such that α∗
k = 0, then

there may or may not be a solution in Ω that can achieve perfect preference preservation.

Example 6.2.3 Consider Example 6.2.1 again and two new solutions x̂d = (1.725, 1.121)

and x̂e = (1.789, 1.096). Figure 6.2 shows the feasible region and set of Pareto optimal

solutions in criterion space (i.e., f(X) and f(Ω), respectively), along with the two points

f(x̂d) = (13.160, 8.004) and f(x̂e) = (14.000, 8.004). Solving IOP(x̂d) and IOP(x̂e) both

return the same optimal weight vector α∗ = (0, 1) and the same optimal solution x∗ = x̄d.

It is clear from Figure 6.2 that x̄d perfectly preserves the preferences encoded by x̂d but

not x̂e. Because f(x̄e) 6∈ f(Ω), there is no non-zero weight vector that makes x̄e optimal

to the forward problem.

Example 6.2.3 illustrates the intuitive fact that when a given x̂ is sufficiently “inferior”

with respect to a particular objective k, the optimal weight vector determined from

inverse optimization will return α∗
k = 0. In this case preferences will not be perfectly

preserved. However, preferences will still be preserved for the objectives with positive

weight.
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Figure 6.2: Illustration of Example 6.2.3

Instead of maintaining a relative preference ordering among the objective values, an

absolute preference ordering can be maintained through the following formulation:

minimize
ǫ,x

ǫ

subject to ǫ ≥ fk(x)− fk(x̂), k = 1, . . . , K,

gl(x) ≤ 0, l = 1, . . . , L,

Ax = b.

(6.13)

Formulation (6.13) aims to maintain the absolute difference between fk(x̂) and fk(x
∗)

for all k = 1, . . . , K. Analogous results to Theorem 6.2.1 and Corollaries 6.2.1 and 6.2.2

hold for formulation (6.13). We focus on the relative case (i.e., formulation (6.10)) in the

remainder of this chapter.

Next, we provide a linear approximation to formulation (6.10) that serves as the

foundation for a specialized solution methodology. The linear approximation also helps

elucidate connections with other models as we will discuss in the next section. The

linearized inverse optimization problem (LIOP) can be formulated by linearizing the first
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two sets of constraints of (6.10) around some point x̃:

LIOP(x̂, x̃) : minimize
ǫ,x

ǫ

subject to ǫfk(x̂) ≥ fk(x̃) +∇xfk(x̃)
′(x− x̃), k = 1, . . . , K,

gl(x̃) +∇xgl(x̃)
′(x− x̃) ≤ 0, l = 1, . . . , L,

Ax = b.

(6.14)

Since fk and gl are convex, it is straightforward to see that formulation (6.14) forms

an outer approximation – and thus provides a lower bound – to formulation (6.10). If

x̃ = x∗, where x∗ is an optimal solution to problem (6.10), then an optimal dual solution

α∗ to (6.14) is also an optimal dual solution to (6.10). Unfortunately, x∗ is not known a

priori. One option is simply to solve (6.14) with x̃ = x̂ (i.e., solve LIOP(x̂,x̂); from here

on out we refer to (6.14) with x̃ = x̂ as LIOP(x̂)). Note that linearization may render

problem (6.14) unbounded. In this case, a trust-region x ∈ [x̂ − κe, x̂ + κe] for some κ

can be added (Bazaraa et al., 2006).

Building on this idea, since (6.14) is a first-order approximation of (6.10), we can

employ a successive linear programming (SLP) algorithm (Zhang et al., 1985; Bazaraa

et al., 2006) to solve formulation (6.10). This algorithm repeatedly solves the linear prob-

lem (6.14) using a trust region approach, generating an optimal solution x∗
i in iteration

i that is used as the input vector x̃ in iteration i + 1. In Section 6.4, we implement the

SLP algorithm from Zhang et al. (1985). We refer the reader to that paper for details of

the algorithm and a proof of convergence.

We focus on the linearization of problem (6.10) because of the connection to the

model of Keshavarz et al. (2011) it provides, and also because the linearized problem and

SLP algorithm work well for our quadratic numerical examples in Section 6.4. However,

we note that for general convex problems, successive quadratic programming may be a

better choice (Bazaraa et al., 2006).
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6.3 Relationships between inverse optimization mod-

els

The linearization described in the previous subsection provides a nice bridge between

formulation (6.10) and the model of Keshavarz et al. (2011). First, note that if x̂ ∈ Ω,

then an optimal α∗ derived from one of IOP(x̂), LIOP(x̂), or KES(x̂) is optimal for all of

them. If fk, k = 1, . . . , K and gl, l = 1, . . . , L are linear, then IOP(x̂) and LIOP(x̂) are

equivalent. The next result draws an equivalence between LIOP(x̂) and KES(x̂), thus

illustrating how the KES model can be modified to retain a given preference ordering.

Proposition 6.3.1 KES(x̂) is equivalent to LIOP(x̂) if δ = 0, φ(δ,γ,ρ) = −γ ′e+ ρ′e,

and α is normalized by the constraint
∑K

k=1 αkfk(x̂) = 1 instead of α1 = 1.

Proof: Consider the dual of LIOP(x̂):

maximize
α,σ,π

b′π +

K
∑

k=1

αk(fk(x̂)− x̂′∇xfk(x̂)) +

L
∑

l=1

σl(gl(x̂)− x̂′∇xgl(x̂))

subject to

K
∑

k=1

αkfk(x̂) = 1,

K
∑

k=1

αk∇xfk(x̂) +
L
∑

l=1

σl∇xgl(x̂)−A′π = 0,

α ≥ 0, σ ≥ 0.

(6.15)

We multiply the first constraint in (6.15) by ǫ̂ to get

ǫ̂

K
∑

k=1

αkfk(x̂)− ǫ̂ = 0, (6.16)

and take the inner product of the second constraint in (6.15) with x̂ to get

K
∑

k=1

αkx̂
′∇xfk(x̂) +

L
∑

l=1

σlx̂
′∇xgl(x̂)− π′Ax̂ = 0. (6.17)
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If we add the left-hand sides of equations (6.16) and (6.17) to the objective function of

problem (6.15), we obtain the following problem:

maximize
α,σ,π

ǫ̂+

K
∑

k=1

αk(fk(x̂)− ǫ̂fk(x̂)) +

L
∑

l=1

σlgl(x̂)− π′(Ax̂− b),

subject to
K
∑

k=1

αkfk(x̂) = 1,

K
∑

k=1

αk∇xfk(x̂) +

L
∑

l=1

σl∇xgl(x̂)−A′π = 0,

α ≥ 0, σ ≥ 0.

(6.18)

Problem (6.18) is equivalent to the Lagrangian dual problem (6.11) with a fixed solu-

tion (ǫ̂, x̂) and the associated stationary conditions satisfied. That is, problem (6.18)

minimizes the sum of the residuals only in the complementary slackness conditions with

respect to (ǫ̂, x̂). Note that ǫ̂+
∑K

k=1 αk(fk(x̂)−ǫ̂fk(x̂)) = 1, so solving (6.18) is equivalent

to solving

maximize
α,σ,π

L
∑

l=1

σlgl(x̂)− π′(Ax̂− b),

subject to

K
∑

k=1

αkfk(x̂) = 1,

K
∑

k=1

αk∇xfk(x̂) +
L
∑

l=1

σl∇xgl(x̂)−A′π = 0,

α ≥ 0, σ ≥ 0.

(6.19)

KES(x̂) with δ = 0, φ(δ,γ,ρ) = −γ ′e + ρ′e, and α normalized by the constraint
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∑K

k=1 αkfk(x̂) = 1 is

minimize
α,σ,π,γ,ρ

− γ ′e+ ρ′e

subject to
K
∑

k=1

αk∇xfk(x̂) +
L
∑

l=1

σl∇xgl(x̂)−A′π = 0,

σlgl(x̂) = γl, l = 1, . . . , L,

πj(a
′
jx̂− bj) = ρj , j = 1, . . . , m,

K
∑

k=1

αkfk(x̂) = 1,

α ≥ 0, σ ≥ 0,

(6.20)

which is equivalent to solving problem (6.19). �

Note that if x̂ ∈ X, the form of φ(δ,γ,ρ) in the statement of Proposition 6.3.1 can be

replaced with φ(δ,γ,ρ) = ||γ||1+||ρ||1. The next result is analogous to Proposition 6.3.1

for the case of absolute preference orderings and its proof is omitted.

Proposition 6.3.2 KES(x̂) is equivalent to the linearization of formulation (6.13) at x̂,

minimize
ǫ,x

ǫ

subject to ǫ ≥ ∇xfk(x̂)
′(x− x̂), k = 1, . . . , K,

gl(x̂) +∇xgl(x̂)
′(x− x̂) ≤ 0, l = 1, . . . , L,

Ax = b,

(6.21)

if δ = 0, φ(δ,γ,ρ) = −γ ′e + ρ′e, and α is normalized by the constraint
∑K

k=1 αk = 1

instead of α1 = 1.

Propositions 6.3.1 and 6.3.2 state that by specifying δ, the function φ(δ,γ,ρ) and the

normalization constraint in KES(x̂), a decision maker can enforce a particular preference

ordering in the inverse optimization process. These observations suggest that a simple
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general formulation can encompass several of the previous models presented:

minimize
α,σ,π,δ,γ,ρ

φ(δ,γ,ρ)

subject to
K
∑

k=1

αk∇xfk(x̂) +
L
∑

l=1

σl∇xgl(x̂) +A′π = δ,

σlgl(x̂) = γl, l = 1, . . . , L,

π′(Ax̂− b) = ρ,

α′h = 1,

α ≥ 0, σ ≥ 0.

(6.22)

Formulation (6.22) can be specialized to the model of Keshavarz et al. (2011) without

explicit consideration of preferences if h = ek, where ek is a vector of zeros except

for a one in the k-th component. It can be specialized to the relative LIOP model if

δ = 0, φ(δ,γ,ρ) = −γ ′e+ ρ′e,h = f(x̂) or the absolute LIOP model if δ = 0, φ(δ,γ) =

−γ ′e + ρ′e,h = e. If fk and gl are linear functions and h = f(x̂) or h = e, then

formulation (6.22) is equivalent to the generalized inverse linear optimization models (4.3)

or (4.5), respectively. If x̂ ∈ Ω, then formulation (6.22) specializes to the standard inverse

optimization models of Ahuja and Orlin (2001) and Iyengar and Kang (2005) for linear

programming and convex programming, respectively.

6.4 Computational results

In IMRT, historical treatments implicitly encode preferences or accepted trade-offs be-

tween the conflicting objectives. Thus, any knowledge-based treatment planning frame-

work should consider maintaining those preferences. In fact, we believe maintaining

the relative values of the objective function weights gives the optimization engine more

flexibility to generate a personalized treatment respecting the patient’s anatomy com-

pared to simply porting over achievable dose metrics. In this section, we use data from
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prostate cancer radiation therapy to demonstrate the models presented in this chapter.

We demonstrate to what extent the initial preference ordering is preserved by the dif-

ferent inverse models as they attempt to learn weights for a convex quadratic treatment

planning problem.

6.4.1 A multiobjective forward formulation

We again consider the clinical forward multiobjective optimization formulation (3.1). For

each OAR k, we associate an objective fk(w) = ||(Dkw−θke)+||22, where θk denotes a dose

threshold for structure k, and (·)+ denotes a vector with the operator max{0, ·} applied

to each component. In the experiments below, we consider five OARs (i.e., |K| = 5):

the bladder, rectum, left and right femoral heads, and POR, i.e., a ring of healthy tissue

around the PTV which is used to encourage conformity of the dose around the PTV. We

let θk = 30 for the left and right femoral heads, and θk = 50 for the other three OARs,

based on a protocol at Princess Margaret Cancer Centre.

6.4.2 Impact of different inverse optimization models on pref-

erences

We used 24 historical treatments delivered at Princess Margaret Cancer Centre for our

input vectors. Similar to Section 4.4, our discussion in this section will be based on

the compact inverse formulations presented in Section 6.2 instead of the clinical specific

formulations, that is, we use x̂ as a historical treatment input to the inverse models. For

each of the historical treatments x̂, we derived weights using KES(x̂), IOP(x̂), LIOP(x̂),

and the SLP algorithm. For KES(x̂), we solved five different instances, corresponding to

five different ways of normalizing the weight vector (i.e., αk = 1, k = 1, . . . , 5). Param-

eters and termination criteria for the SLP algorithm were chosen based on Zhang et al.

(1985) (e.g., the algorithm terminates when the ℓ2 norm difference between solutions in
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two consecutive iterations is less than 0.001). All the models were solved using CPLEX

12.3 on a computer with a 3.07 GHz 12-core CPU and 32 GB of RAM.

Tables 6.1 and 6.2 summarize the results of applying the five variations of the KES(x̂)

model to all patients. It can be seen that the imputed weight values are heavily dependent

on which normalizing constraint is used – note that weights were re-normalized so they

sum to one after solving the inverse model. For all patients, the weights in Tables 6.1

and 6.2 suggest that the KES model gives the vast majority of the weight to the objective

whose weight is used in the normalization constraint. For each instance, fk(x
∗)/fk(x̂)

denotes the ratio of the objective value achieved by α∗ to the objective value associated

with x̂ for objective k. In Tables 6.1 and 6.2, we see that there is no well-defined pattern

in the ratios; generally they are less than one, which implies that x∗ is an improvement

on x̂. However, the amount of improvement varies from objective to objective and from

model to model. Furthermore, KES1 provides an example where the dose on the left

femur actually increases. Overall, these results suggest that if preference preservation

in the inverse process is important (e.g., in multiobjective problems), it requires explicit

consideration in the inverse model.

Tables 6.3 and 6.4 show the results from applying the IOP model, LIOP model, and

SLP algorithm to all patients. For the SLP algorithm, the solution time is the total

running time through all iterations. As expected, the component-wise ratio obtained by

the IOP model is equivalent to ǫ∗ unless the corresponding weight is zero in which case

the ratio is at most ǫ∗ (see Corollary 6.2.2). The practical interpretation of this result is

that although the ratio fk(x
∗)/fk(x̂) = ǫ∗ is achievable, the objective value can be further

decreased without any sacrifice. Note that preserving the preference ordering using the

IOP model comes at a higher computational cost compared to the LIOP model, which

only approximately maintains the preference ordering. Also note that ǫ∗ from LIOP is

less than ǫ∗ from IOP as expected, because LIOP is an outer approximation to IOP.

Finally, the SLP algorithm strikes a middle ground between the LIOP and IOP models
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Table 6.1: Comparing the model of Keshavarz et al. (2011) with different weights fixed
to one: patients #1 – 12.

KES1 KES2 KES3 KES4 KES5

Pat. OAR α∗ fk(x
∗)

fk(x̂)
α∗ fk(x

∗)
fk(x̂)

α∗ fk(x∗)
fk(x̂)

α∗ fk(x∗)
fk(x̂)

α∗ fk(x
∗)

fk(x̂)

1

Blad 0.973 0.653 0.003 0.837 0.000 0.782 0.000 0.811 0.001 0.823
Rect 0.004 1.000 0.865 0.823 0.000 0.949 0.000 0.963 0.002 0.972
LFem 0.000 1.143 0.005 0.232 0.992 0.000 0.004 0.001 0.000 0.023
RFem 0.000 0.671 0.004 0.177 0.004 0.002 0.992 0.000 0.000 0.050
POR 0.023 0.929 0.123 0.614 0.004 0.412 0.004 0.411 0.997 0.404

2

Blad 0.906 0.805 0.002 1.178 0.001 0.850 0.001 0.861 0.007 0.996
Rect 0.000 0.783 0.987 0.555 0.000 0.697 0.000 0.702 0.000 0.718
LFem 0.015 0.636 0.001 2.853 0.998 0.000 0.001 0.143 0.001 0.968
RFem 0.003 2.053 0.001 3.139 0.000 0.249 0.997 0.000 0.000 1.181
POR 0.076 0.687 0.009 1.282 0.001 0.493 0.001 0.467 0.992 0.393

3

Blad 0.941 0.688 0.006 0.963 0.000 0.893 0.000 0.833 0.000 0.938
Rect 0.006 0.872 0.917 0.683 0.000 0.779 0.000 0.743 0.001 0.921
LFem 0.015 0.637 0.008 0.156 0.996 0.000 0.000 0.018 0.001 0.438
RFem 0.009 1.828 0.007 1.601 0.001 0.013 0.999 0.000 0.001 0.098
POR 0.029 0.832 0.062 0.785 0.003 0.374 0.001 0.397 0.997 0.342

4

Blad 0.647 0.582 0.029 0.743 0.027 0.689 0.027 0.690 0.032 0.746
Rect 0.071 0.878 0.658 0.806 0.070 0.863 0.070 0.861 0.085 0.882
LFem 0.034 0.165 0.042 0.162 0.659 0.001 0.035 0.069 0.042 0.149
RFem 0.029 0.262 0.037 0.163 0.036 0.066 0.661 0.002 0.041 0.130
POR 0.219 0.439 0.234 0.445 0.208 0.363 0.207 0.365 0.800 0.337

5

Blad 0.805 0.765 0.032 0.895 0.001 0.803 0.001 0.806 0.009 0.969
Rect 0.015 0.938 0.835 0.809 0.000 0.901 0.000 0.914 0.003 1.012
LFem 0.015 0.146 0.006 0.423 0.998 0.000 0.001 0.007 0.001 0.008
RFem 0.033 0.115 0.014 0.319 0.000 0.005 0.997 0.000 0.002 0.021
POR 0.132 0.705 0.113 0.665 0.001 0.511 0.001 0.502 0.985 0.407

6

Blad 0.844 0.769 0.027 0.920 0.002 0.811 0.003 0.811 0.008 0.925
Rect 0.041 0.914 0.848 0.756 0.002 0.875 0.001 0.863 0.003 0.959
LFem 0.020 0.135 0.004 1.096 0.991 0.000 0.003 0.004 0.000 0.022
RFem 0.009 0.174 0.008 0.343 0.002 0.003 0.989 0.000 0.000 0.423
POR 0.086 0.605 0.113 0.601 0.003 0.443 0.004 0.449 0.989 0.383

7

Blad 0.976 0.764 0.016 0.945 0.000 0.876 0.000 0.884 0.001 0.976
Rect 0.007 0.991 0.921 0.838 0.000 0.892 0.000 0.888 0.004 1.021
LFem 0.001 0.356 0.003 0.289 0.999 0.000 0.001 0.004 0.000 0.038
RFem 0.002 1.157 0.003 0.756 0.001 0.007 0.999 0.000 0.000 0.223
POR 0.014 1.168 0.057 0.741 0.000 0.438 0.000 0.443 0.995 0.383

8

Blad 0.802 0.801 0.016 0.991 0.002 0.927 0.002 0.929 0.003 0.979
Rect 0.021 0.922 0.795 0.776 0.001 0.944 0.001 0.924 0.004 0.956
LFem 0.007 0.138 0.005 0.223 0.975 0.000 0.003 0.026 0.000 0.141
RFem 0.008 0.096 0.009 0.123 0.003 0.035 0.980 0.000 0.000 0.100
POR 0.162 0.702 0.175 0.702 0.019 0.563 0.014 0.578 0.993 0.509

9

Blad 0.918 0.686 0.044 0.823 0.001 0.754 0.001 0.788 0.003 0.871
Rect 0.006 0.973 0.821 0.742 0.000 0.885 0.001 0.834 0.001 0.945
LFem 0.008 0.583 0.005 3.975 0.996 0.000 0.000 0.171 0.000 2.352
RFem 0.012 0.485 0.005 1.830 0.001 0.030 0.996 0.000 0.000 0.526
POR 0.056 0.765 0.125 0.646 0.002 0.437 0.002 0.407 0.996 0.354

10

Blad 0.885 0.662 0.002 0.934 0.000 0.782 0.001 0.785 0.001 0.860
Rect 0.000 0.972 0.955 0.689 0.000 0.856 0.000 0.912 0.000 0.976
LFem 0.015 0.175 0.005 0.131 0.998 0.000 0.004 0.006 0.001 0.021
RFem 0.003 0.742 0.000 1.403 0.001 0.024 0.991 0.000 0.000 0.193
POR 0.097 0.689 0.038 1.034 0.001 0.434 0.004 0.437 0.998 0.414

11

Blad 0.950 0.667 0.026 0.854 0.001 0.757 0.001 0.745 0.000 0.813
Rect 0.013 0.976 0.922 0.677 0.000 0.869 0.000 0.888 0.001 0.912
LFem 0.011 0.305 0.007 0.785 0.996 0.000 0.002 0.020 0.000 0.325
RFem 0.001 1.653 0.008 0.372 0.001 0.033 0.995 0.000 0.000 0.570
POR 0.025 0.873 0.037 1.059 0.002 0.425 0.002 0.439 0.999 0.386

12

Blad 0.996 0.504 0.000 1.709 0.000 0.603 0.000 0.601 0.000 0.724
Rect 0.000 1.239 0.996 0.625 0.000 0.696 0.000 0.699 0.000 0.843
LFem 0.000 2.917 0.000 8.791 1.000 0.000 0.000 0.006 0.000 0.254
RFem 0.000 2.052 0.000 6.575 0.000 0.005 1.000 0.000 0.000 0.056
POR 0.004 1.163 0.004 1.693 0.000 0.353 0.000 0.354 1.000 0.278

KES#: KES with #-th weight fixed to one. Weights were renormalized so they add up to one.
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Table 6.2: Comparing the model of Keshavarz et al. (2011) with different weights fixed
to one: patients #13 – 24.

KES1 KES2 KES3 KES4 KES5

Pat. OAR α∗ fk(x
∗)

fk(x̂)
α∗ fk(x

∗)
fk(x̂)

α∗ fk(x∗)
fk(x̂)

α∗ fk(x∗)
fk(x̂)

α∗ fk(x
∗)

fk(x̂)

13

Blad 0.971 0.656 0.007 0.989 0.000 0.720 0.000 0.747 0.000 0.892
Rect 0.008 0.952 0.937 0.656 0.000 0.743 0.000 0.751 0.003 0.818
LFem 0.003 1.547 0.008 0.641 1.000 0.000 0.000 0.022 0.000 0.071
RFem 0.004 1.257 0.002 1.514 0.000 0.033 1.000 0.000 0.000 0.372
POR 0.014 0.904 0.046 0.737 0.000 0.430 0.000 0.373 0.997 0.317

14

Blad 0.944 0.687 0.007 0.812 0.000 0.765 0.000 0.766 0.000 0.881
Rect 0.016 0.925 0.900 0.768 0.000 0.838 0.000 0.866 0.006 1.017
LFem 0.001 0.122 0.001 0.383 0.999 0.000 0.000 0.003 0.000 0.559
RFem 0.004 0.698 0.001 1.837 0.001 0.001 0.999 0.000 0.000 0.140
POR 0.035 0.720 0.091 0.588 0.000 0.384 0.001 0.372 0.994 0.337

15

Blad 0.915 0.738 0.005 0.983 0.000 0.855 0.000 0.843 0.006 0.944
Rect 0.001 1.005 0.953 0.768 0.000 0.915 0.000 0.924 0.000 0.946
LFem 0.002 0.574 0.001 1.021 0.998 0.000 0.000 0.036 0.000 0.205
RFem 0.001 0.313 0.001 0.642 0.001 0.034 0.999 0.000 0.000 0.264
POR 0.081 0.647 0.040 0.816 0.001 0.482 0.001 0.495 0.994 0.441

16

Blad 0.887 0.787 0.004 1.021 0.002 0.849 0.001 0.846 0.007 1.033
Rect 0.000 0.928 0.972 0.759 0.000 0.908 0.000 0.903 0.000 0.944
LFem 0.003 0.494 0.001 0.821 0.997 0.000 0.000 0.051 0.000 0.083
RFem 0.004 0.282 0.000 1.665 0.000 0.040 0.997 0.000 0.000 0.121
POR 0.106 0.649 0.023 0.918 0.001 0.419 0.002 0.430 0.993 0.334

17

Blad 0.953 0.723 0.001 1.230 0.000 0.765 0.001 0.745 0.001 0.910
Rect 0.000 0.847 0.998 0.586 0.000 0.659 0.000 0.644 0.000 0.718
LFem 0.004 1.550 0.000 3.589 0.999 0.000 0.000 0.073 0.000 0.166
RFem 0.004 0.311 0.000 1.192 0.001 0.035 0.999 0.000 0.000 0.072
POR 0.039 0.677 0.001 1.372 0.000 0.395 0.000 0.488 0.999 0.330

18

Blad 0.806 0.790 0.040 0.888 0.003 0.820 0.004 0.833 0.012 0.942
Rect 0.006 1.068 0.783 0.823 0.000 0.996 0.000 1.003 0.003 1.039
LFem 0.005 0.150 0.002 0.359 0.995 0.000 0.000 0.020 0.000 0.052
RFem 0.009 0.363 0.006 0.184 0.000 0.033 0.992 0.000 0.001 0.041
POR 0.174 0.625 0.169 0.680 0.002 0.510 0.004 0.501 0.984 0.432

19

Blad 0.956 0.719 0.004 0.952 0.000 0.789 0.000 0.801 0.000 0.885
Rect 0.003 1.086 0.888 0.785 0.000 0.855 0.000 0.844 0.001 0.943
LFem 0.012 3.755 0.012 1.625 0.999 0.000 0.000 0.012 0.000 0.979
RFem 0.004 2.471 0.011 1.105 0.001 0.023 1.000 0.000 0.000 0.052
POR 0.025 0.908 0.085 0.698 0.000 0.411 0.000 0.417 0.999 0.370

20

Blad 0.973 0.711 0.003 0.993 0.000 0.781 0.000 0.773 0.000 0.895
Rect 0.002 1.006 0.960 0.640 0.000 0.726 0.000 0.702 0.000 0.838
LFem 0.005 0.605 0.002 4.023 1.000 0.000 0.002 0.001 0.000 0.580
RFem 0.002 0.658 0.004 0.348 0.000 0.002 0.998 0.000 0.000 0.031
POR 0.018 0.812 0.031 0.886 0.000 0.350 0.000 0.374 1.000 0.322

21

Blad 0.992 0.650 0.007 0.936 0.000 0.729 0.000 0.704 0.000 0.859
Rect 0.001 1.191 0.986 0.619 0.000 0.708 0.000 0.693 0.000 0.780
LFem 0.002 0.756 0.002 1.968 0.999 0.000 0.000 0.044 0.000 1.804
RFem 0.001 2.653 0.002 2.902 0.001 0.009 1.000 0.000 0.000 0.297
POR 0.004 1.254 0.003 1.086 0.000 0.343 0.000 0.374 1.000 0.274

22

Blad 0.923 0.713 0.007 0.906 0.001 0.762 0.001 0.761 0.003 0.917
Rect 0.000 1.012 0.979 0.752 0.000 0.909 0.000 0.908 0.000 0.974
LFem 0.004 1.928 0.001 5.600 0.997 0.000 0.000 0.045 0.000 2.053
RFem 0.021 0.260 0.003 2.284 0.001 0.018 0.998 0.000 0.000 2.362
POR 0.052 0.705 0.010 1.355 0.001 0.412 0.001 0.412 0.997 0.325

23

Blad 0.924 0.787 0.011 1.073 0.000 0.857 0.038 0.854 0.003 1.015
Rect 0.003 0.940 0.966 0.756 0.000 0.842 0.043 0.838 0.000 0.934
LFem 0.007 1.010 0.001 1.832 1.000 0.000 0.417 0.025 0.000 0.542
RFem 0.018 0.330 0.000 3.162 0.000 0.028 0.000 0.000 0.000 0.137
POR 0.048 0.995 0.022 1.125 0.001 0.482 0.502 0.487 0.997 0.414

24

Blad 0.836 0.814 0.037 0.949 0.001 0.932 0.001 0.939 0.006 1.077
Rect 0.020 0.919 0.866 0.771 0.000 0.909 0.001 0.879 0.003 0.950
LFem 0.004 0.866 0.005 0.876 0.994 0.000 0.000 0.497 0.000 1.317
RFem 0.004 0.888 0.006 0.649 0.002 0.013 0.991 0.000 0.000 0.520
POR 0.136 0.679 0.086 0.713 0.003 0.516 0.006 0.486 0.991 0.422

KES#: KES with #-th weight fixed to one. Weights were renormalized so they add up to one.
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in terms of maintaining preferences and computational efficiency.

Next, we compared clinical performance of the weights obtained from the IOP, LIOP,

SLP, and the model of Keshavarz et al. (2011). We solved the forward treatment planning

formulation with the convex objective functions with different weights obtained from the

different models, and compared the resulting treatment plans. For the KES results for

each patient, we report the performance of the model with the normalization constraint

αk′ = 1, where k′ is the structure with the highest inverse weight determined by the IOP

model. For example, in the case of patient #1, the IOP model says that the rectum weight

is the highest, so we use the inverse weights derived from the KES model that employs

the normalization constraint α2 = 1 (the rectum is the second objective). Figure 6.3

shows the comparison of the DVHs for the clinical plan and a plan generated by the

weights from our IOP model for patient #1. The two sets of DVHs are quite similar,

with the DVHs from the IOP weights nearly equally distanced from the clinical DVHs

(i.e., improved) for each organ, which implies that the treatment planner’s preference on

the five structures has been maintained.

Figure 6.4 compares DVHs for the clinical plan and a plan generated by the weights

obtained from the model of Keshavarz et al. (2011) for patient #1. The DVH for the

rectum is less shifted below than those for the other organs, which means the rectum gets

less emphasis than what it should have received in order to have had the overall preference

ordering maintained. Compared to Figure 6.3, the weights from our IOP model achieve

slightly more sparing in the rectum (especially in a higher dose region) while sacrificing

quite a lot in the other organs, which is apparently more consistent with the original

intention of the treatment planner who designed the clinical plan. Figures 6.5 and 6.6,

and Figures 6.7 and 6.8 show similar results for patients #2 and #3, respectively.

The difference in the clinical performance between the IOP weights and the weights

from the model of Keshavarz et al. (2011) is more noticeable in patient #3’s case. Note

from Table 6.3 that patient #3 had IOP weights that are almost equally distributed
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Table 6.3: Comparison of the results from IOP, LIOP, and SLP algorithm: patients #1
– 12.

IOP LIOP SLP

Pat Organ ǫ∗ α∗ fk(x
∗)

fk(x̂)

Time
ǫ∗ α∗ fk(x

∗)
fk(x̂)

Time
ǫ∗ α∗ fk(x

∗)
fk(x̂)

Time
(s) (s) (s)

1

Blad

0.812

0.014 0.812

1582 0.769

0.013 0.813

168 0.813

0.014 0.815

663
[31]

Rect 0.935 0.812 0.936 0.812 0.935 0.812
LFem 0.002 0.812 0.001 0.905 0.002 0.746
RFem 0.000 0.809 0.002 0.695 0.000 0.932
POR 0.049 0.812 0.048 0.816 0.049 0.813

2

Blad

0.803

0.932 0.803

1384 0.748

0.937 0.802

82 0.803

0.933 0.803

1001
[57]

Rect 0.002 0.802 0.007 0.754 0.002 0.802
LFem 0.012 0.803 0.013 0.771 0.011 0.846
RFem 0.018 0.803 0.015 0.965 0.018 0.808
POR 0.036 0.803 0.028 0.825 0.036 0.803

3

Blad

0.712

0.471 0.712

764 0.617

0.456 0.713

33 0.712

0.474 0.712

361
[31]

Rect 0.412 0.712 0.438 0.709 0.409 0.712
LFem 0.008 0.712 0.012 0.525 0.007 0.751
RFem 0.033 0.712 0.027 0.889 0.033 0.696
POR 0.076 0.712 0.067 0.746 0.077 0.709

4

Blad

0.780

0.011 0.780

1052 0.720

0.005 0.814

69 0.781

0.012 0.773

714
[81]

Rect 0.929 0.780 0.938 0.778 0.925 0.780
LFem 0.013 0.780 0.012 0.797 0.013 0.755
RFem 0.011 0.780 0.010 0.850 0.012 0.744
POR 0.036 0.780 0.035 0.820 0.038 0.771

5

Blad

0.809

0.138 0.809

1171 0.729

0.202 0.798

63 0.809

0.142 0.809

418
[30]

Rect 0.777 0.809 0.701 0.787 0.773 0.809
LFem 0.001 0.800 0.000 1.508 0.000 0.940
RFem 0.005 0.809 0.006 1.559 0.004 0.883
POR 0.079 0.809 0.092 0.871 0.081 0.804

6

Blad

0.787

0.479 0.787

2725 0.679

0.503 0.783

150 0.788

0.491 0.785

1081
[35]

Rect 0.480 0.787 0.467 0.788 0.471 0.787
LFem 0.001 0.785 0.002 0.737 0.000 1.207
RFem 0.004 0.787 0.005 0.687 0.004 0.842
POR 0.036 0.787 0.023 0.878 0.034 0.807

7

Blad

0.842

0.175 0.842

1192 0.807

0.099 0.866

52 0.842

0.173 0.842

324
[17]

Rect 0.782 0.842 0.862 0.839 0.784 0.842
LFem 0.000 0.575 0.000 0.767 0.000 0.574
RFem 0.000 0.709 0.001 0.791 0.000 0.728
POR 0.043 0.841 0.038 0.855 0.043 0.847

8

Blad

0.805

0.537 0.805

3242 0.764

0.476 0.805

182 0.805

0.531 0.804

774
[20]

Rect 0.343 0.805 0.459 0.793 0.363 0.803
LFem 0.000 0.804 0.000 0.808 0.000 0.559
RFem 0.000 0.804 0.000 0.660 0.000 0.483
POR 0.120 0.805 0.065 0.899 0.106 0.823

9

Blad

0.750

0.175 0.750

822 0.683

0.105 0.777

49 0.751

0.172 0.750

626
[53]

Rect 0.701 0.750 0.728 0.752 0.709 0.749
LFem 0.028 0.750 0.042 0.520 0.026 0.804
RFem 0.022 0.750 0.023 0.629 0.022 0.780
POR 0.074 0.750 0.102 0.665 0.071 0.764

10

Blad

0.709

0.168 0.709

1316 0.590

0.173 0.715

75 0.709

0.169 0.708

591
[24]

Rect 0.694 0.709 0.672 0.712 0.693 0.709
LFem 0.000 0.708 0.000 0.335 0.000 0.372
RFem 0.001 0.709 0.000 0.885 0.001 0.753
POR 0.137 0.709 0.155 0.677 0.137 0.709

11

Blad

0.713

0.424 0.713

825 0.589

0.472 0.709

46 0.714

0.414 0.714

795
[75]

Rect 0.478 0.713 0.429 0.718 0.487 0.712
LFem 0.005 0.713 0.003 0.890 0.004 0.797
RFem 0.004 0.713 0.003 0.850 0.004 0.788
POR 0.089 0.713 0.093 0.698 0.091 0.709

12

Blad

0.646

0.058 0.646

1017 0.477

0.049 0.661

96 0.646

0.058 0.646

601
[42]

Rect 0.891 0.646 0.882 0.649 0.891 0.646
LFem 0.003 0.646 0.004 0.461 0.003 0.692
RFem 0.004 0.646 0.004 0.505 0.004 0.602
POR 0.044 0.646 0.061 0.551 0.044 0.643

[·] denotes the number of iterations.
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Table 6.4: Comparison of the results from IOP, LIOP, and SLP algorithm: patients #13
– 24.

IOP LIOP SLP

Pat Organ ǫ∗ α∗ fk(x
∗)

fk(x̂)

Time
ǫ∗ α∗ fk(x

∗)
fk(x̂)

Time
ǫ∗ α∗ fk(x

∗)
fk(x̂)

Time
(s) (s) (s)

13

Blad

0.671

0.460 0.691

1246 0.521

0.736 0.657

42 0.671

0.456 0.671

295
[31]

Rect 0.476 0.691 0.220 0.693 0.482 0.670
LFem 0.018 0.691 0.029 0.475 0.016 0.756
RFem 0.005 0.691 0.004 0.793 0.005 0.642
POR 0.041 0.691 0.011 0.798 0.041 0.675

14

Blad

0.762

0.037 0.762

904 0.667

0.016 0.787

13 0.763

0.034 0.764

189
[32]

Rect 0.920 0.762 0.962 0.757 0.925 0.761
LFem 0.001 0.762 0.000 2.289 0.001 0.542
RFem 0.008 0.762 0.000 3.229 0.008 0.892
POR 0.034 0.762 0.022 0.896 0.032 0.773

15

Blad

0.779

0.174 0.779

2140 0.702

0.178 0.778

127 0.779

0.167 0.780

684
[28]

Rect 0.775 0.779 0.771 0.779 0.782 0.778
LFem 0.002 0.778 0.003 0.662 0.002 0.792
RFem 0.001 0.778 0.001 0.860 0.001 0.789
POR 0.048 0.778 0.047 0.784 0.048 0.782

16

Blad

0.789

0.611 0.789

2987 0.732

0.819 0.780

117 0.789

0.626 0.788

694
[24]

Rect 0.329 0.789 0.151 0.800 0.314 0.791
LFem 0.002 0.789 0.001 1.212 0.003 0.754
RFem 0.000 0.788 0.000 1.196 0.000 0.968
POR 0.058 0.789 0.029 0.971 0.057 0.788

17

Blad

0.724

0.939 0.724

2013 0.616

0.923 0.725

64 0.724

0.938 0.724

395
[25]

Rect 0.021 0.724 0.028 0.703 0.021 0.723
LFem 0.015 0.724 0.008 1.046 0.015 0.742
RFem 0.001 0.721 0.000 0.604 0.002 0.643
POR 0.024 0.724 0.041 0.638 0.024 0.725

18

Blad

0.820

0.187 0.820

1098 0.772

0.148 0.827

66 0.820

0.185 0.819

490
[37]

Rect 0.716 0.820 0.762 0.816 0.721 0.819
LFem 0.001 0.820 0.000 1.231 0.000 1.220
RFem 0.001 0.819 0.000 1.098 0.000 1.091
POR 0.095 0.820 0.090 0.838 0.094 0.829

19

Blad

0.788

0.130 0.788

801 0.743

0.083 0.809

24 0.788

0.129 0.788

244
[23]

Rect 0.760 0.788 0.814 0.784 0.761 0.788
LFem 0.035 0.787 0.035 0.826 0.036 0.780
RFem 0.022 0.788 0.018 0.914 0.021 0.800
POR 0.053 0.788 0.050 0.812 0.053 0.788

20

Blad

0.717

0.904 0.717

9937 0.616

0.921 0.717

151 0.717

0.903 0.717

1150
[17]

Rect 0.064 0.717 0.045 0.738 0.065 0.714
LFem 0.003 0.713 0.000 0.948 0.003 0.693
RFem 0.004 0.716 0.004 0.602 0.004 0.781
POR 0.026 0.717 0.030 0.668 0.025 0.727

21

Blad

0.671

0.708 0.671

631 0.502

0.744 0.670

33 0.672

0.710 0.671

471
[52]

Rect 0.256 0.671 0.192 0.684 0.253 0.672
LFem 0.006 0.671 0.020 0.262 0.006 0.650
RFem 0.020 0.671 0.031 0.412 0.020 0.674
POR 0.010 0.671 0.013 0.646 0.011 0.656

22

Blad

0.773

0.082 0.773

1365 0.657

0.072 0.782

171 0.777

0.081 0.774

746
[51]

Rect 0.850 0.773 0.857 0.774 0.856 0.772
LFem 0.012 0.773 0.010 1.031 0.011 0.803
RFem 0.012 0.773 0.011 0.771 0.011 0.819
POR 0.044 0.773 0.050 0.733 0.041 0.800

23

Blad

0.803

0.678 0.803

1073 0.746

0.747 0.795

54 0.804

0.680 0.803

279
[23]

Rect 0.227 0.803 0.180 0.809 0.224 0.804
LFem 0.010 0.804 0.010 0.735 0.010 0.754
RFem 0.010 0.803 0.027 0.382 0.011 0.744
POR 0.075 0.803 0.036 0.994 0.075 0.804

24

Blad

0.816

0.694 0.816

2078 0.764

0.765 0.810

103 0.820

0.667 0.817

998
[49]

Rect 0.224 0.816 0.189 0.817 0.248 0.813
LFem 0.006 0.816 0.005 0.953 0.005 0.910
RFem 0.005 0.816 0.006 0.667 0.005 0.860
POR 0.071 0.816 0.035 0.988 0.075 0.804

[·] denotes the number of iterations.
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Figure 6.3: Comparison of DVHs from the clinical plan and a plan generated by IOP
weights for patient #1
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Figure 6.4: Comparison of DVHs from the clinical plan and a plan generated by weights
from the model of Keshavarz et al. (2011) for patient #1
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Figure 6.5: Comparison of DVHs from the clinical plan and a plan generated by IOP
weights for patient #2
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Figure 6.6: Comparison of DVHs from the clinical plan and a plan generated by weights
from the model of Keshavarz et al. (2011) for patient #2
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Figure 6.7: Comparison of DVHs from the clinical plan and a plan generated by IOP
weights for patient #3
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Figure 6.8: Comparison of DVHs from the clinical plan and a plan generated by weights
from the model of Keshavarz et al. (2011) for patient #3
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between the bladder and rectum objectives. However, if we fix the bladder weight, which

is the highest weight for the IOP, to one in the model of Keshavarz et al. (2011), their

model returns weights that are very biased towards the bladder: 0.941 (see Table 6.1).

Comparing Figures 6.7 and 6.8, as a result, the DVHs from the model of Keshavarz et al.

(2011) clearly lose significant amount of the rectum sparing which is not consistent with

the original intention of the treatment planner revealed in the clinical DVHs.

We note that the “informed” version of Keshavarz et al. (2011), where the weight

determined to be highest by the IOP model is fixed to one, also retains the preference

ordering encoded by a given treatment plan to a reasonable extent. As shown in Fig-

ures 6.3–6.8, the difference between the DVHs for the IOP model and Keshavarz et al.

(2011) often looks not so substantial. However, one should keep in mind that which

weight is to be fixed to one in the model of Keshavarz et al. (2011) can only be deter-

mined after the IOP model is solved. There seems to be no particular way to identify

which weight to fix to one without guidance of our IOP model.

Figure 6.9 shows the DVH comparison between the IOP and LIOP models, which

reinforces the similarity of the results from the two models. The DVH comparison be-

tween the IOP model and the SLP algorithm is omitted because from the weights in

Tables 6.3 and 6.4 it is obvious that the two models will lead to very similar treatment

plans. The DVH comparison results discussed in this section were similar throughout all

the remaining patients.

Figure 6.10 summarizes the performance of KES, IOP, LIOP and SLP across all 24

patients in terms of the solution time and preference preservation, the latter of which is

quantified using the variance of the component-wise ratios fk(x
∗)/fk(x̂) across k. We see

that the KES model solves quickly but exhibits high variance in the objective function

ratios. On the other hand, the IOP model generally takes the longest to solve, but closely

preserves the initial preferences. The LIOP model and the SLP algorithm by extension

strike a balance between these two conflicting goals. Figure 6.11 shows the performance
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(c) Left femoral head
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(d) Right femoral head
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Figure 6.9: Comparison of DVHs from plans generated by IOP and LIOP weights for
Patient #1
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Figure 6.10: The trade-off between preference preservation (variance of the objective
function ratios) and solution time
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Figure 6.11: The trade-off between the maximum objective function ratio and solution
time
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Table 6.5: Comparison of average results from IOP, SLP, LIOP, and KES
IOP SLP LIOP KES

Var( f(x
∗)

f(x̂)
) 0.004 0.009 0.076 0.938

Max( f(x
∗)

f(x̂)
− f(xIOP )

f(x̂)
) 0 0.031 0.223 1.107

|ǫIOP − ǫ∗| 0 0.001 0.086 N/A
||αIOP −α∗||2 0 0.007 0.075 0.279

Solution time (s) 1,883 569 85 23
KES fixes the weight determined highest by IOP to one. xIOP, ǫIOP,

and αIOP denote the optimal x, ǫ and α obtained by IOP, respectively.

of the different models in terms of the solution time and the maximum objective function

ratio, which shows similar results to Figure 6.10.

Table 6.5 summarizes the numerical results across all patients, reinforcing the trade-

offs between the models. Note that the trade-offs exhibited by the SLP solutions can

be adjusted so that the performance sweeps out a frontier between IOP and LIOP. For

example, setting weaker termination criteria would bring the performance of the SLP

algorithm towards the LIOP model.

Although a search for the best algorithm that solves the IOP quickest is out of the

scope of this chapter, it is widely accepted that the successive quadratic programming

(SQP) algorithm generally works better than the SLP algorithm. However, our computa-

tional experiments show that (see Table 6.6) the convergence rate of the SQP algorithm

is slower than that of the SLP algorithm for our quadratic problem. The solution times

could be improved by relaxing the stopping criterion, but in general there seems to be

no benefit from using the SQP algorithm over the SLP algorithm.

6.5 Conclusion

Trade-offs and preferences are critical in multiobjective optimization. In this chapter, we

developed a new approach to inverse convex multiobjective optimization that explicitly

considers the preferences encoded by a given initial solution. Our approach is general and
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Table 6.6: Results from the SQP algorithm for all patients
Pat Organ ǫ∗ α∗ fk(x

∗)
fk(x̂)

Time
Pat Organ ǫ∗ α∗ fk(x

∗)
fk(x̂)

Time
(s) (s)

1

Blad

0.812

0.014 0.812

2263
[4]

13

Blad

0.692

0.426 0.692

835
[4]

Rect 0.935 0.812 Rect 0.520 0.692
LFem 0.002 0.814 LFem 0.013 0.695
RFem 0.000 0.814 RFem 0.005 0.692
POR 0.049 0.812 POR 0.036 0.693

2

Blad

0.794

0.950 0.801

509
[2]

14

Blad

0.771

0.018 0.785

267
[2]

Rect 0.003 0.797 Rect 0.955 0.779
LFem 0.009 1.006 LFem 0.001 0.896
RFem 0.016 0.972 RFem 0.000 0.216
POR 0.022 0.873 POR 0.027 0.825

3

Blad

0.712

0.472 0.712

952
[4]

15

Blad

0.779

0.174 0.779

2309
[4]

Rect 0.411 0.712 Rect 0.775 0.779
LFem 0.008 0.712 LFem 0.002 0.779
RFem 0.033 0.713 RFem 0.001 0.779
POR 0.076 0.712 POR 0.048 0.779

4

Blad

0.763

0.005 0.721

446
[2]

16

Blad

0.789

0.611 0.789

3115
[5]

Rect 0.950 0.500 Rect 0.329 0.789
LFem 0.009 0.687 LFem 0.002 0.789
RFem 0.007 0.816 RFem 0.000 0.789
POR 0.029 0.718 POR 0.058 0.789

5

Blad

0.809

0.138 0.809

1580
[5]

17

Blad

0.724

0.943 0.724

892
[3]

Rect 0.777 0.809 Rect 0.020 0.725
LFem 0.001 0.814 LFem 0.014 0.770
RFem 0.005 0.812 RFem 0.000 0.777
POR 0.079 0.809 POR 0.023 0.734

6

Blad

0.788

0.517 0.801

900
[2]

18

Blad

0.761

0.152 0.825

353
[2]

Rect 0.449 0.800 Rect 0.772 0.815
LFem 0.002 0.861 LFem 0.000 1.443
RFem 0.005 0.819 RFem 0.000 1.272
POR 0.027 0.836 POR 0.076 0.879

7

Blad

0.842

0.175 0.842

1480
[4]

19

Blad

0.787

0.129 0.787

401
[3]

Rect 0.782 0.842 Rect 0.768 0.787
LFem 0.000 0.578 LFem 0.032 0.926
RFem 0.000 0.722 RFem 0.019 0.908
POR 0.043 0.842 POR 0.052 0.799

8

Blad

0.781

0.477 0.805

1412
[2]

20

Blad

0.717

0.908 0.717

946
[5]

Rect 0.453 0.794 Rect 0.062 0.717
LFem 0.000 0.773 LFem 0.000 1.340
RFem 0.000 0.641 RFem 0.004 0.717
POR 0.070 0.885 POR 0.026 0.717

9

Blad

0.750

0.175 0.750

885
[4]

21

Blad

0.671

0.709 0.671

637
[4]

Rect 0.701 0.750 Rect 0.256 0.671
LFem 0.028 0.752 LFem 0.006 0.677
RFem 0.022 0.753 RFem 0.019 0.686
POR 0.074 0.750 POR 0.010 0.671

10

Blad

0.709

0.166 0.709

2331
[5]

22

Blad

0.761

0.074 0.778

723
[2]

Rect 0.695 0.709 Rect 0.872 0.770
LFem 0.000 0.186 LFem 0.007 1.476
RFem 0.000 1.064 RFem 0.007 1.223
POR 0.139 0.709 POR 0.040 0.810

11

Blad

0.713

0.424 0.713

1037
[5]

23

Blad

0.802

0.680 0.802

803
[3]

Rect 0.478 0.713 Rect 0.233 0.802
LFem 0.005 0.713 LFem 0.009 0.841
RFem 0.004 0.713 RFem 0.009 0.903
POR 0.089 0.713 POR 0.069 0.828

12

Blad

0.642

0.047 0.664

411
[2]

24

Blad

0.816

0.694 0.816

2627
[5]

Rect 0.906 0.644 Rect 0.224 0.816
LFem 0.003 0.708 LFem 0.006 0.816
RFem 0.004 0.687 RFem 0.005 0.816
POR 0.040 0.672 POR 0.071 0.816

[·] denotes the number of iterations.
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maintains the complexity of the underlying forward problem. We formulated a general

model that encompasses many of the inverse models in the literature and demonstrated

how an inverse model can be adjusted to make it preference-preserving. Practical appli-

cations of this work include knowledge-based treatment planning in radiation therapy,

where treatment planning preferences encoded in historical treatments can be maintained

in the generation of plans for new patients.



Chapter 7

Conclusions

The traditional goal of inverse optimization is to find a cost vector that makes a given

solution optimal for the underlying forward optimization formulation. However, often

the forward formulation used to derive the inverse problem does not exactly match the

system that was used to generate the given solution. Or, the given solution itself is often

not an optimal solution to the system. The result is an ill-posed inverse optimization

problem where there is no nonzero cost vector that can make the given solution optimal.

This thesis addresses this situation by generalizing the traditional approach to solving

the inverse problem. For any given forward optimization formulation, our generalized

inverse optimization approach finds a cost vector that renders a given solution minimally

suboptimal while preserving the original intention of a decision maker who generated the

solution.

Due to its ability to produce a non-trivial inverse solution for any pair of a given

solution and a forward formulation and measure how well the original preference is pre-

served through the forward formulation, our generalized inverse optimization approach

identifies a compact forward formulation that can replace the complex formulation used

in the actual system. Furthermore, the statistical analysis we propose for analyzing the

inverse solutions can suggest how to use the identified forward formulation for the future

137
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optimization process in an effective and standardized way. In prostate radiation therapy

treatment planning, our generalized inverse method was used to determine clinical ob-

jectives that are fewer than used in practice as well as the values of objective function

weights that allow the identified objectives to reproduce a clinical treatment plan. Re-

gression analysis to relate the weights to a patient’s anatomical characteristics showed the

potential for inverse optimization to support automated and knowledge-based treatment

planning.

Although this thesis focuses on prostate radiation therapy treatment planning as

the application, our methodology can be applied to any optimization problem where

data-driven parameter estimation is relevant. For example, our generalized models can

replace the standard model used in many existing applications, since they specialize to

the standard model when a given solution can be optimal for the underlying forward

problem. Replacing the standard model with our generalized model in general inverse

optimization problems will add the feature that allows them to accommodate more data

with no additional cost of complexity.

Considering growing interest in big data in the operations research community, we

believe that there is increasing opportunity for applications of our inverse optimization

approach. The more data is available, the higher chance there is that the inverse opti-

mization technique will more accurately and rigorously reconstruct the forward system.

Our generalization to the standard inverse optimization approach amplifies this potential

by robustly accommodating and learning from data regardless of its source and structure.

Our approach can identify how inconsistent given data is with the underlying forward

problem, which would allow us to filter out irrelevant data. Ultimately, we believe the

new, generalized inverse optimization methodology we propose will open the doors for

inverse optimization to better adapt and harness the power of big data.

Inverse optimization as a tool for retrieving the modeling parameters is a retrospective

study. Once parameter values are inferred from historical or desirable solutions via inverse
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optimization, study of how to use the inferred parameters for future decision making

should follow. One should keep in mind that data should be collected from a wide range

so that it can account for any changes or uncertainties that may be involved in the future

decision making process. Also, it should be carefully reviewed if the system itself has

improved and the existing data has become too out of date to capture new features

of the system. Overall, the use of the inverse optimization technology should always

be accompanied with critically selecting data and extracting meaningful value from the

results.

In a broader context, we view inverse optimization also as a means of strengthening

other optimization techniques by helping them actively make use of historical data and

learn a decision maker’s preferences. For example, by incorporating the idea of inverse op-

timization into Pareto surface approximation techniques for multiobjective optimization,

one can explicitly incorporate the decision maker’s preference into determining a search

direction through the Pareto surface and identifying the most relevant area of the sur-

face. The challenge in determining prioritization of multiple criteria in preemptive goal

programming also relates to the challenge in determining parameter values. In preemp-

tive goal programming, multiple criteria are prioritized and solved sequentially according

to their relative importance, which can be quantified by inverse optimization. Lastly,

inverse optimization may provide insight for how to derive uncertainty sets for a cost

vector in robust optimization. Using historical solutions as input uncertainty sets may

be efficiently and objectively constructed like the recent study that derives uncertainty

sets from adaptive questionnaires (Bertsimas and O’Hair, 2013).

There are some specific future research directions this thesis offers. First, a new

measure posed by generalizing the traditional concept of inverse optimization is how well

given data “fits” the underlying forward problem. This measure is similar in nature

to goodness-of-fit measures used for a statistical model. For example, given multiple

input solutions and some forward problem, one may evaluate the goodness-of-fit between
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the solutions and the forward problem via a measure that resembles some well-known

statistic such as R2. This measure will provide a rigorous way of identifying the forward

problem that best fits the given data. Establishing such a measure is currently our

ongoing research.

In radiation therapy, the weight prediction model presented in Chapter 5 can only

predict one weight at a time, assuming other weights are fixed or linearly dependent on

the one that is to be predicted. An extended prediction model that can predict multiple

weights simultaneously will be an enabler for the proposed concept to be applied to

more complex cancer sites such as head and neck, where there are typically more than 10

critical organs close to each other around the tumour. A multinomial regression approach

to predicting multiple weights using patient anatomy as a predictor is currently our

ongoing work. Ultimately, whether the weight prediction approach can be successfully

embedded in the current knowledge-based, automated treatment planning framework

should be clinically tested.
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