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Abstract
The notion of a Lagrangian Coherent Structure (LCS) is by now well estab-
lished as a way to capture transient coherent transport dynamics in unsteady
and aperiodic fluid flows that are known over finite time. We show that the
concept of an LCS can be generalized to capture coherence in other quan-
tities of interest that are transported by, but not fully locked to, the fluid.
Such quantities include those with dynamic, biological, chemical, or ther-
modynamic relevance, such as temperature, pollutant concentration, vortic-
ity, kinetic energy, plankton density, and so on. We provide a conceptual
framework for identifying the Generalized Lagrangian Coherent Structures
(GLCSs) associated with such evolving quantities. We show how LCSs can
be seen as a special case within this framework, and provide an overarching
discussion of various methods for identifying LCSs. The utility of this more
general viewpoint is highlighted through a variety of examples. We also show
that although LCSs approximate GLCSs in certain limiting situations under
restrictive assumptions on how the velocity field affects the additional quan-
tities of interest, LCSs are not in general sufficient to describe their coherent
transport.
Keywords: Lagrangian coherent structures, fluid flow, flow barriers, ocean
eddies, atmospheric vortices
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1. Introduction

The concept of a ‘coherent structure’ has a long history in fluid me-
chanics, both as a tool for qualitative flow visualization and understanding
and as a basis for reduced-order modeling. Most traditional approaches to
determining coherent structures take an Eulerian approach, considering sin-
gle snapshots in time and typically analyzing the streamline structure. For
steady flows, this streamline picture gives full information about how fluid
particles travel for all times, since the streamlines remain the same forever
and coincide with the trajectories of fluid particles. One can then take a
classical dynamical-systems approach to analyzing the flow. In this frame-
work, entities such as stagnation points (that is, zeros of the velocity field)
and their associated stable and unstable manifolds (i.e., material curves that
contain fluid parcels that approach a saddle-like hyperbolic stagnation point
in forward of backward time) are crucial for separating space into regions in
which the topological behavior of the flow is different [1]. The codimension-
1 (that is, one dimension less than the physical space) stable and unstable
manifolds therefore can be thought of as important flow separators that de-
marcate regions of coherent fluid blobs. Separators might also be identified
in time-periodic flows by defining a discrete-time Poincaré map [2] with no
explicit time-variation. In addition to stable/unstable manifolds, families of
nested KAM tori [2, 3], which enclose a region around an elliptic periodic
point, represent another important type of coherent eddy-like objects. We
note that the term “coherent” has no universally agreed-upon precise defini-
tion in fluid mechanics [4]; here, we will use it roughly to mean “sharing the
same qualitative spatiotemporal behavior.”

When the flow is unsteady with a more complicated non-periodic time
dependence, Poincaré maps cannot be applied to remove the time variation,
and the situation changes. In a series of seminal and influential papers, Haller
and collaborators [5, 6, 7] pointed out 18 years ago that when analyzing the
coherence of fluid blobs in unsteady flows, purely Eulerian diagnostics based
on velocities or instantaneous streamfunction contours may give mislead-
ing information1. This work gave birth to the field of Lagrangian Coherent
Structures (LCSs), a term coined by Haller and Yuan [5], that has since seen
extensive research [9, 10, 11, 1, 12, 13]. The initial guiding observation that
spurred this activity was that Eulerian entities such as nested closed stream-

1Short time diagnostics are possible in some instances; see [8].
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lines do not necessarily correspond to a Lagrangian vortex structure because,
unlike in the steady situation, fluid particles are not confined to move along
the instantaneously frozen streamfunction contours. Methods such as the
Okubo-Weiss-Chong criterion [14, 15, 16] and its various counterparts and
extensions [17, 18, 19, 20] for separating the flow into rotating and stretch-
ing regions based on the instantaneous velocity field are similarly unable to
capture the true Lagrangian motion.

Even in unsteady flows defined over infinite times, stable and unstable
manifolds continue to be important flow separators, although they must be
defined and interpreted somewhat differently. Rather than containing points
that decay in forward or backward time to a stagnation point, they now
contain points that decay to hyperbolic trajectories, which themselves move
about in time. The identification of the hyperbolic trajectories formally
requires the difficult testing of a definition of exponential dichotomies [21,
22, 23], which is essentially a statement about exponential decay akin to
what occurs along the stable and unstable manifolds of hyperbolic (saddle-
like) stagnation points in steady flows2. In unsteady flows, the manifolds
move with time and intersect in many ways [1, 25], resulting in complicated
transport possibilities. The viewpoint is now Lagrangian, since it explicitly
examines the flow of fluid particles according to an unsteady velocity field.
Specifically, we consider x ∈ Ω ⊆ R

n, where R
n is our physical space. In

typical fluids applications, n = 2 or 3. Fluid particle trajectories are solutions
of

ẋ = v(x, t) , (1)
where v(x, t) is the flow velocity at position x and time t. We note that we
will use simple letters—unadorned with vector symbols or indices—in our
notation throughout for scalars, vectors or tensors, as is common in more
mathematically-inclined work. The velocity in (1) is assumed known, or
at least measured from experimental or numerical data, though potentially
only at discrete locations in time and space. For time-periodic flows, there are
methodologies to help determine stable and unstable manifolds, KAM tori,
and the associated transport mechanisms between the coherent structures
they distinguish [26, 27, 28, 29]. Some of these techniques can be extended
to flows with aperiodic time dependence under certain conditions [30, 31].

While time-periodic flows arise in some realistic situations (such as in

2See Appendix A in ref. [24] for more intuition.
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periodically-driven industrial flows), in many other situations v has aperiodic
time dependence and is only known via data over a finite time interval. Using
exponential decay as a criterion becomes problematic, since any function of t
can be bounded by a term of the form Aeλt. Thus stable and unstable man-
ifolds, in the classical sense of ordinary differential equations theory, cannot
be defined. Nevertheless, it is tempting to generalize these ideas to aperi-
odic, finite-time situations, and a number of less restrictive definitions have
been proposed to identify the finite-time analogs of infinite-time stable and
unstable manifolds and KAM tori in realistic fluid flows. These structures
or, somewhat confusingly, the regions of fluid delineated by them, have come
to be called Lagrangian Coherent Structures (LCSs). We will maintain both
these understandings throughout this article, making the distinction when
needed.

At this point, a multitude of diagnostic definitions, not all of them consis-
tent with one another, exist to try to accomplish the goal of identifying LCSs
(as will be discussed in more detail in Section 2). Some aim to take advan-
tage of properties that one would expect for stable and unstable manifolds
in flows with simpler time dependence that are known for infinite times. In
Finite-Time Lyapunov Exponent (FTLE) approaches, for example, one seeks
neighboring points that separate exponentially quickly at a rate anomalously
larger than in nearby regions. This method uses the intuition gained from
studying infinite-time flows that a fluid element placed on a stable manifold
will in forward time stretch exponentially in the complementary direction,
since it will eventually be influenced by the associated unstable manifold of
the hyperbolic trajectory. Many other methods that define and locate LCSs
have also been developed, as we survey. We refer to these techniques as ‘di-
agnostic methods’ for determining LCSs, but our primary discussion will be
essentially independent of which method is used. The key point is whatever
the definitions of LCSs, their formulation is typically (with a few exceptions,
such as, for example, the burning manifolds of [32, 33, 34, 35, 36]) based
solely on the Lagrangian trajectories associated with (1), and the goal is to
identify fluid parcel groups that behave similarly, and are thus ‘coherent.’
This has been a rich area of study using both experimental [37, 38, 39, 40]
and observational [41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53] data.

In many situations of practical interest, fluid particle locations and mass
transport are not the only quantities of interest. Rather, one often desires
information about the coherence of other quantities that are impacted by
the flow. Here, we shall refer to such quantities as co-evolving variables, with
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the understanding that they are scalar or vector fields in space which evolve
with time following an equation of motion that depends on the velocity field
but potentially contains other dynamics as well. A common example is the
concentration of a tracer, such as a chemical pollutant or water vapor that is
passively advected by the flow while also diffusing/decaying in time. While
tracers may, to first approximation, be thought of as dynamically passive
scalars that do not affect the fluid velocities, another class of examples are
those of dynamically active scalar or vector variables, whose evolution directly
affects the flow velocity. One such quantity is the vorticity, whose evolution
is mutually dependent on v, as specified by the vorticity equation that can be
derived from the Navier-Stokes equations [54, 55]. The temperature might be
thought of as either dynamically active (e.g., coupled to the velocity via the
Boussinesq approximation in situations such as Rayleigh-Bénard convection
[55]), or dynamically passive (e.g., carried by, but not affecting, the flow
velocities [56, 44, 45]) depending on the context. In these examples, relevant
“coherent” entities refer to regions of space characterized by the qualitatively
similar behavior of the co-evolving variable, for example, regions containing
similar tracer concentrations, or the codimension-1 boundaries between these
regions, across which there are sharp tracer gradients. Another example
where the use of a co-evolving variable would be relevant is in the situation
of two different fluids in a microfluidic device, with the interface between
them being thought of as the “coherent” object of interest that we would like
to track. In all these cases, standard LCSs are unable to capture coherence
of the relevant co-evolving variables, because they are based on (1) and have
no additional information about the behavior of the co-evolving variable(s).

The way in which the co-evolving fields are affected by the fluid velocity
v depends on the physical, chemical, biological, or geophysical aspects gov-
erning their behavior. That is, there typically need to be other equations,
which we shall term evolution equations, in addition to, or replacing, (1). In
Section 3, we develop a conceptual framework to take these into account. We
term the coherent structures obtained from the evolution equations General-
ized Lagrangian Coherent Structures (GLCSs). To set the stage, we will need
to understand LCSs—i.e., the entities pertaining to (1) without considering
any additional evolution equations—and therefore we precede the GLCS de-
velopment with Section 2, in which we provide a framework for LCSs. While
our discussion is independent of the particular diagnostic method used for
defining an LCS, we provide details on how several commonly used definitions
for LCSs fit into this framework. We also discuss several broad issues related
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to LCSs and their validity, including differences between two or three di-
mensions, frame-independence of LCS methods, the time-variation of LCSs
and whether they follow the flow. Thereafter, in Section 3 we develop a
framework for GLCSs, and show how our GLCS definition includes LCS as a
special case. Additionally, we discuss a variety of examples that fall within
the GLCS framework. Relevant problems include evolution of tracers in fluid
flows with or without diffusion, evolution of the boundaries between two im-
miscible fluids, modified velocities in a range of contexts (effective velocities
for inertial particles, fluid velocity modification due to swimming organisms,
front propagation velocity, stochastic perturbations), and the evolution of
vorticity, potential vorticity and kinetic energy. We highlight that LCSs are
not guaranteed to identify coherent structures of interest for the co-evolving
variables in these examples. Several detailed case studies are presented in
Section 4, including a passively advected pollutant in a double gyre, the
flow interface between two miscible or immiscible fluids in a micro-channel
mixer, the observed sea-surface temperature in the North Atlantic ocean,
and a tracer advected by the satellite-derived oceanic velocities. In each case
we compare and contrast the relevant GLCSs with the LCSs. Typically,
these do not coincide, except in some limiting situations. We conclude in
Section 5 with a summary, highlighting the fact that different LCS methods
offer different results, and that these are not always related to a particular
GLCS.

2. Lagrangian Coherent Structures (LCSs)

2.1. Framework for LCSs
LCSs are coherent entities that are associated with, and should be evident

from viewing trajectories of fluid parcels obeying, Eq. (1). Intuitively, LCSs
ought to be generalizations of the easily identifiable coherent flow structures,
such as vortices/eddies, jets, and stable and unstable manifolds in steady,
two-dimensional, infinite-time flow. Exactly which properties are used to
make such a generalization leads to different definitions of LCSs. Here, we
will abstractly represent LCSs in a way that is consistent with any definition.
What is important here is that the LCS is associated only with trajectories
of (1), with no other quantity (e.g., temperature, pollutant concentration,
fish larvae) being considered as a co-evolving variable of interest.

To make our discussion compatible with the finite-time limitations of
data, we assume that the flow (1) is known within a finite-time interval
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[−T, T ]; such centering can be done without loss of generality for any finite-
time interval. We want to define LCSs as subsets of the spatial domain Ω at
time t ∈ (−T, T ). These subsets may have the same or smaller dimensions
than Ω. In addition to the current (or starting) time t at which the LCS
is to be defined, one needs to specify the time interval over which one seeks
coherence of fluid particle trajectories. For example, the region within the
core of a transient eddy would only be coherent over the lifetime of an eddy,
but not over a much longer time interval. Thus, in addition to the current
time t, we will also introduce a reference (or final) time τ ∈ [−T, T ] in relation
to which LCS structures at time t are found. The LCSs are then computed
using velocity data from the interval [t, τ ] if τ > t or [τ, t] if τ < t, and the
coherence is specific to this finite-time interval.

As the first step towards identifying LCSs, for a point (or initial position)
x in Ω, we define the flow map from time t to τ , F τ

t (x), by following the
evolution of x under (1) from time t to τ . In other words, the flow operator
F τ
t (x) is the solution to the Lagrangian form of (1) that advects the initial

position x at time t to its final position at time τ , i.e.,

∂F ξ
t (x)

∂ξ
= v

(

F ξ
t (x), ξ

)

, F t
t (x) = x , (2)

solved up to time ξ = τ . Equivalently,

F τ
t (x) = x+

∫ τ

t

v
(

F ξ
t (x), ξ

)

dξ .

The flow operator can be applied in both forward and backward time (because
the subscript might be a larger value that the superscript), since the flow of
the ordinary differential equation (1) is reversible. For any deterministic flow,
it additionally satisfies the condition F t

τ (F
τ
t (x)) = x because following the

flow from t to τ , and subsequently from τ back to t, takes one back to the
original point x. In other words, the flow operator must be invertible, i.e.,
[F t

τ ]
−1

= F τ
t .

The conditions that are usually required for LCS computation, are that
F τ
t : Ω → Ω is a well-defined, invertible and smooth map. This, in turn,

requires that the velocity field v has continuous first derivatives in both
space and time, ensuring that trajectories are uniquely defined for all initial
conditions throughout Ω. This is stated in Definition 13.

3Some relaxations of these conditions are possible [57, 30]. The typical existence and
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Definition 1. The Lagrangian evolution (1) is to be considered for x ∈ Ω,
where Ω is some open connected subset of Rn (typically, n = 2 or 3), and time
is in [−T, T ]. Let v : Ω× [−T, T ] → R

n, such that v ∈ C1 (Ω× (−T, T )).

A possible criterion for identifying LCSs might be that the LCS is a
subset S ∈ Ω chosen at time t, such that F τ

t (S) is similar to S in that
both consist of connected regions whose boundaries are nonfilamented. This
could be an attempt to identify a coherent core of a vortex. Another possible
criterion might be that F τ

t (S) stretches much more, or attracts much more
strongly, than F τ

t

(

S̃
)

for any set S̃ chosen near S. This would be an attempt
to capture codimension-1 entities corresponding to finite-time analogues of
unstable manifolds [9]. The key point is that some criterion must be chosen
to identify the LCS, with different criteria potentially yielding different LCSs
adapted to the specific issue of interest.

We can represent any such criteria by a procedure or operator, P , that
is being applied to the flow map, i.e.,

LCS(t, τ) := P (F τ
t (Ω)) . (3)

The resulting quantity, LCS(t, τ), identifies a subset of Ω at time t according
to criterion P applied to the vector field F τ

t (which is defined on Ω). The first
argument in the notation for LCS stands for the time instance in which the
LCS is being identified, while the second is the reference time associated with
the end of the finite-time flow interval that is being used. The ‘Lagrangian’
aspect of LCSs is highlighted by the fact that the identified sets are asso-
ciated with tagging particles at time t, and uses a field associated with the
Lagrangian evolution of these particles by (1); in other words, this field is
represented in Lagrangian rather than Eulerian coordinates. Note that the
quantity F τ

t (Ω) in the r.h.s. of (3) generally needs to be calculated for a dense
set of initial conditions x spanning the domain Ω. Moreover all initial condi-
tions x ∈ Ω have equal consideration; there is no prejudicing of certain xs in

uniqueness theorem for solutions of ordinary differential equations such as (1) require
that the vector field v be Lipschitz-continuous in space and bounded in time, which are
weaker conditions than in Definition 1. However, we retain the continuous first-derivative
condition for ease of understanding; this is indeed what is presented in [2]. Moreover, our
stronger condition helps make the flow map differentiable, which is often required in LCS
methods. We note that fully turbulent flows do not normally satisfy Definition 1, since
the velocity field is only Hölder-continuous [58].
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computing F τ
t (x). The procedure P is then applied—this typically consists

of determining a field resulting from F τ
t (Ω), and then using some criterion on

this field—to identify those trajectories, or, more specifically, the time-t po-
sition of those trajectories, which satisfy the specified criteria. The set of the
obtained initial positions forms the LCS. It must be emphasized that LCSs
in (3) are conjoined with the procedure P , so speaking of an LCS without
stating how it was defined is meaningless.

2.2. LCS diagnostic methods
In this section, we discuss several operators P in (3) that are associated

with commonly used LCS definitions. Our review is not exhaustive. Our
purpose is to motivate the generalization of the concept of LCSs, and we focus
below only on methods that have seen the most activity and application.
There are other LCSs methods that are not discussed here, and the ordering
we choose is based on ease of description according to our framework.

(a) Averages along trajectories: There are a variety of procedures that rely
on computing the quantity

A (t, τ, x) =
1

|t− τ |

∫ τ

t

g
(

b
(

F ξ
t (x), ξ

))

dξ , (4)

for some function g and some observable b, and then applying an op-
erator to extract some special features of the A-field. Quantity A is
an average along Lagrangian trajectories [59, 60, 61, 62, 63], and some
authors term these methods ‘Lagrangian descriptors.’ The choice of g
and b determines what exactly is being averaged. A common choice
is b = v, the velocity field itself [61, 62, 60, 59, 50]. If additionally
g (z) = |z|, one is averaging a particle’s speed along a trajectory, and
hence A(t, τ, x) represents the path length of a trajectory [60, 59, 50].
If instead g (z) = z then A(t, τ, x) = (F τ

t (x)− x) / |t− τ |, which de-
fines an average velocity [61, 62]. Other options include the combined
function g ◦ b being the instantaneous eigenvector field of the varia-
tional equation [41], or a set of indicator functions over spatial boxes
in order to define trajectory’s “correlation dimension” or “ergodicity
defect” [64, 50]. Averages of the form (4) are also relevant to deter-
mining dispersion statistics [65], which are expected to be different in
different coherent regions of a fluid. An intriguing method proposed
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recently is associated with setting

g ◦ b = |t− τ |
∣

∣

∣
ω
(

F ξ
t (x), ξ

)

− ω(ξ)
∣

∣

∣
; ω = ∇× v , (5)

in which ω is the vorticity and ω is its average over the entire domain
at each time. Then, A is the Lagrangian Averaged Vorticity Devia-
tion (LAVD) proposed by Haller et al [63] which—rather than speci-
fied in an ad hoc fashion—was derived in seeking a frame-independent
quantification of rotation. All of these methods use an intuition that
trajectories in different (same) coherent regions will have qualitatively
different (similar) behavior and thus different (similar) values of the av-
eraged quantities. The procedure P consists of computing (4), treating
it as a scalar or vector field on Ω, and then extracting ridges (that is,
locally maximizing curves), valleys (locally mininizing curves), curves
of highest gradient of the A(t, τ, x)-field or, in the case of the LAVD,
outermost convex closed contours; these serve as proxies for the bound-
aries between coherently moving regions of fluid [59, 60, 61, 62, 63, 50],
or looking for the coherent regions themselves as areas characterized
by plateaus of similar (almost constant) A values. While there is not
always a rigorous way to justify a relationship between ‘coherence’ and
ridges/plateaus of A, an interesting correspondence is found in some
flows.

(b) Asymptotic approximations: The role of stable/unstable manifolds as
flow barriers between coherent structures in steady, infinite-time flows
has been well-understood for decades (see [1]). Thus, P could be a
procedure for theoretically determining analytic approximations to the
stable and unstable manifolds via artificially extending the flow (1)
from [−T, T ] to R, and then looking at restrictions of these entities to
the actual time interval [−T, T ] [66, 31, 67, 1]. A reasonable extension
for nearly steady flows is to take the time-averaged velocity field from
the given data in [−T, T ] [66]. Subsequently, the reference time is
τ = ±∞ for the artificial flow, with the sign chosen depending on
whether one is looking for stable or unstable manifolds.

(c) Variational LCSs: The variational method defines hyperbolic LCSs
as the locally most repelling or attracting curves (or surfaces in three
dimensions) that are materially advected under the flow (1) from a
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time t to τ [9]. The procedure for their determination involves the
eigenvalues and eigenvectors of the Cauchy-Green strain tensor [9, 68]

Cτ
t (x) := [DF τ

t (x)]
⊤ [DF τ

t (x)] , (6)

in which DF τ
t (x) is the Jacobian derivative matrix of the flow map

F τ
t (x). The operator P uses spatial fields of these eigenvalues and

eigenvectors to identify curves (in 2D [69, 68, 70]) or surfaces (in 3D
[71, 72]) of extremal attraction or repulsion in the time-slice t, with
respect to the time evolution from t to τ . The variational methods also
exist for elliptic and parabolic structures [9], and the excellent review
article [9] is recommended for readers requiring additional information
on how to compute variational LCSs.

(d) Finite-Time Lyapunov Exponents (FTLEs): Possibly the most fre-
quently used method for identifying LCSs is based on the FTLE field
[73, 9, 74, 75, 9, 76, 77, 78, 79],

FTLE(t, τ, x) =
1

|t− τ | lnmax
|z|≠0

|DF τ
t (x)z|
|z| . (7)

The Jacobian matrix derivative of F , DF , encapsulates leading-order
behavior and represents the first term in the Taylor expansion of the
r.h.s. of (1) near x. Using the analysis of matrix norms [80], a com-
putationally efficient way for evaluating (7) directly from grids of La-
grangian trajectories can be written in terms of the Cauchy-Green ten-
sor (6) as

FTLE(t, τ, x) =
1

|t− τ | ln
√

λ(t, τ, x) , (8)

where λ(t, τ, x) is the largest eigenvalue of Cτ
t (x). The FTLE character-

izes the maximum exponential separation rate between a trajectory and
its close neighbors in all directions, suitably normalized and averaged.
FTLEs can be computed in forward and backward time, depending on
the sign of t− τ . The most common implementation takes τ = t + tw
(forward-time) or t− tw (backward) for a fixed windowing time tw. The
dependence on tw highlights the little-mentioned fact that pictures of
FTLE fields have an inherent time-scale (i.e., tw) associated with them.
The procedure P for defining LCSs consists of computing the forward-
or backward-time FTLE field, and then extracting strong maximizing
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ridges, motivated by the fact that the exponential decay rates associ-
ated with stable and unstable manifolds are captured by (7) respec-
tively as τ → ∞ or −∞ for infinite-time flows. Note, however, that
although maximizing ridges of FTLEs correspond to attracting or re-
pelling manifold-type structures in most fluid flows, unexpected results
are possible: the maximum stretching is along and not perpendicular
to the ridge [9, 81], a trough (rather than a ridge) of the backward-time
FTLE field is associated with an unstable manifold [81, 82], or a stable
manifold is not identifiable as a ridge of a forward-time FTLE field
[81, 82].
The Finite-Size Lyapunov Exponent (FSLE) is closely related to the
FTLE, but unlike in (7) where the displacement (DF ) z of nearby par-
ticles is assessed over a fixed time interval of length t − τ , the com-
putation is performed until a fixed separation between a trajectory
and its nearby neighbors is achieved, and the relevant time τ is in-
serted into (7) [83, 84, 85, 86]. FTLE and FSLE methods have seen
wide usage in both experimental [37, 38, 39, 40] and observational
[42, 43, 47, 83, 84, 85, 46, 49, 50, 51] contexts.

(e) Transfer-operator methods: The transfer or Perron-Frobenius opera-
tor Φτ

t encodes how a density distribution at time t is mapped to a
distribution at time τ after advection by the flow (1), i.e., after ap-
plying the flow map (3) to passively advect the initial density distri-
bution. A discretized approximation for Φτ

t can be obtained by par-
titioning the domain into tiny cells, and numerically determining the
probability that (1) transports particles from one cell to another. Sets
which are nearly invariant under small perturbations [87] are associ-
ated with the singular-values/vectors of the transfer operator, i.e., the
eigen-values/vectors of (Φτ

t )
⊤ Φτ

t . In the simplest application of trans-
fer operator methods, the second-top singular vector (which assigns a
value to each tiny cell, thereby approximating a scalar field on Ω) is
computed [88], and then partitioned according to a procedure P to
form two ‘almost invariant sets’ which correspond to LCS(t, τ) in our
notation. Extending this partitioning idea in various ways, and/or uti-
lizing higher-order singular vectors, is the basis of the transfer operator
method for obtaining coherent structures [89, 90, 88, 91].

(f) Braiding: In two-dimensional flows, a measure of trajectory intermin-
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gling is quantified by the topological entropy that can be computed by
keeping track of how trajectories wind around each other, i.e., how they
braid. The method starts with computing Lagrangian trajectories for a
number of initial positions, i.e., F τ

t (xi), i = 1, 2, · · · , N . The procedure
P then consists of computing the topological entropy associated with
combinations of these trajectories [92, 93, 94, 95], and then separating
trajectories into groups which have nearly identical entropy. Numerical
application of this method requires that N be not large (∼ O(50)) to
be able to address all possible combinations of trajectories.

(g) Clustering: These methods apply clustering techniques from the machine-
learning community, such as fuzzy clustering algorithms [96], spectral
clustering [97], or graph-based partitioning [98, 99], to identify clusters
of similarly behaving Lagrangian trajectories. In a way, one may ar-
gue that all of the methods described above also involve some sort of
clustering, in that they all start with computing large number of tra-
jectories and then separate these trajectories into sets or clusters that
have similar behavior according to some criterion.

(h) Encounter volume: The encounter volume method [100] conceptualizes
mixing as an irreversible exchange of properties between different fluid
masses, and quantifies this by how often fluid parcels come in contact
with each other. An objective measure of encounters between fluid
elements, the encounter volume V (t, τ, x0), can then be introduced as
the combined volume of all the fluid elements that pass within a radius
R of the reference fluid element (which is at x0 at time t, but is traveling
with the flow) over a time interval [t, τ ]. To compute this, a grid of
particles x1, x2, · · · , xK is seeded in Ω at the initial time t, the particles
are advected by the flow to time τ , and the encounter number is counted
for each particle using

N(t, τ, xi) =
K
∑

k=1,k ̸=i

I

(

min
ξ∈[t,τ ]

∣

∣

∣
F ξ
t (xk)− F ξ

t (xi)
∣

∣

∣
≤ R

)

,

with the indicator function I = 1 if true and I = 0 if false. The
encounter volume

V (t, τ, xi) = N(t, τ, xi)∆V
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can then be computed by attributing a little fluid element volume ∆V
to each trajectory (∆V is defined by the initial spacing between tra-
jectories and is constant following any trajectory for incompressible
flows). By performing this computation for each of the initial condi-
tions (x1, x2, · · · xK), a scalar field V (t, τ, xi), i = 1, 2, · · · , K, can be
defined on a discretized Ω. Regions of space with large/small values of
V indicate domains of flow at time t with enhanced/inhibited mixing
potential, and are thus coherent in this sense. Since a large number
of encounters happens in the vicinity of hyperbolic trajectories, and
because manifolds serve as pathways that bring particles toward the
hyperbolic trajectory in forward/backward time, maximizing ridges of
the V -field computed in forward and backward time will approximate
finite-time counterparts of the stable and unstable manifolds, respec-
tively. On the other hand, V would is small inside an eddy core, where
encounters are limited to fluid parcels within the same core. Thus, the
procedure P consists of estimating the encounter volume V (t, τ, x) and
then identifying maximizing ridges (proxy manifolds) and minimizing
plateaus (proxy eddy cores) of V . This method specifically targets the
characterization of diffusive mixing [101].

(i) Other methods: In addition to what we have described above, many
other methods have been proposed to find LCSs. These include locating
sets that preserve their shape [102], methods that keep track of the
maximum of an observable along trajectories instead of the average
value as in trajectory averages methods (i.e., L∞-norm is used instead
of L1-norm in (4) [103]), finite-time entropy [104], curves of minimum
flux [105], Oseledets spaces [66], ergodic quotient [106], patchiness [107],
finite-time curvature [102, 108], and others [109].

The above list is non-exhaustive; other LCS identification methods have
also been proposed, and many more continue to be developed. Our purpose
is not to enter into the debate as to which diagnostic is most appropriate,
better justified, most computationally attractive, most robust, most coher-
ently follows the flow (1), and so on4. Rather, we wish to illustrate that in all
of the definitions discussed above, LCSs are based purely on the trajectory

4For a recent article comparing the merits of a range of LCS methods, the reader is
referred to [110].
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information of (2), and thus capture coherence associated only with fluid
trajectories of (1), independently of the coherence measure used. Coherence
of co-evolving variables may be different, and LCSs are not guaranteed to
reveal it. The need for methods that can capture coherence of something
other than fluid trajectories have urged researchers to extend the concept
of LCSs to some chemical and bio-physical applications by using a modified
velocity field in (1) [32, 33, 34, 35, 36, 111, 112, 113, 114]. In the next section
we present a unified notation of generalized LCSs that naturally incorpo-
rate these prior developments and are readily applicable to other co-evolving
variables not considered in prior literature.

2.3. Aspects of LCS diagnostics
As a final step before introducing our generalization, we briefly summarize

some additional issues that often arise in the discussions of LCS methods, as
they will be relevant to our generalized LCSs as well.

1. Flow dimensionality: The most common application of the LCS meth-
ods is to two-dimensional flows, owing both to numerical and visualiza-
tion ease and theoretical simplicity. Some methods, such as braiding or
infinite-time asymptotic approximations, are explicitly restricted to two
dimensions, with no obvious way to extend to three. Others, including
FTLEs, trajectory averages, transfer operators, variational LCSs, clus-
tering, and encounter volume, can and/or have been extended to three
dimensions. Applications to three dimensions are less common because
they are computationally expensive, rely on the accurate knowledge of
the time-varying 3D velocity field that is challenging from both obser-
vational or modeling perspectives, and require advanced visualization
of LCSs. As the LCS methods advance, in parallel with experimental
ability to measure highly resolved 3D velocity fields [115], it is hoped
that our ability to tackle three-dimensional unsteady flows will improve.

2. Time-parametrization: LCSs are often thought of as being parametrized
by the time t in which they are defined. However, t is only the first
argument of LCS in (3), and the presence of the second argument τ
(the reference time) complicates this interpretation. Consider for ex-
ample a standard forward-time FTLE implementation which uses the
field FTLE(t, t+ tw, x) from (7) to determine LCS(t, t+ tw) for a fixed
windowing time tw. The idea of the LCSs being time-parametrized is
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disturbed here, because varying t means that both the time-instance
at which the LCS is computed, and the reference time are varied (see
also [9] for more discussion on the issues with the often used ‘sliding-
window’ approach). A way to retain a consistent time-parametrization
might be to consider FTLE(t,±T, x) (i.e., use the reference time to
be that which includes all the available data, and thus keep τ fixed)
thereby determining the LCSs in the form LCS(t,±T ) for t ∈ (−T, T ).
Similarly, using A(t,±T, x) for (4) in the averaging methods (rather
than a fixed time-window length) retains the ability to think of LCS
structures as being time-parametrized.

3. Material evolution: The word Lagrangian in Lagrangian coherent struc-
tures indicates that LCS are associated with the Lagrangian evolution
of solutions of (1). This does not guarantee, however, that LCSs are
Lagrangian material curves/surfaces/sets that evolve as material ob-
jects under the flow. Material advection is apparently specifiable via
the condition F τ

t (LCS(t, �)) = LCS(τ, �), but there is an unappreciated
issue here: what needs to be put in for the second argument of LCS,
i.e., the reference time? Should the same reference time be inserted in
both sides of the expression? A reasonable approach might be to put
in T (or −T ) on both sides, i.e., F τ

t (LCS(t, T )) = LCS(τ, T ), which
is consistent with the infinite-time situation of T = ∞. It should be
noted that in the time-windowing approaches—such as standard FTLE
implementation—material advection would apparently be specifiable
by F τ

t (LCS(t, t+ tw)) = LCS(τ, τ + tw), which is clearly inconsistent
with the idea of having identical reference times5. The reference-time
ambiguity does not impact material advection in some LCS methods
such as variational LCSs, LAVD or stable/unstable manifolds from
asymptotic time extensions. In these cases curves/surfaces are first
constrained to flow with (1) (which is a definitive statement), and then
subsets of these which satisfy certain conditions are extracted. Other
methods are not necessarily guaranteed to obey material advection,
because in these reversed approaches LCSs must be identified based
on a finite-time flow, and it is only after this that material advection

5Nevertheless, maximizing ridges of FTLE-fields are seen to approximately obey mate-
rial advection under some conditions [75]; the reference-time issue is one reason they fail
to do so in general [9].
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can be examined. Basically, this issue is related to whether P and F
commute.

4. Objectivity/Frame-independence: A view that has been put forward [9]
from the continuum mechanics perspective is that any LCS identifi-
cation method should be frame-independent or objective. This means
that if applying an affine transformation of coordinates y = A(t)x+b(t)
for any orthogonal matrix A and translation vector b (both potentially
time-dependent, and subject to other mild conditions), the LCSs ob-
tained in the y-frame should be the same as those in the x-frame,
suitably transformed. Not all LCS methods satisfy this criterion; those
that do include variational LCSs, stable and unstable manifolds from
asymptotic time-extensions, transfer operator methods, FTLEs, and
the encounter volume method.

5. Implied time-periodicity: As developed, LCS methods analyze struc-
tures associated with F τ

t , which is a one-step flow map on Ω from time
t to τ . Care should be taken to not impute information beyond the in-
terval [t, τ ] (or [τ, t] if τ < t). Subconscious time-periodic extensions of
this interval to R may be present if applying turnstile dynamics, KAM
tori and chaotic transport (these are all associated with repetitively ap-
plying a map, such as a time-periodic Poincaré map), using eigenvalues
related to F τ

t (an eigenproblem requires mapping from a space to itself;
the implicit understanding here would then be that the space at time
τ is the same as that at t, i.e., implied time-periodicity), or applying
Fourier series in time. Unless there is a specific understanding that
time-periodic flows are being considered (which is certainly appropri-
ate in some instances), it should be borne in mind LCSs are transient
and only apply in relation to the time interval over which they were
computed.

6. Choices of tolerances. In applying the procedure P to an obtained flow
field F τ

t (x), almost all LCS methods will require choosing some param-
eter values which specify tolerances. For example, if trying to identify
an FTLE ridge from an FTLE field, how sharp should the ridge be to
qualify? And how is the sharpness defined? For it to be identified as a
ridge, how long should it be? In transfer operator methods, how many
singular vectors are enough to capture relevant behavior? If using a
spectral gap of the singular values for this determination, how should
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one choose that? For clustering methods in general, what are the pa-
rameters used for determining whether a trajectory is within or outside
a cluster? How small a flux across a curve/surface is allowable for us to
identify it as essentially a material curve/surface? What is the appro-
priate radius to use in the encounter volume approach? Why choose
the outermost convex contour as the criterion for low-filamentation in
LAVD approaches? And so on. These tolerances/conditions are of-
ten chosen such that whatever one seeks to highlight emerges clearly
in generated figures and moreover, these chosen tolerances are indis-
tinctly (if at all) specified. We wish to point out that the presence of
such tolerances means that extracting LCSs is not as precise a science
as is imputed in some studies.

7. Relationships between different LCS methods. Each LCS method uses
its own definition for the entities that is seeks. Each remains true to
its specific purpose and yields sets that obey that particular objective.
Any conclusions about other properties that are not prescribed by the
LCS definition are therefore fraught. For example, LCSs defined as
maximizing forward-time FTLE ridges are sets with locally the largest
stretching rates. However, it is not true in general they are the most
repelling material curves, or that they always reveal stable manifolds
[81, 82]; conditions under which these relationships can be anticipated
can be found in [82]. Therefore, automatic conclusions on relationships
between LCSs obtained from different procedures should be avoided.
It is fortunate that there is an increasing interest in determining rela-
tionships between various LCS diagnostics [116, 81, 24, 117, 86, 66, 82],
to help understand exactly what can be concluded from a particular
computation.

3. Generalized Lagrangian Coherent Structures (GLCSs)

3.1. Framework for GLCSs
We now come to our primary purpose – the introduction of General-

ized Lagrangian Coherent Structures, or GLCSs, which capture coherence of
variables that co-evolve with the fluid velocity field and whose evolution is
governed by an augmented dynamical system.

Let c be the co-evolving variable, defined either as a scalar or vector field
on Ω (generalization to higher-ranked tensors is also possible but we limit
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our presentation to scalars and vectors for simplicity), and which varies with
time. Its evolution depends on, but is not solely governed by, the velocity field
in (1). Examples of a scalar c include the concentration of a pollutant, the
density of a biological organism, or chemical or physical properties of water
such as the temperature, salinity, kinetic energy, enstrophy, or components of
the vorticity or potential vorticity. When considering the mixing between two
fluids, taking c to be the concentration of one of these fluids would be relevant
for determining how well-mixed the solution is at each time. Examples of
vector c include vorticity in three dimensions, gradients of scalar quantities
(e.g., temperature or potential vorticity gradient), or vectors composed of
scalar variables such as any of those above. Our goal is to examine these co-
evolving variables for coherence, rather than confining our attention to fluid
trajectories from (1). The evolution of c would be associated with dynamic,
chemical, thermodynamic, biological or other relevant governing laws, which
are usually coupled to the fluid velocity v. Solving for the evolution of c
in time requires information about its initial values, c0(x). This is natural,
for example, if examining the impact of an oil or other pollutant spill in the
ocean. c0(x) need not be smooth in Ω and could consist of patches or point
sources that may be represented using a Dirac delta function. Thus, it is
sufficient for c to be a generalized function, or a Schwartzian distribution,
i.e., a ‘function-like’ object whose integral over the domain exists and is finite.
To accommodate both scalar or vector c and c0, we allow them to take values
in R

m. More formally, we define:

Definition 2. Let c0 : Ω → R
m be a Schwartzian distribution on Ω, denoted

c0 ∈ S (Ω). This means that for any function ϕ : Ω → R
m such that ϕ ∈

C∞ (Ω) with compact support, the integral

⟨ϕ, c0⟩ :=
∫

Ω

c0 · ϕ dx (9)

is well-defined and finite.

Just as for LCSs, we seek a definition which identifies subsets of Ω at a
time t, with a reference time τ also being pertinent. Both these times lie in
the finite-time interval [−T, T ]. We will think of τ as being the ‘initial’ time
at which the scalar field is c0, though in the general setting that we describe
there is no actual necessity for τ to be less than t. The only requirement is
that the c must evolve in a well-posed fashion from a field c0 on Ω at τ , to a
field c on Ω at t.
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Definition 3. Let c(�; t, τ) : Ω → R
m be a co-evolving field at time t, which

has evolved from a field c0 at time τ , and whose evolution is coupled to the
flow velocity v through an evolution operator E t

τ : S (Ω)×C1 (Ω× (−T, T )) →
S (Ω) represented abstractly by6

E t
τ (c0, v) = c(�; t, τ) . (10)

More informally, c(x; t, τ) is defined for x ∈ Ω, having taken as inputs func-
tions c0(x) and v(x, ξ) for ξ ∈ (−T, T ).

The equations governing how E depends on the relevant physics/chemistry/
.../biology and are left unspecified. The easiest example is a tracer c that is
being advected by v and diffused, so E is the advection-diffusion operator. In
general, though, it should be noted that E depends on the initial condition
of c at a time τ , and the velocity field in (1) during the entire time-domain
of interest. Both of these, as well as the particular evolution operation E ,
are used to compute c(x; t, τ) on Ω. Having obtained the co-evolving field
c(x; t, τ), the next issue is the extraction of relevant coherent entities of c
at the time-instance t. We term the sets of Ω identified from this process
Generalized Lagrangian Coherent Structures (GLCSs), and we assume that
these are found by performing an operation on the co-evolved vector field
according to

GLCS(t, τ) := P (c(Ω; t, τ)) . (11)
Following the notation as for LCSs, we use the first argument of GLCS to
identify the time at which the GLCS sets are identified, and the second argu-
ment the reference time, which in this case is τ (i.e., fluid velocities for times
between t and τ are utilized in the computation). Just as for LCSs, the par-
ticular procedure P shall be left unspecified. This generalized methodology
allows us to extend the notion of finite-time coherence to any co-evolving
fields c described by additional physics, chemistry, thermodynamics, or biol-
ogy, and also subject to initial conditions c0, instead of confining ourselves
to trajectories of (1).

We now show why LCSs are a special case of the GLCS framework. Let
c0 be the position/identity function on Ω, i.e., c0(x0) = x0 represents the

6We have avoided writing (10) as, for example, Et
τ (c0(x), v) = c (x; t, τ) because this

would mistakenly indicate that the same x value was being inserted in both sides. The
notation c(�; t, τ) indicates a function over the first argument (i.e., a vector field on Ω),
with the second and third kept fixed at t and τ .
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co-evolution field at time τ . We want to examine GLCS at the time t. We
define the co-evolution field for x ∈ Ω at time t by

c(x; t, τ) := c0 (F
τ
t (x)) = F τ

t (x) . (12)

where the second equality occurs because of the choice of c0 as being the
identity. The first equality (the definition) states that the value of the co-
evolution field at a location x at time t is obtainable by evaluating c0 at the
location to which x flows to by time τ , where the flow is according to the
ordinary differential equation (1). This choice of co-evolution is therefore
linked to particle positions, and in this case (11) reduces to

GLCS(t, τ) = P (c(Ω; t, τ)) = P(F τ
t (Ω)) = LCS(t, τ).

Thus, the GLCSs at the time instance t (with reference time τ) are equiva-
lent to LCSs with the same understanding of time. GLCSs are therefore a
generalization of LCSs.

Another way to think of this relationship is that in LCS methods, one
establishes a connection between the vector field x and the vector field F τ

t (x),
which are relevant at the time-instances t and τ respectively. In GLCS meth-
ods, the relationship is between the vector fields c(x; t, τ) and c0(x), which
are associated with the time-instances t and τ respectively. In other words,
the LCS vector fields are very specific (particularly the identity/position vec-
tor field associated with time t), and can be represented as an invertible map
between the two times because ordinary differential equations are reversible
in time. In contrast, the vector fields for GLCSs are more general, and more-
over the relationship between them may not be invertible (e.g., diffusion
equations are only well-posed in the forward time direction).

3.2. Quantities for which GLCSs may be necessary
Of course, our goal is not just to provide a definition that reduces ap-

propriately to that of standard LCSs; more interesting is the way that our
definition can be used to think about coherence for more general, augmented
dynamical systems. In this light, we now give some examples of physically
relevant choices for c. In the following sections, we will discuss some of these
examples in more detail, showing explicitly how standard LCSs can fail to
capture their dynamics, but also limits for which standard LCSs will appro-
priately diagnose them.

21



(a) Suppose that c is the concentration field of some passively advected
tracer. Then, in our notation, c(x; t, τ) gives a function on Ω which
expresses the concentration distribution at t, subject to some initial
concentration c0(x) at a reference/initial time τ . In a given problem
of interest, such a scalar c could represent a pollutant concentration or
some other kind of transported observable like the sea-surface temper-
ature [56, 44, 45] or color [84]. A simplest model for the evolution of
such scalar fields could be an advection-diffusion equation of the form

∂c

∂t
+∇ · (cv) = 1

Pe
∇2c+ s(x, t) (13)

where Pe is the Péclet number (proportional to the reciprocal of the
diffusivity) and s is some source/sink term. That is, the quantity c
of interest to us is a scalar density that evolves by getting carried
along by the flow of (1) while also diffusing [118, 119] and potentially
changing its total amount (via s, e.g., ocean pollutants sinking to the
bottom). An alternative statement of this passively advected-diffused
situation is that E in this instance is the transfer operator as discussed
in Section 2 in the limit Pe → ∞7. The procedure P would entail
extracting relevant features (e.g., uniform areas, sharp gradients) from
the field c(x; t, τ).
Depending on exactly what physical quantity c represents, the GLCSs
associated with its evolution will convey different physical insights.
If c were the oceanic temperature, the evolution of the GLCSs with
time could help track the movement of oceanic hotspots (or coldspots).
Their importance is that they affect the heat transport in the ocean,
and through coupling with the atmosphere, also impact the weather
system. Similarly, if c were the sea-surface color, which is correlated
with the plankton density [84], then the GLCSs would be associated
with biological activity in the ocean.
In the limits of Pe = ∞ and s ≡ 0, and if additionally ∇ · v = 0 (i.e.,

7There are subtleties associated with this limit (diffusion going to zero) when comparing
(1) with the advective-diffusive flow (13) with s ≡ 0 [120, 88]; these are beyond the scope
of the present paper. However, it should be noted that when computationally determining
how densities are transported by (1) as discussed in Section 2, ‘diffusion’ occurs implicitly
through the numerical discretization process.
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the fluid is incompressible), (13) becomes

Dc

Dt
:=

∂c

∂t
+ v · ∇c = 0 , (14)

a statement that c is conserved along trajectories of (1). If so, under-
standing LCSs will often give insights into the GLCSs associated with
c. However, depending on the initial distribution of c, the GLCSs that
one may observe might be different from the LCSs, since LCSs do not
take this initial distribution into account. We return to this example
in detail in Section 4.
Depending on the situation, slightly different forms from (13) may be
in order: non-constant diffusivity, reaction terms governing chemical
processes, coupling with other evolution equations (e.g., Boussinesq
approximation for the temperature), etc.
It must also be mentioned that (13) or closely related equations need to
be considered in recent methods such as ‘dynamic Laplacian’ [120, 121]
or ’geometric heat flow’ [122]; these augment purely advective motion
(i.e., LCS in our notation) with an explicit characterization of diffusion.
Thus these emerging methods also fall under our GLCS framework.

(b) In some cases, particles/densities move according not just to the fluid
velocity, but are also influenced by additional velocities. A simple ex-
ample of this is of a jellyfish swimming, thereby modifying the adjacent
fluid velocity [114]. An ad hoc way of determining the impact of this
on the density of a quantity (e.g., nutrient, pollutant, plankton) is to
simply compute the LCSs associated with the modified velocity. In
this case, one sets c not from the flow map of the fluid velocity as in
(12), but from a flow map F̃ associated with the fluid velocity plus its
modification. Applying an LCS method (e.g., FTLEs as in [114] for jel-
lyfish swimming) and extracting ridges would give flow structures that
are a skeleton for how the density would evolve. Unlike the advection-
diffusion approaches, this does not explicitly incorporate diffusion, and
moreover does not deal with a particular density distribution.

(c) If c = ∇× v, then c is the vorticity, which is advected by the velocity,
diffused by the kinematic viscosity, tilted and stretched (in three di-
mensions) by its coupling to the strain field, and potentially modified
by nonconservative forcing. Since c depends on the velocity v in this
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case and can feed back on it, c is now a dynamically active scalar. In
this situation, v and c evolve with mutual interdependence, as given by
the vorticity equation. Other active scalars, such as the kinetic energy
or rate of viscous energy dissipation, also have a dependence on v. A
GLCS approach that incorporates the evolution equation is necessary
to determine structures associated with c in these instances.

(d) Suppose we have a mixture of m immiscible different fluids, such as in a
co-flow or an emulsion, and we think of evolving blobs of each of these
fluids as our GLCS. We can tag each of these fluids with a numerical
label, using 1 for fluid 1, 2 for fluid 2, and so on up to m for fluid m.
One way to define a relevant field c(x; t, τ) is to represent it as an m-
dimensional vector, whose jth component is an indicator function for
fluid j (there are other possibilities as well). We will address a example
of this form (with only two fluids) in Section 4.2.

(e) A situation conceptually intermediate between an advected passive
scalar and a field containing multiple fluids is that of front propa-
gation. In this case, the scalar field (e.g., temperature, chemical con-
centration) is characterized by a sharp boundary between high and
low (or vanishing) value. When these fronts propagate within a fluid,
the local front speed depends not just on the fluid speed but also
on the front’s orientation. If x = (x(1), x(2)) is a point that lies on
a front within a two-dimensional flow in which the fluid velocity is
v(x, t) =

(

v(1), v(2)
)

, a standard way of modeling the front’s evolution
is the system [32, 33, 34, 35, 36]

ẋ(1) = v(1) + α sin θ , ẋ(2) = v(2) − α sin θ ,

θ̇ = −2v(1)x1
cos θ sin θ − v(1)x2

sin2 θ + v(2)x1
cos2 θ . (15)

Here, θ represents the local orientation between the front propagation
velocity (defined to be normal to the front, at speed α) and the fluid
velocity v, and the subscripts indicate partial differentiation. It has
been established [123] that the stable and unstable manifolds associ-
ated with the system (15) restrict how fronts propagate, and thus the
GLCSs are associated with applying an operation P to the flow map
of (15). This is in contrast to applying P to fluid particle propagation
alone, which is given by (1) and which would give LCSs associated
with particle positions. This is another example in which the GLCSs
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can be thought of as applying LCS methods to an augmented velocity
field (in this case, in one higher dimension). Similar ideas may poten-
tially be used for fronts of active scalars such as the momentum at a
turbulent/non-turbulent interface.

(f) LCSs identify structures associated with the advection of fluid parcels.
But if we instead consider noninfinitesimal solid particles advected by
the flow—typically known as inertial particles, since they behave as if
they have inertia relative to the carrier fluid—the situation changes.
The trajectories of inertial particles are not simply the solutions of
(1). Rather, they follow the Maxey–Riley equation [124], and feel a
host of effects, such as added mass, drag, lift, and history forces, in
addition to simple advection. Thus, GLCSs are again required. There
has been some work attempting to extend simple LCSs to capture
their behavior [111, 112, 113], but more work remains to be done. A
particular complicating factor for inertial particle dynamics is the fact
that the Basset history force makes their evolution nonlocal in time, in
that the force on an inertial particle at an instant depends on its entire
previous history. A “velocity field” constructed from an ensemble of
inertial particles thus need not be single-valued or differentiable, and
the relative velocity of two inertial particles at contact does not have
to vanish [125, 126].

(g) In attempting to evaluate the heat flux which is coupled to a fluid ve-
locity field, Kimura and Bejan [127] proposed the concept of ‘heatlines’
which serve as effective streamfunction contours for the flow of heat in
a two-dimensional incompressible steady flow. Building on this, other
authors have suggested forming an effective velocity field which cap-
tures the impact of the fluid velocity on the flux of a relevant scalar,
including also the possibility of diffusion [127, 128, 129, 130, 131, 132].
Thereafter, a standard LCS method could be applied to this velocity
field [132, 133]. These approaches fall exactly within our framework
of GLCSs, with the co-evolution being associated with the advection
by the effective velocity field. We will demonstrate the usage of one
of these methods [133] in an example related to the evolution of sea-
surface temperature in Section 4.3.1.

(h) There is an emerging need for understanding the impact of stochasticity
in velocity fields in, for example, attempting to quantify the impact of
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unresolved small scales on large scale motions8 [134]. In the oceans
and atmosphere, there is evidence of such stochasticity which, when
computed in terms of an effective diffusivity from data, is both spatially
and temporally heterogeneous [135, 136, 137, 138]. The approach in
[48, 139, 140, 141] is to have the evolution operator be the flow of the
stochastic differential equation

dxt = v (xt, t) dt+ εσ (xt, t) dWt (16)

in which |ε| is small, σ is an n×n diffusion matrix, and Wt is Brownian
noise. Extracting sets from Ω based on statistical fields (such as mean
and variance) arising from the evolution from time τ to t would then
constitute the procedure P for GLCS determination [139, 140, 141].

Some of the GLCSs mentioned above fall within the framework of a trans-
port equation

∂c

∂t
+∇ · Φ = s , (17)

in which Φ is a v-dependent flux, and s is a source term. For example, the
advection-diffusion equation (13) is obtained by choosing Φ = cv − ∇c/Pe,
and (14) emerges if Φ = cv and the fluid is incompressible. Similarly, the
heatline approach [127, 132] uses Φ = αcv − β∇c in which c is now the
temperature, and α and β are constants associated with specific heat and
thermal conductivity. Situations in which a modified velocity field v⋆ rather
than v is used9 are obtained by setting Φ = cv⋆ and s = 0. The standard LCS
framework is related to (17) by choosing Φ = cv and s = 0, and considering
this with a uniform initial distribution c0. (However, the basic implementa-
tion of the LCS method is easier done using (1) directly, as opposed to the
more abstract representation (17) under these conditions.)

4. Examples comparing GLCSs to LCSs

In this section, we consider three examples in detail. In each case, we will
compare some LCS calculations with a particular GLCS calculation.

8This is sometimes referred to as the ‘stochastic parametrization’ problem, and is seeing
intensive investigation in global climate and ocean flow models.

9While the burning manifold approaches (15) are indeed associated with such a modified
velocity field, fitting it into the framework (17) in this case has the discrepancy of being
in a higher dimension.
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Figure 1: The initial (τ = 0) pollutant concentration, which is the primary one used
in the discussion of Section 4.1. The intention is to discuss structures in the evolved
concentration field at a later time t = 1.

4.1. Passive scalar advection
The term “passive scalar field” is typically used to describe some scalar

quantity that is transported by the fluid flow but that does not couple back
to the flow and affect it. Thus, generically, the dynamics of a passive scalar
will be the solution to some advection-diffusion equation, since the scalar
may have some diffusivity relative to that of the fluid (that is, a Schmidt
number different from unity). The most common example of a passive scalar
is the concentration of a contaminant, often a dye, chemical, or pollutant;
in some cases, however, temperature, salinity, or other scalar quantities may
also be thought of as passive.

We consider the domain Ω = [0, 2]×[0, 1], and the initial (τ = 0) pollutant
concentration being that of a ‘patch’ as shown in Fig. 1. The GLCS we seek
are associated with how this has spread by time t = 1. The spreading will
be modeled by equation (13), but we additionally assume that the fluid is
incompressible, and there are no sources or sinks. Then, (13) becomes

∂c

∂t
+ v · (∇c) =

1

Pe
∇2c . (18)

We specify an unsteady velocity field v that has seen extensive use as a
testbed for LCS analysis [142, 143, 109, 144, 1, 145, 38, 146, 102, 77, 147, 78,
79, 148, 76, 88]: the double gyre flow as introduced by Shadden et al [75].
The velocity v = (v1, v2) takes the form

v1(x1, x2, t) = −πA sin [πh(x1, t)] cos [πx2]

v2(x1, x2, t) = πA cos [πh(x1, t)] sin [πx2]
∂h

∂x1

(x1, t)











, (19)
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(a) Pe = 10 (b) Pe = 50

(c) Pe = 300 (d) Pe = 800

Figure 2: Evolution of the ‘patch’ pollutant distribution of Fig. 1 from τ = 0 to time t = 1
using (13) and the double gyre velocity field (19), using several different values for Pe.

where the function h is defined by

h(x1, t) := ε sin (ωt) x2
1 + [1− 2ε sin (ωt)] x1 .

It is well-known that for sufficiently small |ε|, the double-gyre flow possesses
hyperbolic trajectories near (1, 0) and (1, 1), which move with time. The
stable manifold of the former trajectory and the unstable manifold of the
latter extend around x1 = 1, intermingling to generate provably [142] chaotic
motion, separating a clockwise-rotating gyre on the left from a anticlockwise-
rotating gyre on the right.

In all the calculations presented, we use the parameter values A = 1,
ε = 0.3 and ω = 10π, and the spatial resolution 0.01× 0.01. We evolve (18)
using a pseudo-spectral code, with time-stepping performed by a Crank-
Nicholson routine, and show the results for several choices of Pe at t = 1 in
Fig. 2. We will use this brown color scheme consistently for concentration
fields (for usage in identifying GLCSs) in what follows, to distinguish from
the green/yellow scheme used for scalar fields associated with identifying
LCSs. From Fig. 2, we observe that when Pe is small, the pollutant smears
out rapidly (thereby not having any obvious patterns), whereas when Pe is
large, discernible patterns emerge. There is a faint ridge of the pollutant
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(a) α = 0.3, β = 0.1, γ = 0.3 (b) α = 0.4, β = 0.2, γ = 0.3

(c) α = 0.3, β = 0.05, γ = 0.4 (d) α = 0.2, β = 0.1, γ = 0.2

Figure 3: Extraction of GLCSs as sharp transitions (red) and uniformly-mixed high density
regions (cyan) from the Pe = 800 situation (Fig. 2(d)), using different threshold values as
described in the text.

concentration nearby x1 = 1 when Pe = 300, and for large Pe, pollutant
appears to be more dominantly entrained into twirling structures on the two
sides. It should be emphasized that the structure of the pollutant concentra-
tion at time t = 1 must depend on both the Péclet number10 and the initial
pollutant concentration.

Now, we might be interested in sharp boundaries between disparate den-
sity regions, and uniformly mixed regions of high density, as our ‘important
structures.’ Consequently, the GLCSs in this situation might be respectively
construed to be filaments associated with anomalously large values of the
density gradient, and regions where the density is mostly uniform but the
density is fairly high. Thus, the ‘coherence’ in the pollutant concentration
is associated with the magnitude of the gradient of the concentration; large
values would indicate sharp transitions and small values would indicate uni-
form regions. Extracting such regions immediately leads to the standard
ambiguity of having to define threshold values. In Fig. 3, we use different

10Equivalent to making Pe large is making t small, since Pe is related to the diffusive
timescale, though this can have different spatial influences depending on the local densities.
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threshold values to extract these two types of GLCSs from Fig 2(d): red
to indicate sharp boundaries, and cyan for well-mixed large density regions.
We let α be the fraction of the maximum density which is considered ‘high,’
β the fraction of the maximum density gradient below which we consider
the flow well-mixed, and γ the fraction of the maximum density gradient
above which we define the density as undergoing a sharp transition. The red
(sharp transition) regions are defined as having density gradient larger than γ
times the maximum density gradient, and the cyan (uniform density) regions
have density gradient less than β times the maximum density gradient, but
have a density greater than α times the maximum density. Identifying the
GLCSs from Fig. 2(d) according to this prescription with several different
choices of these threshold values is shown in Fig. 3. Clearly, depending on
the threshold values (i.e., the procedure for extracting the GLCSs), different
sets will be identified from the diagnostic GLCS field of Fig. 2(d). Therefore,
when discussing connections to LCSs, it will be opportune to compare with
the density fields in Fig. 2—which possess more information than in the ex-
tracted GLCS pictures of Fig. 3. Moreover, we remark that for the smaller
Pe situations pictured in Fig. 2(a-c), identification of sharp boundaries and
uniform densities becomes more ambiguous as Pe decreases.

For comparison with Fig. 2, in Figs. 4 and 5 we present several approaches
to finding LCS(1, 0), i.e., LCS structures at time t = 1, which takes into
account the flow from time τ = 0. The left panels in Fig. 4 are the computed
diagnostic fields obtained from the flow from time 1 to 0, and the right panel
shows extracted LCSs based on some simple choices of procedures P . We
do not use the most sophisticated methods available for such extraction,
because (i) we are only interested in a qualitative comparison, and (ii) more
refined extraction methods will result in approximately the same entities. We
moreover emphasize that our intention is not to compare or critically evaluate
different LCS methods (readers are referred to papers such as [110, 143] for
this), but rather to illustrate that results arising from different LCS methods
are not necessarily the same, and do not necessarily have a connection to
GLCS sets chosen according to some specification.

The top row is the backward FTLE field computed using (8). We extract
the LCS as the ‘strongest ridge’ which in this case is obtained by simply
thresholding by 80% of the maximum value of the FTLE field11. The next row

11There are more sophisticated ways of extracting ridges [149, 150], but here we use the
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Figure 4: Obtaining LCS(1, 0) for the double-gyre flow using several methods. The left
panels show the relevant diagnostic fields, and the right shows extracted LCSs in red.
Detailed descriptions are available in the main text.
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is the LAVD field computed using (5) and (4). The white areas in the LAVD
field indicate that the numerical computation fails for these regions, because
particles seeded in these areas approach the boundaries during the backward-
time advection, at which the vorticity becomes undefined because the velocity
field is undefined on the outside of the boundary. The fact that the undefined
white region in the center of the LAVD picture matches with the FTLE ridge
is no coincidence; this ridge corresponds to the unstable manifold emanating
from a point on the boundary. In the LAVD case, the suggestion is that
the region within ‘the outermost closed convex contour’ [63] provides the
LCS. Using a trial-and-error investigation of contours, we thus obtain the
red set in the right-hand figure. The FTLE- and LAVD-generated LCSs in
the right figures illustrate the two principal types of LCSs respectively: those
associated with strong stretching, and those with strong coherent rotation.
The former can be thought of as a barrier between coherent entities (with
eventual behavior being highly sensitive to mild perturbations nearby), while
the latter comprises coherent vortex-like structures which rotate robustly
with little filamentation developing.

The next row is obtained using the transfer operator approach [89, 90, 88].
The left figure is the singular vector associated with the second-top singular
value of the transfer operator, i.e., the probability transition matrix from one
pixel to another. The right figure has been obtained by simply partitioning
at the zero contour, resulting in two sets (white and red) which are ‘almost
coherent’ [90] under the flow from time 1 to 0. It is possible (not shown) to
obtain higher-order ‘almost coherent’ sets by examining the third, fourth, etc,
singular vectors; these can help refine the vortex areas. The next row of LCSs
is computed using the encounter volume approach [100, 101], which provides
a measure of how fluid parcels encounter each other over the course of the
flow. High values indicate that fluid parcels in this region encounter many
other fluid parcels during the duration, and the right figure is obtained by
partitioning the left at a threshold of 70% of the maximum encounter volume
to obtain regions with high mixing12. It should be noted that all methods
discussed so far respect objectivity (invariance under time-dependent frame

simplest methods for easy description and comparison.
12Because encounters are caused by both strain and shear, the highest encounter volumes

are not necessarily along the stable manifold. For longer integration times (if we integrate
back to τ = −3, for example), strain along the manifold wins over the shear and the
encounter volume field focusses more on the manifold.
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(a) Unstable manifold (approximation)
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(b) Unstable manifold (numerical)
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(c) Variational elliptic LCS
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(d) Variational hyperbolic LCS

Figure 5: Finding LCS(0, 1) for the double-gyre using several methods which do not per
se rely on extraction from a scalar field.

transformations).
The final panel plots on the left the Lagrangian average of the speed—

i.e., (4) with g = |�| and b = v (�) –as proposed by [151, 60]. This particular
technique does not come with a specified way of extracting structures from
the field, and so on the right we present structures obtained from a slightly
different Lagrangian average, the gradient of the mesochronic velocity field
[61, 62] which is obtained by averaging the velocity as opposed to the speed.
Regions in which the eigenvalues of this are real are defined as mesohyper-
bolic, and it is these regions which are shown in red [61], and extracted here
as our LCS. The white regions are mesoelliptic [61], and this classification
is meant to partition particles which experienced ‘hyperbolicity on average’
over the time-interval (these are the red mesohyperbolic regions) from those
which did not (mesoelliptic regions). Both the left and right pictures indi-
cate vortex cores (mesoelliptic regions), which are surrounded by high values
of the average (mesohyperbolic regions on the right). These pictures offer
contradictory insights in comparison to the FTLE and LAVD pictures, illus-
trating the fact that not all LCS methods are equivalent, or seek the same
sorts of things.

A different class of LCS methods in which the LCS structures are directly
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obtained from some procedure P on the velocity field, without necessarily
being extracted from a particular scalar field13, are displayed in Fig. 5. The
top row contains computations of the unstable manifold at t = 1, to define
which it is necessary to extend the flow backwards beyond τ = 0; in this
case we imagine that it has been done time-periodically14. In (a), we use
an explicit approximation15 to the unstable manifold using Melnikov theory
for small ε [1]. In (b), we obtain the manifold numerically; because this is a
nonautonomous situation, we cannot simply seed particles near a fixed point.
We therefore use the numerical procedure for computing nonautonomous
manifolds described in [152]. The numerically determined unstable manifold
has a strong relationship to the FTLE ridge in Fig. 4. The second row in
Fig. 5 relates to the variational definition of LCSs due to Haller [9, 81], in
which curves which experience extremal repulsion (in backward time) are
classified. Both computations were performed using LCS Tool [70] for our
parameter values, and using the default tolerances in the package. The left
figure shows the interior of two elliptic LCSs, curves which are stationary
with respect to averaged tangential stretching [9, 153]. The right figure
shows the hyperbolic LCSs—in this case curves from which there is maximum
repulsion over the backward-time flow [9, 81]. The intuition is that these
variational LCSs are associated with the vortex cores and unstable manifold
curves respectively. There are relationships evident with other LCS methods
displayed in Fig. 4.

None of the LCS methods are designed to take into account either the
initial pollutant distribution or its subsequent evolution with time, and hence
there are no compelling connections to the pollutant concentration pictures
of Fig. 2. Put another way, the LCS method used simply takes all initial
conditions, with equal weight, and advects them according to (1) with no

13We may alternatively think of these as a scalar field consisting of an indicator function
on these sets.

14In any extension, it will be necessary to obey the exponential dichotomy [21, 22,
23] property to ensure that hyperbolic structures to which are attached stable/unstable
manifolds are retained. The differences in the manifolds based on different extensions can
be quantified locally using techniques such as those discussed in [67]; the impact of these
extensions get damped exponentially in time, and so there is usually little visible difference
for ‘reasonable’ extensions.

15AnO(ε) expression x1 = 1− επ
2
A

2 sinπx2

∫

1

−∞
sin

[

4 cot−1
(

cot πx2

2
exp

[

π2A(τ − 1)
])]

sinωτdτ
is obtained from (2.70) in [1] (see also [142]); since ε = 0.3 here, we do not get a good
result.
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Figure 6: Evolved densities by t = 1 using Pe = 800, using (a) a uniform, and (b) a
random, initial distribution c0.

regard to the pollutant’s spatial distribution. Furthermore, the LCS does not
take into account the laws governing the evolution of the pollutant density.
Given this, it is clearly the height of optimism to expect any relationship
between what we are primarily interested in (viz., structures associated with
how the pollutant spreads) with information obtained from LCSs. On the
other hand, if Pe → ∞, then we note that (18) collapses to insisting that
c remains constant along trajectories. Therefore, trajectory-derived LCS
ridges/patches may be similar to ridges/patches of the c field as Pe → ∞ if
c0 is uniform, or if c0 is such that relevant regions are appropriately sampled.
However, this may be impractical because numerically advecting high Péclet
number flows is prone to accuracy/stability problems [154]. We show in
Fig. 6 situations in which we use for c0 uniform and random16 distribution.
Both the ‘ridge’ and the ‘vortex core’ regions are discernible in the uniform
implementation.

We summarize our observations from the computations. For the particu-
lar instance of the co-evolving quantity being an advection-diffusion driven
tracer field, for there to be a similarity between LCSs and GLCSs, Pe → ∞ is
necessary. Secondly, the initial distribution of tracer c0 should be such that
it samples the specific regions associated with the particular LCS that it is
to be compared to, or otherwise evolves to a stage where it does so. Defining
exactly what conditions this imposes on c0 is difficult. Stating this difference
between GLCSs and LCSs another way, the tracer density evolution depends
on the choice of c0, whereas there is no such prejudicing of regions in standard

16We need to refine the grid to 0.005×0.005 in these cases, and for the random situation
allocate each spatial box with an initial density value in (0, 1), uniformly sampled.
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LCS methods. Thirdly, the time of flow could also be a factor: if too short,
high densities may not reach relevant areas, and if too long, diffusion will
smear out all density anomalies. Unless all these conditions—sufficiently high
Pe and compatible initial condition and time—are satisfied, using LCSs as a
predictor of GLCSs in this advection-diffusion situation is essentially useless.
In some situations in which the FSLE field imputed from oceanic velocities
has similarities with the ocean temperature field [56, 44, 45], presumably the
“correct” conditions are approximately satisfied.

Here, the coupling between c and the velocity field v obeyed (18). If
their relationship was given by the more general transport equation (17),
then once again certain LCS/GLCS similarities can be imputed in limiting
instances, notably in situations when the generalized velocity v⋆ approaches
v. Claiming LCS/GLCS relationships is questionable when more general
co-evolution laws are in operation.

4.2. A flow interface
In this example, we examine the ‘coherence’ associated with two fluids

in a channel, with the evolution of their mutual interface being the GLCS
of interest. The prototypical flow we consider is that of a cross-channel
micromixer [155, 156, 157, 158, 159, 160, 161, 162], with the two fluids flowing
parallel to one another from left to right in a main channel, as pictured in
Fig. 7. In addition, there are several small cross-channels, in which fluid
is made to travel in an unsteady way by attaching to syringes or pumps17.
This configuration can lead to unsteady velocities transverse to the primary
flow within the main channel, thereby attempting to make the flow interface
more complicated. The GLCS in this instance will be the time-varying flow
interface, which we will obtain numerically. We will consider the cases where
the two fluids are immiscible as well as miscible.

We label our coordinates as x = (x1, x2). Suppose the main channel has
width L, but that fluid 1 (upper fluid) enters at twice the flow rate of fluid 2
(lower). This means that the flow interface between the fluids, in the absence
of cross-channel flow, is located 2/3 of the way down from the top. Thus, let
−L/3 < x2 < 2L/3 define the x2-coordinate of the main channel, for which

17Transverse velocities are alternatively obtainable by having flexible membranes as the
walls of the main channel, which are pulsated in some fashion [163, 164, 162].
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Figure 7: Cross-channel micromixer with three cross-channels; the two different fluids are
labeled 1 and 2, and are separated by an interface along x2 = 0.

a standard parabolic flow profile gives the velocity

v1(x2) =
4U

L2

(

2L

3
− x2

)(

x2 +
L

3

)

(20)

where U is the maximum speed (at the central location). With this choice
of coordinates, x2 = 0 is the flow interface between fluids 1 and 2. This is
therefore the steady GLCS, and the speed along it is 8U/9. Three cross-
channels, whose centers are located at the x1 values of l1, l2 and l3 and that
have widths of d1, d2 and d3 respectively, are to be used to cause velocity
agitations that make the flow interface vary with time. Consonant with both
experimental observations and theoretical considerations of no-slip boundary
conditions [158, 157, 159, 161], we assume that the velocities in the cross-
channels also satisfy parabolic conditions, leading to a velocity contribution

v2(x1, t) =
Vj

d2j

[

d2j − (x1 − lj)
2]ϕj(t) , lj − dj ≤ x1 ≤ lj + dj , (j = 1, 2, 3) ,

(21)
in the x2 direction, where Vj is the maximum velocity in the cross-channel,
and ϕj(t) is the time-varying modulation that is being applied. To emphasize
that neither GLCS nor LCS approaches require time-periodicity, we use the
parameter values L = 1, U = 1, {Vj} = {0.3, 0.2, 0.05}, {lj} = {3, 5, 8},
{dj} = {0.1, 0.3, 0.1}, and choose the functional forms

{ϕj(t)} =
{

cos (3t) , tanh (t− 5) , sin
(√

2t
)}

.

Thus, the total velocity in the channel is v = (v1, v2), where v1,2 are defined
in (20) and (21).
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Figure 8: Comparison between (a) immiscible and (b) miscible GLCSs at t = 10 with
diagnostic fields associated with LCS detection of the flow from time t = 10 to τ = 0: (c)
backward FTLE field, and (d) Lagrangian average of speed.

Our GLCS will be the flow interface between the fluids at time t = 10.
Within the framework of our GLCS definition (11), we can think of determin-
ing this by implementing (13) with an initial uniform density c0 supported
on the upper fluid towards the left of the first cross-channel. If the fluids are
immiscible, they will not mix, and this is equivalent to choosing Pe = ∞.
Then, when the density field has evolved to time 10, there would be a sharp
transition in the density across a flow interface, which would be identifiable
as a curve which we shall call the ‘immiscible GLCS.’ If the fluids were mis-
cible, then Pe < ∞, and the ‘flow interface’ (the ‘miscible GLCS’) would be
more difficult to define. In this section, we show how the immiscible and mis-
cible flow interfaces can be determined without having to numerically evolve
(13), but by using alternative strategies.

Suppose first that Pe = ∞ (the fluids do not mix). Because we have
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a priori knowledge that the interface is along the line x2 = 0 for x1 <
l1−d1, we can simply generate the streakline emanating from the known flow
interface {x2 = 0 , x1 < l1 − d1} (which could also be theoretically estimated
if needed [165, 1]). The GLCS obtained in this fashion at time 10 is shown
in Fig. 8(a), and is a well-defined curve which separates the two fluids. On
the other hand, let us suppose Pe < ∞, and the fluids are miscible. In this
case, an approach would be to consider the stochastic differential equation18

(16) with σ = Id and ε =
√

2/Pe, and consider the statistics at time 10
of particles lying on the curve C ≡ {x2 = 0, x1 < l1 − d1} at time 0. It is
known that, for small ε, the mean transverse deviation from the ε = 0 flow
separator (i.e., the immiscible GLCS of Fig. 8(a)), divided by ε, approaches
zero [139]. Moreover, an explicit expression for the variance of displacement
in the normal direction to the curve has been established (see equation (9)
in [139]). The red curves in Fig. 8(b) are generated by this expression, going
twice the standard deviation19 away from the immiscible interface, using
ε = 0.003. The region between the red curves is therefore a ‘fuzzy flow
interface’ within which there is strong mixing between the upper and lower
fluids, and this constitutes our ‘miscible GLCS’. To demonstrate the validity
of this theory, there are also 2 × 105 cyan dots plotted in this figure, which
were generated by taking initial points on C and iterating them forward by
(16) using the Euler-Maruyama scheme [166]. Their distribution seem to be
captured nicely by the theoretical miscible GLCS, whose width varies along
the channel. (There are ongoing extensions of using (16) in understanding
coherence, including the idea of fuzzy stable/unstable manifolds [140] and
using the variance as a global measure of uncertainty [141].)

For comparison, suppose we want to find an appropriate LCS at t = 10;
here, we think of LCS methods as being those which advect (1) directly
thinking of all initial conditions as being equivalent. We show in Fig. 8(b-
c) several LCS diagnostic fields associated with the flow from time 10 to
0. While we have not extracted any LCS sets from these fields, it is clear
that they are not in any way connected to the GLCS of interest here. This
is no surprise; the GLCS has nothing to do with, say, regions of extremal

18This is equivalent to using an advection-diffusion type evolution equation for the den-
sity, because there is associated with (16) a Fokker-Planck equation which does precisely
that [140, 141].

19Twice the standard deviation is used as a proxy for 95% of the data; this is however
not actually correct because it is not necessarily true that the distribution is normal.
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stretching, or of identifying rotational motion, etc.

4.3. Spreading of tracers in the ocean
In this example, we examine the global sea surface temperature (SST) as

our co-evolving variable, and compare with an LCS diagnostic as well as a
newly proposed method which falls within our GLCS framework. We show
in Fig. 9 the SST field on 5 April, 2015 in the Atlantic ocean off the coast
of North America. A warm SST tongue (dark red filament) associated with
the Gulf Stream current extends along the coast until roughly the latitude
of Cape Hatteras, where the Gulf Stream separates from the coast and turns
eastward, carrying the warm water tongue with it into the North Atlantic.
In this Gulf Stream Extension region, the strong and narrow Gulf Stream
loses its coherence, widens, slows down and starts to meander. Some of
these meanders grow and detach from the current forming coherent mesoscale
eddies called Gulf Stream rings, which can transport warmer/colder water
masses westward through the colder/warmer ambient water on the north-
ern/southern side of the Gulf Stream Extension current. Fig. 9 shows such
structures, for example, a cold-water (yellow) meander protruding southward
into the (red) warmer waters near 58W, 39N, a detatched (yellow) cold-core
ring about 5 deg to the west from the meander, as well as a (yellow) cold-core
ring further to the east, centered at about 45W, 37N, which is surrounded
by (orange) warmer waters.

The fact that one can easily tease out from the observed SST images
signatures of well-known oceanographic currents, such as the Gulf Stream
current with its meanders and eddies (satellite-based geostrophic velocities
are shown by arrows in Fig. 10 (top left)), suggests that at meso- and larger
spatial scales the evolution of SST is dominated by advection, rather than
diffusion. Combined with the existence of the global ambient meridional SST
gradient, this implies that the GLCS relevant for the SST should be similar
to LCS. This general inference is confirmed in our numerical calculations of
FTLEs based on ocean velocities inferred from satellite altimetry Fig. 10 (top
right)). These calculations are based on geostrophic velocity fields v inferred
from AVISO satellite sea surface height observations. Although the FTLE
field is quite complicated in this region, and its maximizing ridges, which
serve as proxies for LCSs, form a complex tangled web, all three strong and
distinct SST features described above—the southward-protruding meander,
the cold-core ring to the west of it and the larger cold-core ring further east—
are clearly visible in the concurrent FTLE snapshot. The FTLE values are
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Figure 9: Satellite-based SST map on 5 Apr, 2015. Data was obtained from the Re-
mote Sensing Systems group website (http://www.remss.com/measurements/sea-surface-
temperature) and corresponds to an optimally interpolated SST product that merged
multiple satellites into globally complete gridded maps. The black box corresponds to the
domain shown in Fig. 10.

generally larger at the flanks of the meandering Gulf Stream Extension Cur-
rent than further from it, suggesting (correctly) that a tracer (such as SST)
will likely experience stronger filamentation there. Of course, one cannot
completely reproduce or infer the tracer distribution just based on FTLEs
alone, without any information about the initial conditions; but neverthe-
less FTLEs are helpful in predicting and interpreting some of the dominant
features and characteristics of a tracer distribution for a large-scale non-
uniformly distributed advection-dominated tracer such as SST.

The situation is strikingly different for a tracer with a more localized
initial distribution, as illustrated in Fig. 10 (top left). In this numerical sim-
ulation, we started with a Gaussian patch of elevated tracer concentration,
which was centered at 52W, 39N and had σ=3 deg in both zonal and merid-
ional directions, on top of the uniform ambient background concentration,
cb = 1, everywhere else. Such a distribution might be relevant, for example,
for a spill of a chemical pollutant into the ocean. The initial tracer distri-
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bution was then advected numerically using the AVISO-based geostrophic
velocities v without any explicit diffusion added, and it evolved, after 30
days, into the distribution shown in Fig. 10 (bottom left). Although the final
tracer field bears some resemblance to the backward FTLEs shown in the
top right panel, FTLEs fail to correctly predict even such dominant tracer
features as the two arms of the tracer filaments in the east, the overall extent
of the elevated tracer anomalies, absence of the elevated tracer concentra-
tions to the west from the initial Gaussian blob, as well as the various hot
spots of the tracer concentration, which do not always align well with the
highest/sharpest FTLE ridges. To this end, we conclude that FTLEs—or,
more generally, any LCSs—are of limited use in predicting and interpreting
the spread of tracers in the ocean, even for advection- rather than diffusion-
dominated tracers, because LCS methods are not designed to take into ac-
count nonuniform initial distributions.

4.3.1. GLCSs using u-star approach
We now demonstrate one method for GLCS identification based on recent

work by [133, 101] which builds on earlier work on heat transport by [127,
128, 129, 130, 131, 132]. We show that when applied to the example in
Fig. 10, the resulting GLCSs are in better agreement with the tracer than
LCSs.

The u-star approach of [133] considers a tracer that evolves according to
the transport equation (17). Following [127, 128, 129, 130, 131, 132], they
define an effective velocity field u∗, in which the flux of a tracer is totally
advective, i.e., Φ = cu∗ [133]. Integrating the transport equation (17) over
a material volume V indicates that the amount of tracer inside any material
volume V advected by u∗ is conserved, because of the absence of sources
or sinks. Thus, by tracing the evolution of material contours in u∗ we can
make inferences about the spreading of a tracer. For example, if the invari-
ant stable and unstable manifolds exist in the u∗ flow field, they represent
transport barriers for the u∗-flow, and thus the amount of tracer should be
conserved within the lobes between these barriers, allowing us to predict and
interpret the process of tracer filamentation. In other words, LCS of u∗ are
GLCS relevant for tracer c. In choosing an appropriate u∗, the fact that the
flux can be augmented with any non-divergent vector field without chang-
ing the transport equation (17) has previously been noted in the ‘heatline’
approaches [132, 129], and a deviation from a physically-relevant state has
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Figure 10: Initial (4 Mar, 2015 – top left) and final (5 Apr, 2015 – bottom left) tracer field,
and the corresponding backward FTLE (top right) and FTLE* (bottom right) fields on 5
Apr, 2015. Calculations are based on AVISO gridded maps of absolute dynamic topogra-
phy (i.e., on geostrophic velocities) inferred from satellite sea surface height observations.

been used. The suggested formulation in [133] is to use20

u∗(x, y, t) =
Φ

c(x, y, t)
= v(x, y, t)

(

1− cb
c(x, y, t)

)

, (22)

in which v is the AVISO-obtained velocity field, and c the tracer density, at
locations (x, y) and time t, and cb = 1 is the background value of the tracer
density. Given u∗ as in (22), any method of LCS identification can be applied
to it. Here, we demonstrate the method using Lyapunov exponents, which
are arguably the most used LCS method in oceanography. FTLEs computed
using u∗ will be denoted FTLE*. In a way, this approach is similar in spirit

20This identifies the flux Φ := v(c − cb) for usage in the transport equation (17), with
c−cb capturing the deviation, as opposed to generic advection in incompressible situations
which would have Φ = cv.
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to that by [114], who estimated GLCSs (although the authors do not use
this terminology) for actively swimming particles by computing FTLEs for
a modified velocity field that was a sum of fluid and swimming velocities.

The bottom right panel of Fig. 10 shows the backward FTLE* field, which
was estimated numerically from grids of trajectories advected (in backward
time) by the numerically-constructed u∗, which in turn was computed using
eq. (22) from the numerically-computed tracer concentrations. Maximizing
ridges of FTLE*, which define tracer-relevant GLCS, are in a better agree-
ment with the final tracer distribution than FTLE ridges. Several features
are correctly captured by FTLE* that were not captured by FTLE. First,
the two arms of elevated tracer anomaly filaments align well with the strong
FTLE* ridges in the eastern part of the distribution. Second, the overall
shape and extent of the elevated tracer anomaly is confined to the area of el-
evated FTLE*. Third, most of the dominant hot spots of the tracer anomaly
agree fairly well with the height and sharpness of the FTLE* ridges, although
the agreement is not perfect. For example, the white ribbon cutting through
the tracer distribution near the Gulf Stream core is not captured by the
FTLE* field. Thus, this method is not definitive, with clear scope for im-
provement and/or development of other methods for addressing structures
in evolving density fields.

In summary, although LCSs have some value in predicting the spread of
tracers in the ocean, they should be used with extreme caution, especially
in problems involving localized tracer distributions, even for conservative
and advection-dominated tracers. Evolution of tracers that are subject to
diffusion, have strong sources and sinks, and/or are non-conservative and
decay in time, would be even more different from LCSs. Thus, GLCSs are
generally required to describe the evolution of tracers in the ocean. One
method for GLCS identification has been put forward that combines the
well-known FTLE technique with the recently-developed u∗-approach. The
resulting GLCSs are more relevant for tracers, and the method could be easily
generalized to account for diffusion and some forms of source/sink terms.

5. Concluding remarks

The concept of Generalized Lagrangian Coherent Structures (GLCSs) was
formulated in this article to capture important flow entities whose evolution
is linked to an unsteady velocity field v(x, t). This generalizes Lagrangian
Coherent Structure (LCS) methods in which the evolution is specifically of
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trajectories of ẋ = v(x, t). We have used the GLCS framework to encapsulate
a variety of methods which have been suggested to capture spatial “regions of
interest” and their time-evolution. Indeed, the presentation is consistent with
“coherent structures” as defined in other disciplines, e.g., pattern formation
in reaction-diffusion equations modeling biological phenomena.

We have argued that LCSs are a special case of GLCSs, but that in
general, GLCSs and LCSs may be different. This is inevitable, since the
GLCSs are associated with a variable (or variables) whose evolution may obey
a law different from the trajectories of ẋ = v(x, t). As such, any identified
GLCSs will depend on the particular law, how it is coupled to the velocity
field v(x, t), as well as an initial condition associated with the variable of
interest. We have illustrated these facts through numerical examples.

In addition to introducing the GLCS framework, we have discussed meth-
ods for LCS extraction in some detail. We have emphasized and illustrated
the fact that different LCS methods themselves often give different ‘results’
(cf. Figs. 4 and 5), which is because they each have different criteria. Thus,
we highlight the danger of reaching conclusions about properties which are
not explicitly sought by a particular LCS method. Additionally, we have in
Section 2.3 discussed a range of aspects that must be borne in mind when
using LCS diagnostics: the fact that LCSs are wedded to the time-interval
chosen, whether it is justifiable to think of the LCS structures as appropri-
ately time-parametrized, whether the LCSs are advected materially, whether
the diagnostic procedure is frame-independent, whether there is implied time-
periodicity when a genuinely finite-time approach is required, and the fact
that each LCS procedure inevitably uses some tolerances/conditions in its
numerical operation. While many studies apply an LCS method to deter-
mine ‘nice’ LCS structures, all these facts must be considered in evaluating
the suitability of the approach. And in particular, speculative conclusions
regarding other aspects not explicitly targeted by the LCS approach must be
avoided. This is certainly true of properties which we have labelled ‘GLCSs,’
in which co-evolving variables not necessarily addressed by an LCS method
are of interest.

One type of co-evolved variable of interest would be determining the
distribution of a scalar field for which an advective flux can be constructed
from the velocity field according to the transport equation (17). This forms
an important class of GLCSs, which includes advection-diffusion of fields such
as temperature or pollutant concentration. However, we have characterized
GLCSs as being associated with variables whose evolution is not necessarily
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confined to a governing law (17), but is subject to a more general evolution.
A particularly interesting connection between GLCSs and LCSs arises in

transfer operator methods, which as we shall now argue straddles the bound-
ary between the methods. In the standard ODE implementation of transfer
operators, (1) is used as the sole evolution equation, to help determine the
transfer operator numerically. All initial conditions are considered equal in
this approach. However, the transfer operator is actually associated with
a PDE—the Fokker-Planck equation—which is an advection-diffusion equa-
tion of the form (13). There are also subtle issues as to how this PDE, with
its diffusion term, relates to the ODE; this is associated with the singular
limit Pe → ∞ as opposed to simply setting Pe = ∞ (see [120, 88]). If using
evolution of this PDE, an initial density distribution must be specified; this
provides a weighting of x at the initial time which does not happen for the
ODE implementation. Using the PDE in this fashion would classify this as a
GLCS approach as opposed to an LCS one. Commonly, however, the PDE
approach is not what is used in extracting coherent structures, but rather the
ODE with unweighted initial conditions. The transfer operator then helps
determine forms of c0 satisfying ‘almost invariant’ propensities, as opposed
to having c0 specified as in our GLCS framework.

We have presented GLCSs as a useful umbrella for reviewing a range of
methods which continue to be developed for understanding coherent struc-
tures. In particular, GLCSs form an excellent framework for reviewing “stan-
dard” LCS methods (associated solely with ẋ = v(x, t)), as well as “extended”
methods that target variables whose evolution is linked to v. In reviewing
these methods, we have broadly discussed both theoretical and applied issues
associated with each method.
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Highlights for PHYSD_2017_213

- Comprehensively surveys Lagrangian Coherent Structure (LCS) methods

- Highlights that each LCS method provides different information, and has limitations

- Argues the need for generalizing LCS methods, and provides a general framework

- Provides examples from advecting and diffusing fluids, oceanography and microfluidics

- Discusses overarching issues relevant to LCSs and their generalizations
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