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Michel.Abdalla@ens.fr

http://www.di.ens.fr/~mabdalla
2 Cryptology and Information Security Research Theme, CWI Amsterdam

kiltz@cwi.nl
http://kiltz.net

3 Department of Electrical Engineering, Katholieke Universiteit Leuven
Gregory.Neven@esat.kuleuven.be

http://www.neven.org

Abstract. In this paper, we introduce a new primitive called identity-
based encryption with wildcard key derivation (WKD-IBE, or “wicked
IBE”) that enhances the concept of hierarchical identity-based encryp-
tion (HIBE) by allowing more general key delegation patterns. A secret
key is derived for a vector of identity strings, where entries can be left
blank using a wildcard. This key can then be used to derive keys for
any pattern that replaces wildcards with concrete identity strings. For
example, one may want to allow the university’s head system admin-
istrator to derive secret keys (and hence the ability to decrypt) for all
departmental sysadmin email addresses sysadmin@*.univ.edu, where *
is a wildcard that can be replaced with any string. We provide appro-
priate security notions and provably secure instantiations with different
tradeoffs in terms of ciphertext size and efficiency. We also present a
generic construction of identity-based broadcast encryption (IBBE) from
any WKD-IBE scheme. One of our instantiation yields an IBBE scheme
with constant ciphertext size.

1 Introduction

Identity-based encryption. Securely linking users to their public keys is a
notorious obstacle in the adoption of public-key encryption schemes in practice.
Most commonly, it is overcome by means of a public key infrastructure (PKI)
where a trusted authority certifies, by means of a digital signature, the relation
between users and their public keys. The high cost of setting up and maintain-
ing such a PKI can be prohibitive for many organizations however. In 1984,
Shamir [20] proposed identity-based encryption (IBE) as a cheaper alternative
to traditional PKIs. Here, the public key of a user is his identity (e.g. his name
or email address), while the corresponding private key is handed to him by a
trusted key distribution center. It lasted until 2000 however for the first practical
IBE schemes [18,7] to be proposed based on bilinear maps.
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Hierarchical identity-based encryption (HIBE) schemes [14,12] are the hier-
archical extension of IBEs where user identities are vectors of bit strings. The
root entity generates private keys for users at the first level; users at level � can
derive keys for their children at level �+1. This prevents the distribution center
from becoming a bottleneck in the system, and at the same time reflects the
hierarchical structure of many organizations and user identities, in particular
email addresses. For example, the head of the computer science department of a
university could be given the key for identity (edu,univ,cs) allowing him to de-
rive keys for identities (edu,univ,cs,username) corresponding to email addresses
username@cs.univ.edu.

Wildcard key derivation. Hierarchical key derivation is a useful feature,
but has its limitations. For example, it would be reasonable to prevent end-users
from further deriving keys for identities below them. This feature was referred
to before as limited delegation by Boneh-Boyen-Goh [6], who show a tweak to
their HIBE scheme offering exactly this functionality—albeit without a formal
security notion or proof for their approach. In some circumstances, it could also
be useful to be able to deviate from the hierarchical structure. For example, one
may want to allow the university’s head system administrator to derive keys for
all departmental sysadmin email addresses sysadmin@*.univ.edu, where * is a
wildcard that can be replaced with any string. As another example, it could be
practical to provide a company like Google Inc. that registers its name at all
top-level domains with a key for *@google.*.

These applications lead us to generalize the concept of HIBE schemes to
identity-based encryption with wildcard key derivation (WKD-IBE), or more suc-
cinctly wicked IBE. After defining adequate security notions, we start looking for
constructions. First observe that if a HIBE scheme allows a maximal hierarchy
depth L to be fixed, then the limited-delegation property of [6] can be achieved
generically by padding the identity vector with “dummy” strings at the unused
lower levels. (But this may come at the cost of efficiency.) The more general
functionality of wildcard key delegation cannot be achieved generically though.
Nevertheless, we show that many of the existing HIBE schemes are amenable
to a modification that enables wildcard key derivation, including the Gentry-
Silverberg [12], Boneh-Boyen [5], Waters [21], and Boneh-Boyen-Goh [6] HIBE
schemes. For the former three this may come as a bit of a surprise, because
no limited-delegation tweaks were previously proposed for these schemes. We
prove the security of the modified schemes under our new notions, thereby pro-
viding as a special case formal ground for the intuition of [6] regarding their
limited-delegation tweak.

Application to identity-based broadcast encryption. Broadcast en-
cryption [11] allows to encrypt a message to any subset S ⊆ {1, . . . , N} of N
users so that only users in S can decrypt the message. A trivial solution consists
of concatenating encryptions of the message under the public key of each user in
S separately, but this yields ciphertexts of size linear in |S|. The most efficient
fully collusion-resistant (meaning where the adversary can corrupt all users out-
side of S) public-key broadcast encryption schemes are due to Boneh et al. [8],
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who present a first construction with constant-size ciphertexts and private keys
but with O(N)-size public keys, and a second construction with O(

√
N)-size

ciphertexts and public keys.
Identity-based broadcast encryption (IBBE) is the natural extension of broad-

cast encryption to the identity-based setting. It is particularly appealing as a
primitive because the total number of users in the system N is limited only by
the size of the identity space. We propose a generic construction of an IBBE
schemes from any WKD-IBE scheme. The construction inflates the private key
size by a factor L being the maximal number of identities in a recipient set, but
otherwise shares the same cost as the underlying wicked IBE.

Of all the instantiations of wicked IBE that we propose, the most attractive
resulting IBBE scheme is that obtained from the scheme based on [6], because
it achieves constant-size ciphertexts. However, it has the disadvantage of having
private keys of size O(L2), where L is the maximum number of recipients in
a ciphertext. The other concrete instantiations are less attractive because they
have ciphertext size O(L), just like the trivial scheme that concatenates individ-
ual ciphertexts. Unlike most other broadcast schemes however, they do have the
remarkable feature that knowledge of the recipient set is not required in order
to decrypt the message.

Wildcard signatures. Just like the key derivation of an IBE scheme auto-
matically gives rise to a signature scheme [7], a WKD-IBE scheme gives rise to
a new primitive that we call a wildcard signature scheme. It allows a signer to
issue a signature on a message containing wildcards, which anyone can replace
with concrete values at a later point without invalidating the signature. Our
constructions of wicked identity-based encryption yield a number of wildcard
signature schemes with different tradeoffs.

Related work. Wicked identity-based encryption can be seen as the dual
notion of identity-based encryption with wildcards [1] (WIBE). There, one can
use wildcards in the recipient identity to which a ciphertext is encrypted, so that
all users whose identity matches the recipient pattern can decrypt it. In fact, the
notions of WKD-IBE and WIBE could be combined into a universal primitive
that allows wildcards to be used in both the encryption and key derivation
algorithms. Instantiations of this primitive can be obtained from all WKD-IBE
schemes presented in this work, except for the one based on Gentry-Silverberg’s
HIBE [12].

Key-policy attribute-based encryption (KP-ABE) [13] associates to each de-
cryption key an access structure consisting of a logical combination of attribute
values using AND and OR gates. A ciphertext is encrypted under a set of de-
scriptive attributes and can only be decrypted with a key whose access structure
is satisfied by the set of attributes. As discussed in [13], HIBE schemes can
be seen as a special case of KP-ABE schemes by mapping the identity vector
(edu, univ, cs, sysadmin) to the access structure (1‖edu ∧ 2‖univ ∧ 3‖cs ∧
4‖sysadmin). Likewise, wicked IBE can be seen as a special case of KP-ABE
by letting the key for identity (edu, *, *, sysadmin) be given by the key for
(1‖edu ∧ 4‖sysadmin). The wicked IBE scheme obtained through the first
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construction of [13] has the disadvantage of having public keys linear in the size
of the attribute universe. The instantiation obtained from their second, large-
universe construction is quite similar to the scheme that we derive from the
Boneh-Boyen HIBE scheme [5]. None of the schemes derived from [13] achieve
constant ciphertext size though, like our wicked IBE construction based on [6].

The use of HIBE schemes in the design of broadcast encryption schemes was
first considered by Dodis and Fazio [10]. Chatterjee and Sarkar [9] gave a direct
construction of an IBBE scheme that is closely related to the instantiation of
our generic construction with the WKD-IBE scheme based on [6]. Our generic
construction provides insight into the design of their scheme, but their con-
struction contains some interesting efficiency-improving tweaks. The schemes
are compared in more detail in Section 4.3.

In independent work, Shacham [19] formalizes the concept of limited delegation
for HIBE schemes and proves this feature for the HIBE scheme of [6]. As we
pointed out above, limited delegation for HIBEs can be seen as a special case of
WKD-IBE where wildcards can only appear at the end of the identity vector.
Our WKD-IBE scheme based on [6] can therefore be seen as a generalization of
the result of [19].

2 Basic Definitions

In this section, we introduce some notation and computational problems that
we will use throughout the rest of the paper. In doing so, we adopt the same
notation and definition style used in [1].

Notation. Let N = {0, 1, . . .} be the set of natural numbers. Let ε be the empty
string. If n ∈ N, then {0, 1}n denotes the set of n-bit strings, and {0, 1}∗ is the
set of all bit strings. More generally, if S is a set, then Sn is the set of n-tuples
of elements of S, S≤n is the set of tuples of length at most n. If S is finite, then
x

$← S denotes the assignment to x of an element chosen uniformly at random
from S. If A is an algorithm, then y ← A(x) denotes the assignment to y of the
output of A on input x, and if A is randomized, then y

$← A(x) denotes that the
output of an execution of A(x) with fresh coins is assigned to y.

The Decisional Bilinear Diffie-Hellman Assumption [7]. Let G, GT be
multiplicative groups of prime order p with an admissible map ê : G × G →
GT. By admissible we mean that the map is bilinear, non-degenerate and ef-
ficiently computable. Bilinearity means that for all a, b ∈ Zp and all g ∈ G

we have ê(ga, gb) = ê(g, g)ab. By non-degenerate we mean that ê(g, g) = 1 if
and only if g = 1. Let g ∈ G be a generator. In such a setting, the bilin-
ear decisional Diffie-Hellman (BDDH) problem is to determine, given g, A =
ga, B = gb, C = gc, and Z = ê(g, g)z, whether Z = ê(g, g)abc for hidden
values of a, b, c and z. More formally, let A be an adversary for the BDDH
problem. Such an adversary has advantage ε in solving the BDDH problem if
∣
∣Pr[A(g, A, B, C, ê(g, g)abc) = 1] − Pr[A(g, A, B, C, ê(g, g)z) = 1]

∣
∣ ≥ ε, where the

probabilities are over the choice of a, b, c, z and over the random coins consumed
by A.
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Definition 1. The (t, ε)-BDDH assumption holds if no t-time adversary has at
least ε advantage in the above game.

We note that throughout this paper we will assume that the time t of an adver-
sary includes its code size, in order to exclude trivial “lookup” adversaries.

The BDHE Assumption.The �-decisional bilinear Diffie-Hellman exponent (�-
BDHE) problem [6] in G is: given g, h and g(αi) ∈ G, for i = 1, . . . , �−1, �+1, . . . , 2�

as input, output ê(g, h)(α
�) ∈ GT . Boneh, Boyen and Goh, conjectured that the �-

BDHE is a hard problem, meaning with this that no polynomially
bounded adversary A can solve it with more than negligible probability, over the
random choices of g, h ∈ G, the choice of α ∈ Zp, and the random coin tosses of A.

The decisional version of the problem can be defined in the usual manner.
Let y = (gα, g(α2), . . . , g(α�−1), g(α�+1), . . . , g(α2�)). An algorithm B that out-
puts a bit b, has advantage ε in solving the decisional �-BDHE problem in G

if
∣
∣
∣Pr

[

B(g, h, y, ê(g, h)(α
�)) = 1

]

− Pr
[

B(g, h, y, T ) = 1
]
∣
∣
∣ ≥ ε, where the prob-

abilities are taken over the random choices of g, h ∈ G, the random choice of
α ∈ Zp, the random choice of T ∈ GT , and the internal coin tosses of B.

Definition 2. The decisional (t, ε, �)-BDHE assumption holds in G if no t-time
(probabilistic) algorithm has advantage at least ε in solving the decisional �-
BDHE problem in G.

3 Wicked Identity-Based Encryption

Syntax. A wicked identity-based encryption scheme (WKD-IBE) is a general-
ization of a HIBE scheme which allows for more general key delegation patterns.
In a WKD-IBE scheme, secret keys are associated with patterns rather than
identity vectors. A pattern P is a vector (P1, . . . , P�) ∈ ({0, 1}∗ ∪{*})� of length
� ≤ L, where * is a special wildcard symbol and L is the maximal depth of the
WKD-IBE scheme. That is, each component of a pattern P is either a specific
identity string or a wildcard. The main idea behind the WKD-IBE notion is that
a user in possession of the secret key for a given pattern P can generate secret
keys for any pattern P ′ that matches P . We say that a pattern P ′ = (P ′

1, . . . ,
P ′

�′) matches P , denoted P ′ ∈* P , if and only if �′ ≤ �; ∀ i = 1 . . . �′, P ′
i = Pi or

Pi = *; and ∀ i = �′ + 1 . . . �, Pi = *.
More formally, a WKD-IBE scheme is a tuple of algorithms WKD-IBE =

(Setup, KeyDer, Enc, Dec) providing the following functionality. The root author-
ity generates a master key pair (mpk ,msk) $← Setup. Via skP ′

$← KeyDer(skP ,
P ′), a user possessing the secret key skP for a pattern P = (P1, . . . , P�) can
derive a secret key for any pattern P ′ ∈* P . The secret key of the root identity
is msk = sk (*,...,*).

To create a ciphertext of message m ∈ {0, 1}∗ intended for an identity ID =
(ID1, . . . , ID�), the sender computes C $← Enc(mpk , ID ,m). Any user in posses-
sion of the secret key for a pattern P such that ID ∈* P can decrypt the ciphertext
using skP as m ← Dec(skP ,C , ID). Correctness requires that for all key pairs
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(mpk ,msk) output by Setup, all messages m ∈ {0, 1}∗, all 0 ≤ � ≤ L, all pat-
terns P ∈ ({0, 1}∗ ∪ {*})�, and all identities ID ∈ ({0, 1}∗)�′

such that ID ∈* P ,
Dec( KeyDer(msk , P ) , Enc(mpk , ID ,m), ID ) = m with probability one.

Security. We define the security of WKD-IBE schemes in a way that is very
similar to the case of HIBE schemes, but where the adversary can query for
the secret keys corresponding to arbitrary patterns, rather than specific identity
vectors. Of course, the adversary is not allowed to query the key derivation oracle
for any pattern matched by the challenge identity.

More specifically, security is defined through the following game with an ad-
versary. In the first phase, the adversary is run on input of the master public key
of a freshly generated key pair (mpk ,msk) $← Setup. In a chosen-plaintext attack
(IND-WKID-CPA), the adversary is given access to a key derivation oracle that
on input a pattern P ∈

(

{0, 1}∗ ∪ {*}
)≤L returns skP

$← KeyDer(msk , P ).
At the end of the first phase, the adversary outputs two equal-length challenge

messages m∗
0 ,m∗

1 ∈ {0, 1}∗ and a challenge identity ID∗ = (ID∗
1, . . . , ID

∗
�∗) where

0 ≤ �∗ ≤ L. The adversary is given a challenge ciphertext C ∗ $← Enc(mpk , ID∗,
m∗

b ) for a randomly chosen bit b, and is given access to the same oracles as during
the first phase of the attack. The second phase ends when the adversary outputs
a bit b′. The adversary is said to win the IND-WKID-CPA game if b′ = b and if
it never queried the key derivation oracle for the key of any pattern P such that
ID∗ ∈* P . If Succ is the event that the adversary wins the above game, then its
advantage is defined as ε = 2 · Pr [Succ ] − 1.

Definition 3. A WKD-IBE scheme is (t, qK, ε) IND-WKID-CPA-secure if all
t-time adversaries making at most qK queries to the key derivation oracle have
at most advantage ε in the IND-WKID-CPA game described above.
Selective-identity Security. As for the case of HIBEs, we also define the
weaker selective-identity (sWKID) security notion IND-sWKID-CPA. The IND-
sWKID-CPA definition is analogous to the IND-WKID-CPA one given above
except that the adversary has to commit to the challenge identity at the begin-
ning of the game, before the master public key is made available.

3.1 Constructions with Linear-Size Ciphertexts

A construction from Gentry-Silverberg’s HIBE scheme. In the fol-
lowing, we present a wicked IBE scheme based on the Gentry-Silverberg HIBE
scheme [12]. The scheme uses L independent random oracles Hi : {0, 1}∗ → G

for 1 ≤ i ≤ L. These can be derived from a single random oracle via standard
techniques [4].

We provide some intuition into our construction by taking a closer look at
the key derivation of (a slight variant of) the original Gentry-Silverberg HIBE
scheme. For master secret key α

$← Zp and master public key g1 ← gα, the de-
cryption key of an identity (ID0) at the top level is given by sk (ID0) ← H0(ID0)α.
The key for a lower-level identity (ID0, . . . , ID�) is given by

sk (ID0,...,ID�) ←
(

H0(ID0)α ·
∏�

i=1Hi(ID i)ri , gr1 , . . . , gr�
)
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for random r1, . . . , r�
$← Zp. One could “insert a wildcard” at level 1 ≤ j ≤ �

by omitting the factor Hj(ID j)rj from the product in the first component and
omitting the entry grj in the vector; any value for IDj can then be filled in later
by choosing rj , multiplying Hj(IDj)rj into the first component and inserting a
new component grj . Inserting a wildcard at the top level is not so easy though,
as knowledge of the master key α is required to compute the factor H0(ID0)α.
We therefore “disable” the top level by fixing it to identity ⊥, or equivalently,
by including h0 = H0(⊥) in the public key. A similar fix can be used to prevent
a user at level � < L to further derive keys for users at levels � + 1, . . . ,L.
Namely, the key is computed as if it were for the identity at level L with the
components at levels � + 1, . . . ,L fixed to ⊥. Equivalently, one can include the
elements hi = Hi(⊥) for 1 ≤ i ≤ L in the public key.

Before presenting the scheme, we first need to introduce some additional no-
tation. If P = (P1, . . . , P�) is a pattern, then let |P | = � be the length of P , let
W(P ) be the set containing all wildcard indices in P , i.e. the indices 1 ≤ i ≤ �
such that Pi = *, and let W(P ) be the complementary set containing all non-
wildcard indices. Clearly, W(P ) ∩ W(P ) = ∅ and W(P ) ∪ W(P ) = {1, . . . , �}.
We also extend the notations P |≤ i, P |> i and P |I that we introduced for iden-
tity vectors to patterns in the natural way. We are now ready to present the
GS -WKD-IBE scheme in full details:

Setup. The root identity chooses random generators g, h0, . . . , hL
$← G

∗. It
chooses α

$← Zp and computes g1 ← gα. It publishes mpk ← (g, g1, h0, . . . ,
hL) as the master public key and keeps msk ← hα

0 secret.
Key Derivation. To compute a secret key for a pattern P = (P1, . . . , P�) di-

rectly from the master secret key, the root proceeds as follows. Let I =
W(P ) ∪ {� + 1, . . . , L}. For all i ∈ I the root chooses ri

$← Zp and lets
bi ← gri . It then computes a ← msk ·

∏

i∈W(P ) Hi(Pi)ri ·
∏

i=�+1,...,L hri

i .
The secret key for pattern P is skP ← (a, (bi)i∈I).
Anyone knowing this secret key can generate a key for a pattern P ′ =
(P ′

1, . . . , P
′
�′) ∈* P as follows. Let I ′ = W(P ′) ∪ {�′ + 1, . . . , L}. Note that

P ′ ∈* P implies that I ⊆ I ′. For all i ∈ I, choose ri
$← Zp and compute

b′i ← bi · gri ; for all i ∈ I ′ \ I, choose ri
$← Zp and compute b′i ← gri . Finally,

compute a′ ← a ·
∏

i∈W(P ′) Hi(P ′
i )

ri ·
∏L

i=�′+1 hri

i and return the secret key
skP ′ ← (a′, (b′i)i∈I′).

Encryption. To encrypt a message m ∈ GT to identity ID = (ID1, . . . , ID�)
under mpk = (g, g1, h0, . . . , hL), the sender chooses t

$← Zp, computes
C0 ← gt

Ci ← Hi(ID i)t for i = 1, . . . , �

Ci ← ht
i for i = � + 1, . . . , L

CL+1 ← ê(g1, h0)t · m

and outputs the ciphertext C = (C0, . . . ,CL+1).
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Decryption. A recipient knowing the secret key skP for a pattern P = (P1, . . . ,
P�) can decrypt a ciphertext (C0, . . . ,CL+1) intended to any identity ID ∈*

P as follows. Let I = W(P ) ∪ {� + 1, . . . , L} and let aP = (a, (bi)i∈I). The
recipient recovers the plaintext as

m ← CL+1 ·
∏

i∈I ê(bi,Ci)
ê(C0, a)

.

Note that the recipient need not even know the exact identity under which
the message was encrypted.

The fact that decryption works can be seen as follows. Let P = (P1, . . . , P�) be
a pattern, let I = W(P ) ∪ {� + 1, . . . , L} and let skP = (a, (bi)i∈I) be a secret
key for P . For all i ∈ I, let ri be the discrete logarithm of bi with respect to
g, i.e. bi = gri . From the key derivation algorithm one can see that a = hα

0 ·
∏

i∈W(P ) Hi(ID i)ri ·
∏L

i=�+1 hri

i . When (C0, . . . ,CL+1) is a ciphertext intended
for ID = (ID1, . . . , ID�′) ∈* P , we have that

ê(C0, a) = ê
(

gt , hα
0 ·

∏

i∈W(P )Hi(Pi)ri ·
∏L

i=�+1h
ri

i

)

= ê(gt, hα
0 ) ·

∏

i∈W(P )

ê
(

gri , Hi(Pi)t
)

·
L∏

i=�+1

ê
(

gri, ht
i

)

= ê(g1, h0)t ·
∏

i∈I

ê(bi,Ci) ,

where the last equality holds because Pi = ID i for all i ∈ W(P ) if ID ∈* P .
Hence, the value of K at decryption is exactly the argument of H2 at encryption,
and the correct message is recovered.

The following theorem states the security of the above scheme in the selective-
identity notion under the BDDH assumption in the random oracle model; the
proof is given in the full version [2]. Security in the full-identity notion can be
obtained at the cost of losing a factor O(qL

H) in the reduction.

Theorem 1. Under the (t′, ε′) BDDH assumption, the GS -WKD-IBE scheme
described above is (t, qK, qH, ε) IND-sWKID-CPA-secure in the random oracle
model for ε ≥ 2ε′ and t ≤ t′ − (qH + (qK + 3)L)texp, where texp is the time
required to perform an exponentiation in G.

Constructions from Boneh-Boyen’s and Waters’ HIBE schemes. The
attentive reader will have noticed the resemblance of the above scheme with the
HIBE schemes of Boneh-Boyen [5] and Waters [21]. Indeed, if identity strings
are elements of Z

∗
p, then one can obtain a wicked IBE variant of [5] by setting

Hi(ID i) = hi,0h
IDi

i,1 , where hi,0, hi,1 are random elements of G that are fixed
in the master public key. This scheme can be proved IND-sWKID-CPA secure
under the BDDH assumption in the standard (i.e., non-random oracle) model
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using a proof quite similar to the above analysis. Likewise, one can obtain a
variant based on Waters’ HIBE scheme when identities are n-bit strings by set-
ting Hi(ID i = ID i,1 . . . ID i,n) = hi,0

∏

IDi,j=1 hi,j . An analysis similar to the
one in [21] can be used to prove this scheme IND-WKID-CPA secure under the
BDDH assumption in the standard model at the cost of losing a factor O((nqK)L)
in the reduction.

3.2 Constructions with Constant-Size Ciphertexts

In this section, we describe efficient wicked IBE schemes with constant-size ci-
phertexts based on the Boneh-Boyen-Goh [6] and Waters [21] HIBE schemes.
We build the wicked IBE scheme BBG -WKD-IBE = (Setup, KeyDer, Enc, Dec)
described as follows:

Setup. The trusted authority chooses random generators g from G, a random
α ∈ Zp and sets g1 ← gα. Next, it picks random elements g2, g3, h1, . . . , hL

from G and sets g4 ← gα
2 . The master public key is mpk = (g, g1, g2, g3,

h1, . . . , hL). The corresponding master secret key is msk = g4.
Key Derivation. Let P ′ = (P ′

1, . . . , P
′
�) ∈

(

Z
∗
p ∪ {*}

)≤L be the pattern for
which a secret key needs to be generated. To compute the secret key for P ′

from the master secret key, first a random r
$← Zp is chosen, then the secret

key skP ′ = (a′
1, a

′
2, b

′) for P ′ is constructed as

a′
1 = g4 ·

(

g3

∏

i∈W(P ′)

h
P ′

i

i

)r

; a′
2 = gr ; b′ = (bi = hr

i )i∈W(P ′) .

In order to generate the secret key skP ′ for pattern P ′ from the secret key
skP = (a1, a2, b) for pattern P such that P ′ ∈* P , ones simply chooses a
random r′ $← Zp and outputs skP ′ = (a′

1, a′
2, b′), where

a′
1 = a1 ·

(

g3

∏

i∈W(P ′)

h
P ′

i

i

)r′

·
(

∏

i∈W(P ′)
�

W(P )

bP ′
i

i

)

a′
2 = a2 · gr′

b′ =
(

b′i = bi · hr′

i

)

i∈W(P ′)

Encryption. To encrypt a message m ∈ GT for an identity ID = (ID1, . . . ,

ID�), the sender first chooses t
$← Zp and outputs the ciphertext C = (C1,

C2,C3) ∈ G × G × GT, where

C1 = gt ; C2 =
(

g3

�∏

i=1

hIDi

i

)t

; C3 = m · ê(g1, g2)t .

Decryption. Let be the C = (C1,C2,C3) and ID = (ID1, . . . , ID�) be the iden-
tity to which the ciphertext was created. If the receiver is the root authority
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holding the master key msk , then he can recover the message by computing
C3/ê(C1,msk). Any other receiver holding a secret key for pattern P such
that ID ∈* P can decrypt the ciphertext as follows. Let skP = (a1, a2, b) be
the decryption key for the receiver. He can recover the message by computing

a′
1 ← a1 ·

(
∏

i∈W(P )|≤ �
bID i

i

)

and m ← C3 · ê(a2, C2)
ê(C1, a′

1)
.

The fact that decryption works can be seen as follows. Since ID ∈* P , we have
that Pi = ID i for all i ∈ W(P )|≤ �. Thus the quantity ê(a2,C2)

ê(C1,a′
1)

becomes:

ê(a2,C2)
ê(C1, a1

∏

i∈W(P )|≤ �
bIDi

i )
=

ê(gr, (g3
∏�

i=1 hIDi

i )r)
ê(gt, g4 · (g3

∏

i∈W(P ) hPi

i )r ·
∏

i∈W(P )|≤ �
bID i

i )

=
ê(gr, (g3

∏�
i=1 hIDi

i )t)

ê(gt, g4) ê(gt, (g3
∏�

i=1 hIDi

i )r)
=

1
ê(gt, g4)

=
1

ê(g1, g2)t

The following theorem states the security of the above scheme in the selective-
identity notion under the �-BDHE assumption in the standard model. The proof
is given in the full version [2]. We remark that, interestingly, we can only prove
security of the scheme based on the �-BDHE assumption, whereas the weaker
�-BDHI assumption was sufficient for the security proof of the HIBE scheme [6].

Theorem 2. Let BBG-WKD-IBE be the WKD-IBE scheme as described above.
Under the decisional (t, ε, �)-BDHE assumption, the BBG-WKD-IBE scheme of
depth L = �−1 is (t′, qK, 2ε) IND-sWKID-CPA-secure where t′ = t−O(Lq′K)·texp
and texp is the time it takes to perform an exponentiation in G.

Full security in the standard model. It is mentioned in [6] that using
techniques from Waters [21] one can construct a variant of their HIBE scheme
that achieves full security in the standard model. The same techniques can be
also used to achieve full IND-WKID-CPA security in the standard model for the
BBG -WKD-IBE scheme, at the cost of increasing the master public key size to
(n + 1)L + 3 group elements, where n is the length of an identity string.

3.3 Full Security in the Random Oracle Model

As in the case of IBE and HIBE schemes [5,6], any WKD-IBE scheme WKD-IBE
that is IND-sWKID-CPA-secure can be transformed into a WKD-IBE scheme
WKD-IBE ′ that is IND-WKID-CPA-secure in the random oracle model, by
replacing every pattern (or identity) at key derivation or encryption with the
hash of that pattern, if that pattern is not a wildcard. That is, any given pattern
P = (P1, . . . , P�) in WKD-IBE is mapped onto a pattern P ′ = (P ′

1, . . . , P
′
�)

in WKD-IBE ′, where P ′
i = Hi(Pi) if Pi �= * or P ′

i = * otherwise, and Hi,
1 ≤ i ≤ L are independent random oracles mapping arbitrary bit strings into
an appropriate range ID corresponding to the identity space of WKD-IBE . As
in the cases of HIBE schemes, this transformation only works if the depth L is
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logarithmic in the security parameter due to the loss of a factor O(qL
H) in the

reduction. Moreover, ID needs to be sufficiently large to make the probability
of collisions in the output of the hash function negligible.

4 Application to Identity-Based Broadcast Encryption

4.1 Definitions

An identity-based broadcast encryption (IBBE) scheme is a tuple of algorithms
IBBE = (Setup, KeyDer, Enc, Dec) providing the following functionality. The
trusted authority runs Setup to generate a master key pair (mpk ,msk). It pub-
lishes the master public key mpk and keeps the master secret key msk private.
When a user with identity ID wishes to become part of the system, the trusted
authority generates a user decryption key sk ID

$← KeyDer(msk , ID), and sends
this key over a secure and authenticated channel to the user. To broadcast an
encrypted message m to a set of users with identities S = {ID1, . . . , IDk} of car-
dinality k ≤ L, the sender computes the ciphertext C $← Enc(mpk , S,m), which
can be decrypted by a user holding sk ID for any ID ∈ S as m ← Dec(sk ID ,C , S).
Here the value L is an upper bound on the maximal number of distinct receivers
for a broadcast encryption.

The security of an IBBE scheme is defined through the following game. In a
first phase, the adversary is given as input the master public key mpk of a freshly
generated key pair (mpk ,msk) $← Setup. In a chosen-plaintext attack (IND-ID-
CPA), the adversary is given access to a key derivation oracle that on input of
an identity ID , returns the secret key sk ID

$← KeyDer(msk , ID) corresponding
to identity ID . At the end of the first phase, the adversary outputs two equal-
length challenge messages m∗

0 ,m∗
1 ∈ {0, 1}∗ and a challenge set of identities S∗ =

(ID∗
1, . . . , ID

∗
k∗), where 0 ≤ k∗ ≤ L. The game chooses a random bit b

$← {0, 1}∗,
generates a challenge ciphertext C ∗ $← Enc(mpk , S∗,m∗

b ) and gives C ∗ as input
to the adversary for the second phase, during which it gets access to the same
oracles as during the first phase. Assume that during the attack the adversary
made key derivation queries for identities ID1, . . . , IDqK . The adversary wins the
game if it outputs a bit b′ = b and S∗ ∩ {ID1, . . . , IDqK} = ∅.

Definition 4. An IBBE scheme is (t, qK, ε)-IND-ID-CPA-secure if all t-time
adversaries making at most qK queries to the key derivation oracle have at most
advantage ε in winning the IND-ID-CPA game described above.
Selective-identity Security. As for the previous primitives, we further de-
fine the weaker (sID) security notion IND-sID-CPA. The IND-sID-CPA defi-
nition is analogous to the IND-ID-CPA one except that the adversary has to
commit to the challenge set of identities S∗ = (ID∗

1, . . . , ID
∗
k∗) at the beginning

of the game, before even seeing the public-key.

4.2 A Construction from Any Wicked IBE Scheme

First, observe that an IBBE scheme can be trivially constructed from any IBE
scheme by concatenating ciphertext. Meaning, the IBBE encryption for the iden-
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tity set ID = {ID1, . . . , IDk} is simply the concatenation of k separate cipher-
texts, one for each identity ID i in the set ID . This leads to IBBE ciphertext
sizes that are a factor of k longer than the original IBE ciphertexts.

We now present a generic construction from any WKD-IBE scheme that,
depending on the instantiation, can offer advantages over the trivial one. To
any WKD-IBE scheme WKD-IBE = (Setup, KeyDer, Enc, Dec), we associate an
IBBE scheme IBBE = (Setup, KeyDer′, Enc′, Dec′). For an identity ID ∈ {0, 1}∗,
define

Pi(ID) = (*, . . . , *, ID
︸︷︷︸

ith position

, *, . . . , *)

as a pattern of length L that has ID at its ith position and the rest consists of
wildcards.

Setup. Setup outputs whatever the WKD-IBE setup outputs.
Key Derivation. Let ID be the identity for which the user secret key sk ID

needs to be generated. The user secret key is defined as the set of L distinct
WKD-IBE user secret keys

sk ID = {skP1(ID), . . . , skPL(ID)},

where skPi(ID) can be computed by calling KeyDer(msk , Pi(ID)).
Encryption. Let m be the message and let S = {ID1, . . . , IDk} be the set

of broadcast recipients of cardinality k ≤ L that we assume to be ordered
with respect to some unique standard ordering. The IBBE ciphertext is
defined as the WKD-IBE encryption of message m and identity vector ID =
(ID1, . . . , IDk).

Decryption. Let sk ID = {skP1(ID), . . . , skPL(ID)} be the user secret key of
identity ID . Let S = {ID1, . . . , IDk} be the set of k ≤ L recipients to
whom the ciphertext C was encrypted, and let index 1 ≤ j ≤ k be such
that ID = ID j ∈ S. It is clear that (ID1, . . . , ID , . . . , IDk) ∈* Pj(ID), and
therefore that the ciphertext can be decrypted as m ← Dec(skPj(ID),C , ID).

Theorem 3. If WKD-IBE is a (t, qK, ε) IND-sWKID-CPA-secure (resp. IND-
WKID-CPA-secure) WKD-IBE scheme, then the IBBE scheme IBBE described
above is (t, qK, ε)-IND-sID-CPA-secure (resp. IND-ID-CPA-secure).

The crucial observation is the following. Let S∗ = {ID∗
1, . . . , ID

∗
k∗} be the set

of challenge broadcast receivers and let ID1, . . . , IDqK be the identities an ad-
versary attacking the IBBE scheme queries the user secret key for. The imposed
requirement is that S∗ ∩ {ID1, . . . , IDqK} = ∅. For 1 ≤ i ≤ qK and 1 ≤ j ≤ L
consider the user secret keys for the patterns Pj(ID i) = (*, . . . , *, ID i, *, . . . , *)
(i.e., ID i is at the jth position) that are established by the transformation when
simulating the IBBE key derivation oracle. For a successful simulation we have
to show that ID∗ = (ID∗

1, . . . , ID
∗
k∗) �∈* Pj(ID i). But this is the case since by

S∗∩{ID1, . . . , IDqK} = ∅ and we can guarantee that ID i �= ID∗
l for all 1 ≤ i ≤ qK

and 1 ≤ l ≤ k.
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The above construction allows for the following trade off between ciphertext
size and key size. If L = L′A, then one can obtain an IBBE scheme with cipher-
text size of A times that of the WKD-IBE scheme, while having a key length that
is only L′ times that of the WKD-IBE scheme. The new scheme creates master
public keys to allow for broadcast encryption to sets of maximal cardinality L′.
To encrypt a message to a set of broadcast identities S = {ID1, . . . , IDk} of car-
dinality k ≤ L split the set S into A smaller sets S1, . . . , SA, each of cardinality
L/A ≤ L′ and define the new broadcast ciphertext to be (C1, . . . ,CA), where Ci

is the encryption of the message m to the set Si.

4.3 Instantiations

Among all the instantiations of IBBE schemes based on WKD-IBE schemes, the
most attractive one is that obtained from the WKD-IBE scheme based on [6]
because it achieves constant-size ciphertexts. However, it has the disadvantage of
having private keys of size O(L2). Instantiations with any of the other WKD-IBE
schemes that we proposed are less attractive because they have ciphertext size
O(L), just like the trivial ciphertext-concatenation scheme. Unlike most other
(public-key) broadcast schemes however, these instantiations do have the re-
markable advantage that knowledge of the set of recipients is not required in
order to decrypt the message.

Chatterjee and Sarkar [9] recently proposed a direct IBBE scheme that is
closely related to our generic construction when instantiated with the WKD-IBE
scheme based on [6]. Their scheme does not impose an a priori maximum on the
number of recipients �, but makes clever use of a non-cryptographic hash function
to achieve an average ciphertext size O(�/L) and private key size O(L), where the
“average” is taken over the recipients’ identities. This means that when � ≤ L,
their scheme has constant ciphertext size on average. Worst-case however, their
scheme has ciphertext size O(�), which is worse than our construction.

5 Wicked and Wildcard Signatures

As observed by Naor [7], any IBE scheme automatically gives rise to a signature
scheme by using as a signature on message m the decryption key for identity
ID = m. Verification can be done by encrypting a random message to identity
ID = m and testing whether it decrypts correctly, but most concrete schemes
have a more natural and efficient verification test. Likewise, one can construct
an L-level hierarchical identity-based signature (HIBS) scheme from an (L + 1)-
level HIBE [12] by letting the signature on message m by identity (ID1, . . . , ID�)
be given by the decryption key for identity (0‖ID1, . . . , 0‖ID�, 1‖m). The same
technique can be used to construct wicked identity-based signatures (WKD-
IBS), the signing analogue to wicked IBE. Here, a root authority derives se-
cret signing keys for identity patterns with wildcards, from which anyone can
further derive signing keys for matching patterns. An L-level WKD-IBS is con-
structed from an (L + 1)-level WKD-IBE by letting the signature on mes-
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sage m by identity (ID1, . . . , ID�) be given by the decryption key for identity
(0‖ID1, . . . , 0‖ID�, 1‖m).

Alternatively, and perhaps more interestingly, one could also use the wildcard
functionality as a homomorphism on the message being signed, rather than for
the signers’ identities. This yields a new primitive that we call wildcard signa-
tures, that allow to sign message patterns instead of simple messages, possibly
containing wildcards at certain positions. Given such a signature, anyone can
compute a valid signature for any message created by replacing wildcards with
concrete values. This could be used for example to implement signed fill-out
forms, where each input field is represented by a wildcard in the message.

The construction from a WKD-IBE scheme is straightforward: the key pair
is given by the master key pair of the WKD-IBE scheme. The signature on
a message pattern P is given by the decryption key for P . Deriving a valid
signature for a message pattern P ′ ∈* P can be done by deriving a decryption
key for P ′. Verification is done by filling up the remaining wildcards with random
messages to create a vector of messages M , encrypting a random message under
identity M , and checking whether decryption using the signature as secret key
returns the correct message. In fact, one can easily see that the schemes discussed
here allow for more efficient deterministic verification algorithms.

Wildcard signatures can be seen as a special instance of homomorphic signa-
tures [17,15,3,16]. Their relation to wicked IBE is particularly reminiscent of the
relation between HIBS schemes and append-only signatures [16]. They can also
be seen as the dual of redactable signatures [15] that allow anyone to erase parts
of a signed message without invalidating the signature.

A fairly simple, generic construction from standard signatures also exists.
Namely, for each wildcard in the message the signer generates a fresh key pair,
and then signs the message together with all generated public keys. The overall
signature also contains the public and secret keys corresponding to all wildcards.
To replace a wildcard at position i with a concrete value, the i-th secret key
is replaced with a signature on the new value under the i-th public key. The
disadvantage of this generic construction is that signature length and verification
time are both linear in the number of original wildcards in the message, even
after these wildcards have been replaced with original values. The signature
length and verification time of the scheme derived from the BBG -WKD-IBE
scheme on the other hand is only linear in the number of wildcards that are still
present in the message. Also, signatures generated by the generic construction
are linkable in the sense that one can check whether a given signature was
derived from a second one by filling in wildcards. The decryption keys of the
BBG -WKD-IBE scheme, and therefore the signatures of the associated wildcard
signature scheme, can be re-randomized to prevent this type of linkability.

Finally, one could even imagine wicked wildcard signatures that allow for wild-
cards in both the signers’ identities and the messages being signed. Such schemes
are easily constructed from a WKD-IBE scheme by using a different encoding
for identity strings and messages, as was done in the construction of WKD-IBS
schemes above.
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