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Generalized Karhunen—Loeve Transform

Yingbo Hua, Senior Member, IEEEand Wanquan LiuMember, IEEE

Abstract—We present a novel generic tool for data com- possible rankm (<n) that minimizes
pression and filtering: the generalized Karhunen—Loeve (GKL)
transform. The GKL transform minimizes a distance between Jaxi(T) = E{|ls - Tx||2} (3)
any given reference and a transformation of some given data
where the transform has a predetermined maximum possible wheres can be any desired random vector of a dimension
rank. The GKL transform is also a generalization of the relative  possibly different from (in practice, however, not larger than)
Karhunen-Loeve (RKL) transform by Yamashita and Ogawa that of x. The choice ofs depends on some prior knowledge

where the latter assumes that the given data consist of the given S - o
reference (signal) and an independent noise. This letter provides about the datax, which is, of course, highly application

a very simple and yet complete description of the GKL transform dependent. In the setting up of the relative Karhunen—Loeve
and shows useful engineering insights into the GKL transform.  (RKL) transform [2],x is assumed to be the sum sfind an

independent noise vectat.

Index Terms—  Data compression, data filtering, ) . L
Karhunen-Loeve transform, rank reduction, subspace Without the rank constraint off, the above minimization
decomposition, SVD, Wiener filter. is associated with the well-known concept of Wiener filtering,

and the optimum transform is given by [easy to prove either
I. REVIEW OF THE KL TRANSFORM directly or by using (5)]

HE Karhunen—Loeve (KL) transform is a well-known To = R..RT (4)

signal processing technique for data compression aﬂmereR
filtering. A simple description of the KL transform is aS\10ore—
follows. Given a (complex) random vectar of dimension
nx 1, the KL transform otz is represented by a square matri
Tkr, of maximum possible rank: (<n) that minimizes

Jxe(T) = B{lx - Tx[?} ®

sz = E{sx!}, and the superscript denotes the
Penrose pseudoinverse [1].

With the rank constraint o, i.e., ranKT) < m, we now
%onsider an equivalent cost function of (3), as follows:

JaxL(T) — JaxL(To) = tr{(T — To)R.(T — To)?} (5)

_ . . . - . L
where E denotes expectation, anf| the Frobenius norm Which can be easily verified by using the fdgt.R.R7 =
[1]. The matrix Ty, is known to be the projection matrix Rs= @nd the four Moore-Penrose equationsRf [1]. Let

. H .
onto the ranks principal subspace of the covariance matriR. be factorized aRt, = Ri/’Ry/*" . Then, it follows that

R, = E{xx'}, where the superscrigf denotes conjugate _ _ _ /22
transpose. More specifically, if the eigendecompositioR@f Jar1(T) = Jar.(To) = [I(T = To)Ry]|

is expressed as =||TRY? - T,RY?|2.  (6)
" Minimizing the above norm by a rank matrix TR/? is
— PPN | z
R, = 2 Aieie; @ known [1] to satisfy
12 _ 1/2
where \; > Ay > .- > \,, thenTx. = PP? where TR;'" = trunm{ToRy/"} (7
P = ey e - en] The matrix Tk implies tWO \yheretrun,, denotes rankn singular value decomposition

companion operations: compression, b&. = Q~'P"x, and (SVD) truncation, i.e., if the following SVD holds:
reconstruction, i.ex, = PQx,, whereQ can be chosen to

n
be any nonsmg.ular matrix b@ = ILis the most popular. The ToRY? = Z o vl (8)
data compression ratio is given by/n. =
whereg; > g9 > -+ > o,, then
[I. THE GKL TRANSFORM m
. . . 1/2y _ o H

The generalized Karhunen—Loeve (GKL) transform is rep- trunp {ToRy/ "} = Zazuzvi : ©)
resented by a (possibly nonsquare) maiigxkr. of maximum =1 P
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Note that the GKL transform requires the knowledge of the The potential applications of the GKL transform are abun-
cross correlation matriR.;,.. The GKL transform is identical dant. One example was shown in [2] where the RKL transform

to the RKL transform [2] ifR,, = R, = E{ss’}. (a special form of the GKL transform) is applied to image
compression. To show another example, we now briefly dis-
IIl. DISCUSSIONS cuss a blind channel equalization problem [3], [4] where the

As in the case of the KL transform, the GKL transformava"able data are given by

implies two companion operations: compression and recon- x(t) = Hs(t) + n(#) (14)
struction. While the data compression ratio is governed by the

predetermined ranks, there is no unique choice for a pair ofin Which x(¢) is the available channel output vectdd, the
compression matri (of m rows) and reconstruction matrix Unknown channel response matrit) the unknown channel
N (of m columns) whereT ¢k, = NM. However, a natural input vector (the desired signal), amd¢) the (independent)

choice [using (9)] can be noise. Here, we add the varialtlas a convention to emphasize
e 1/2 the time dependence. For this problem, the best rarllzear
M=[v; va - vi| R;Y equalizer for estimating(t) is given by
N = [111 U .-+ Uy ] dlag{al 0o -+ Om } (11) é(t) _ TGKLX(t) (15)

Unlike the KL transform, the GKL transform is not a
projection matrix as defined in [1]. In fact, for the speci
case where the data vectarconsists of the signal vecter
and the (independent) white noise veatoof variancep,,, we
know thatR, = R, + p,I, R, = R, and hence [easy to
show using (2)]

here Tgkr is shown in (10) withR,, = R,H? and
. = HR,H” + R,. The channel response matri{
can be estimated fromx(¢) by a fast maximum likelihood
method [3], the input correlation matriR, is an identity
matrix with a known scale when the input corresponds to some
pseudorandom noise as in the case of code division multiple
Takr = trunm{R.R;/2}R/? access (CDMA) communications, and the noise correlation
L nq matrix R,, is also measureable off-line. The rank constraint
= <Z i 1/2" eief{> <Zﬁeie£{> in this context corresponds to that on the complexity of
i1 A =1 A the linear equalizer. But perhaps more importantly, the rank

TN — Pn - constraint makes the linear equalizer more robust to noise
= Z Teiei (12) jn comparison to the Wiener filter, especially whi&, is
=1 singular or near singular. Note that wh&b, is singular or
which is not a project matrix sinc@axr # TaoxrTaxr. near singular, the pseudoinverse Bf, as required in (4)
As the noise variance,, goes to zero, however, thiFggk;, Wwithout a predetermined rank is ill-defined and very sensitive
approachedI'kr.. to noise. The relation shown in (15) together with some known
The GKL transform is the best rank-transform in min- statistics ofs(t) can also be used to blindly estimaig.
imizing (3). There are, of course, various heuristic ramk- Further exploration along this direction is underway and will
transforms, and some of them may be more efficient e reported elsewhere in the near future.
computation. One such example is a rankSVD truncation
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