
Generalized Jarzynski Equality under Nonequilibrium Feedback Control

Takahiro Sagawa1 and Masahito Ueda1,2

1Department of Physics, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan
2ERATO Macroscopic Quantum Control Project, JST, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8656, Japan

(Received 28 July 2009; revised manuscript received 20 January 2010; published 5 March 2010)

The Jarzynski equality is generalized to situations in which nonequilibrium systems are subject to a

feedback control. The new terms that arise as a consequence of the feedback describe the mutual

information content obtained by measurement and the efficacy of the feedback control. Our results lead to

a generalized fluctuation-dissipation theorem that reflects the readout information, and they can be

experimentally tested using small thermodynamic systems. We illustrate our general results by introduc-

ing an ‘‘information ratchet’’, which can transport a Brownian particle in one direction and extract positive

work from the particle.
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Introduction.—Since the 1990s, the field of nonequilib-
rium statistical mechanics has witnessed remarkable
progress so that nonequilibrium dynamics can now be
described in terms of equalities [1,2]. These equalities
have been experimentally verified using small thermody-
namic systems such as biomolecules or colloidal particles
[3]. A prominent example of such equalities is the
Jarzynski equality [1]:

he��ðW��FÞi ¼ 1; (1)

where hWi is the statistical average of work W performed
on a thermodynamic system, �F is the free-energy differ-
ence, and T � ðkB�Þ�1 is the temperature of the initial
canonical distribution. Equality (1) is satisfied even when
the final state of the system is far from equilibrium, i.e.,
even when we drive the system from t ¼ 0 to � by chang-
ing the external parameter � from �ð0Þ to �ð�Þwith a finite
speed, where � describes, for example, the volume of the
gas or the frequency of an optical tweezer. The left-hand
side of (1) involves all orders of cumulants of W. In fact,
the second law of thermodynamics [4]

hWi � �F (2)

and the fluctuation-dissipation theorem result from the first
and second cumulants of W, respectively [1].

Furthermore, recent advances in active control and pre-
cision measurement of small thermodynamic systems
present new possibilities in nonequilibrium physics of
small systems. In particular, feedback control enhances
our controllability of small thermodynamic systems [5,6],
and plays a crucial role in biological and artificial nano-
machines [7]. In addition to such engineering applications,
feedback control of thermodynamic systems has also been
a subject of active research in terms of the foundation of
the second law of thermodynamics. In fact, it is well
understood that the role of ‘‘Maxwell’s demon’’ can be
characterized as a feedback controller for thermodynamic
systems [8,9].

Suppose that we perform a measurement on a stochastic
thermodynamic system at time tm. Let �m be the phase-
space point of the system at that time,P½�m� its probability,
and y the measurement outcome. We assume that the
measurement can involve a measurement error which is
characterized by the conditional probability P½yj�m� of
obtaining outcome y on condition that the state of the
system is �m. For example, if a Gaussian noise is induced
in the measurement, the conditional probability is given by

P½yj�m� ¼ ð2�NÞ�1=2 exp½�ðy� �mÞ2=2N� with N > 0
being the variance of the noise. The probability of obtain-
ing outcome y is given by P½y� ¼ R

d�mP½yj�m�P½�m�.
The information obtained by the measurement can be
characterized by the mutual information [10], hIi �R
d�mdyP½yj�m�P½�m�I½�m; y� with I½�m; y� �

lnðP½yj�m�=P½y�Þ. If we perform a feedback control, the
control protocol of parameter � depends on the outcome y
after tm, which we write as �ðt; yÞ. The introduction of the
feedback control requires us to generalize the second law
of thermodynamics (2) by including the mutual informa-
tion hIi obtained by the feedback controller (or the ‘‘de-
mon’’) [9]:

hWi � �F� kBThIi: (3)

Thus, the work that needs to be performed on a thermody-
namic system can be lowered by feedback control.
Now the crucial question is, Is it possible to generalize

the Jarzynski equality (1) in the presence of feedback
control such that we can obtain more detailed information
about nonequilibrium dynamics than inequality (3), as is
the case for the original Jarzynski equality? In this Letter
we answer the question in the affirmative.
First main result.—The generalized Jarzynski equality

involves a term of information on the left-hand side:

he��ðW��FÞ�Ii ¼ 1; (4)

which will be proved later. We note that �F may depend
on y if �ð�; yÞ does. Our result is applicable to classical
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stochastic processes that satisfy the local detailed balance
(or the detailed fluctuation theorem) [2]. Therefore, our
result can be applied to a broad class of active control of
small nonequilibrium systems.

The first cumulant of Eq. (4) straightforwardly reprodu-
ces inequality (3) because of the concavity of the expo-
nential function. If all of the stochastic variables are
Gaussian, the second cumulant leads to a generalized
fluctuation-dissipation theorem including the term of the
mutual information:

h�þ Ii ¼ 1
2½�ð�þ IÞ�2; (5)

where � � �ðW ��FÞ is the dissipation of work (or the
entropy production), and ½�ð�þ IÞ�2 � hð�þ IÞ2i �
h�þ Ii2 is the variance of the sum of work and mutual
information. Therefore, the more information we obtain,
the less dissipation the system will suffer.

Second main result.—If we measure the left-hand side of
the original Jarzynski equality (1) in the presence of feed-
back control, the right-hand side is expected to differ from
unity. Let us write it as �:

he��ðW��FÞi ¼ �: (6)

The crucial point is that we can directly measure � by
using backward control protocols, and that � characterizes
the efficacy of feedback control. Thus the left-hand and
right-hand sides of Eq. (6) can be measured by the inde-
pendent procedures.

We now discuss the properties of �. We first note that the
control protocol of � depends on measurement outcome y
at time t > tm with feedback control. In particular, if the
number of possible outcomes is finite and given by M, we
have M types of protocols �ðt; yÞ in the forward process.
Corresponding to each of them, we perform a backward
protocol �yðt; yÞ � �ð�� t; yÞ, which depends on y only
in 0 � t < �� tm, by starting with the initial canonical
distribution corresponding to parameter �yð0; yÞ. We stress
that we do not perform any feedback control in the back-
ward processes. Instead, we respectively drive the system
depending on the forward outcome y. We then perform a
measurement during the backward processes at time ��
tm, and obtain outcome y0. Let P�yðt;yÞ½y0� be the probability
of obtaining outcome y0 with control protocol �yðt; yÞ,
which is normalized as

R
dy0P�yðt;yÞ½y0� ¼ 1 for all y. We

then write the time-reversal y as y�; if we only measure the
momentum of the system, then y�i ¼ �yi; if we only
measure the position of the system, then y�i ¼ yi. For a
special case of y0 ¼ y�, we use the notation P�yðt;yÞ½y��,
which is not necessarily unity. Then we can show that � is
given by

� ¼
Z

dyP�yðt;yÞ½y��: (7)

As discussed in detail later, to prove Eq. (7), we assume
that the conditional probability satisfies P½y�j��

m� ¼

P½yj�m�. Here, ��
m is the time-reversal of a phase-space

point �m. For example, if �m ¼ ðr;pÞ with position r and
momentum p, then ��

m ¼ ðr;�pÞ. Physically, � is the sum
of the probabilities of obtaining the time-reversed out-
comes with time-reversed protocols. Without feedback
control, we have � ¼ 1 because P�yðtÞ½y�� would then

reduce to a single probability distribution.
The validity of Eq. (6) can be tested experimentally by

measuring the left-hand side and the right-hand side inde-
pendently; we can measure W and �F with forward pro-
cesses, and determine � by repeatedly performing time-
reversed protocols �yðt; yÞ for all possible outcomes y.
Once the validity of Eq. (6) has been confirmed, we can
estimate the feedback efficacy � by only measuringW and
�F with forward protocols.
We note that the effect of feedback control can be

amplified by Eq. (6); a small amount of work that satisfies
W <�F can make an exponentially large contribution to
the left-hand side of Eq. (6). In particular, with feedback
control, a situation can occur in which Eq. (1) is violated
while inequality (2) is still satisfied. We will discuss such
an example later. In such a situation, the feedback control
only affects cumulants higher than the first order hWi.
We next discuss the relationship between mutual infor-

mation I and parameter �. Let C½X� � lnhe�Xi be the
cumulant generating function of a probability variable X.
From Eqs. (4) and (6), and identity he�Ii ¼ 1, we have
C½�þ I� � C½�� � C½I� ¼ � ln�. The left-hand side of
this equality characterizes the correlation between � and I,
and therefore we find that � is a measure of the correlation
between the dissipation and the information. In particular,
if the joint distribution of � and I is Gaussian, we have

h���Ii ¼ � ln�; (8)

where h���Ii � h�Ii � h�ihIi. While I only character-
izes the information obtained by the measurement, � char-
acterizes how efficiently we use the obtained information
with feedback control. When � is large, we efficiently
make the dissipation � smaller by using the obtained
information I, i.e., if we possess more information I, the
dissipation � is lesser. We note that I only depends on the
measurement; however � depends both on the measure-
ment and the feedback protocol.
Examples.—As an illustrative example, we consider

Eq. (4) for the Szilard engine [8]. The Szilard engine is a
single-molecule ideal gas controlled by Maxwell’s demon.
The gas is initially in thermodynamic equilibrium with a
heat bath at temperature T. We partition the box into two
boxes of equal volume.We then perform a measurement on
the system to determine which box the molecule is in; the
measurement outcome is ‘‘left’’ or ‘‘right.’’ By this mea-
surement, we gain(1 bit ¼ ln2 nat) of information. When
the outcome is right, we remove the left box and quasistati-
cally move the right one to the left. Finally, we expand the
box to the right, and the state of the system S returns to the

PRL 104, 090602 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending

5 MARCH 2010

090602-2



initial state. During the entire process, we extract kBT ln2
of work from the system with no free-energy change (i.e.,
�F ¼ 0). Since W ¼ kBT ln2 holds for all trajectories in
the quasistatic limit and I ¼ ln2 holds for both left and
right, we find that Eq. (4) holds for the case of the Szilard
engine, that is, exp½��ð�kBT ln2Þ � ln2� ¼ 1.

The backward process of the Szilard engine is described
as follows. The gas is initially in thermodynamic equilib-
rium, and we quasistatically compress the box to the left.
The following step bifurcates into two branches depending
on the measurement outcome of the forward process. If the
outcome is left, we do not move the box, and measure the
position of the molecule. Clearly, the outcome must be left
with unit probability: P�yðt;leftÞðleftÞ ¼ 1. On the other

hand, if the outcome is right, we quasistatically move the
box to the right, and measure the position of the molecule.
The outcome must be right with unit probability:
P�yðt;rightÞðrightÞ ¼ 1. Finally, we remove the partition of

the box and let the gas freely expand. We then obtain � ¼
P�yðt;leftÞðleftÞ þ P�yðt;rightÞðrightÞ ¼ 2. Therefore, we find

that Eq. (6) holds as exp½��ð�kBT ln2� 0Þ� ¼ 2.
We next discuss a model of ‘‘information ratchet.’’ We

consider a one-dimensional Brownian particle in a har-
monic potential. Suppose that the particle is initially at
thermal equilibrium in a potential VXðxÞ � kðx� XÞ2=2,
where X is the center position of the potential. We then
measure the position x of the particle and obtain outcome
y. We assume that the measurement involves a Gaussian
noise whose probability distribution is pðy� xÞ ¼
ð2�NÞ�1=2 exp½�ðy� xÞ2=2N�. The joint probability of x
and y with potential VXðxÞ is then given by

pXðx; yÞ ¼ 1

2�
ffiffiffiffiffiffiffi
SN

p exp

�
�ðx� XÞ2

2S
� ðy� xÞ2

2N

�
; (9)

where S � ðk�Þ�1. Immediately after the measure-
ment, we perform the following feedback control [see
also Fig. 1(a) for the case of X ¼ 0]: if y � X þ L with
L > 0 being a constant, then we switch the potential to
VXþ2LðxÞ; if y < X þ L, we do nothing. We next wait for
the relaxation of the particle. When the probability distri-
bution of the particle becomes a thermal equilibrium one,
we repeat the same feedback protocol by replacing X by
X þ 2L. By repeatedly performing this protocol, the aver-
age position of the particle moves to the right. We note that
�F ¼ 0 holds for this process. This one-way transporta-
tion of the particle looks like a ratchet model [5]. However,
the distinctive feature of the present model is that we do not
need any asymmetry of the potential shape to drive the
particle in one direction. Moreover, we can even extract
positive work during this transport if the measurement
errors are sufficiently small, as discussed below.
Information obtained from the measurements enables
one-way transportation driven by feedback contro, and
therefore we call this model information ratchet.

We discuss the energetics of the information ratchet for a
single step. The work performed on the particle at x is
given byWðxÞ � VXþ2LðxÞ � VXðxÞ if y � Xþ L, and 0 if
y < X þ L. Therefore, the average work for each step is

�hWi ¼
Z 1

�1
dx

Z 1

XþL
dyWðxÞpXðx; yÞ

¼ L2

S
erfc

�
Lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðSþ NÞp
�
� 2Lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2�ðSþ NÞp e�L2=2ðSþNÞ;

(10)

where erfcðtÞ � ð2= ffiffiffiffi
�

p ÞR1
t e�t02dt0. We can show that

hWi< 0 holds for all S if N ! 0, implying that we can
extract a positive work during the one-way transportation if
the measurement is error-free. Figure 1(b) shows the re-
gimes of hWi< 0 and hWi> 0 on the (S, N) plane. The
mutual information is determined by the S=N ratio: hIi ¼
ð1=2Þ lnð1þ S=NÞ. Since e�I ¼ pXðxÞpXðyÞ=
pXðx; yÞ holds with pXðxÞ �

R1
�1 dypXðx; yÞ and pXðyÞ �R1

�1 dxpXðx; yÞ, we obtain he��W�Ii ¼ R1
�1 dx�R

XþL
�1 dy1pXðxÞpXðyÞ þ

R1
�1 dx

R1
XþL dye��WðxÞpXðxÞ �

pXðyÞ ¼ 1, and therefore Eq. (4) is satisfied in this model.
We can also show that he��Wi ¼ R1

�1 dx�R
XþL
�1 dy1pXðx; yÞ þ

R1
�1 dx

R1
XþL dye��WðxÞpXðx; yÞ ¼

erfc½�L=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðS þ NÞp �, and � ¼ R

XþL
�1 dypXðyÞ þR1

XþL dypXþ2LðyÞ ¼ erfc½�L=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðSþ NÞp �. Therefore,

Eq. (6) is also satisfied. The efficacy parameter satisfies
� > 1 for all (S, N) as long as L > 0 so that the particle is
transported to the right. In addition, � is a monotonically
decreasing function of N, and � ! 1 holds with N ! 1
which implies that feedback control does not work at all
because of an infinite amount of error. We note that hWi is
positive for a regime with a small S=N-ratio even though
� > 1 always holds. In this regime, the second law (2) is
satisfied while the Jarzynski equality (1) is violated, as
mentioned before.
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FIG. 1 (color online). (a) Schematic of the information ratchet
with X ¼ 0, with which we transport a Brownian particle to the
right solely by means of a feedback control. (b) Regimes of
hWi< 0 and hWi> 0 on the (S, N) plane. The conventional
second law (2) is violated only in the regime of hWi< 0 with a
large S=N ratio, whereas the original Jarzynski equality (1) is not
satisfied on the entire region.
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Proof of the main results.—Let �yðtÞ � ��ð�� tÞ be
the time-reversed trajectory of �ðtÞ. With control pro-
tocols �ðt; yÞ and �yðt; yÞ, we denote the probability
densities of trajectories �ðtÞ and �yðtÞ as P �ðt;yÞ½�ðtÞ�
and P �yðt;yÞ½�yðtÞ�, respectively. These are respectively

normalized as
R
P �ðt;yÞ½�ðtÞ�D½�ðtÞ�¼1 andR

P �yðt;yÞ½�yðtÞ�D½�yðtÞ�¼1, where D½�ðtÞ� ¼
D½�yðtÞ�. It has been well-established that without any
feedback control the local detailed balance holds for any
control protocol [2], which is given by e�� ¼
P �yðt;yÞ½�yðtÞ�=P �ðt;yÞ½�ðtÞ� with protocol �ðt; yÞ, where y

is fixed.
The joint distribution of �ðtÞ and y is given by

P½yj�m�P �ðt;yÞ½�ðtÞ�. Noting that e�I ¼ P½y�=P½yj�m�,
we have he���Ii¼R

dyD½�ðtÞ�P½yj�m�P �ðt;yÞ½�ðtÞ� �
e��½�ðtÞ�P½y�=P½yj�m�¼

R
D½�ðtÞ�dyP �yðt;yÞ½�yðtÞ�P½y�¼

1, which proves Eq. (4).
To prove Eq. (7), we use the assumption of the time-

reversal symmetry of the measurement, P½y�j��
m� ¼

P½yj�m�. The joint distribution of �yðtÞ and y0 under the
protocol �yðt; yÞ is given by P½y0j��

m�P �yðt;yÞ½�yðtÞ� so that
P�ðt;yÞ½y0� ¼

R
D½�yðtÞ�P½y0j��

m�P �yðt;yÞ½�yðtÞ� for arbi-

trary y and y0. Therefore we obtain

he��i ¼
Z

dyD½�ðtÞ�P½yj�m�P �ðt;yÞ½�ðtÞ�e��½�ðtÞ�

¼
Z

dyD½�yðtÞ�P½y�j��
m�P �yðt;yÞ½�yðtÞ�

¼
Z

dyP�yðt;yÞ½y�� (11)

which proves Eq. (7).
In conclusion, we have generalized the Jarzynski equal-

ity to situations in which we perform feedback control on a
nonequilibrium dynamics. The first generalization (4) in-
cludes the mutual information, and it leads to the general-
ized second law (3) and the generalized fluctuation-
dissipation theorem (5) corresponding to the first and
second cumulants, respectively. The second generalization
(6) includes the efficacy parameter �, which can be deter-
mined by backward processes, and it characterizes the
efficacy of feedback, as shown in (8). We have also illus-
trated the equalities by the Szilard engine and an informa-
tion ratchet. We note that our results are consistent with the
conventional second law of thermodynamics because of
the energy cost of the controller [8].
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