Generalized (κ, μ)-contact Metric Manifolds with $\xi \mu=0$

Themis KOUFOGIORGOS ${ }^{1}$ and Charalambos TSICHLIAS

University of Ioannina ${ }^{1}$
(Communicated by M. Guest)

Abstract

This paper analytically describes the local geometry of a generalized (κ, μ)-manifold $M(\eta, \xi, \phi, g)$ with $\kappa<1$ which satisfies the condition "the function μ is constant along the integral curves of the characteristic vector field $\xi "$. This class of manifolds is especially rich, since it is possible to construct in R^{3} two families of such manifolds, for any smooth function $\kappa(\kappa<1)$ of one variable. Every family is determined by two arbitrary functions of one variable.

1. Introduction

The class of 3-dimensional generalized (κ, μ)-contact metric manifolds, which we study in this paper, is important because it contains several interesting classes of Riemannian manifolds, such as Sasakian, η-Einstein and (κ, μ)-contact metric manifolds. In what follows in this section we refer to these classes of manifolds as well as to our motivation to study generalized (κ, μ)-contact metric manifolds which satisfy the condition $\xi \mu=0$.

In [2] Blair, Koufogiorgos and Papantoniou studied for the first time the class of ($2 m+1$)dimensional contact metric manifolds $M(\eta, \xi, \phi, g)$ for which the vector field ξ belongs to the (κ, μ)-nullity distribution, for some real numbers κ and $\mu(\kappa \leq 1)$. The curvature tensor R of the above class of manifolds satisfies the condition

$$
\begin{equation*}
R(X, Y) \xi=(\kappa I+\mu h)[\eta(Y) X-\eta(X) Y] \tag{*}
\end{equation*}
$$

for all vector fields $X, Y \in \mathcal{X}(M)$, where I is the identity and h denotes, up to a scaling factor, the Lie derivative of the structure tensor ϕ in the direction of ξ. For convenience, we will call such a contact metric manifold a " (κ, μ)-manifold". The special case $\kappa=1$ characterizes the well known class of Sasakian manifolds, while the case $\mu=0$ characterizes the class of η-Einstein manifolds. Within contact geometry, (κ, μ)-manifolds received attention mainly because the unit tangent sphere bundle of a Riemannian manifold of constant curvature belongs to this class. A (κ, μ)-manifold with $\kappa<1$, is locally homogeneous and its local geometry is now completely known (see [2], [3], [4]). In particular, a 3-dimensional (κ, μ)manifold with $\kappa<1$, is locally isometric to one of the Lie groups $S U(2), S O(3), S L(2, R)$, $O(1,2), E(2), E(1,1)$ equipped with a left invariant metric (see [2] for more details).

In [5] the authors of the present paper gave an answer to the following question:
Do contact metric manifolds exist satisfying the condition $(*)$, with κ, μ non-constant smooth functions? The answer is affirmative only for the 3-dimensional case. So in [5] a new class of 3-dimensional contact metric manifolds was introduced. A manifold of this class will be referred to as "a generalized (κ, μ)-manifold". We note that in contrast to (κ, μ)-manifolds the generalized (κ, μ)-manifolds are not locally homogeneous. Within contact geometry, a generalized (κ, μ)-manifold, with $\kappa<1, M(\eta, \xi, \phi, g)$ is characterized by the fact that the vector field ξ defines almost everywhere in M a harmonic map from M into its unit tangent sphere bundle $T_{1} M$ equipped with the Sasakian metric [7]. In [6] the generalized ($\left.\kappa, \mu\right)$ manifolds, which satisfy the assumption $\|\operatorname{grad} \kappa\|=c$ (constant $\neq 0$) have been studied. These manifolds satisfy the condition $\xi \mu=0$ as well. On the other hand it is well known [5, examples 1,2$]$ that there exist generalized (κ, μ)-manifolds with $\xi \mu=0$ and non-constant $\|\operatorname{grad} \kappa\|$. This has been our motivation for studying generalized (κ, μ)-manifolds with $\xi \mu=$ 0 . We would like to emphasize that, as will be shown in this paper, the class of generalized (κ, μ)-manifolds with $\xi \mu=0$ is much more interesting than the class of generalized ($\kappa, \mu)$ manifolds with $\|\operatorname{grad} \kappa\|=$ constant. For example, in the latter class the scalar curvature is a non-constant negative function, while the first class includes manifolds in which the scalar curvature can have any sign or be constant.

The paper is organized as follows. Section 2 contains necessary details about contact metric manifolds. In section 3, we give some results concerning generalized (κ, μ)-manifolds. In the last section we locally classify and construct any generalized (κ, μ)-manifold with $\xi \mu=0$. All manifolds are assumed to be connected.

2. Preliminaries

In this section we collect some basic facts about contact metric manifolds. We refer the reader to [1] for a more detailed treatment. A differentiable $(2 m+1)$ - dimensional manifold M is called a contact manifold if it carries a global differential 1-form η such that $\eta \wedge(d \eta)^{m} \neq 0$ everywhere on M. The form η is usually called the contact form of M. It is well known that a contact manifold admits an almost contact metric structure $(\eta, \xi, \phi, g$), i.e. a global vector field ξ, which is called the characteristic vector field, a (1, 1)-tensor field ϕ and a Riemannian metric g such that

$$
\begin{equation*}
\phi^{2}=-I+\eta \otimes \xi, \quad \eta(\xi)=1, \quad g(\phi X, \phi Y)=g(X, Y)-\eta(X) \eta(Y) \tag{2.1}
\end{equation*}
$$

for all vector fields $X, Y \in \mathcal{X}(M)$. Moreover, (η, ξ, ϕ, g) can be chosen such that

$$
\begin{equation*}
d \eta(X, Y)=g(X, \phi Y), \quad X, Y \in \mathcal{X}(M) \tag{2.2}
\end{equation*}
$$

and we then call the structure a contact metric structure. A manifold M carrying such a structure is said to be a contact metric manifold and it is denoted by $M(\eta, \xi, \phi, g)$. As a consequence of the above relations we have $\eta(\xi)=1, \phi \xi=0, \eta \circ \phi=0$ and $d \eta(\xi, X)=$ 0 . If ∇ denotes the Riemannian connection of $M(\eta, \xi, \phi, g)$, then following [1], we define
the (1,1)-tensor fields h and l by $h=(1 / 2)\left(\mathcal{L}_{\xi} \phi\right)$ and $l=R(., \xi) \xi$, where \mathcal{L}_{ξ} is the Lie differentiation in the direction of ξ and R is the curvature tensor, which is given by

$$
\begin{equation*}
R(X, Y) Z=\nabla_{X} \nabla_{Y} Z-\nabla_{Y} \nabla_{X} Z-\nabla_{[X, Y]} Z \tag{2.3}
\end{equation*}
$$

for all vector fields $X, Y, Z \in \mathcal{X}(M)$. The tensor fields h, l are self adjoint and satisfy $h \xi=0, l \xi=0, \operatorname{Tr} h=\operatorname{Tr} h \phi=0, \phi h+h \phi=0$. Since h anti-commutes with ϕ, if $X \neq 0$ is an eigenvector of h corresponding to the eigenvalue λ, then ϕX is also an eigenvector of h corresponding to the eigenvalue $-\lambda$. Therefore, on any contact metric manifold $M(\eta, \xi, \phi, g)$ the following formulas are valid $\nabla \xi=-\phi-\phi h \quad\left(\right.$ and so $\left.\nabla_{\xi} \xi=0\right), \nabla_{\xi} h=\phi-\phi l-\phi h^{2}$, $\nabla_{\xi} \phi=0$ and $\phi l \phi-l=2\left(\phi^{2}+h^{2}\right)$. A contact metric structure (η, ξ, ϕ, g) on M gives rise to an almost complex structure on the product $M \times R$. If this structure is integrable, then the contact metric manifold $M(\eta, \xi, \phi, g)$ is said to be Sasakian. Equivalently, a contact metric manifold $M(\eta, \xi, \phi, g)$ is Sasakian if and only if $R(X, Y) \xi=\eta(Y) X-\eta(X) Y$, for all $X, Y \in \mathcal{X}(M)$.

By a generalized (κ, μ)-manifold we mean a 3 -dimensional contact metric manifold such that

$$
\begin{equation*}
R(X, Y) \xi=(\kappa I+\mu h)[\eta(Y) X-\eta(X) Y] \tag{2.4}
\end{equation*}
$$

for all $X, Y \in \mathcal{X}(M)$, where κ, μ are smooth non-constant real functions on M. In the special case, where κ, μ are constant, then $M(\eta, \xi, \phi, g)$ is called a (κ, μ)-manifold. We note that $h=0$ and $\kappa=1$ on any Sasakian manifold.

Let M be a $(2 m+1)$-dimensional contact metric manifold. By a D_{a}-homothetic deformation [8], we mean a change of structure tensors of the form

$$
\begin{equation*}
\bar{\eta}=a \eta, \quad \bar{\xi}=(1 / a) \xi, \quad \bar{\phi}=\phi, \quad \bar{g}=a g+a(a-1) \eta \otimes \eta \tag{2.5}
\end{equation*}
$$

where a is a positive number. It is well known that $M(\bar{\eta}, \bar{\xi}, \bar{\phi}, \bar{g})$ is also a contact metric manifold. The tensor h and the curvature tensor R transform in the following manner ([2]):

$$
\begin{equation*}
\bar{h}=(1 / a) h \tag{2.6}
\end{equation*}
$$

and

$$
\begin{align*}
a \bar{R}(X, Y) \bar{\xi}= & R(X, Y) \xi+(a-1)^{2}(\eta(Y) X-\eta(X) Y) \\
& -(a-1)\left\{\left(\nabla_{X} \phi\right) Y-\left(\nabla_{Y} \phi\right) X+\eta(X)(Y+h Y)\right. \tag{2.7}\\
& -\eta(Y)(X+h X)\}
\end{align*}
$$

for any $X, Y \in \mathcal{X}(M)$. Additionally, it is well known [9, pp 446-447], that any 3-dimensional contact metric manifold $M(\eta, \xi, \phi, g)$ satisfies

$$
\begin{equation*}
\left(\nabla_{X} \phi\right) Y=g(X+h X, Y) \xi-\eta(Y)(X+h X) \tag{2.8}
\end{equation*}
$$

for any $X, Y \in \mathcal{X}(M)$. Substituting (2.8) in (2.7) and using (2.6), (2.7), we see that if $M(\eta, \xi, \phi, g)$ is a generalized (κ, μ)-manifold, then $M(\bar{\eta}, \bar{\xi}, \bar{\phi}, \bar{g})$ is also a generalized
($\bar{\kappa}, \bar{\mu}$)-manifold (see [5]) with

$$
\begin{equation*}
\bar{\kappa}=\frac{\kappa+a^{2}-1}{a^{2}}, \quad \bar{\mu}=\frac{\mu+2(a-1)}{a} . \tag{2.9}
\end{equation*}
$$

Finally, we mention that on any Riemannian manifold (M, g), the metric g and the Riemannian connection ∇ are related by the formula

$$
\begin{align*}
2 g\left(\nabla_{X} Y, Z\right)= & X g(Y, Z)+Y g(Z, X)-Z g(X, Y) \tag{2.10}\\
& -g(X,[Y, Z])+g(Y,[Z, X])+g(Z,[X, Y])
\end{align*}
$$

for all $X, Y, Z \in \mathcal{X}(M)$.

3. Generalized (κ, μ)-manifolds

This section contains some basic results concerning generalized (κ, μ)-manifolds.
Lemma 3.1. On any generalized (κ, μ)-manifold $M(\eta, \xi, \phi, g)$ the following formulas are valid

$$
\begin{align*}
& h^{2}=(\kappa-1) \phi^{2}, \quad \kappa=\frac{\operatorname{Tr} l}{2} \leq 1 \tag{3.1}\\
& \xi \kappa=0 \tag{3.2}\\
& h \operatorname{grad} \mu=\operatorname{grad} \kappa \tag{3.3}\\
& Q \xi=2 \kappa \xi \tag{3.4}
\end{align*}
$$

where Q is the Ricci operator $\left(Q X=\sum_{i=1}^{3} R\left(X, E_{i}\right) E_{i}\right.$, where $\left\{E_{i}\right\}, i=1,2,3$, is an orthonormal frame and $X \in \mathcal{X}(M))$.

Proof. For the proof of Lemma see [6].
Lemma 3.2. Let $M(\eta, \xi, \phi, g)$ be a generalized (κ, μ)-manifold. Then, for any point $P \in M$, with $\kappa(P)<1$ there exist a neighbourhood U of P and an h-frame on U, i.e. orthonormal vector fields $\xi, X, \phi X$, defined on U, such that

$$
\begin{equation*}
h X=\lambda X, \quad h \phi X=-\lambda \phi X, \quad h \xi=0, \quad \lambda=\sqrt{1-\kappa} \tag{3.5}
\end{equation*}
$$

at any point $q \in U$. Moreover, putting $A=X \lambda$ and $B=\phi X \lambda$, the following formulas are valid on U :

$$
\begin{align*}
& \nabla_{X} \xi=-(\lambda+1) \phi X, \quad \nabla_{\phi X} \xi=(1-\lambda) X \tag{3.6}\\
& \nabla_{\xi} X=-\frac{\mu}{2} \phi X, \quad \nabla_{\xi} \phi X=\frac{\mu}{2} X \tag{3.7}\\
& \nabla_{X} X=\frac{B}{2 \lambda} \phi X, \quad \nabla_{\phi X} \phi X=\frac{A}{2 \lambda} X, \tag{3.8}\\
& \nabla_{\phi X} X=-\frac{A}{2 \lambda} \phi X+(\lambda-1) \xi, \quad \nabla_{X} \phi X=-\frac{B}{2 \lambda} X+(\lambda+1) \xi, \tag{3.9}
\end{align*}
$$

$$
\begin{align*}
& {[\xi, X]=\left(1+\lambda-\frac{\mu}{2}\right) \phi X, \quad[\xi, \phi X]=\left(\lambda-1+\frac{\mu}{2}\right) X,} \tag{3.10}\\
& {[X, \phi X]=-\frac{B}{2 \lambda} X+\frac{A}{2 \lambda} \phi X+2 \xi,} \tag{3.11}\\
& X \mu=-2 X \lambda=-2 A, \tag{3.12}\\
& \phi X \mu=2 \phi X \lambda=2 B, \tag{3.13}\\
& \xi A=\left(1+\lambda-\frac{\mu}{2}\right) B, \tag{3.14}\\
& \xi B=\left(\lambda-1+\frac{\mu}{2}\right) A, \tag{3.15}\\
& {[\xi, \phi \operatorname{grad} \lambda]=0,} \tag{3.16}\\
& (\phi \operatorname{grad} \lambda) \mu=4 A B, \tag{3.17}\\
& X B=\phi X A=\frac{1}{2}\left\{\xi \mu+\frac{1}{4 \lambda}(\phi \operatorname{grad} \lambda) \mu\right\}=\frac{1}{2}\left(\xi \mu+\frac{1}{\lambda} A B\right), \tag{3.18}\\
& \Delta \lambda=X A+\phi X B-\frac{1}{2 \lambda}\left(A^{2}+B^{2}\right), \tag{3.19}\\
& \xi X A=2\left(1+\lambda-\frac{\mu}{2}\right) X B+2 A B, \tag{3.20}\\
& \xi \phi X B=2\left(\lambda-1+\frac{\mu}{2}\right) X B+2 A B, \tag{3.21}\\
& \xi\|\operatorname{grad} \lambda\|^{2}=\xi\left(A^{2}+B^{2}\right)=4 \lambda A B, \tag{3.22}\\
& \xi \Delta \lambda=2 \lambda \xi \mu+4 A B, \tag{3.23}
\end{align*}
$$

where $\Delta \lambda$ is the Laplacian of $\lambda,(\Delta \lambda=\operatorname{div} \operatorname{grad} \lambda)$.
Proof. For the proofs of (3.5)-(3.11) see [5], [6]. The proofs of (3.12), (3.13) are immediate consequences of (3.3), (3.5) and the symmetry of h. In order to prove (3.14) we calculate, using (3.2) and (3.10),

$$
\xi A=\xi X \lambda=[\xi, X] \lambda+X \xi \lambda=\left(1+\lambda-\frac{\mu}{2}\right) \phi X \lambda=\left(1+\lambda-\frac{\mu}{2}\right) B .
$$

The relation (3.15) is proved similarly. Using (3.2) and the first of (2.1) we have

$$
\operatorname{grad} \lambda=A X+B \phi X, \quad \phi \operatorname{grad} \lambda=A \phi X-B X .
$$

From the last relation, (3.10), (3.14) and (3.15) we obtain

$$
\begin{aligned}
{[\xi, \phi \operatorname{grad} \lambda] } & =[\xi, A \phi X-B X] \\
& =(\xi A) \phi X+A[\xi, \phi X]-(\xi B) X-B[\xi, X]=0
\end{aligned}
$$

In order to prove (3.17) we use (3.12) and (3.13) and we obtain

$$
(\phi \operatorname{grad} \lambda) \mu=(A \phi X-B X) \mu=A \phi X \mu-B X \mu=4 A B
$$

Letting the vector field [$X, \phi X$], given by (3.10), act on the function λ and by using (3.2), we obtain

$$
X(\phi X \lambda)-\phi X(X \lambda)=-\frac{B}{2 \lambda} X \lambda+\frac{A}{2 \lambda} \phi X \lambda+2 \xi \lambda
$$

or,

$$
X B-\phi X A=-\frac{A B}{2 \lambda}+\frac{A B}{2 \lambda}=0
$$

Similarly, from the action of vector field $[X, \phi X]$ on the function μ and the use of the last relation, (3.12), (3.13) and (3.17) we obtain

$$
X B=\frac{1}{2}\left(\xi \mu+\frac{1}{\lambda} A B\right)=\frac{1}{2}\left\{\xi \mu+\frac{1}{4 \lambda}(\phi \operatorname{grad} \lambda) \mu\right\} .
$$

Using the definition of the Laplacian and the relations (3.2), (3.8), (3.18) we obtain

$$
\begin{aligned}
\Delta \lambda & =X X \lambda+\phi X \phi X \lambda+\xi \xi \lambda-\left(\nabla_{X} X\right) \lambda-\left(\nabla_{\phi X} \phi X\right) \lambda-\left(\nabla_{\xi} \xi\right) \lambda \\
& =X A+\phi X B-\frac{1}{2 \lambda}\left(A^{2}+B^{2}\right)
\end{aligned}
$$

For the proofs of (3.21), (3.22), using (3.10), (3.12)-(3.15), (3.18), we calculate

$$
\begin{aligned}
\xi X A & =[\xi, X] A+X \xi A=\left(1+\lambda-\frac{\mu}{2}\right) \phi X A+X\left\{\left(1+\lambda-\frac{\mu}{2}\right) B\right\} \\
& =\left(1+\lambda-\frac{\mu}{2}\right) X B+\left(1+\lambda-\frac{\mu}{2}\right) X B+B\left\{X \lambda-X\left(\frac{\mu}{2}\right)\right\} \\
& =2\left(1+\lambda-\frac{\mu}{2}\right) X B+2 A B \\
\xi \phi X B & =[\xi, \phi X] B+\phi X \xi B=\left(\lambda-1+\frac{\mu}{2}\right) X B+\phi X\left\{\left(\lambda-1+\frac{\mu}{2}\right) A\right\} \\
& =\left(\lambda-1+\frac{\mu}{2}\right) X B+\left(\lambda-1+\frac{\mu}{2}\right) \phi X A+A\left\{\phi X \lambda+\phi X\left(\frac{\mu}{2}\right)\right\} \\
& =2\left(\lambda-1+\frac{\mu}{2}\right) X B+2 A B .
\end{aligned}
$$

The relation (3.22) is an immediate consequence of (3.14) and (3.15). Differentiating (3.19) with respect to ξ and using (3.20)-(3.22), (3.2) and (3.18), then (3.23) follows, and thus the proof of Lemma is completed.

Lemma 3.3. On any generalized (κ, μ)-manifold $M(\eta, \xi, \phi, g)$ with $\kappa<1$, the scalar curvature $S=\operatorname{Tr} Q$ is given by

$$
\begin{equation*}
S=\frac{1}{\lambda} \Delta \lambda-\frac{1}{\lambda^{2}}\|\operatorname{grad} \lambda\|^{2}+2(\kappa-\mu), \quad \lambda=\sqrt{1-\kappa} \tag{3.24}
\end{equation*}
$$

Proof. Using (2.3), (3.6)-(3.9), we calculate

$$
\begin{aligned}
R(X, \phi X) \phi X= & \nabla_{X} \nabla_{\phi X} \phi X-\nabla_{\phi X} \nabla_{X} \phi X-\nabla_{[X, \phi X]} \phi X \\
= & \nabla_{X}\left(\frac{A}{2 \lambda} X\right)-\nabla_{\phi X}\left(-\frac{B}{2 \lambda} X+(1+\lambda) \xi\right)-\nabla_{-\frac{B}{2 \lambda} X+\frac{A}{2 \lambda} \phi X+2 \xi} \phi X \\
= & X\left(\frac{A}{2 \lambda}\right) X+\frac{A}{2 \lambda} \nabla_{X} X+\phi X\left(\frac{B}{2 \lambda}\right) X+\frac{B}{2 \lambda} \nabla_{\phi X} X \\
& -(\phi X \lambda) \xi-(1+\lambda) \nabla_{\phi X} \xi+\frac{B}{2 \lambda} \nabla_{X} \phi X-\frac{A}{2 \lambda} \nabla_{\phi X} \phi X-2 \nabla_{\xi} \phi X \\
= & \frac{\lambda X A-A^{2}}{2 \lambda^{2}} X+\frac{A B}{4 \lambda^{2}} \phi X+\frac{\lambda \phi X B-B^{2}}{2 \lambda^{2}} X \\
& +\frac{B}{2 \lambda}\left(-\frac{A}{2 \lambda} \phi X+(\lambda-1) \xi\right)-B \xi-(1+\lambda)(1-\lambda) X \\
& +\frac{B}{2 \lambda}\left(-\frac{B}{2 \lambda} X+(1+\lambda) \xi\right)-\frac{A^{2}}{4 \lambda^{2}} X-\mu X \\
= & \left\{\frac{1}{2 \lambda}(X A+\phi X B)-\frac{1}{2 \lambda^{2}}\left(A^{2}+B^{2}\right)-\left(1-\lambda^{2}\right)-\frac{1}{4 \lambda^{2}}\left(A^{2}+B^{2}\right)-\mu\right\} X \\
= & \left\{\frac{1}{2 \lambda}\left(X A+\phi X B-\frac{1}{2 \lambda}\left(A^{2}+B^{2}\right)\right)-\frac{1}{2 \lambda^{2}}\left(A^{2}+B^{2}\right)-\kappa-\mu\right\} X .
\end{aligned}
$$

Combining this and (3.19) we obtain

$$
R(X, \phi X) \phi X=\left\{\frac{1}{2 \lambda} \Delta \lambda-\frac{1}{2 \lambda^{2}}\left(A^{2}+B^{2}\right)-\kappa-\mu\right\} X
$$

and thus

$$
g(R(X, \phi X) \phi X, X)=\frac{1}{2 \lambda} \Delta \lambda-\frac{1}{2 \lambda^{2}}\left(A^{2}+B^{2}\right)-\kappa-\mu
$$

The relation (3.24) is an immediate consequence of (3.5), (3.4) and $S=\operatorname{Tr} Q=g(Q X, X)+$ $g(Q \phi X, \phi X)+g(Q \xi, \xi)$.

4. Generalized (κ, μ)-manifolds with $\xi \mu=0$

In the following Theorem, the generalized (κ, μ)-manifolds with $\kappa<1$ that satisfy the condition $\xi \mu=0$, are locally described.

Theorem 4.1. Let $M(\eta, \xi, \phi, g)$ be a generalized (κ, μ)-manifold with $\kappa<1$ and $\xi \mu=0$. Then

1) At any point of M, precisely one of the following relations is valid: $\mu=2(1+$ $\sqrt{1-\kappa})$, or $\mu=2(1-\sqrt{1-\kappa})$
2) At any point $P \in M$ there exists a chart $(U,(x, y, z))$ with $P \in U \subseteq M$, such that
i) the functions κ, μ depend only on the variable z
ii) if $\mu=2(1+\sqrt{1-\kappa})$, (resp. $\mu=2(1-\sqrt{1-\kappa})$), the tensor fields η, ξ, ϕ, g are given by the relations,

$$
\begin{gathered}
\xi=\frac{\partial}{\partial x}, \quad \eta=d x-a d z \quad \text { (resp. } \quad \eta=d x-a d z \text {) } \\
g=\left(\begin{array}{ccc}
1 & 0 & -a \\
0 & 1 & -b \\
-a & -b & 1+a^{2}+b^{2}
\end{array}\right) \quad\left(\text { resp. } \quad g=\left(\begin{array}{ccc}
1 & 0 & -a \\
0 & 1 & -b \\
-a & -b & 1+a^{2}+b^{2}
\end{array}\right)\right) \\
\phi=\left(\begin{array}{ccc}
0 & a & -a b \\
0 & b & -1-b^{2} \\
0 & 1 & -b
\end{array}\right) \quad\left(\text { resp. } \quad \phi=\left(\begin{array}{ccc}
0 & -a & a b \\
0 & -b & 1+b^{2} \\
0 & -1 & b
\end{array}\right)\right)
\end{gathered}
$$

with respect to the basis $\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right)$, where $a=2 y+f(z)$ (resp. $a=-2 y+f(z)$), $b=2 \lambda(z) x-\frac{\lambda^{\prime}(z)}{2 \lambda(z)} y+h(z), \lambda=\lambda(z)=\sqrt{1-\kappa(z)}, \lambda^{\prime}(z)=\frac{d \lambda}{d z}$ and $f(z), h(z)$ are arbitrary smooth functions of z.

Proof. Let $\{\xi, X, \phi X\}$ be an h-frame, such that

$$
h X=\lambda X, \quad h \phi X=-\lambda \phi X, \quad \lambda=\sqrt{1-\kappa}
$$

in an appropriate neighbourhood of an arbitrary point of M. Using the hypothesis $\xi \mu=0$ and the relations (3.16), (3.17), (3.14), (3.15) of Lemma 3.2, we successively obtain

$$
\begin{aligned}
& {[\xi, \phi \operatorname{grad} \lambda] \mu=0} \\
& \xi(\phi \operatorname{grad} \lambda) \mu-(\phi \operatorname{grad} \lambda) \xi \mu=0 \\
& \xi(A B)=0 \\
& A \xi B+B \xi A=0 \\
& A^{2}\left(\lambda-1+\frac{\mu}{2}\right)+B^{2}\left(1+\lambda-\frac{\mu}{2}\right)=0
\end{aligned}
$$

Differentiating the last relation with respect to ξ and using the relations (3.2), $\xi \mu=0$, (3.14), (3.15) we are led through simple calculations to

$$
\begin{equation*}
\left(1+\lambda-\frac{\mu}{2}\right)\left(\lambda-1+\frac{\mu}{2}\right) A B=0 . \tag{4.1}
\end{equation*}
$$

We put $F=\left(1+\lambda-\frac{\mu}{2}\right)\left(\lambda-1+\frac{\mu}{2}\right)$ and consider the set $N=\{P \in M \mid(\operatorname{grad} \lambda)(P) \neq 0\}$. We will prove that $F=0$ at any point of N. Let $P \in N$ be such that $F(P) \neq 0$. From (4.1) we obtain $(A B)(P)=0$. We distinguish the cases $\{A(P)=B(P)=0\},\{A(P) \neq 0, B(P)=0\}$ and $\{A(P)=0, B(P) \neq 0\}$. The first case is impossible, because the relations $A(P)=$ $B(P)=0$ and (3.2) lead to $(\operatorname{grad} \lambda)(P)=0$. Let us suppose that $\{A(P) \neq 0, B(P)=0\}$. Since the function F is continuous, we find that a neighbourhood $U \subseteq N$ exists, with $P \in U$ such that $F \neq 0$ at any point of U. Similarly, due to the fact that the function A is continuous on its domain, a neighbourhood V of P exists with $P \in V \subset U$, such that $A \neq 0$ at any point of V, and thus $B=0$ on V. Differentiating $B=0$ with respect to ξ and using (3.15) we obtain $A\left(1+\lambda-\frac{\mu}{2}\right)=0$. Therefore, $1+\lambda-\frac{\mu}{2}=0$ at any point of V and thus $F=0$ on V, which is a contradiction. Similarly, by supposing that $\{A(P)=0, B(P) \neq 0\}$ we are led to a contradiction. Therefore, $F=0$ at any point of N. In what follows, we will work on the complement N^{c} of set N, in order to prove that $F=0$ on M. If $N^{c}=\emptyset$, then $F=0$ on M. If $N^{c} \neq \emptyset$, then $\operatorname{grad} \lambda=0$ on N^{c} and thus the function λ is constant at any connected component of the interior $\left(N^{c}\right)^{o}$ of N^{c}. From the constancy of λ and the relations (3.12), (3.13), $\xi \mu=0$, the function μ is also constant. As a result we find that F is constant on any connected component of $\left(N^{c}\right)^{o}$. Because M is connected and $F=0$ on N and $F=$ constant on any connected component of $\left(N^{c}\right)^{o}$ we conclude that $F=0$, or equivalently $\left(1+\lambda-\frac{\mu}{2}\right)\left(\lambda-1+\frac{\mu}{2}\right)=0$ at any point of M. In what follows, we consider the open and disjoint sets
$C=\left\{P \in M /\left(1+\lambda-\frac{\mu}{2}\right)(P) \neq 0\right\} \quad$ and $\quad D=\left\{P \in M /\left(\lambda-1+\frac{\mu}{2}\right)(P) \neq 0\right\}$.
We have $C \cup D=M$. In fact, if there was $P \in M$, with $P \notin C$ and $P \notin D$, then we would obtain $\lambda(P)=0$, or equivalently $\kappa(P)=1$, which is impossible by the assumption of the Theorem. Since M is connected we conclude that $\{C=M$ and $D=\emptyset\}$ or $\{C=\emptyset$ and $D=M\}$. Regarding the first case we obtain $1+\lambda-\frac{\mu}{2}=0$, or equivalently $\mu=2(1+\sqrt{1-\kappa})$ at any point of M. Similarly, regarding the second case we obtain $\mu=2(1-\sqrt{1-\kappa})$. Therefore, the proof of (1) is completed. Now, we will examine the cases $\mu=2(1+\sqrt{1-\kappa})$ and $\mu=2(1-\sqrt{1-\kappa})$ separately.

Case 1. $\mu=2(1+\sqrt{1-\kappa})=2(1+\lambda)$.
Let $P \in M$ and $\{\xi, X, \phi X\}$ be an h-frame on an appropriate neighborhood V of P. From the assumption $\mu=2(1+\lambda)$ and (3.12) we obtain $A=0$ and thus the relations (3.10), (3.11) are

$$
\begin{equation*}
[\xi, X]=0, \quad[\xi, \phi X]=2 \lambda X, \quad[X, \phi X]=-\frac{B}{2 \lambda} X+2 \xi \tag{4.2}
\end{equation*}
$$

Because the linearly independent vector fields ξ, X satisfy the relation $[\xi, X]=0$ on V, the distribution which is spanned by ξ and X is integrable and so for any point $q \in V$, there exists
a chart $(U,(x, y, z))$ such that $P \in U \subset V$ and

$$
\begin{equation*}
\xi=\frac{\partial}{\partial x}, \quad X=\frac{\partial}{\partial y} \tag{4.3}
\end{equation*}
$$

at any point of U. The vector field ϕX can be written on U as

$$
\begin{equation*}
\phi X=a \frac{\partial}{\partial x}+b \frac{\partial}{\partial y}+c \frac{\partial}{\partial z}, \tag{4.4}
\end{equation*}
$$

where a, b, c are smooth functions defined on U. Since $\xi, X, \phi X$ are linearly independent, we have $c \neq 0$ at any point of U. By using (4.3), (3.2) and $X \lambda=A=0$ we obtain

$$
\frac{\partial \lambda}{\partial x}=0 \quad \text { and } \quad \frac{\partial \lambda}{\partial y}=0
$$

From these relations we conclude that the function λ depends only on the variable z, i.e. $\lambda=\lambda(z)$, and thus from (4.4) we obtain

$$
\begin{equation*}
B=\phi X \lambda=c \frac{\partial \lambda}{\partial z} \tag{4.5}
\end{equation*}
$$

By using (4.2)-(4.4) we obtain

$$
\begin{aligned}
2 \lambda \frac{\partial}{\partial y} & =2 \lambda X=[\xi, \phi X]=\left[\frac{\partial}{\partial x}, a \frac{\partial}{\partial x}+b \frac{\partial}{\partial y}+c \frac{\partial}{\partial z}\right] \\
& =\frac{\partial a}{\partial x} \frac{\partial}{\partial x}+\frac{\partial b}{\partial x} \frac{\partial}{\partial y}+\frac{\partial c}{\partial x} \frac{\partial}{\partial z} .
\end{aligned}
$$

Thus

$$
\begin{equation*}
\frac{\partial a}{\partial x}=0, \quad \frac{\partial b}{\partial x}=2 \lambda, \quad \frac{\partial c}{\partial x}=0 \tag{4.6}
\end{equation*}
$$

Similarly, from (4.3), (4.4) and the third equation of (4.2) we obtain

$$
\begin{equation*}
\frac{\partial a}{\partial y}=2, \quad \frac{\partial b}{\partial y}=-\frac{B}{2 \lambda}, \quad \frac{\partial c}{\partial y}=0 \tag{4.7}
\end{equation*}
$$

From $\frac{\partial c}{\partial x}=\frac{\partial c}{\partial y}=0$ it follows that $c=c(z)$ and because of the fact that $c \neq 0$, we can suppose that $c=1$, through a reparametrization of the variable z. For the sake of simplicity we will continue to use the same coordinates (x, y, z), taking into account that $c=1$ in the relations that we have occurred. From the solution of the system of the differential equations

$$
\begin{equation*}
\left\{\frac{\partial a}{\partial x}=0, \frac{\partial a}{\partial y}=2, \frac{\partial b}{\partial x}=2 \lambda, \frac{\partial b}{\partial y}=-\frac{B}{2 \lambda}\right\} \tag{4.8}
\end{equation*}
$$

where $B=\phi X \lambda=\frac{\partial \lambda}{\partial z}=\lambda^{\prime}(z)$, we easily obtain

$$
a=a(x, y, z)=2 y+f(z)
$$

$$
b=b(x, y, z)=2 \lambda(z) x-\frac{\lambda^{\prime}(z)}{2 \lambda(z)} y+h(z)
$$

where $f(z), h(z)$ are arbitrary smooth functions of z defined on U. In what follows, we will calculate the tensor fields g, η, ϕ with respect to the basis $\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}$. For the components $g_{i j}$ of the Riemannian metric g, we calculate, using (4.3), (4.4, with $c=1$), (4.8)

$$
\begin{aligned}
g_{11} & =g\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial x}\right)=g(\xi, \xi)=1, \quad g_{22}=g\left(\frac{\partial}{\partial y}, \frac{\partial}{\partial y}\right)=g(X, X)=1 \\
g_{12} & =g_{21}=g\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}\right)=g(\xi, X)=0, \\
g_{13} & =g_{31}=g\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial z}\right)=g\left(\frac{\partial}{\partial x}, \phi X-a \frac{\partial}{\partial x}-b \frac{\partial}{\partial y}\right) \\
& =g(\xi, \phi X)-a g_{11}-b g_{12}=-a \\
g_{23} & =g_{32}=g\left(\frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right)=g\left(\frac{\partial}{\partial y}, \phi X-a \frac{\partial}{\partial x}-b \frac{\partial}{\partial y}\right) \\
& =g(X, \phi X)-a g_{12}-b g_{22}=-b \\
1 & =g(\phi X, \phi X)=a^{2} g_{11}+b^{2} g_{22}+g_{33}+2 a b g_{12}+2 a g_{13}+2 b g_{23} \\
& =a^{2}+b^{2}+g_{33}-2 a^{2}-2 b^{2}=g_{33}-a^{2}-b^{2},
\end{aligned}
$$

from which we obtain $g_{33}=1+a^{2}+b^{2}$. The components of the tensor field ϕ are immediate consequences of

$$
\begin{aligned}
\phi\left(\frac{\partial}{\partial x}\right) & =\phi \xi=0, \quad \phi\left(\frac{\partial}{\partial y}\right)=\phi X=a \frac{\partial}{\partial x}+b \frac{\partial}{\partial y}+\frac{\partial}{\partial z} \\
\phi\left(\frac{\partial}{\partial z}\right) & =\phi\left(\phi X-a \frac{\partial}{\partial x}-b \frac{\partial}{\partial y}\right)=\phi^{2} X-a \phi \frac{\partial}{\partial x}-b \phi \frac{\partial}{\partial y} \\
& =-X-b\left(a \frac{\partial}{\partial x}+b \frac{\partial}{\partial y}+\frac{\partial}{\partial z}\right) \\
& =-\frac{\partial}{\partial y}-a b \frac{\partial}{\partial x}-b^{2} \frac{\partial}{\partial y}-b \frac{\partial}{\partial z} \\
& =-a b \frac{\partial}{\partial x}-\left(1+b^{2}\right) \frac{\partial}{\partial y}-b \frac{\partial}{\partial z}
\end{aligned}
$$

The expression for the contact form η, immediately follows from

$$
\begin{aligned}
& \eta\left(\frac{\partial}{\partial x}\right)=\eta(\xi)=1, \quad \eta\left(\frac{\partial}{\partial y}\right)=\eta(X)=g(X, \xi)=0 \\
& \eta\left(\frac{\partial}{\partial z}\right)=g\left(\frac{\partial}{\partial z}, \xi\right)=g\left(\frac{\partial}{\partial z}, \frac{\partial}{\partial x}\right)=g_{13}=-a
\end{aligned}
$$

and thus the proof of the case 1 is completed.
Case 2. $\mu=2(1-\sqrt{1-\kappa})=2(1-\lambda)$.
We work as in case 1 , considering an h-frame $\{\xi, X, \phi X\}$. Using the assumption $\mu=$ $2(1-\lambda)$ and (3.13) we obtain $B=0$ and thus the relation (3.10) is written as

$$
[\xi, X]=2 \lambda \phi X, \quad[\xi, \phi X]=0, \quad[X, \phi X]=\frac{A}{2 \lambda} \phi X+2 \xi .
$$

From $[\xi, \phi X]=0$ we conclude that around any point $P \in M$ there is a chart $(U,(x, y, z))$ such that

$$
\xi=\frac{\partial}{\partial x}, \quad \phi X=\frac{\partial}{\partial y}
$$

on U. We put

$$
X=a \frac{\partial}{\partial x}+b \frac{\partial}{\partial y}+c \frac{\partial}{\partial z},
$$

where a, b, c are smooth functions defined on U. The continuation of the proof is similar to the proof of the case 1 and for this reason we omit it. This completes the proof of the Theorem.

In the next Theorem, generalized (κ, μ)-manifolds with $\kappa<1$ and $\xi \mu=0$ are locally constructed.

THEOREM 4.2. Let $\kappa: I \subset R \rightarrow R$ be a smooth function defined on an open interval I, such that $\kappa(z)<1$ for any $z \in I$. Then, we can construct two families of generalized $\left(\kappa_{i}, \mu_{i}\right)$-manifolds $M\left(\eta_{i}, \xi_{i}, \phi_{i}, g_{i}\right), i=1,2$, in the set $M=R^{2} \times I \subset R^{3}$, so that, for any $P(x, y, z) \in M$, the following are valid:
$\kappa_{1}(P)=\kappa_{2}(P)=\kappa(z), \quad \mu_{1}(P)=2(1+\sqrt{1-\kappa(z)}) \quad$ and $\quad \mu_{2}(P)=2(1-\sqrt{1-\kappa(z)})$.
Each family is determined by two arbitrary smooth functions of one variable.
Proof. We put $\lambda=\sqrt{1-\kappa}>0, \lambda^{\prime}(z)=\frac{\partial \lambda}{\partial z}$ and we consider on M the linearly independent vector fields

$$
\begin{gather*}
\xi_{1}=\frac{\partial}{\partial x}, \quad X_{1}=\frac{\partial}{\partial y} \quad \text { and } \\
Y_{1}=(2 y+f(z)) \frac{\partial}{\partial x}+\left(2 \lambda(z) x-\frac{\lambda^{\prime}(z)}{2 \lambda(z)} y+h(z)\right) \frac{\partial}{\partial y}+\frac{\partial}{\partial z}, \tag{4.9}
\end{gather*}
$$

where $f(z), h(z)$ are arbitrary functions of z. We define the tensor fields $\eta_{1}, \phi_{1}, g_{1}$ as follows: g_{1} is the Riemannian metric on M, with respect to which the vector fields ξ_{1}, X_{1}, Y_{1} are orthonormal; η_{1} is the 1 -form on M which is defined from $\eta_{1}(Z)=g_{1}\left(Z, \xi_{1}\right)$ for any $Z \in$ $\mathcal{X}(M) ; \phi_{1}$ is the (1, 1)-tensor field that is defined by the relations $\phi_{1} \xi_{1}=0, \phi_{1} X_{1}=Y_{1}$ and $\phi_{1} Y_{1}=-X_{1}$. Initially we will show that $M\left(\eta_{1}, \xi_{1}, \phi_{1}, g_{1}\right)$ is a contact metric manifold.

From (4.9) we easily obtain

$$
\begin{equation*}
\left[\xi_{1}, X_{1}\right]=0, \quad\left[\xi_{1}, Y_{1}\right]=2 \lambda(z) X_{1}, \quad\left[X_{1}, Y_{1}\right]=-\frac{\lambda^{\prime}(z)}{2 \lambda(z)} X_{1}+2 \xi_{1} \tag{4.10}
\end{equation*}
$$

Because $\left(\eta_{1} \wedge d \eta_{1}\right)\left(\xi_{1}, X_{1}, Y_{1}\right) \neq 0$ everywhere on M, we conclude that η_{1} is a contact form. From the definitions of ϕ_{1}, g_{1} and the relations (4.10) it is easy to see that the following relations are valid

$$
\begin{aligned}
& \phi_{1}^{2} Z=-Z+\eta_{1}(Z) \xi_{1}, \quad g_{1}\left(\phi_{1} Z, \phi_{1} W\right)=g_{1}(Z, W)-\eta_{1}(Z) \eta_{1}(W) \\
& d \eta_{1}(Z, W)=g_{1}\left(Z, \phi_{1} W\right)
\end{aligned}
$$

for any $Z, W \in \mathcal{X}(M)$. Therefore, by (2.1) and (2.2), $M\left(\eta_{1}, \xi_{1}, \phi_{1}, g_{1}\right)$ is a contact metric manifold. Let ∇ be the Riemannian connection of g_{1}. Using the well known formula (see (2.10))

$$
\begin{aligned}
2 g_{1}\left(\nabla_{Z} W, T\right)= & Z g_{1}(W, T)+W g_{1}(T, Z)-T g_{1}(Z, W) \\
& -g_{1}(Z,[W, T])+g_{1}(W,[T, Z])+g_{1}(T,[Z, W])
\end{aligned}
$$

for any $Z, W, T \in \mathcal{X}(M)$, as well as (4.10), $h \xi_{1}=0$ and $\nabla \xi=-\phi-\phi h$, by direct calculations we obtain the following:

$$
\begin{aligned}
& \nabla_{\xi_{1}} \xi_{1}=0, \quad \nabla_{\xi_{1}} X_{1}=-(1+\lambda(z)) Y_{1}, \quad \nabla_{\xi_{1}} Y_{1}=(1+\lambda(z)) X_{1} \\
& \nabla_{X_{1}} \xi_{1}=-(1+\lambda(z)) Y_{1}, \quad \nabla_{Y_{1}} \xi_{1}=(1-\lambda(z)) X_{1}, \quad \nabla_{X_{1}} X_{1}=\frac{\lambda^{\prime}(z)}{2 \lambda(z)} Y_{1} \\
& \nabla_{Y_{1}} Y_{1}=0, \quad \nabla_{X_{1}} Y_{1}=-\frac{\lambda^{\prime}(z)}{2 \lambda(z)} X_{1}+(1+\lambda(z)) \xi_{1}, \quad \nabla_{Y_{1}} X_{1}=(\lambda(z)-1) \xi_{1}
\end{aligned}
$$

Furthermore, by using $\nabla \xi_{1}=-\phi_{1}-\phi_{1} h_{1}, h_{1} \phi_{1}+\phi_{1} h_{1}=0$ and the first of (2.1) we obtain

$$
h_{1} \phi_{1} X_{1}=-\lambda(z) \phi_{1} X_{1} \quad \text { and } \quad h_{1} X_{1}=\lambda(z) X_{1} .
$$

Defining the functions $\kappa_{1}, \mu_{1}: M \rightarrow R$ by $\kappa_{1}(x, y, z)=\kappa(z), \quad \mu_{1}(x, y, z)=2(1+$ $\sqrt{1-\kappa(z)})$ we will show that $M\left(\eta_{1}, \xi_{1}, \phi_{1}, g_{1}\right)$ is a generalized $\left(\kappa_{1}, \mu_{1}\right)$-manifold. Indeed, using (2.3) and the derivates of ξ_{1}, X_{1}, Y_{1} that we have calculated, we find that

$$
\begin{aligned}
& R\left(\xi_{1}, \xi_{1}\right) \xi_{1}=0, \quad R\left(X_{1}, \xi_{1}\right) \xi_{1}=\kappa_{1} X_{1}+\mu_{1} h_{1} X_{1} \\
& R\left(Y_{1}, \xi_{1}\right) \xi_{1}=\kappa_{1} Y_{1}+\mu_{1} h_{1} Y_{1}, \quad R\left(X_{1}, X_{1}\right) \xi_{1}=0 \\
& R\left(Y_{1}, Y_{1}\right) \xi_{1}=0, \quad R\left(X_{1}, Y_{1}\right) \xi_{1}=0
\end{aligned}
$$

From the above, as well as from the linearity of R, we conclude that

$$
R(Z, W) \xi_{1}=\left(\kappa_{1} I+\mu_{1} h_{1}\right)\left(\eta_{1}(W) Z-\eta_{1}(Z) W\right)
$$

for any $Z, W \in \mathcal{X}(M)$, i.e. $M\left(\eta_{1}, \xi_{1}, \phi_{1}, g_{1}\right)$ is a generalized $\left(\kappa_{1}, \mu_{1}\right)$-manifold (with $\xi_{1} \mu_{1}=$ 0) and thus the construction of the first family is completed. The construction of the second
family occurs, if we consider the vector fields

$$
\begin{align*}
& \xi_{2}=\frac{\partial}{\partial x}, \quad Y_{2}=\frac{\partial}{\partial y} \quad \text { and } \\
& X_{2}=(-2 y+f(z)) \frac{\partial}{\partial x}+\left(2 \lambda(z) x-\frac{\lambda^{\prime}(z)}{2 \lambda(z)} y+h(z)\right) \frac{\partial}{\partial y}+\frac{\partial}{\partial z} \tag{4.11}
\end{align*}
$$

and define the tensor fields $g_{2}, \phi_{2}, \eta_{2}$ as follows: g_{2} is the Riemannian metric on M with respect to which the vector fields ξ_{2}, X_{2}, Y_{2} are orthonormal. The $(1,1)$-tensor field ϕ_{2} is defined by $\phi_{2} \xi_{2}=0, \phi_{2} X_{2}=Y_{2}$ and $\phi_{2} Y_{2}=-X_{2}$. The 1-form η_{2} is defined by $\eta_{2}(Z)=$ $g_{2}\left(Z, \xi_{2}\right)$ for any $Z \in \mathcal{X}(M)$.

Next, we work similarly with the case 1 arriving at the conclusion that
$M\left(\eta_{2}, \xi_{2}, \phi_{2}, g_{2}\right)$ is a generalized $\left(\kappa_{2}, \mu_{2}\right)$-manifold, where $\kappa_{2}(x, y, z)=k(z)$ and $\mu_{2}(x, y, z)=2(1-\sqrt{1-\kappa(z)})$. This completes the proof of the Theorem.

In the following Proposition some conditions equivalent to $\xi \mu=0$ are obtained.
Proposition 4.3. Let $M(\eta, \xi, \phi, g)$ be a generalized (κ, μ)-manifold with $\kappa<1$. Then the following conditions are equivalent,
a) $\quad \xi \mu=0$
b) $\quad \mu=2(1 \pm \lambda), \lambda=\sqrt{1-\kappa}$
c) $\xi \xi \mu=0$
d) $\xi \Delta \lambda=0$.

Proof. Conditions (a),(b) are equivalent. This is a direct consequence of Theorem 4.1 and (3.2). In order to complete the proof of the Proposition, we consider around an arbitrary point of M an h-frame $\{\xi, X, \phi X\}$ such that $h X=\lambda X, h \phi X=-\lambda \phi X$ (see Lemma 3.2). By using (3.10), (3.2) and (3.12)-(3.15) we easily obtain

$$
\begin{align*}
& X \xi \mu=-4 B\left(1+\lambda-\frac{\mu}{2}\right) \tag{4.12}\\
& \xi X \xi \mu=-4 A\left(1+\lambda-\frac{\mu}{2}\right)\left(\lambda-1+\frac{\mu}{2}\right)+2 B \xi \mu \tag{4.13}\\
& {[X, \xi] \xi \mu=-4 A\left(1+\lambda-\frac{\mu}{2}\right)\left(\lambda-1+\frac{\mu}{2}\right)} \tag{4.14}\\
& \phi X \xi \mu=4 A\left(\lambda-1+\frac{\mu}{2}\right) \tag{4.15}\\
& \xi \phi X \xi \mu=4 B\left(1+\lambda-\frac{\mu}{2}\right)\left(\lambda-1+\frac{\mu}{2}\right)+2 A \xi \mu \tag{4.16}\\
& {[\phi X, \xi] \xi \mu=4 B\left(1+\lambda-\frac{\mu}{2}\right)\left(\lambda-1+\frac{\mu}{2}\right)} \tag{4.17}
\end{align*}
$$

Now, we will prove that (c) \Rightarrow (a).
Differentiating $\xi \xi \mu=0$ with respect to X we obtain $X \xi \xi \mu=0$, or equivalently $[X, \xi] \xi \mu+\xi X \xi \mu=0$ and so using (4.13), (4.14) we obtain

$$
\begin{equation*}
B \xi \mu=4 A\left(1+\lambda-\frac{\mu}{2}\right)\left(\lambda-1+\frac{\mu}{2}\right) \tag{4.18}
\end{equation*}
$$

Similarly, differentiating $\xi \xi \mu=0$ with respect to ϕX and using (4.16), (4.17) we obtain

$$
\begin{equation*}
A \xi \mu=-4 B\left(1+\lambda-\frac{\mu}{2}\right)\left(\lambda-1+\frac{\mu}{2}\right) \tag{4.19}
\end{equation*}
$$

For the functions A, B there are the following possible cases: $\{A=0, B=0\},\{A B \neq$ $0\}, \quad\{A \neq 0, B=0\}, \quad\{A=0, B \neq 0\}$. The two first possibilities cannot occur. Indeed, the combination of $A=0, B=0$ with (3.2) leads to $\kappa=$ constant which is impossible. Furthermore, if $A B \neq 0$, then, multiplying (4.18), (4.19) with B, A respectively and adding the relations that occur we are led to $\left(A^{2}+B^{2}\right) \xi \mu=0$, from which we obtain $\xi \mu=0$ or equivalently $\mu=2(1 \pm \lambda)$. If $\mu=2(1+\lambda)$, then $X \mu=2 X \lambda=2 A$. From this and (3.12) we obtain $A=0$, which is impossible. Similarly, supposing that $\mu=2(1-\lambda)$ we obtain $B=0$, which is also impossible. Therefore, the only possible cases are $\{A \neq 0, B=0\}$ and $\{A=0, B \neq 0\}$. If we assume that $\{A \neq 0, B=0\}$, then (4.19) gives $\xi \mu=0$. Similarly, from $\{A=0, B \neq 0\}$ and (4.18) we obtain $\xi \mu=0$ and this completes the proof of (c) \Rightarrow (a).

The case $(\mathrm{a}) \Rightarrow(\mathrm{c})$ is obvious. In what follows, we will prove that $(\mathrm{d}) \Leftrightarrow(\mathrm{a})$.
Let us suppose that (a) is valid, i.e. $\xi \mu=0$. Then, as it has been proved earlier, we obtain $A B=0$ and thus from (3.23) we obtain $\xi \Delta \lambda=0$, i.e. the condition (d). Conversely, let us assume that $\xi \Delta \lambda=0$. Then (3.23) gives

$$
\begin{equation*}
\xi \mu=-\frac{2}{\lambda} A B \tag{4.20}
\end{equation*}
$$

If $A B=0$, then $\xi \mu=0$. We will prove that the case $A B \neq 0$ is impossible. Let $A B \neq 0$, therefore $\xi \mu \neq 0$. Differentiating (4.20) with respect to X and using (4.12), (3.18), (4.20) we calculate

$$
\begin{aligned}
-4 B\left(1+\lambda-\frac{\mu}{2}\right) & =\frac{2}{\lambda^{2}}(X \lambda) A B-\frac{2}{\lambda}\{(X A) B+A(X B)\} \\
& =\frac{2}{\lambda^{2}} A^{2} B-\frac{2 B}{\lambda} X A-\frac{2 A}{\lambda}\left(\frac{1}{2} \xi \mu+\frac{1}{2 \lambda} A B\right) \\
& =-\frac{A}{\lambda} \xi \mu-\frac{2 B}{\lambda} X A-\frac{A}{2 \lambda} \xi \mu \\
& =-\frac{3 A}{2 \lambda} \xi \mu-\frac{2 B}{\lambda} X A
\end{aligned}
$$

and so

$$
\begin{equation*}
\frac{2 B}{\lambda} X A=4 B\left(1+\lambda-\frac{\mu}{2}\right)-\frac{3 A}{2 \lambda} \xi \mu \tag{4.21}
\end{equation*}
$$

Similarly, differentiating (4.20) with respect to ϕX and using (4.15), (3.18), (4.20) we are led to

$$
\begin{equation*}
\frac{2 A}{\lambda} \phi X B=-4 A\left(\lambda-1+\frac{\mu}{2}\right)-\frac{3 B}{2 \lambda} \xi \mu . \tag{4.22}
\end{equation*}
$$

Multiplying (4.21) with A and (4.22) with B and adding the resulting relations, we obtain

$$
\frac{2 A B}{\lambda}(X A+\phi X B)=4 A B(2-\mu)-\frac{3}{2 \lambda}\left(A^{2}+B^{2}\right) \xi \mu .
$$

Furthermore, by using (3.19) and (4.20), the last relation leads to

$$
\frac{1}{\lambda} \Delta \lambda-\frac{A^{2}+B^{2}}{\lambda^{2}}-2(2-\mu)=0
$$

Differentiating the last relation with respect to ξ and using $\xi \Delta \lambda=0$, (3.22), we easily obtain $\xi \mu=\frac{2}{\lambda} A B$. From this and (4.20) we obtain the contradiction $A B=0$ and thus the proof of the Proposition is completed.

REMARK. Theorem 4.1 can be reformulated by replacing the condition $\xi \mu=0$ with any one of the equivalent conditions of Proposition 4.3.

In [6] the generalized (κ, μ)-manifolds $M(\eta, \xi, \phi, g)$ with $\|\operatorname{grad} \kappa\|=$ constant $\neq 0$ have been studied. These manifolds satisfy $\mu=2(1 \pm \sqrt{1-\kappa})$ (see [6], Lemma 3) and thus by (3.2), the condition $\xi \mu=0$ as well. Moreover, it is obvious that the function κ satisfies $\kappa<1$. Thus this class of manifolds is a special case of generalized (κ, μ)-manifolds with $\kappa<1$ and $\xi \mu=0$. In the process of proving Theorem 4.1 (see relation(4.8)) we have shown that for the case $\{A=0, B \neq 0, \mu=2(1+\lambda)\}$ we have

$$
\begin{equation*}
B=\frac{d \lambda}{d z} \quad \text { and so } \quad \phi X B=\frac{d^{2} \lambda}{d z^{2}} \tag{4.23}
\end{equation*}
$$

From $B=\frac{d \lambda}{d z},\|\operatorname{grad} \kappa\|=c$ and $\lambda^{2}=1-\kappa$ we are easily led to $4 \lambda^{2}\left(\frac{d \lambda}{d z}\right)^{2}=c^{2}$ and from the solution of this we obtain $\kappa= \pm c z+d<1$, ($d=$ constant). Furthermore, (4.23), (3.19) and (3.24) tell us that the scalar curvature of M is given by

$$
\begin{equation*}
S=-\frac{5 c^{2}}{8 \lambda^{4}}-2(\lambda+1)^{2} \tag{4.24}
\end{equation*}
$$

Similarly, regarding the case $\{A \neq 0, B=0, \mu=2(1-\lambda)\}$ we have

$$
\begin{equation*}
A=\frac{d \lambda}{d z}, \quad X A=\frac{d^{2} \lambda}{d z^{2}} \tag{4.25}
\end{equation*}
$$

and, therefore, in this case $\kappa= \pm c z+d<1(d=$ constant $)$ and

$$
\begin{equation*}
S=-\frac{5 c^{2}}{8 \lambda^{4}}-2(\lambda-1)^{2} \tag{4.26}
\end{equation*}
$$

From (4.24) and (4.26) we find that the scalar curvature is a strictly negative function. Furthermore, S is non-constant. Indeed, if we suppose that $S=$ constant, then (4.24) or (4.26) show that κ is constant, which is impossible by definition. Summarizing the above we obtain the following Proposition.

Proposition 4.4. Let $M(\eta, \xi, \phi, g)$ be a generalized ($\kappa, \mu)$-manifold with $\|\operatorname{grad} \kappa\|=c($ constant $) \neq 0$. Then
a) $\xi \mu=0$
b) At any point $P \in M$, there exist a chart $(U,(x, y, z))$ with $P \in U \subseteq M$, such that $\kappa(x, y, z)=c z+d,(d=$ constant $)$ and $\mu=2(1 \pm \sqrt{1-\kappa})$.
c) The scalar curvature of M is a negative non-constant function.

REMARK. 1. Since $c \neq 0$ in Proposition 4.4, doing an appropriate reparametrization of the chart $(U,(x, y, z))$ we can find a chart $(V,(x, y, z))$ such that $\kappa(x, y, z)=z$, and thus the conclusion (b) of Proposition 4.4 is identified with the corresponding result of Theorem 5 of [6].
2. If we apply a D_{a}-homothetic deformation on a generalized (κ, μ)-manifold $M(\eta, \xi, \phi, g),(\kappa<1)$, with $\xi \mu=0$, then from (2.9) it follows that the new manifold $M(\bar{\eta}, \bar{\xi}, \bar{\phi}, \bar{g})$ is a generalized $(\bar{\kappa}, \bar{\mu})$-manifold $(\bar{\kappa}<1)$ with $\bar{\xi} \bar{\mu}=0$ as well.

As we have seen in Proposition 4.4, in a generalized (κ, μ)-manifold with $\|\operatorname{grad} \kappa\|=$ $c \neq 0$ the scalar curvature S is a non-constant negative function. In examples 4.5 and 4.6, below, we construct generalized (κ, μ)-manifolds with constant scalar curvature S of any sign.

EXAMPLE 4.5. For any $c \in R$, we will construct a family of generalized (κ, μ) manifolds with $S=c$. In order to reach this construction, we consider the function $F: R \rightarrow R, F(z)=8 \log z+4 z-2(c+2) z^{-1}+d$, where $z>0$ and $d \in R$. Since $\lim _{z \rightarrow+\infty} F(z)=+\infty$, there exist $b \in R$ and a neighborhood $V \subset R$ with $b \in V$, such that the function $g: V \rightarrow R, g(z)=z^{3 / 2}(F(z))^{1 / 2}$, is smooth and positive for any $z \in V$. Let us consider the function $f: V \subset R \rightarrow R$ defined by

$$
f(z)=\int_{b}^{z} \frac{1}{g(y)} d y
$$

Since $f^{\prime}(z) \neq 0$ for any $z \in V$, we find that $f(z)$ is invertible in V. We consider now the manifold $M=\left\{(x, y, z) \in R^{3} / z \in f(V)\right\}$ and the function $\lambda: M \rightarrow R: \lambda(x, y, z)=l(z)=$ $f^{-1}(z)$. By applying Theorem 4.2 we find that $M(\eta, \xi, \phi, g)$ is a generalized (κ, μ)-manifold with $\kappa=1-\lambda^{2}$ and $\mu=2(1+\sqrt{1-\kappa})$. The tensor fields (η, ξ, ϕ, g) of M are defined by
the vector fields $\xi, X, Y=\phi X$ of the relation (4.9):

$$
\xi=\frac{\partial}{\partial x}, \quad X=\frac{\partial}{\partial y}, \quad \phi X=(2 y+u(z)) \frac{\partial}{\partial x}+\left(2 \lambda(z) x-\frac{\lambda^{\prime}(z)}{2 \lambda(z)} y+h(z)\right) \frac{\partial}{\partial y}+\frac{\partial}{\partial z},
$$

where $u(z), h(z)$ are arbitrary functions of z. In order to find the scalar curvature S, we calculate

$$
\begin{aligned}
& \lambda^{\prime}=\frac{\partial \lambda}{\partial z}=l^{\prime}(z)=\lambda^{3 / 2}\left(8 \log \lambda+4 \lambda-(2 c+4) \lambda^{-1}+d\right)^{1 / 2} \\
& \lambda^{\prime \prime}(z)=12 \lambda^{2} \log \lambda+8 \lambda^{3}+\frac{3 d+8}{2} \lambda^{2}-(4+2 c) \lambda \\
& A=X \lambda=\frac{\partial \lambda}{\partial y}, \quad X A=0 \\
& B=\phi X \lambda=\frac{\partial \lambda}{\partial z}=\lambda^{\prime}, \quad \phi X B=\lambda^{\prime \prime} \\
& \|\operatorname{grad} \lambda\|^{2}=A^{2}+B^{2}=\left(\lambda^{\prime}\right)^{2} \\
& \kappa-\mu=-(\lambda+1)^{2}
\end{aligned}
$$

By using these relations, as well as (3.19), (3.24) we calculate

$$
\begin{aligned}
S= & \frac{1}{\lambda} \Delta \lambda-\frac{1}{\lambda^{2}}\|\operatorname{grad} \lambda\|^{2}+2(\kappa-\mu) \\
= & \frac{1}{\lambda}\left\{X A+\phi X B-\frac{1}{2 \lambda}\left(A^{2}+B^{2}\right)\right\}-\frac{1}{\lambda^{2}}\left(A^{2}+B^{2}\right)+2(\kappa-\mu) \\
= & \frac{\lambda^{\prime \prime}}{\lambda}-\frac{3 \lambda^{\prime 2}}{2 \lambda^{2}}-2(1+\lambda)^{2} \\
= & \frac{1}{\lambda}\left\{12 \lambda^{2} \log \lambda+8 \lambda^{3}+\frac{1}{2}(3 d+8) \lambda^{2}-(4+2 c) \lambda\right\} \\
& -\frac{3}{2 \lambda^{2}} \lambda^{3}\left(8 \log \lambda+4 \lambda-(2 c+4) \lambda^{-1}+d\right)-2(1+\lambda)^{2}=c .
\end{aligned}
$$

Consequently, $M(\eta, \xi, \phi, g)$ is a generalized (κ, μ)-manifold with $S=c$. Since the tensor fields (η, ξ, ϕ, g) depend on the arbitrary functions $u(z)$ and $h(z)$, a family of generalized (κ, μ)-manifolds finally occurs with $S=c$.

Example 4.6. Using Theorem 4.2 for the smooth function $\kappa(z)=1-\frac{1}{2 z^{2}}, z>0$, we obtain the generalized (κ, μ)-manifold $M(\eta, \xi, \phi, g)$, where $M=\left\{(x, y, z) \in R^{3} / z>0\right\}$, $\kappa=1-\frac{1}{2 z^{2}}$ and $\mu=2\left(1-\frac{1}{\sqrt{2} z}\right)$. Using (3.19), (3.24), $\lambda^{2}=1-\kappa, \mu=2(1-\lambda)$, we finally find that the scalar curvature S of M is given by
$S=\frac{1}{\lambda} \frac{d^{2} \lambda}{d z^{2}}-\frac{3}{2 \lambda^{2}}\left(\frac{d \lambda}{d z}\right)^{2}-2(1-\lambda)^{2}=-2\left(1-\frac{1}{\sqrt{2} z}\right)^{2}+\frac{1}{2 z^{2}}=-\frac{1}{2 z^{2}}\left(4 z^{2}-4 \sqrt{2} z+1\right)$.

Thus, we easily conclude that S can be of any sign.
ACKNOWLEDGEMENT. The authors thank the referee for his useful corrections and suggestions.

References

[1] D. E. Blair, Riemannian geometry of contact and symplectic manifolds, Progress in Mathematics 203, Birkhäuser Boston, Inc., Boston, MA, 2002.
[2] D. E. Blair, T. Koufogiorgos and B. Papantoniou, Contact metric manifolds satisfying a nullity condition, Israel Journal of Mathematics 91 (1995), 189-214.
[3] E. Boeckx, A class of locally ϕ-symmetric contact metric spaces, Archiv Math. 72 (1999), 466-472.
[4] E. Boeckx, A full classification of contact metric (κ, μ)-spaces, Illinois J. Math. 44 (2000), 212-219.
[5] T. Koufogiorgos and C. Tsichlias, On the existence of a new class of contact metric manifolds, Canadian Math. Bull. 43 (2000), 440-447.
[6] T. Koufogiorgos and C. Tsichlias, Generalized (κ, μ)-contact metric manifolds with $\|\operatorname{grad} \kappa\|=$ constant, J. Geom. 78 (2003), 83-91.
[7] D. Perrone, Weakly ϕ-symmetric contact metric spaces, Balkan J. Geom. Appl. 7 (2002), 67-77.
[8] S. Tanno, The topology of contact Riemannian manifolds, Illinois J. Math. 12 (1968), 700-717.
[9] S. TANNO, Variational problems on contact Riemannian manifolds, Transactions A.M.S. 314 (1989), 349-379.

Present Addresses:
Themis Koufogiorgos
Department of Mathematics,
University of Ioannina,
Ioannina 45110, Greece.
e-mail: tkoufog @cc.uoi.gr
Tsichlias Charalambos
Souliou 175, Petroupoli
Athens 13231, Greece.
e-mail: c_tsichlias@yahoo.com

