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Generalized Inversion Attack
on Nonlinear Filter Generators

Jovan Dj. Golic, Andrew Clark, and Ed Dawson

AbstractÐA nonlinear filter generator is a basic keystream generator for stream cipher applications consisting of a single linear

feedback shift register whose output is filtered by a nonlinear combining function. A binary nonlinear filter generator is viewed as a finite

input memory automaton with one binary input and one binary output. The generalized inversion attack on a binary nonlinear filter

generator is developed and analyzed by the theory of critical branching processes. Its objective is to recover the unknown input

sequence from a given segment of the output sequence, provided that the filter function is known. Unlike the inversion attack, which

requires that the filter function be linear in the first or the last input variable, this attack can be applied for any filter function. Both theory

and systematic experiments show that its time complexity remains close to 2M , which is the time complexity of the inversion attack,

where M denotes the input memory size in bits.

Index TermsÐBinary trees, Boolean functions, critical branching processes, inversion of finite automata, keystream generators.

æ

1 INTRODUCTION

NONLINEAR filter generators are popular building blocks
in shift register based keystream generators for stream

cipher applications as they enable one to achieve the
cryptographic security with a relatively small number of
shift registers (e.g., see [7] and [6]). A binary nonlinear filter
generator consists of a single binary linear feedback shift
register (LFSR), with a typically primitive feedback poly-
nomial, and a nonlinear Boolean function whose inputs are
taken from some shift register stages to produce the output.
A nonlinear filter generator should be designed so as to
resist all known cryptanalytic attacks applicable. The
objective of the cryptanalytic attacks considered is to
determine the unknown, secret key controlled LFSR initial
state from a sufficiently long segment of the known
keystream sequence. A set of design criteria to achieve a
long period, a high linear complexity, and good statistical
properties of the keystream sequence, as well as the
resistance to the fast correlation attack [5], to the conditional
correlation attack [1], and to the inversion attack [3] is
recommended in [3].

Let r be the LFSR length, let n denote the number of

nondegenerate input variables of the filter function f , let

 � �i�ni�1 denote the tapping sequence specifying the

inputs to f , and let M � n ÿ 1 denote the input memory

size of the nonlinear filter generator regarded as a finite

input memory combiner with one input and one output [3].

The inversion attack [3] applies as such to the case when
the filter function is linear in the first or the last input

variable and runs forward or backward accordingly. This
case is important as the only known case when the output

sequence of a nonlinear filter generator as a combiner with
one input and one output is purely random for every

possible choice of the tapping sequence  given that the
input sequence is purely random. The attack consists of

guessing the unknown M bits of the initial memory state
and of the (unique) inversion of the first rÿM bits of the

known keystream sequence into the remaining rÿM bits of

the LFSR intitial state. Finally, the output sequence
produced from the LFSR initial state is tested for consis-

tency with the known keystream sequence. At worst, its
computational complexity is 2M appropriate steps, and

2Mÿ1 on average.
To render the inversion attack infeasible,  should be

such that M is large and preferably close to its maximum

possible value rÿ 1. In addition, to prevent reducing the
effective input memory size by a uniform decimation

technique [3], the greatest common divisor of �i ÿ 1�ni�1

should be equal to one.
Another way of preventing the inversion attack is to

choose f that is linear in neither the first nor the last

input variable. In this case, if M is large, then it is not
possible to check by direct computation whether the

output is purely random given that the input is such (see
[3]). If the design criteria related to positive difference

sets and correlation immunity are respected, then it is not
practically possible to find a statistical weakness in the

output even if it exists. However, a concept of a more
general, so-called generalized inversion attack is also

suggested in [3] which may work for any filter function.
It goes along similar lines as the inversion attack with the

only difference that the first rÿM keystream bits are not
necessarily uniquely inverted into the corresponding rÿM
input bits of the LFSR sequence.
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Instead, a binary tree structure of depth rÿM is formed
to store all possible solutions for the rÿM input bits, for
every guessed initial memory state. It is also suggested in
[3] that the theory of branching processes may be useful for
analyzing the size of the resulting trees. While it is certainly
true that the correct (very likely unique) LFSR sequence
must be found by this attack, it remains to analyze its
complexity, especially if rÿM is large. The main question
to be answered is whether the resulting trees are then so
large that the complexity gets close to 2r, which would
render the attack ineffective. This is the main objective of
this paper. We will show both by the theory of branching
processes and experimentally that the complexity of the
generalized inversion attack is, perhaps surprisingly, also
very close to 2M , regardless of the choice of the filter
function. Consequently, the choice of f cannot prevent the
inversion attack in its generalized form.

The inversion attack [3] is briefly reviewed in Section 2,
the generalized inversion attack is described and further
developed in Section 3 and analyzed by the theory of critical
branching processes (outlined in the Appendix) in Section 4,
experimental results are presented and discussed in
Section 5, and the conclusions are given in Section 6.

2 INVERSION ATTACK

Let x � �x�t��1t�ÿr be a binary maximum-length sequence of
period 2r ÿ 1 (�x�t��ÿ1

t�ÿr is the LFSR initial state), let
f�z1; . . . ; zn� be a Boolean function of n, n � r, nondegene-
rate input variables, and let  � �i�ni�1 be an increasing
sequence of nonnegative integers such that 1 � 0 and
n � rÿ 1. Then, the output sequence y � �y�t��1t�0 of the
nonlinear filter generator shown in Fig. 1 is defined by

y�t� � f�x�tÿ 1�; . . . ; x�tÿ n��; t � 0: �1�

If we assume that the input sequence is purely random,
that is, a sequence of balanced (uniformly distributed) and
independent bits (binary random variables) and that the
filter function is balanced (has balanced output given a

balanced input), then the output sequence is not necessarily
such. It is shown in [3] that the output sequence is purely
random for every tapping sequence if f�z1; . . . ; zn� �
z1 � g�z2; . . . ; zn� or f�z1; . . . ; zn� � g�z1; . . . ; znÿ1� � zn.

The objective of the inversion attack is to reconstruct the
LFSR initial state from a segment of the keystream
sequence, given the LFSR feedback polynomial of degree
r, the filter function f , and the tapping sequence . The
attack runs forward or backward depending on whether f
is linear in the first or the last input variable, respectively. In
the former case, put (1) into the form

x�t� � y�t� � g�x�tÿ 2�; . . . ; x�tÿ n��; t � 0; �2�
which means that the nonlinear filter generator as a
combiner with one input and one output is invertible if
the initial memory state is known. The forward inversion
attack then goes as follows:

1. Assume (not previously checked) M bits �x�t��ÿ1
t�ÿM

of the unknown initial memory state.
2. By using (2), generate a segment �x�t��rÿMÿ1

t�0 of the

input sequence from a known segment �y�t��rÿMÿ1
t�0 of

the keystream sequence.
3. By using the LFSR linear recursion, generate a

sequence �x�t��Nÿ1
t�rÿM from the first r bits �x�t��rÿMÿ1

t�ÿM .

4. By using (1), compute �ŷ�t��Nÿ1
t�rÿM from �x�t��Nÿ1

t�rÿ2M

and compare with the observed �y�t��Nÿ1
t�rÿM . If they

are the same, then accept the assumed initial

memory state and stop. Otherwise, go to Step 1.

It takes 2Mÿ1 trials on average to find a correct initial
memory state. One may as well examine all 2M initial
memory states. In that case, the algorithm yields all the
LFSR sequences that produce the given keystream sequence
of length N . The found candidate initial states could then be
examined on a longer sequence as well, which may reduce
their number. More precisely, under a reasonable assump-
tion that different LFSR initial states give rise to bitwise
uncorrelated periodic keystream sequences, the expected
number of false alarms for candidate initial states does not
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exceed 2ÿc if the length of the keystream sequence is only
N � r� c. If the determined LFSR sequence is not unique,
then any such sequence is a satisfactory solution (equivalent
LFSR initial states yielding the same keystream sequence),
but, for most filter functions, this situation is very unlikely.

3 GENERALIZED INVERSION ATTACK

The generalized inversion attack as suggested in [3] applies
to an arbitrary filter function f which need not be linear in
the first or the last input variable. Without essential loss of
generality, f is assumed to be balanced. For such a function,
there exists a nonzero fraction p� of values of the input
variables �z2; . . . ; zn�, where f is equal to zero or one
(equally likely) regardless of z1, and, similarly, a nonzero
fraction pÿ of values of the input variables �z1; . . . ; znÿ1�,
where f is equal to zero or one (equally likely) regardless of
zn. In this case, one should find the minimum of p� and pÿ
and then accordingly apply the generalized inversion attack
in the forward or backward direction. In the generalized
inversion attack, the objective is to find all possible, not
necessarily unique, input sequences of length rÿM
consistent with a given segment of the keystream sequence
of the same length, for each assumed initial memory state,
whereas the rest is the same as in the inversion attack. The
(generalized) inversion attack thus exploits the dependence
between the input and the output sequence to the
maximum possible extent.

3.1 Forward and Backward Attacks

In the forward generalized inversion attack, given the
current output bit y�t� and a guessed current memory state
�x�i��tÿ1

i�tÿM (the preceding M input bits), the basic equation
(1) may have a unique solution for x�t�, may have no
solution for x�t�, or may have two solutions for x�t� (both
zero and one). Given a segment of rÿM successive output
bits, proceeding forward one bit at a time, one can thus
obtain and store all possible solutions for an input sequence
in a binary tree structure of maximum depth rÿM. Each
node in the tree represents an internal memory state of M
successive input bits. Similarly, in the backward inversion
attack, one proceeds backward one bit at a time, each time
finding from (1) all possible solutions for x�tÿM� given the
current output bit y�t� and a guessed current memory state
�x�i��ti�tÿM�1 (the next M input bits). Without loss of
generality, we will now deal only with the forward
generalized inversion attack.

Let p � p� for simplicity. In the probabilistic model
where the LFSR initial state is chosen uniformly at random,
any M � 1, M � rÿ 1, successive input bits (defining the
inputs to f) are balanced and independent. Without
essential difference, the given keystream sequence can be
considered either as fixed or as purely random and
independent of the LFSR sequence. In this model, for any
t � 0, the number of possible solutions for the current input
bit x�t� is a nonnegative integer random variable Z with the
probability distribution, independent of t,

PrfZ � 0g � p
2
; PrfZ � 1g � 1ÿ p; PrfZ � 2g � p

2
:

�3�

Its expected value and variance are given by

� � 1; �2 � p: �4�
3.2 Basic Attack

It is interesting to examine the case p � 1, when f does not
effectively depend on the first input variable z1, in more
detail. Then, M is bigger than the effective memory size and
guessing M successive input bits is the same as guessing all
the input bits to f as well as some additional input bits if
2 ÿ 1 > 1. Accordingly, the attack can then be reduced to
the so-called basic generalized inversion attack, in which one
guesses M � 1 successive input bits �x�i��ti�tÿM and then
checks whether the corresponding output bit determined by
f is the same as the observed y�t� or not. If not, then there is
no solution for the next input bit x�t� 1� and the guess is
discarded as incorrect. If yes, then there are two possible
solutions for x�t� 1� and the search is continued in the
same manner for both of them. In the probabilistic model as
above, the number of solutions for x�t� 1� is a random
variable Z defined by (3) for p � 1. It takes only two values,
0 and 2, each with probability 1/2, and has the expected
value and variance both equal to 1 (see (4)).

Initially, exactly one half of the guesses are discarded so
that the total effective number of initial guesses is in fact 2M ,
which is the same as before. Of course, the corresponding
2M�1 trees, half of which are empty, store all the solutions
for the input sequences of length rÿM given the known
output sequence of the same length. The solutions are the
same as above, but the trees are different. Each node
contains M � 1 rather than M successive input bits and the
trees have maximum depth rÿM ÿ 1 rather than rÿM,
but the nodes at the first and the last level have to be
checked if they are consistent with the first and the last
output bit, respectively. The main difference from the
generalized inversion attack described above is that the
nodes at each level have to be generated before they are
tested for consistency with the corresponding output bit.
The trees can be grouped in 2M pairs, each corresponding to
the same initial memory state and each pair can be
aggregated into a single tree, the same as above, in an
obvious way by discarding all the nodes without branches
leaving out. So, the basic generalized inversion attack is less
efficient, as should be expected, since it does not make use
of the fact that p� is smaller than 1. The basic attack can also
run in the backward direction as well.

3.3 Binary Trees

In the forward generalized inversion attack, for each initial

memory state �x�t��ÿ1
t�ÿM , the obtained binary tree, repre-

senting all the solutions for the next rÿM bits �x�t��rÿMÿ1
t�0

consistent with the known rÿM output bits �y�t��rÿMÿ1
t�0 is

unique given �y�t��rÿMÿ1
t�0 . For each 1 � n � rÿM, let Zn

denote the number of nodes at level n, that is, the number

input segments �x�t��nÿ1
t�0 of length n that are consistent with

the output segment �y�t��nÿ1
t�0 . The initial level n � 0 contains

only one node representing an initial memory state

�x�t��ÿ1
t�ÿM and each node in the tree represents an internal

memory state of M successive input bits. As well, one can
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also store only one level at a time, but then each node at

level n should represent an input segment of variable size n,

1 � n � rÿM, rather than of constant size M. In practice,

instead of storing the tree, one may conduct a depth-first

search, in which case the required space complexity is

negligible.
Let Yn �

Pn
l�1 Zl denote the total number of nodes in the

tree up to level n, without counting the initial node. Then,
the (normalized) time complexity of the tree search process
is
P
YrÿM=�rÿM� steps, the sum being over all 2M initial

memory states, where the step complexity is approximately
the same as in the inversion attack. The total number of the
obtained solutions for input segments �x�t��rÿMÿ1

t�ÿM of length
r that are consistent with the given output segment is given
as
P
ZrÿM , where the sum is over all 2M initial memory

states. Note that for the basic generalized inversion attack
the figures are slightly different. Namely, the time complex-
ity is

P�1� YrÿMÿ1�=�rÿM� and the total number of
solutions is

P
ZrÿM=2 (the nodes at level rÿM are not

effectively produced), where the sums are over all 2M�1

initial guesses. Consequently, the main problem to be
addressed is how large these values can grow as rÿM
increases.

4 PROBABILISTIC ANALYSIS VIA BRANCHING

PROCESSES

4.1 Probabilistic Models

The basic probabilistic model to be considered is one in

which �x�t��ÿ1
t�ÿM is uniformly distributed and �y�t��rÿMÿ1

t�0 is

a random variable independently generated from a uni-

formly distributed LFSR initial state. Note that �y�t��rÿMÿ1
t�0

need not be uniformly distributed and, in fact, is not likely

to be such if p > 0. In particular, some output segments may

not be possible at all. In the related, simplified model where

the output segment is uniformly distributed, the expected

values of both Zn and Yn=n are equal to 1 for each

1 � n � rÿM. So, in this model, the expected total number

of consistent solutions for �x�t��rÿMÿ1
t�ÿM (to be checked in the

final stage of the generalized inversion attack) as well as the

expected time complexity of the tree construction are both

exactly 2M , which is the same as in the inversion attack.
Not only can the expected values be different in the basic

model, but also it is conceivable that ZrÿM and/or
YrÿM=�rÿM� can be big depending on a particular output
segment. In the inversion attack, where p � 0, this is not
possible because the variance of Zn is zero for every
guessed initial memory state. More generally, if the output
segment is uniformly distributed and p > 0, then the
number of solutions is exactly 2M for each output segment,
but the variance of Zn need not be equal to zero for every
guessed initial memory state. Consequently, the problem
here is to estimate the expected values and the variances, as
well as the probability distributions of both Zn and Yn=n in
the basic probabilistic model.

The variances and the probability distributions of Zn and
Yn=n in general depend on a particular filter function and
on a chosen tapping sequence as well. They could be

estimated empirically in various cases of interest, as is
demonstrated in the next section. However, a reasonably
good approximation providing insight into the size of the
random tree spanned can be obtained by the theory of
critical branching processes outlined in the Appendix.
One may consider the random tree produced by the
random initial memory state and the random or a fixed
output segment. In both cases, the associated branching
process is one with the branching probability distribution
defined by (3). It is a critical Galton-Watson process with
the expected value 1 and the variance p of the branching
random variable Z1.

The random tree produced by the associated branching
process is not the same as the random tree obtained by the
tree construction process. The reason for this is that, in the
branching process, the branching probability distribution
for a given node is independent of the nodes at the same or
the preceding levels (the history), whereas, in the tree
construction process, there is a dependence between the
nodes as a result of successive inputs to the filter function
having some bits in common. Note that the dependence is
not influenced by the LFSR recursion since only r successive
bits of the LFSR sequence are examined. This dependence is
relatively weak if the tapping sequence defines a positive
difference set and is stronger if it is equidistant, that is, if
 � ��i�nÿ1

i�0 , where � is a positive integer. As a consequence,
the probability distributions of both the variables Zn and
Yn=n are somewhat different. However, the difference is
expected to be relatively small for both their expected
values and variances, as they are only affected by relatively
weak pairwise and triplewise dependences between differ-
ent levels in the random tree generated by the tree
construction process.

4.2 Expected Values and Variances

In view of Theorem 1 from the Appendix, we get that, for
the associated branching process, E�Zn� � 1, Var�Zn� � p n,
and PrfZn > 0g � 1ÿ f�n��0�, where f�n��s� is the self-
composition (7) of the generating function,

f�s� � p=2� �1ÿ p�s� ps2=2;

of the branching probability distribution (3). This probability
can be evaluated numerically. For any n, PrfZn > 0g �
1ÿ p=2 and, for large n, PrfZn > 0g � 2=�p n�, provided
p > 0. If p is very small, then this probability is close to 1
unless n is very large. Accordingly, the expected fraction of
the guessed initial memory states giving rise to at least one
input segment of length n that is consistent with the given
output segment of length n is 1ÿ f �n��0�. On the other hand,
Theorem 2 from the Appendix gives that E�Yn=n� � 1 and
Var�Yn=n� � p n=3. In view of the Chebyshev inequality
PrfjYn=nÿ E�Yn=n�j � "g � Var�Yn=n�="2, we then get that
Yn=n is, with high probability, O� ���np � and the multiplicative
constant is not big. Note that, in the case of interest,
n � rÿM.

It is interesting to see how large Zn and Yn=n can grow
when conditioned on the event that there exists at least one
input segment of length n that is consistent with the output
segment. At least one such initial memory state exists,
corresponding to the original LFSR sequence producing the
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given output sequence. Theorem 3 from the Appendix
shows that, for p > 0 and large n, E�ZnjZn > 0� � p n=2 and
Var�ZnjZn > 0� � p2n2=4. This means that the number of
solutions is, with high probability, linear in n, provided at
least one such solution exists. As for Yn=n, the note from the
Appendix shows that, for p > 0 and large n, E�Yn=njZn >
0� � O�p n� and Var�Yn=njZn > 0� � O�p2n2� so that Yn=n is
then, with high probability, O�p n�. Consequently, the
resulting tree is then bigger than on average, but still
relatively small, even if n � rÿM is big.

4.3 Correction Factor

One may take the estimates given above as good approx-
imations for the random tree generated by the tree
construction process. Recall that, in the basic probabilistic
model, one first chooses a random uniformly distributed
LFSR initial state, then generates the corresponding output
segment of length rÿM, and, finally, independently
chooses a uniformly distributed initial memory state and
constructs the corresponding tree. So, for each achievable
output segment of length rÿM, one in fact constructs 2M

trees corresponding to all possible initial memory states.
The above estimates would have been good approximations
if all 2rÿM output segments were achievable. Since this is
not the case, a correction has to be made. Namely, the
random variables Zn and Yn=n have to be conditioned on
the achievability event that there exists at least one initial
memory state, among 2M of them, with at least one input
segment of length n consistent with the output segment.
The conditioning event is the same as the one that the
output segment is achievable or, in terms of the theory of
branching processes, that among 2M independently gener-
ated trees there exists at least one of depth n. It is easily seen
that the expected fraction of achievable output segments of
length n is then

qn � 1ÿ f �n��0�2M � 1ÿ 1ÿ 2

p n

� �2M

: �5�

Thus, the theory of branching processes helps one
analyze how many output segments of a given length are
expected to occur at the output of a nonlinear filter
generator. This reflects its statistical properties. Conse-
quently, for any n � 1, the random variable Zn in the
original branching process is a mixture of the zero random
variable, with probability 1ÿ qn, and the random variable
Zn conditioned on the achievability event, with probability
qn. Both E�Zn� and PrfZn > 0g then increase by the
multiplicative factor qÿ1

n , whereas Var�Zn� approximately
increases by the same factor. The random variable Yn=n is
more difficult to analyze, but it is clear that one may expect
that the trees produced from achievable output segments by
the basic probabilistic model are bigger in size about qÿ1

n

times up to level n than the ones produced by arbitrary
output segments. For n � rÿM, the correction factor qÿ1

rÿM
becomes significant if 2M�1ÿ f�rÿM��0�� � 1.

4.4 Time Complexity and Number of Solutions

As noted before, the time complexity of the tree construc-
tion process is given as T �PYrÿM=�rÿM�, where the
sum and is over all 2M initial memory states. The analysis

conducted above, based on the theory of critical branching
processes, shows that the expected time complexity is about
qÿ1
rÿM2M and that, with high probability, under the reason-

able independence assumption,

T � qÿ1
rÿM2M � 2M=2�rÿM�1=2

���������������
3pqÿ1

rÿM
q

: �6�

Note that the correction factor qÿ1
rÿM depends on rÿM,

M, and p. For p > 0 and large rÿM, we have
qÿ1
rÿM � p�rÿM�=2. The total number of obtained input

segments of length r consistent with the given output
segment of length rÿM is K �PZrÿM and has about the
same expected value as T and the variance three times
bigger. As a result, it satisfies a relation analogous to (6).

It is clear that, unlike the time complexity, the fraction of
achievable output segments of any given length, as well as
the total number of input segmens consistent with a given
output segment, are both independent of whether the attack
is applied in its forward (p � p�), backward (p � pÿ), or
basic (p � 1) form. So, (5) is only an approximation. It is
reasonable to expect that the approximation is better if p is
taken to be the minimum of p� and pÿ, especially if this
minimum is relatively small.

5 EXPERIMENTAL RESULTS

In this section, we present results obtained by systematic
experimental analysis of various nonlinear filter generators.
The shift register length chosen is r � 100 which is
sufficiently big to study the effect of a large tree depth
rÿM. The primitive feedback polynomial chosen is
1� x2 � x7 � x8 � x100. We study the filter Boolean func-
tions, f , with n � 5 and n � 10 input variables. For each n,
two tap settings, , are considered, one adjacent and the
other corresponding to a full positive difference set (for
n � 5), and to a random set (for n � 10). The experimental
results for each of the four cases are shown in Tables 1, 2, 3,
and 4. In each case, we have randomly chosen five filter
functions f with different probabilities �p�; pÿ� � �0; 0:5�,
�0:125; 0:125�, �0:125; 0:875�, �0:5; 0:5�, and �0:875; 0:875�. For
each of them we have run the forward and backward
generalized inversion attacks, as well as the forward and
backward basic generalized inversion attacks for 50 ran-
domly chosen LFSR initial states.

The results shown are the average normalized number of
solutions for consistent input segments of length r, per each
initial memory state guessed (ª#Solutionsº being equal to
K=2M for the forward and backward attacks and to K=2M�1

for the basic ones), the average normalized time complexity
of the tree construction process, per each initial memory
state guessed (ªTimeº being equal to T=2M for the forward
and backward attacks and to T=2M�1 for the basic ones),
and the fraction of trees reaching the full depth rÿM
(ªProbº) for all the attacks. Note that, in the basic attacks,
the level rÿM ÿ 1 is not empty after checking for
consistency if and only if the level rÿM is not empty
before checking for consistency. All the results are averaged
over 50 randomly chosen LFSR initial states.

Table 5 contains the probability for a tree to reach the
full depth (1ÿ f �rÿM��0�), to be compared with the ªProbº
column of Tables 1, 2, 3, and 4, the fraction of achievable
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output segments of required length (qrÿM ), and the

corresponding correction factor for the number of solu-

tions and for the time complexity (qÿ1
rÿM ). They are

computed according to the theory of critical branching

processes. Each found consistent input segment of length r

was then tested on an additional segment of the key-

stream sequence (the final stage of the inversion attack).

For each examined nonlinear filter generator and every
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TABLE 2
�r; n;M� � �100; 5; 15�,  � �0; 1; 3; 7; 15�

TABLE 1
�r; n;M� � �100; 5; 4�,  � �0; 1; 2; 3; 4�
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chosen LFSR initial state, it turns out that exactly one

input sequence is consistent with the given keystream

sequence (no equivalent LFSR initial states), as should be

expected since the number of input variables n is

relatively small compared to r.

The experimental results shown generally agree very

well with the theory of critical branching processes. In

fact, by comparing Tables 2 and 4, where the memory

sizes are the same, but the numbers of input variables are

different, one may conclude that the dependence induced
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TABLE 3
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TABLE 4
�r; n;M� � �100; 10; 15�,  � �0; 2; 3; 6; 7; 9; 10; 11; 14; 15�
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by overlapping successive inputs to the filter function
(Table 4) tends to reduce the size of the constructed trees.
Interestingly, the tables show that the normalized time
complexities are almost independent of the direction in
which the attack is run. The normalized time complexities
are exactly the same if p� or pÿ is equal to zero. As the total
number of solutions is the same in each case for all the
attacks, the normalized number of solutions is halved for
the basic attacks. Despite some irregularities in Tables 1 and
2 (n � 5), one can draw a general conclusion that the
normalized number of solutions and the normalized time
complexity are likely to increase as the minimum of p� and
pÿ increases. The trees produced by the basic generalized
inversion attack are roughly twice as big as those produced
by the generalized inversion attack in the same direction, as
should be expected.

To demonstrate the accordance with the theory, consider
Tables 1 and 2, for example. The normalized number of
solutions is, in most cases, bigger in Table 1 than in Table 2
because the number of possible initial memory states is
much smaller, so that the variance becomes significant (see
(6)), and because the correction factor is bigger than 1 for
Table 1, unlike the other tables (see Table 5). The same holds
for the normalized time complexity except that the figures
are smaller since the variance is smaller (see (6)).

6 CONCLUSIONS

The theory of critical branching processes is applied to
analyze the complexity of the generalized inversion attack
on nonlinear filter generators. Both theory and systematic
experimental results obtained show that, almost regardless
of the choice of the filter function, the attack has time
complexity close to 2M , M being the input memory size.
Consequently, the choice of the filter function that is linear
in neither the first nor the last input variable is likely to
spoil the output statistics, but does not prevent the

inversion attack in its generalized form. The inversion
attack is infeasible if M is sufficiently large, provided that
the tapping sequence is such that M cannot be reduced by
the uniform decimation technique.

The attack can be extended to deal with more than one
bit at a time, in which case the resulting trees are no longer
binary, but the associated branching process remains
critical. This may reduce the required complexity for some
filter functions, especially if the branching probabilities pÿ
and p� are both close to 1. The attack can also be applied to
nonlinear filter generators with multibit outputs, where the
theory of subcritical branching processes will be useful.
More generally, the attack is also applicable to combinations
of nonlinear filter generators with single or multiple binary
outputs.

APPENDIX

CRITICAL BRANCHING PROCESSES

Only the basic type of branching processes, called the
Galton-Watson processes, will be considered (see [4] and
[2]). Such a branching process is a Markov chain fZng1n�0 on
the nonnegative integers whose transition function is
defined in terms of a given probability distribution
fpkg1k�0. The initial random variable Z0 takes value 1 with
probability 1 and, for any n � 1, the random variable Zn
conditioned on Znÿ1 � i is the sum of i independent
identically distributed random variables with the prob-
ability distribution fpkg1k�0 (if i � 0, then Zn � 0). The
process can be regarded as a random (finite or infinite)
tree with Zn being the number of nodes at level n � 0,
where the number of branches leaving any node in the tree
is equal to k with probability pk, independently of other
nodes at the same or previous levels. The generating
function characterizing the probability distribution of Zn
can be expressed as the self-composition of the generating

GOLIC ET AL.: GENERALIZED INVERSION ATTACK ON NONLINEAR FILTER GENERATORS 1107

TABLE 5
Full Depth Probabilities
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function f�s� �P1k�0 pks
k of fpkg1k�0, which is the prob-

ability distribution of Z1. Precisely, if f �n��s�, 0 � s � 1,
denotes the generating function of the probability distribu-
tion of Zn and if f �0� � s, then, for every n � 1,

f�n��s� � f�f�nÿ1��s��: �7�
The basic characteristic of a branching process is the

expected number of branches leaving any node, that is,

� � E�Z1� �
X1
k�0

k pk: �8�

A branching process is called subcritical, critical, or super-
critical if � < 1, � � 1, or � > 1, respectively. The extinction
probability, defined as the probability of a tree being finite,
is 1 for subcritical and critical (provided p0 > 0) processes
and smaller than 1 for supercritical processes. Here, we are
only interested in critical processes, whose main properties
are given by the following theorem (see [2] and [4]). Let
�2 � Var�Z1� be the variance of Z1.

Theorem 1. In the critical case, � � 1, if �2 > 0 (p1 < 1) and
�2 <1, then, for any n � 1,

E�Zn� � 1 �9�

Var�Zn� � �2n �10�

PrfZn > 0g � 1ÿ f �n��0� � 2

�2n
: �11�

Equation (11) implies that the extinction probability,
limn!1 PrfZn > 0g, is equal to 1, while the rate of
convergence is relatively slow. The variance grows linearly
with n, although the expected value remains equal to 1.

It is also interesting to study the total number of nodes in
a random tree up to level n, not counting the initial node,
that is, the random variable Yn �

Pn
l�1 Zl, for any n � 1. Its

generating function satisfies a recursion which reduces to a
functional equation with a unique solution if n!1 (see
[4]). Its expected value follows trivially, and its variance can
be determined after a certain manipulation.

Theorem 2. In the critical case, � � 1, if �2 > 0, then, for any
n � 1,

E�Yn� � n �12�

Var�Yn� � �
2

6
n�n� 1��2n� 1� � �

2

3
n3: �13�

Note that, although the extinction probability is 1, the
expected value grows linearly with n and the variance
increases as n3, which is faster by a multiplicative factor n
than what would hold if the random variables Zl were
independent.

Other interesting random variables to be considered are
Zn and Yn conditioned on the event fZn > 0g. They are the
number of nodes at level n and the total number of nodes
up to level n, not counting the initial one, in a random tree
reaching level n. The probability distribution of Zn
conditioned on fZn > 0g is simply obtained by dividing

the probability distribution of Zn by PrfZn > 0g (see
Theorem 1). The limit distribution of Zn=n conditioned on
fZn > 0g in the critical case has been characterized by
Yaglom (see [4] and [2]). By computing the expected value
[2] and variance, we can then formulate the following
theorem.

Theorem 3. In the critical case, � � 1, if 0 < �2 <1, then

lim
n!1Pr

Zn
n
> zjZn > 0

� �
� eÿ2z=�2

; z � 0; �14�

E�ZnjZn > 0� � 1

1ÿ f�n��0� �
�2

2
n �15�

Var�ZnjZn > 0� � 1

1ÿ f�n��0� �2nÿ f �n��0�
1ÿ f �n��0�

� �
� �

4

4
n2:

�16�

The probability distribution of the random variable Yn
conditioned on fZn > 0g is not treated in the standard
books on branching processes like [4] and [2]. Nevertheless,
the previous theorems and the results regarding the
random variable Zn conditioned on fZn�k > 0g presented
in [2] lead us to conclude that, in the critical case,

E�YnjZn > 0� � O�n�1ÿ f �n��0��ÿ1� � O��2n2�
and

Var�YnjZn > 0� � O��2n3�1ÿ f�n��0��ÿ1� � O��2n4�:
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