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Abstract. This paper analytically describes the local geometry of a generalized (κ,µ)-manifold M(η, ξ, φ, g)

with κ < 1 which satisfies the condition “the function µ is constant along the integral curves of the characteristic

vector field ξ”. This class of manifolds is especially rich, since it is possible to construct in R3 two families of such
manifolds, for any smooth function κ (κ < 1) of one variable. Every family is determined by two arbitrary functions
of one variable.

1. Introduction

The class of 3-dimensional generalized (κ, µ)-contact metric manifolds, which we study
in this paper, is important because it contains several interesting classes of Riemannian man-
ifolds, such as Sasakian, η-Einstein and (κ, µ)-contact metric manifolds. In what follows
in this section we refer to these classes of manifolds as well as to our motivation to study
generalized (κ, µ)-contact metric manifolds which satisfy the condition ξµ = 0.

In [2] Blair, Koufogiorgos and Papantoniou studied for the first time the class of (2m+1)-
dimensional contact metric manifolds M(η, ξ, φ, g) for which the vector field ξ belongs to
the (κ, µ)-nullity distribution, for some real numbers κ and µ (κ ≤ 1). The curvature tensor
R of the above class of manifolds satisfies the condition

R(X, Y )ξ = (κI + µh)[η(Y )X − η(X)Y ] (∗)

for all vector fields X,Y ∈ X (M), where I is the identity and h denotes, up to a scaling
factor, the Lie derivative of the structure tensor φ in the direction of ξ . For convenience, we
will call such a contact metric manifold a “(κ, µ)-manifold”. The special case κ = 1 charac-
terizes the well known class of Sasakian manifolds, while the case µ = 0 characterizes the
class of η-Einstein manifolds. Within contact geometry, (κ, µ)-manifolds received attention
mainly because the unit tangent sphere bundle of a Riemannian manifold of constant curva-
ture belongs to this class. A (κ, µ)-manifold with κ < 1, is locally homogeneous and its local
geometry is now completely known (see [2], [3], [4]). In particular, a 3-dimensional (κ, µ)-
manifold with κ < 1, is locally isometric to one of the Lie groups SU(2), SO(3), SL(2, R),
O(1, 2), E(2), E(1, 1) equipped with a left invariant metric (see [2] for more details).
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In [5] the authors of the present paper gave an answer to the following question:
Do contact metric manifolds exist satisfying the condition (*), with κ,µ non-constant smooth
functions ? The answer is affirmative only for the 3-dimensional case. So in [5] a new class
of 3-dimensional contact metric manifolds was introduced. A manifold of this class will be
referred to as “a generalized (κ, µ)-manifold”. We note that in contrast to (κ, µ)-manifolds
the generalized (κ, µ)-manifolds are not locally homogeneous. Within contact geometry, a
generalized (κ, µ)-manifold, with κ < 1, M(η, ξ, φ, g) is characterized by the fact that the
vector field ξ defines almost everywhere in M a harmonic map from M into its unit tangent
sphere bundle T1M equipped with the Sasakian metric [7]. In [6] the generalized (κ, µ)-
manifolds, which satisfy the assumption ‖ grad κ‖ = c (constant �= 0) have been studied.
These manifolds satisfy the condition ξµ = 0 as well. On the other hand it is well known [5,
examples 1, 2] that there exist generalized (κ, µ)-manifolds with ξµ = 0 and non-constant
‖ grad κ‖. This has been our motivation for studying generalized (κ, µ)-manifolds with ξµ =
0. We would like to emphasize that, as will be shown in this paper, the class of generalized
(κ, µ)-manifolds with ξµ = 0 is much more interesting than the class of generalized (κ, µ)-
manifolds with ‖ grad κ‖ = constant. For example, in the latter class the scalar curvature is
a non-constant negative function, while the first class includes manifolds in which the scalar
curvature can have any sign or be constant.

The paper is organized as follows. Section 2 contains necessary details about contact
metric manifolds. In section 3, we give some results concerning generalized (κ, µ)-manifolds.
In the last section we locally classify and construct any generalized (κ, µ)-manifold with
ξµ = 0. All manifolds are assumed to be connected.

2. Preliminaries

In this section we collect some basic facts about contact metric manifolds. We refer the
reader to [1] for a more detailed treatment. A differentiable (2m+1)- dimensional manifold M

is called a contact manifold if it carries a global differential 1-form η such that η∧(dη)m �= 0
everywhere on M . The form η is usually called the contact form of M . It is well known
that a contact manifold admits an almost contact metric structure (η, ξ, φ, g), i.e. a global
vector field ξ , which is called the characteristic vector field, a (1, 1)-tensor field φ and a
Riemannian metric g such that

φ2 = −I + η ⊗ ξ , η(ξ) = 1 , g(φX, φY ) = g(X, Y ) − η(X)η(Y ) , (2.1)

for all vector fields X,Y ∈ X (M). Moreover, (η, ξ, φ, g) can be chosen such that

dη(X, Y ) = g(X, φY ) , X, Y ∈ X (M) (2.2)

and we then call the structure a contact metric structure. A manifold M carrying such a
structure is said to be a contact metric manifold and it is denoted by M(η, ξ, φ, g). As a
consequence of the above relations we have η(ξ) = 1, φξ = 0, η ◦ φ = 0 and dη(ξ,X) =
0. If ∇ denotes the Riemannian connection of M(η, ξ, φ, g), then following [1], we define
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the (1, 1)-tensor fields h and l by h = (1/2)(Lξφ) and l = R(., ξ)ξ , where Lξ is the Lie
differentiation in the direction of ξ and R is the curvature tensor, which is given by

R(X, Y )Z = ∇X∇Y Z − ∇Y ∇XZ − ∇[X,Y ]Z , (2.3)

for all vector fields X,Y,Z ∈ X (M). The tensor fields h, l are self adjoint and satisfy
hξ = 0, lξ = 0, Tr h = Tr hφ = 0, φh + hφ = 0. Since h anti-commutes with φ, if X �= 0
is an eigenvector of h corresponding to the eigenvalue λ, then φX is also an eigenvector of h

corresponding to the eigenvalue −λ. Therefore, on any contact metric manifold M(η, ξ, φ, g)

the following formulas are valid ∇ξ = −φ − φh ( and so ∇ξ ξ = 0), ∇ξ h = φ − φl − φh2,

∇ξφ = 0 and φlφ − l = 2(φ2 + h2). A contact metric structure (η, ξ, φ, g) on M gives
rise to an almost complex structure on the product M × R. If this structure is integrable,
then the contact metric manifold M(η, ξ, φ, g) is said to be Sasakian. Equivalently, a contact
metric manifold M(η, ξ, φ, g) is Sasakian if and only if R(X, Y )ξ = η(Y )X −η(X)Y , for all
X,Y ∈ X (M).

By a generalized (κ, µ)-manifold we mean a 3-dimensional contact metric manifold
such that

R(X, Y )ξ = (κI + µh)[η(Y )X − η(X)Y ] , (2.4)

for all X,Y ∈ X (M), where κ,µ are smooth non-constant real functions on M . In the special
case, where κ,µ are constant, then M(η, ξ, φ, g) is called a (κ, µ)-manifold. We note that
h = 0 and κ = 1 on any Sasakian manifold.

Let M be a (2m + 1)-dimensional contact metric manifold. By a Da-homothetic defor-
mation [8], we mean a change of structure tensors of the form

η̄ = aη , ξ̄ = (1/a)ξ , φ̄ = φ , ḡ = ag + a(a − 1)η ⊗ η , (2.5)

where a is a positive number. It is well known that M(η̄, ξ̄ , φ̄, ḡ) is also a contact metric
manifold. The tensor h and the curvature tensor R transform in the following manner ([2]):

h̄ = (1/a)h (2.6)

and

aR̄(X, Y )ξ̄ = R(X, Y )ξ + (a − 1)2(η(Y )X − η(X)Y )

− (a − 1){(∇Xφ)Y − (∇Y φ)X + η(X)(Y + hY ) (2.7)

− η(Y )(X + hX)} ,

for any X,Y ∈ X (M). Additionally, it is well known [9, pp 446–447], that any 3-dimensional
contact metric manifold M(η, ξ, φ, g) satisfies

(∇Xφ)Y = g(X + hX, Y )ξ − η(Y )(X + hX) (2.8)

for any X,Y ∈ X (M). Substituting (2.8) in (2.7) and using (2.6), (2.7), we see that
if M(η, ξ, φ, g) is a generalized (κ, µ)-manifold, then M(η̄, ξ̄ , φ̄, ḡ) is also a generalized
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(κ̄, µ̄)-manifold (see [5]) with

κ̄ = κ + a2 − 1

a2 , µ̄ = µ + 2(a − 1)

a
. (2.9)

Finally, we mention that on any Riemannian manifold (M, g), the metric g and the Riemann-
ian connection ∇ are related by the formula

2g(∇XY,Z) = Xg(Y,Z) + Y g(Z,X) − Zg(X, Y ) (2.10)

− g(X, [Y,Z]) + g(Y, [Z,X]) + g(Z, [X,Y ])
for all X,Y,Z ∈ X (M).

3. Generalized (κ, µ)-manifolds

This section contains some basic results concerning generalized (κ, µ)-manifolds.

LEMMA 3.1. On any generalized (κ, µ)-manifold M(η, ξ, φ, g) the following formu-
las are valid

h2 = (κ − 1)φ2 , κ = Tr l

2
≤ 1 , (3.1)

ξκ = 0 , (3.2)

h grad µ = grad κ , (3.3)

Qξ = 2κξ , (3.4)

where Q is the Ricci operator (QX = ∑3
i=1 R(X,Ei)Ei, where {Ei}, i = 1, 2, 3, is an

orthonormal frame and X ∈ X (M)).

PROOF. For the proof of Lemma see [6].

LEMMA 3.2. Let M(η, ξ, φ, g) be a generalized (κ, µ)-manifold. Then, for any point
P ∈ M , with κ(P ) < 1 there exist a neighbourhood U of P and an h-frame on U , i.e.
orthonormal vector fields ξ,X, φX, defined on U , such that

hX = λX , hφX = −λφX , hξ = 0 , λ = √
1 − κ (3.5)

at any point q ∈ U . Moreover, putting A = Xλ and B = φXλ, the following formulas are
valid on U :

∇Xξ = −(λ + 1)φX , ∇φXξ = (1 − λ)X , (3.6)

∇ξX = −µ

2
φX , ∇ξφX = µ

2
X , (3.7)

∇XX = B

2λ
φX , ∇φXφX = A

2λ
X , (3.8)

∇φXX = − A

2λ
φX + (λ − 1)ξ , ∇XφX = − B

2λ
X + (λ + 1)ξ , (3.9)
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[ξ,X] =
(

1 + λ − µ

2

)
φX , [ξ, φX] =

(
λ − 1 + µ

2

)
X , (3.10)

[X,φX] = − B

2λ
X + A

2λ
φX + 2ξ , (3.11)

Xµ = −2Xλ = −2A , (3.12)

φXµ = 2φXλ = 2B , (3.13)

ξA =
(

1 + λ − µ

2

)
B , (3.14)

ξB =
(

λ − 1 + µ

2

)
A , (3.15)

[ξ, φ grad λ] = 0 , (3.16)

(φ grad λ)µ = 4AB , (3.17)

XB = φXA = 1

2

{
ξµ + 1

4λ
(φ grad λ)µ

}
= 1

2

(
ξµ + 1

λ
AB

)
, (3.18)

∆λ = XA + φXB − 1

2λ
(A2 + B2) , (3.19)

ξXA = 2

(
1 + λ − µ

2

)
XB + 2AB , (3.20)

ξφXB = 2

(
λ − 1 + µ

2

)
XB + 2AB , (3.21)

ξ‖ grad λ‖2 = ξ(A2 + B2) = 4λAB , (3.22)

ξ∆λ = 2λξµ + 4AB , (3.23)

where ∆λ is the Laplacian of λ, (∆λ = div grad λ).

PROOF. For the proofs of (3.5)–(3.11) see [5], [6]. The proofs of (3.12), (3.13) are
immediate consequences of (3.3), (3.5) and the symmetry of h. In order to prove (3.14) we
calculate, using (3.2) and (3.10),

ξA = ξXλ = [ξ,X]λ + Xξλ =
(

1 + λ − µ

2

)
φXλ =

(
1 + λ − µ

2

)
B .

The relation (3.15) is proved similarly. Using (3.2) and the first of (2.1) we have

grad λ = AX + BφX , φ grad λ = AφX − BX .

From the last relation, (3.10), (3.14) and (3.15) we obtain

[ξ, φ grad λ] = [ξ,AφX − BX]
= (ξA)φX + A[ξ, φX] − (ξB)X − B[ξ,X] = 0 .
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In order to prove (3.17) we use (3.12) and (3.13) and we obtain

(φ grad λ)µ = (AφX − BX)µ = AφXµ − BXµ = 4AB .

Letting the vector field [X,φX], given by (3.10), act on the function λ and by using (3.2), we
obtain

X(φXλ) − φX(Xλ) = − B

2λ
Xλ + A

2λ
φXλ + 2ξλ

or,

XB − φXA = −AB

2λ
+ AB

2λ
= 0 .

Similarly, from the action of vector field [X,φX] on the function µ and the use of the last
relation, (3.12), (3.13) and (3.17) we obtain

XB = 1

2

(
ξµ + 1

λ
AB

)
= 1

2

{
ξµ + 1

4λ
(φ grad λ)µ

}
.

Using the definition of the Laplacian and the relations (3.2), (3.8), (3.18) we obtain

∆λ = XXλ + φXφXλ + ξξλ − (∇XX)λ − (∇φXφX)λ − (∇ξ ξ)λ

= XA + φXB − 1

2λ
(A2 + B2) .

For the proofs of (3.21), (3.22), using (3.10), (3.12)–(3.15), (3.18), we calculate

ξXA = [ξ,X]A + XξA =
(

1 + λ − µ

2

)
φXA + X

{(
1 + λ − µ

2

)
B

}

=
(

1 + λ − µ

2

)
XB +

(
1 + λ − µ

2

)
XB + B

{
Xλ − X(

µ

2
)

}

= 2

(
1 + λ − µ

2

)
XB + 2AB ,

ξφXB = [ξ, φX]B + φXξB =
(

λ − 1 + µ

2

)
XB + φX

{(
λ − 1 + µ

2

)
A

}

=
(

λ − 1 + µ

2

)
XB +

(
λ − 1 + µ

2

)
φXA + A

{
φXλ + φX

(
µ

2

)}

= 2

(
λ − 1 + µ

2

)
XB + 2AB .

The relation (3.22) is an immediate consequence of (3.14) and (3.15). Differentiating (3.19)
with respect to ξ and using (3.20)–(3.22), (3.2) and (3.18), then (3.23) follows, and thus the
proof of Lemma is completed.



GENERALIZED (κ,µ)-CONTACT METRIC MANIFOLDS WITH ξµ = 0 45

LEMMA 3.3. On any generalized (κ, µ)-manifold M(η, ξ, φ, g) with κ < 1, the
scalar curvature S = Tr Q is given by

S = 1

λ
∆λ − 1

λ2
‖ grad λ‖2 + 2(κ − µ) , λ = √

1 − κ . (3.24)

PROOF. Using (2.3), (3.6)–(3.9), we calculate

R(X, φX)φX = ∇X∇φXφX − ∇φX∇XφX − ∇[X,φX]φX

= ∇X

(
A

2λ
X

)
− ∇φX

(
− B

2λ
X + (1 + λ)ξ

)
− ∇− B

2λ X+ A
2λ φX+2ξφX

= X

(
A

2λ

)
X + A

2λ
∇XX + φX

(
B

2λ

)
X + B

2λ
∇φXX

−(φXλ)ξ − (1 + λ)∇φXξ + B

2λ
∇XφX − A

2λ
∇φXφX − 2∇ξφX

= λXA − A2

2λ2 X + AB

4λ2 φX + λφXB − B2

2λ2 X

+ B

2λ

(
− A

2λ
φX + (λ − 1)ξ

)
− Bξ − (1 + λ)(1 − λ)X

+ B

2λ

(
− B

2λ
X + (1 + λ)ξ

)
− A2

4λ2
X − µX

=
{

1

2λ
(XA + φXB) − 1

2λ2 (A2 + B2) − (1 − λ2) − 1

4λ2 (A2 + B2) − µ

}
X

=
{

1

2λ

(
XA + φXB − 1

2λ
(A2 + B2)

)
− 1

2λ2 (A2 + B2) − κ − µ

}
X .

Combining this and (3.19) we obtain

R(X, φX)φX =
{

1

2λ
∆λ − 1

2λ2
(A2 + B2) − κ − µ

}
X

and thus

g(R(X, φX)φX,X) = 1

2λ
∆λ − 1

2λ2 (A2 + B2) − κ − µ .

The relation (3.24) is an immediate consequence of (3.5), (3.4) and S = Tr Q = g(QX,X)+
g(QφX, φX) + g(Qξ, ξ).

4. Generalized (κ, µ)-manifolds with ξµ = 0

In the following Theorem, the generalized (κ, µ)-manifolds with κ < 1 that satisfy the
condition ξµ = 0, are locally described.
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THEOREM 4.1. Let M(η, ξ, φ, g) be a generalized (κ, µ)-manifold with κ < 1 and
ξµ = 0. Then

1) At any point of M , precisely one of the following relations is valid: µ = 2(1 +√
1 − κ), or µ = 2(1 − √

1 − κ)

2) At any point P ∈ M there exists a chart (U, (x, y, z)) with P ∈ U ⊆ M , such that
i) the functions κ,µ depend only on the variable z

ii) if µ = 2(1 + √
1 − κ), (resp. µ = 2(1 − √

1 − κ)), the tensor fields η, ξ, φ, g
are given by the relations,

ξ = ∂

∂x
, η = dx − adz (resp. η = dx − adz)

g =

 1 0 −a

0 1 −b

−a −b 1 + a2 + b2





resp. g =


 1 0 −a

0 1 −b

−a −b 1 + a2 + b2







φ =

0 a −ab

0 b −1 − b2

0 1 −b





resp. φ =


0 −a ab

0 −b 1 + b2

0 −1 b







with respect to the basis
(

∂
∂x

, ∂
∂y

, ∂
∂z

)
, where a = 2y + f (z) (resp. a = −2y + f (z)),

b = 2λ(z)x − λ′(z)
2λ(z)

y + h(z), λ = λ(z) = √
1 − κ(z), λ′(z) = dλ

dz
and f (z), h(z) are

arbitrary smooth functions of z.

PROOF. Let {ξ,X, φX} be an h-frame, such that

hX = λX , hφX = −λφX , λ = √
1 − κ

in an appropriate neighbourhood of an arbitrary point of M . Using the hypothesis ξµ = 0
and the relations (3.16), (3.17), (3.14), (3.15) of Lemma 3.2, we successively obtain

[ξ, φ grad λ]µ = 0

ξ(φ grad λ)µ − (φ grad λ)ξµ = 0

ξ(AB) = 0

AξB + BξA = 0

A2
(

λ − 1 + µ

2

)
+ B2

(
1 + λ − µ

2

)
= 0 .

Differentiating the last relation with respect to ξ and using the relations (3.2), ξµ = 0, (3.14),
(3.15) we are led through simple calculations to

(
1 + λ − µ

2

)(
λ − 1 + µ

2

)
AB = 0 . (4.1)
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We put F = (
1+λ− µ

2

)(
λ−1+ µ

2

)
and consider the set N = {P ∈ M|(grad λ)(P ) �= 0}. We

will prove that F = 0 at any point of N . Let P ∈ N be such that F(P) �= 0. From (4.1) we
obtain (AB)(P ) = 0. We distinguish the cases {A(P) = B(P) = 0}, {A(P) �= 0, B(P ) = 0}
and {A(P) = 0, B(P ) �= 0}. The first case is impossible, because the relations A(P) =
B(P) = 0 and (3.2) lead to (grad λ)(P ) = 0. Let us suppose that {A(P) �= 0, B(P ) = 0}.
Since the function F is continuous, we find that a neighbourhood U ⊆ N exists, with P ∈ U

such that F �= 0 at any point of U . Similarly, due to the fact that the function A is continuous
on its domain, a neighbourhood V of P exists with P ∈ V ⊂ U , such that A �= 0 at any
point of V , and thus B = 0 on V . Differentiating B = 0 with respect to ξ and using (3.15)
we obtain A

(
1 + λ − µ

2

) = 0. Therefore, 1 + λ − µ
2 = 0 at any point of V and thus F = 0

on V , which is a contradiction. Similarly, by supposing that{A(P) = 0, B(P ) �= 0} we are
led to a contradiction. Therefore, F = 0 at any point of N . In what follows, we will work on
the complement Nc of set N , in order to prove that F = 0 on M . If Nc = ∅, then F = 0 on
M . If Nc �= ∅, then grad λ = 0 on Nc and thus the function λ is constant at any connected
component of the interior (Nc)o of Nc. From the constancy of λ and the relations (3.12),
(3.13), ξµ = 0, the function µ is also constant. As a result we find that F is constant on
any connected component of (Nc)o. Because M is connected and F = 0 on N and F =
constant on any connected component of (Nc)o we conclude that F = 0, or equivalently(
1 + λ − µ

2

)(
λ − 1 + µ

2

) = 0 at any point of M . In what follows, we consider the open and
disjoint sets

C =
{
P ∈ M

/(
1 + λ − µ

2

)
(P ) �= 0

}
and D =

{
P ∈ M

/(
λ − 1 + µ

2

)
(P ) �= 0

}
.

We have C ∪ D = M . In fact, if there was P ∈ M , with P /∈ C and P /∈ D, then we
would obtain λ(P ) = 0, or equivalently κ(P ) = 1, which is impossible by the assumption of
the Theorem. Since M is connected we conclude that {C = M and D = ∅} or {C = ∅ and
D = M}. Regarding the first case we obtain 1+λ− µ

2 = 0, or equivalently µ = 2(1+√
1 − κ)

at any point of M . Similarly, regarding the second case we obtain µ = 2(1 − √
1 − κ).

Therefore, the proof of (1) is completed. Now, we will examine the cases µ = 2(1+√
1 − κ)

and µ = 2(1 − √
1 − κ) separately.

Case 1. µ = 2(1 + √
1 − κ) = 2(1 + λ).

Let P ∈ M and {ξ,X, φX} be an h-frame on an appropriate neighborhood V of P . From
the assumption µ = 2(1 + λ) and (3.12) we obtain A = 0 and thus the relations (3.10), (3.11)
are

[ξ,X] = 0 , [ξ, φX] = 2λX , [X,φX] = − B

2λ
X + 2ξ . (4.2)

Because the linearly independent vector fields ξ , X satisfy the relation [ξ,X] = 0 on V , the
distribution which is spanned by ξ and X is integrable and so for any point q ∈ V , there exists
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a chart (U, (x, y, z)) such that P ∈ U ⊂ V and

ξ = ∂

∂x
, X = ∂

∂y
(4.3)

at any point of U . The vector field φX can be written on U as

φX = a
∂

∂x
+ b

∂

∂y
+ c

∂

∂z
, (4.4)

where a, b, c are smooth functions defined on U . Since ξ,X, φX are linearly independent,
we have c �= 0 at any point of U . By using (4.3), (3.2) and Xλ = A = 0 we obtain

∂λ

∂x
= 0 and

∂λ

∂y
= 0 .

From these relations we conclude that the function λ depends only on the variable z, i.e.
λ = λ(z), and thus from (4.4) we obtain

B = φXλ = c
∂λ

∂z
. (4.5)

By using (4.2)–(4.4) we obtain

2λ
∂

∂y
= 2λX = [ξ, φX] =

[
∂

∂x
, a

∂

∂x
+ b

∂

∂y
+ c

∂

∂z

]

= ∂a

∂x

∂

∂x
+ ∂b

∂x

∂

∂y
+ ∂c

∂x

∂

∂z
.

Thus

∂a

∂x
= 0 ,

∂b

∂x
= 2λ ,

∂c

∂x
= 0 . (4.6)

Similarly, from (4.3), (4.4) and the third equation of (4.2) we obtain

∂a

∂y
= 2 ,

∂b

∂y
= − B

2λ
,

∂c

∂y
= 0 . (4.7)

From ∂c
∂x

= ∂c
∂y

= 0 it follows that c = c(z) and because of the fact that c �= 0, we can suppose

that c = 1, through a reparametrization of the variable z. For the sake of simplicity we will
continue to use the same coordinates (x, y, z), taking into account that c = 1 in the relations
that we have occurred. From the solution of the system of the differential equations

{
∂a

∂x
= 0,

∂a

∂y
= 2,

∂b

∂x
= 2λ,

∂b

∂y
= − B

2λ

}
(4.8)

where B = φXλ = ∂λ
∂z

= λ′(z), we easily obtain

a = a(x, y, z) = 2y + f (z)
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b = b(x, y, z) = 2λ(z)x − λ′(z)
2λ(z)

y + h(z) ,

where f (z), h(z) are arbitrary smooth functions of z defined on U . In what follows, we will

calculate the tensor fields g, η, φ with respect to the basis ∂
∂x

, ∂
∂y

, ∂
∂z

. For the components gij

of the Riemannian metric g , we calculate, using (4.3), (4.4, with c = 1), (4.8)

g11 = g
(

∂

∂x
,

∂

∂x

)
= g(ξ, ξ) = 1 , g22 = g

(
∂

∂y
,

∂

∂y

)
= g(X,X) = 1

g12 = g21 = g
(

∂

∂x
,

∂

∂y

)
= g(ξ,X) = 0 ,

g13 = g31 = g
(

∂

∂x
,

∂

∂z

)
= g

(
∂

∂x
, φX − a

∂

∂x
− b

∂

∂y

)

= g(ξ, φX) − ag11 − bg12 = −a

g23 = g32 = g
(

∂

∂y
,

∂

∂z

)
= g

(
∂

∂y
, φX − a

∂

∂x
− b

∂

∂y

)

= g(X, φX) − ag12 − bg22 = −b

1 = g(φX, φX) = a2g11 + b2g22 + g33 + 2abg12 + 2ag13 + 2bg23

= a2 + b2 + g33 − 2a2 − 2b2 = g33 − a2 − b2 ,

from which we obtain g33 = 1 +a2 +b2. The components of the tensor field φ are immediate
consequences of

φ

(
∂

∂x

)
= φξ = 0 , φ

(
∂

∂y

)
= φX = a

∂

∂x
+ b

∂

∂y
+ ∂

∂z

φ

(
∂

∂z

)
= φ

(
φX − a

∂

∂x
− b

∂

∂y

)
= φ2X − aφ

∂

∂x
− bφ

∂

∂y

= −X − b

(
a

∂

∂x
+ b

∂

∂y
+ ∂

∂z

)

= − ∂

∂y
− ab

∂

∂x
− b2 ∂

∂y
− b

∂

∂z

= −ab
∂

∂x
− (1 + b2)

∂

∂y
− b

∂

∂z
.

The expression for the contact form η, immediately follows from

η

(
∂

∂x

)
= η(ξ) = 1 , η

(
∂

∂y

)
= η(X) = g(X, ξ) = 0

η

(
∂

∂z

)
= g

(
∂

∂z
, ξ

)
= g

(
∂

∂z
,

∂

∂x

)
= g13 = −a
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and thus the proof of the case 1 is completed.

Case 2. µ = 2(1 − √
1 − κ) = 2(1 − λ).

We work as in case 1, considering an h-frame {ξ,X, φX}. Using the assumption µ =
2(1 − λ) and (3.13) we obtain B = 0 and thus the relation (3.10) is written as

[ξ,X] = 2λφX , [ξ, φX] = 0 , [X,φX] = A

2λ
φX + 2ξ .

From [ξ, φX] = 0 we conclude that around any point P ∈ M there is a chart (U, (x, y, z))

such that

ξ = ∂

∂x
, φX = ∂

∂y

on U . We put

X = a
∂

∂x
+ b

∂

∂y
+ c

∂

∂z
,

where a, b, c are smooth functions defined on U . The continuation of the proof is similar
to the proof of the case 1 and for this reason we omit it. This completes the proof of the
Theorem.

In the next Theorem, generalized (κ, µ)-manifolds with κ < 1 and ξµ = 0 are locally
constructed.

THEOREM 4.2. Let κ : I ⊂ R → R be a smooth function defined on an open interval
I , such that κ(z) < 1 for any z ∈ I . Then, we can construct two families of generalized
(κi, µi)-manifolds M(ηi, ξi , φi , gi ), i = 1, 2, in the set M = R2 × I ⊂ R3, so that, for any
P(x, y, z) ∈ M , the following are valid:

κ1(P ) = κ2(P ) = κ(z) , µ1(P ) = 2(1 +√
1 − κ(z)) and µ2(P ) = 2(1 −√

1 − κ(z)) .

Each family is determined by two arbitrary smooth functions of one variable.

PROOF. We put λ = √
1 − κ > 0, λ′(z) = ∂λ

∂z
and we consider on M the linearly

independent vector fields

ξ1 = ∂

∂x
, X1 = ∂

∂y
and

Y1 = (2y + f (z))
∂

∂x
+

(
2λ(z)x − λ′(z)

2λ(z)
y + h(z)

)
∂

∂y
+ ∂

∂z
, (4.9)

where f (z), h(z) are arbitrary functions of z. We define the tensor fields η1, φ1, g1 as follows:
g1 is the Riemannian metric on M , with respect to which the vector fields ξ1,X1, Y1 are
orthonormal; η1 is the 1-form on M which is defined from η1(Z) = g1(Z, ξ1) for any Z ∈
X (M); φ1 is the (1, 1)-tensor field that is defined by the relations φ1ξ1 = 0, φ1X1 = Y1

and φ1Y1 = −X1. Initially we will show that M(η1, ξ1, φ1, g1) is a contact metric manifold.
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From (4.9) we easily obtain

[ξ1,X1] = 0 , [ξ1, Y1] = 2λ(z)X1 , [X1, Y1] = − λ′(z)
2λ(z)

X1 + 2ξ1 . (4.10)

Because (η1 ∧ dη1)(ξ1,X1, Y1) �= 0 everywhere on M , we conclude that η1 is a contact
form. From the definitions of φ1, g1 and the relations (4.10) it is easy to see that the following
relations are valid

φ2
1Z = −Z + η1(Z)ξ1 , g1(φ1Z,φ1W) = g1(Z,W) − η1(Z)η1(W) ,

dη1(Z,W) = g1(Z, φ1W)

for any Z,W ∈ X (M). Therefore, by (2.1) and (2.2), M(η1, ξ1, φ1, g1) is a contact metric
manifold. Let ∇ be the Riemannian connection of g1. Using the well known formula (see
(2.10))

2g1(∇ZW, T ) = Zg1(W, T ) + Wg1(T ,Z) − T g1(Z,W)

− g1(Z, [W,T ]) + g1(W, [T ,Z]) + g1(T , [Z,W ])
for any Z,W, T ∈ X (M), as well as (4.10), hξ1 = 0 and ∇ξ = −φ − φh, by direct calcula-
tions we obtain the following:

∇ξ1ξ1 = 0 , ∇ξ1X1 = −(1 + λ(z))Y1 , ∇ξ1Y1 = (1 + λ(z))X1 ,

∇X1ξ1 = −(1 + λ(z))Y1 , ∇Y1ξ1 = (1 − λ(z))X1 , ∇X1X1 = λ′(z)
2λ(z)

Y1 ,

∇Y1Y1 = 0 , ∇X1Y1 = − λ′(z)
2λ(z)

X1 + (1 + λ(z))ξ1 , ∇Y1X1 = (λ(z) − 1)ξ1 .

Furthermore, by using ∇ξ1 = −φ1 − φ1h1, h1φ1 + φ1h1 = 0 and the first of (2.1) we obtain

h1φ1X1 = −λ(z)φ1X1 and h1X1 = λ(z)X1 .

Defining the functions κ1, µ1 : M → R by κ1(x, y, z) = κ(z), µ1(x, y, z) = 2(1 +√
1 − κ(z)) we will show that M(η1, ξ1, φ1, g1) is a generalized (κ1, µ1)-manifold. Indeed,

using (2.3) and the derivates of ξ1,X1, Y1 that we have calculated, we find that

R(ξ1, ξ1)ξ1 = 0 , R(X1, ξ1)ξ1 = κ1X1 + µ1h1X1 ,

R(Y1, ξ1)ξ1 = κ1Y1 + µ1h1Y1 , R(X1,X1)ξ1 = 0 ,

R(Y1, Y1)ξ1 = 0 , R(X1, Y1)ξ1 = 0 .

From the above, as well as from the linearity of R, we conclude that

R(Z,W)ξ1 = (κ1I + µ1h1)(η1(W)Z − η1(Z)W)

for any Z,W ∈ X (M), i.e. M(η1, ξ1, φ1, g1) is a generalized (κ1, µ1)-manifold (with ξ1µ1 =
0) and thus the construction of the first family is completed. The construction of the second
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family occurs, if we consider the vector fields

ξ2 = ∂

∂x
, Y2 = ∂

∂y
and

X2 = (−2y + f (z))
∂

∂x
+

(
2λ(z)x − λ′(z)

2λ(z)
y + h(z)

)
∂

∂y
+ ∂

∂z
(4.11)

and define the tensor fields g2, φ2, η2 as follows: g2 is the Riemannian metric on M with
respect to which the vector fields ξ2,X2, Y2 are orthonormal. The (1, 1)-tensor field φ2 is
defined by φ2ξ2 = 0, φ2X2 = Y2 and φ2Y2 = −X2. The 1-form η2 is defined by η2(Z) =
g2(Z, ξ2) for any Z ∈ X (M).

Next, we work similarly with the case 1 arriving at the conclusion that
M(η2, ξ2, φ2, g2) is a generalized (κ2, µ2)-manifold, where κ2(x, y, z) = k(z) and
µ2(x, y, z) = 2(1 − √

1 − κ(z)). This completes the proof of the Theorem.

In the following Proposition some conditions equivalent to ξµ = 0 are obtained.

PROPOSITION 4.3. Let M(η, ξ, φ, g) be a generalized (κ, µ)-manifold with κ < 1.
Then the following conditions are equivalent,

a) ξµ = 0
b) µ = 2(1 ± λ), λ = √

1 − κ

c) ξξµ = 0
d) ξ∆λ = 0.

PROOF. Conditions (a),(b) are equivalent. This is a direct consequence of Theorem 4.1
and (3.2). In order to complete the proof of the Proposition, we consider around an arbitrary
point of M an h-frame {ξ,X, φX} such that hX = λX, hφX = −λφX (see Lemma 3.2). By
using (3.10), (3.2) and (3.12)–(3.15) we easily obtain

Xξµ = −4B

(
1 + λ − µ

2

)
(4.12)

ξXξµ = −4A

(
1 + λ − µ

2

)(
λ − 1 + µ

2

)
+ 2Bξµ (4.13)

[X, ξ ]ξµ = −4A

(
1 + λ − µ

2

)(
λ − 1 + µ

2

)
(4.14)

φXξµ = 4A

(
λ − 1 + µ

2

)
(4.15)

ξφXξµ = 4B

(
1 + λ − µ

2

)(
λ − 1 + µ

2

)
+ 2Aξµ (4.16)

[φX, ξ ]ξµ = 4B

(
1 + λ − µ

2

)(
λ − 1 + µ

2

)
. (4.17)
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Now, we will prove that (c)⇒(a).
Differentiating ξξµ = 0 with respect to X we obtain Xξξµ = 0, or equivalently

[X, ξ ]ξµ + ξXξµ = 0 and so using (4.13), (4.14) we obtain

Bξµ = 4A

(
1 + λ − µ

2

)(
λ − 1 + µ

2

)
. (4.18)

Similarly, differentiating ξξµ = 0 with respect to φX and using (4.16), (4.17) we obtain

Aξµ = −4B

(
1 + λ − µ

2

)(
λ − 1 + µ

2

)
. (4.19)

For the functions A,B there are the following possible cases: {A = 0, B = 0}, {AB �=
0}, {A �= 0, B = 0}, {A = 0, B �= 0}. The two first possibilities cannot occur. Indeed,
the combination of A = 0, B = 0 with (3.2) leads to κ =constant which is impossible.
Furthermore, if AB �= 0, then, multiplying (4.18), (4.19) with B,A respectively and adding
the relations that occur we are led to (A2 + B2)ξµ = 0, from which we obtain ξµ = 0 or
equivalently µ = 2(1 ± λ). If µ = 2(1 + λ), then Xµ = 2Xλ = 2A. From this and (3.12)
we obtain A = 0, which is impossible. Similarly, supposing that µ = 2(1 − λ) we obtain
B = 0, which is also impossible. Therefore, the only possible cases are {A �= 0, B = 0} and
{A = 0, B �= 0}. If we assume that {A �= 0, B = 0}, then (4.19) gives ξµ = 0. Similarly,
from {A = 0, B �= 0} and (4.18) we obtain ξµ = 0 and this completes the proof of (c)⇒(a).

The case (a)⇒(c) is obvious. In what follows, we will prove that (d)⇔(a).
Let us suppose that (a) is valid, i.e. ξµ = 0. Then, as it has been proved earlier, we

obtain AB = 0 and thus from (3.23) we obtain ξ∆λ = 0, i.e. the condition (d). Conversely,
let us assume that ξ∆λ = 0. Then (3.23) gives

ξµ = − 2

λ
AB . (4.20)

If AB = 0, then ξµ = 0. We will prove that the case AB �= 0 is impossible. Let AB �= 0,
therefore ξµ �= 0. Differentiating (4.20) with respect to X and using (4.12), (3.18), (4.20) we
calculate

−4B

(
1 + λ − µ

2

)
= 2

λ2 (Xλ)AB − 2

λ
{(XA)B + A(XB)}

= 2

λ2
A2B − 2B

λ
XA − 2A

λ

(
1

2
ξµ + 1

2λ
AB

)

= −A

λ
ξµ − 2B

λ
XA − A

2λ
ξµ

= −3A

2λ
ξµ − 2B

λ
XA
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and so

2B

λ
XA = 4B

(
1 + λ − µ

2

)
− 3A

2λ
ξµ . (4.21)

Similarly, differentiating (4.20) with respect to φX and using (4.15), (3.18), (4.20) we are led
to

2A

λ
φXB = −4A

(
λ − 1 + µ

2

)
− 3B

2λ
ξµ . (4.22)

Multiplying (4.21) with A and (4.22) with B and adding the resulting relations, we obtain

2AB

λ
(XA + φXB) = 4AB(2 − µ) − 3

2λ
(A2 + B2)ξµ .

Furthermore, by using (3.19) and (4.20), the last relation leads to

1

λ
∆λ − A2 + B2

λ2 − 2(2 − µ) = 0 .

Differentiating the last relation with respect to ξ and using ξ∆λ = 0, (3.22), we easily obtain

ξµ = 2
λ
AB. From this and (4.20) we obtain the contradiction AB = 0 and thus the proof of

the Proposition is completed.

REMARK. Theorem 4.1 can be reformulated by replacing the condition ξµ = 0 with
any one of the equivalent conditions of Proposition 4.3.

In [6] the generalized (κ, µ)-manifolds M(η, ξ, φ, g) with ‖ grad κ‖ = constant �= 0

have been studied. These manifolds satisfy µ = 2(1 ± √
1 − κ) (see [6], Lemma 3) and thus

by (3.2), the condition ξµ = 0 as well. Moreover, it is obvious that the function κ satisfies
κ < 1. Thus this class of manifolds is a special case of generalized (κ, µ)-manifolds with
κ < 1 and ξµ = 0. In the process of proving Theorem 4.1 (see relation(4.8)) we have shown
that for the case {A = 0, B �= 0, µ = 2(1 + λ)} we have

B = dλ

dz
and so φXB = d2λ

dz2 . (4.23)

From B = dλ
dz

, ‖ grad κ‖ = c and λ2 = 1 − κ we are easily led to 4λ2
(

dλ
dz

)2 = c2 and from

the solution of this we obtain κ = ±cz + d < 1, (d =constant). Furthermore, (4.23), (3.19)
and (3.24) tell us that the scalar curvature of M is given by

S = − 5c2

8λ4
− 2(λ + 1)2 . (4.24)

Similarly, regarding the case {A �= 0, B = 0, µ = 2(1 − λ)} we have

A = dλ

dz
, XA = d2λ

dz2
(4.25)
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and, therefore, in this case κ = ±cz + d < 1 (d = constant) and

S = − 5c2

8λ4
− 2(λ − 1)2 . (4.26)

From (4.24) and (4.26) we find that the scalar curvature is a strictly negative function. Fur-
thermore, S is non-constant. Indeed, if we suppose that S = constant, then (4.24) or (4.26)
show that κ is constant, which is impossible by definition. Summarizing the above we obtain
the following Proposition.

PROPOSITION 4.4. Let M(η, ξ, φ, g) be a generalized (κ, µ)-manifold with
‖ grad κ‖ = c (constant) �= 0. Then

a) ξµ = 0
b) At any point P ∈ M , there exist a chart (U, (x, y, z)) with P ∈ U ⊆ M , such that

κ(x, y, z) = cz + d , (d = constant) and µ = 2(1 ± √
1 − κ).

c) The scalar curvature of M is a negative non-constant function.

REMARK. 1. Since c �= 0 in Proposition 4.4, doing an appropriate reparametrization
of the chart (U, (x, y, z)) we can find a chart (V , (x, y, z)) such that κ(x, y, z) = z, and thus
the conclusion (b) of Proposition 4.4 is identified with the corresponding result of Theorem 5
of [6].

2. If we apply a Da-homothetic deformation on a generalized (κ, µ)-manifold
M(η, ξ, φ, g), (κ < 1), with ξµ = 0, then from (2.9) it follows that the new manifold
M(η̄, ξ̄ , φ̄, ḡ) is a generalized (κ̄, µ̄)-manifold (κ̄ < 1) with ξ̄ µ̄ = 0 as well.

As we have seen in Proposition 4.4, in a generalized (κ, µ)-manifold with ‖ grad κ‖ =
c �= 0 the scalar curvature S is a non-constant negative function. In examples 4.5 and 4.6,
below, we construct generalized (κ, µ)-manifolds with constant scalar curvature S of any sign.

EXAMPLE 4.5. For any c ∈ R, we will construct a family of generalized (κ, µ)-
manifolds with S = c. In order to reach this construction, we consider the function
F : R → R, F(z) = 8 log z + 4z − 2(c + 2)z−1 + d , where z > 0 and d ∈ R. Since
limz→+∞ F(z) = +∞, there exist b ∈ R and a neighborhood V ⊂ R with b ∈ V , such that

the function g : V → R, g(z) = z3/2(F (z))1/2, is smooth and positive for any z ∈ V . Let us
consider the function f : V ⊂ R → R defined by

f (z) =
∫ z

b

1

g(y)
dy .

Since f ′(z) �= 0 for any z ∈ V , we find that f (z) is invertible in V . We consider now the

manifold M = {(x, y, z) ∈ R3/z ∈ f (V )} and the function λ : M → R: λ(x, y, z) = l(z) =
f −1(z). By applying Theorem 4.2 we find that M(η, ξ, φ, g) is a generalized (κ, µ)-manifold

with κ = 1 − λ2 and µ = 2(1 + √
1 − κ). The tensor fields (η, ξ, φ, g) of M are defined by
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the vector fields ξ,X, Y = φX of the relation (4.9):

ξ = ∂

∂x
, X = ∂

∂y
, φX = (2y + u(z))

∂

∂x
+ (2λ(z)x − λ′(z)

2λ(z)
y + h(z))

∂

∂y
+ ∂

∂z
,

where u(z), h(z) are arbitrary functions of z. In order to find the scalar curvature S, we
calculate

λ′ = ∂λ

∂z
= l′(z) = λ3/2(8 log λ + 4λ − (2c + 4)λ−1 + d)1/2

λ′′(z) = 12λ2 log λ + 8λ3 + 3d + 8

2
λ2 − (4 + 2c)λ

A = Xλ = ∂λ

∂y
, XA = 0

B = φXλ = ∂λ

∂z
= λ′ , φXB = λ′′

‖ grad λ‖2 = A2 + B2 = (λ′)2

κ − µ = −(λ + 1)2 .

By using these relations, as well as (3.19), (3.24) we calculate

S = 1

λ
∆λ − 1

λ2
‖ grad λ‖2 + 2(κ − µ)

= 1

λ

{
XA + φXB − 1

2λ
(A2 + B2)

}
− 1

λ2 (A2 + B2) + 2(κ − µ)

= λ′′

λ
− 3λ′2

2λ2
− 2(1 + λ)2

= 1

λ

{
12λ2 log λ + 8λ3 + 1

2
(3d + 8)λ2 − (4 + 2c)λ

}

− 3

2λ2
λ3(8 log λ + 4λ − (2c + 4)λ−1 + d) − 2(1 + λ)2 = c .

Consequently, M(η, ξ, φ, g) is a generalized (κ, µ)-manifold with S = c. Since the tensor
fields (η, ξ, φ, g) depend on the arbitrary functions u(z) and h(z), a family of generalized
(κ, µ)-manifolds finally occurs with S = c.

EXAMPLE 4.6. Using Theorem 4.2 for the smooth function κ(z) = 1− 1
2z2 , z > 0, we

obtain the generalized (κ, µ)-manifold M(η, ξ, φ, g), where M = {(x, y, z) ∈ R3/z > 0},
κ = 1 − 1

2z2 and µ = 2
(
1 − 1√

2z

)
. Using (3.19), (3.24), λ2 = 1 − κ , µ = 2(1 − λ), we finally

find that the scalar curvature S of M is given by

S = 1

λ

d2λ

dz2 − 3

2λ2

(
dλ

dz

)2

− 2(1−λ)2 = −2

(
1 − 1√

2z

)2

+ 1

2z2 = − 1

2z2 (4z2 − 4
√

2z+ 1) .
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Thus, we easily conclude that S can be of any sign .
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