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Generalized Karhunen–Loeve Transform
Yingbo Hua,Senior Member, IEEE, and Wanquan Liu,Member, IEEE

Abstract—We present a novel generic tool for data com-
pression and filtering: the generalized Karhunen–Loeve (GKL)
transform. The GKL transform minimizes a distance between
any given reference and a transformation of some given data
where the transform has a predetermined maximum possible
rank. The GKL transform is also a generalization of the relative
Karhunen–Loeve (RKL) transform by Yamashita and Ogawa
where the latter assumes that the given data consist of the given
reference (signal) and an independent noise. This letter provides
a very simple and yet complete description of the GKL transform
and shows useful engineering insights into the GKL transform.

Index Terms— Data compression, data filtering,
Karhunen–Loeve transform, rank reduction, subspace
decomposition, SVD, Wiener filter.

I. REVIEW OF THE KL TRANSFORM

T HE Karhunen–Loeve (KL) transform is a well-known
signal processing technique for data compression and

filtering. A simple description of the KL transform is as
follows. Given a (complex) random vector of dimension

, the KL transform of is represented by a square matrix
of maximum possible rank that minimizes

(1)

where denotes expectation, and the Frobenius norm
[1]. The matrix is known to be the projection matrix
onto the rank- principal subspace of the covariance matrix

, where the superscript denotes conjugate
transpose. More specifically, if the eigendecomposition of
is expressed as

(2)

where , then where
. The matrix implies two

companion operations: compression, i.e., , and
reconstruction, i.e., , where can be chosen to
be any nonsingular matrix but is the most popular. The
data compression ratio is given by .

II. THE GKL TRANSFORM

The generalized Karhunen–Loeve (GKL) transform is rep-
resented by a (possibly nonsquare) matrix of maximum
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possible rank that minimizes

(3)

where can be any desired random vector of a dimension
possibly different from (in practice, however, not larger than)
that of . The choice of depends on some prior knowledge
about the data , which is, of course, highly application
dependent. In the setting up of the relative Karhunen–Loeve
(RKL) transform [2], is assumed to be the sum ofand an
independent noise vector.

Without the rank constraint on , the above minimization
is associated with the well-known concept of Wiener filtering,
and the optimum transform is given by [easy to prove either
directly or by using (5)]

(4)

where , and the superscript denotes the
Moore–Penrose pseudoinverse [1].

With the rank constraint on , i.e., rank , we now
consider an equivalent cost function of (3), as follows:

tr (5)

which can be easily verified by using the fact
and the four Moore–Penrose equations of [1]. Let

be factorized as . Then, it follows that

(6)

Minimizing the above norm by a rank- matrix is
known [1] to satisfy

(7)

where denotes rank- singular value decomposition
(SVD) truncation, i.e., if the following SVD holds:

(8)

where , then

(9)

It is clear that the row space of belongs
to the row space of , and hence (7) has at least one
solution for and the minimum norm solution is given [1] by

(10)

where .
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Note that the GKL transform requires the knowledge of the
cross correlation matrix . The GKL transform is identical
to the RKL transform [2] if .

III. D ISCUSSIONS

As in the case of the KL transform, the GKL transform
implies two companion operations: compression and recon-
struction. While the data compression ratio is governed by the
predetermined rank , there is no unique choice for a pair of
compression matrix (of rows) and reconstruction matrix

(of columns) where . However, a natural
choice [using (9)] can be

diag (11)

Unlike the KL transform, the GKL transform is not a
projection matrix as defined in [1]. In fact, for the special
case where the data vectorconsists of the signal vector
and the (independent) white noise vectorof variance , we
know that , and hence [easy to
show using (2)]

(12)

which is not a project matrix since .
As the noise variance goes to zero, however, this
approaches .

The GKL transform is the best rank- transform in min-
imizing (3). There are, of course, various heuristic rank-
transforms, and some of them may be more efficient in
computation. One such example is a rank-SVD truncation
of the Wiener transform . For the special case
considered previously, it can be shown that the truncated
Wiener transform is identical to the GKL transform, i.e.,

(13)

However, as the noise variance goes to zero,
becomes ill-conditioned as all the eigenvalues of become
equal to one (provided is nonsingular).

The potential applications of the GKL transform are abun-
dant. One example was shown in [2] where the RKL transform
(a special form of the GKL transform) is applied to image
compression. To show another example, we now briefly dis-
cuss a blind channel equalization problem [3], [4] where the
available data are given by

(14)

in which is the available channel output vector, the
unknown channel response matrix, the unknown channel
input vector (the desired signal), and the (independent)
noise. Here, we add the variableas a convention to emphasize
the time dependence. For this problem, the best rank-linear
equalizer for estimating is given by

(15)

where is shown in (10) with and
. The channel response matrix

can be estimated from by a fast maximum likelihood
method [3], the input correlation matrix is an identity
matrix with a known scale when the input corresponds to some
pseudorandom noise as in the case of code division multiple
access (CDMA) communications, and the noise correlation
matrix is also measureable off-line. The rank constraint
in this context corresponds to that on the complexity of
the linear equalizer. But perhaps more importantly, the rank
constraint makes the linear equalizer more robust to noise
in comparison to the Wiener filter, especially when is
singular or near singular. Note that when is singular or
near singular, the pseudoinverse of as required in (4)
without a predetermined rank is ill-defined and very sensitive
to noise. The relation shown in (15) together with some known
statistics of can also be used to blindly estimate.
Further exploration along this direction is underway and will
be reported elsewhere in the near future.
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