Generalized Latency-Insensitive Systems for
Single-Clock and Multi-Clock Architectures®

Montek Singh
Univ. of North Carolina
Chapel Hill, NC, USA

montek@cs.unc.edu

Abstract

Latency-insensitive systems were recently proposed by
Carloni et al. as a correct-by-construction methodology
for single-clock system-on-a-chip (SoC) design using pre-
designed IP blocks. Their approach overcomes the problem
of long latencies of global interconnects in deep-submicron
technologies, while still maintaining much of the inherent
simplicity of synchronous design. In particular, wires whose
latency is greater than a clock cycle are segmented using
“relay stations,” and IP blocks are made robust to arbitrary
communication delays.

This paper shows, however, that significant extensions
are needed to make latency-insensitive systems useful for
the practical design of large-scale SoC’s. In particular, this
paper proposes three extensions. The first extension allows
each synchronous module to treat its input and output chan-
nels in a much more flexible manner, i.e., with greater de-
coupling. The second extension generalizes inter-module
communication from point-to-point channels to more com-
plex networks of arbitrary topologies. Finally, the third ex-
tension is to target multi-clock SoC’s. The net impact of our
extensions is the potential for improved throughput, reduced
power consumption, and greater flexibility in design.

1. Introduction

Latency-insensitive systems [5, 6, 3] were originally pro-
posed for the design of single-clock SoC’s. A synchronous
module is said to be latency-insensitive if it can operate cor-
rectly in the presence of arbitrary delays on its input and
output channels. If any of the input or output channels is
not available, the module is stalled via clock gating until
all of its channels become available. As a result, latency-
insensitive IP blocks are easily composable, offering ease
of design reuse.

While Carloni et al.’s latency-insensitive approach has
been successfully used in the design of certain single-
clock SoC'’s, significant extensions are needed before it can
be successfully used for practical design of more general

+ This research was supported by NSF under CCR-0121547 and CCR-
0098072, by ARO under DAAD19-01-1-0485, by ONR/NRL under
N00014-01-1-0796, by SRC under 99-TJ-684, and by a UNC Faculty
Development Award and a UNC University Research Council Award.
The views in this document are those of the authors and do not neces-
sarily represent the official policies of the funding sources.

Michael Theobald
Carnegie Mellon University
Pittsburgh, PA, USA
theobald@cs.cmu.edu

single-clock systems, as well as for multi-clock systems. In
particular, one limitation of their approach is the assump-
tion that the data rates on all input and output channels of a
synchronous module are identical. Thus, all input channels
must be read, and all output channels must be written on ev-
ery clock cycle when the module is not stalled. As a result,
the unavailability of any input or output channel causes the
synchronous module to stall, even when that channel is ac-
tually not needed for the next operation, thereby limiting
system throughput. In addition, since a module is expected
to always produce all outputs, some of the outputs may con-
tain “garbage” or invalid data, which is unnecessarily trans-
ported. A second limitation of their approach is that it only
considers point-to-point interconnects. As this paper shows,
this limitation could also cause a loss of performance. Fi-
nally, their approach only considers single-clock systems,
and if it were directly used to implement a multi-clock sys-
tem, then the system’s throughput would be limited by the
throughput of its slowest synchronous module.

Contributions

This paper extends and generalizes the basic latency-
insensitive approach as follows:

1. More Flexible Synchronous Modules:
We provide a formal approach to specifying and
synthesizing wrappers that read and write only those
channels that are actually needed.

2. Arbitrary Communication Network Topologies:

We provide a communication network that breaks
away from the simple point-to-point paradigm. We
provide both synchronous and asynchronous (i.e.,
clockless) implementations, which only transport use-
ful (i.e., valid) data.

3. Handling Multiple Clocks:
We show that the new approach can be naturally
adapted for multi-clock systems using well-known
techniques for interfacing distinct clock domains.

The net impact of our extensions is the potential for im-
proved throughput, reduced power consumption, and
greater flexibility in design.

It is interesting to note that the communication strat-
egy used in our approach lies in-between that of the ba-
sic latency-insensitive approach and the recently proposed
network-on-a-chip (NoC) approach [1]. In particular, NoC’s

provide a higher level of communication abstraction, where
data is organized as packets, and sophisticated protocols
handle error recovery and flow control. The basic latency-
insensitive approach, however, is at a lower level than ours,
with the entire communication medium operating at a sin-
gle clock rate, and employing only point-to-point channels.
Our approach, in contrast, provides more general commu-
nication topologies and can handle variable clock rates, but
does not have the overhead of packet-based communication.

This paper is organized as follows. First, Section 2
gives background on the basic latency-insensitive ap-
proach. Then, Section 3 presents our new approach to
designing more flexible latency-insensitive modules. Sec-
tion 4 presents our extension of the communication net-
work to arbitrary topologies, for both single-clock as well
as multi-clock systems. Finally, Section 5 gives conclu-
sions and directions for future research.

2. Background: Latency-Insensitive Systems

Latency-insensitive systems were introduced by Carloni et
al. [5, 6, 3]. The key idea of this approach is to use clock
gating to stall a module whenever any of its communication
channels is unavailable, thereby making the module’s oper-
ation tolerant of arbitrary communication delays. Thus, the
computation performed by synchronous modules is effec-
tively decoupled from inter-module communication. This
decoupling is achieved by encapsulating the synchronous
modules inside specially-designed “wrapper” circuits. As a
result of this encapsulation, the synchronous blocks become
more modular, thereby facilitating design reuse.

Figure 1 shows how a module (“pearl™) is encapsulated
using a wrapper circuit (“shell”). On each clock tick, as-
suming all input and output channels are available, the syn-
chronous module consumes a data item from each input
channel, and generates a data item for each output chan-
nel. If any input channel is not ready with valid data, or
if any output channel is not ready to accept data, the syn-
chronous module is stalled by gating its clock.

Communication between the modules is achieved us-
ing point-to-point channels. Those wires whose latency is
greater than the target clock cycle time are segmented into
smaller parts using “relay stations,” so that the commu-
nication latency does not limit the clock rate. Unlike tra-
ditional buffering repeaters, relay stations are storage ele-
ments which are clocked. Thus, the communication latency
between any pair of modules is always an integral number
of clock periods.

The complete design flow consists of four basic steps:

1. Specification of synchronous components.
2. Encapsulation.

3. Physical layout, placement and routing.

4. Relay station insertion.

2.1. Alternative Approach: Pausible Clocking

An alternative approach to achieving latency-insensitivity is
to employ clock pausing (i.e., stretching the inactive clock
phase), instead of clock gating [12, 11].

Datain —»‘ } —»D— DataOut
= <
: = :
g vodn — vV 4 Pearl module | ——{ V" } voidou g
stopout =—{ A] —_A_J=—stopin
Dataln —-| — — DataOut
o ©
2 LA 3
£ £
g g
£ vodin — V voidout &
stopOut 4—@_/” Clock stopln
dataln —-| |

Channel 3

ﬁ

voidin —|

stopOut

Figure 1. Carloni et al's approach to latency-
insensitive design (from [4])

A significant disadvantage of the pausible clocking ap-
proach is the use of ring oscillators for generation of stop-
pable clocks, as opposed to crystal oscillators. Ring oscilla-
tors are prone to significant amounts of jitter—caused by
stopping and restarting of the ring oscillator—as well as
clock frequency variation due to temperature and voltage
variations [7]. As a result, the performance of synchronous
IP blocks may be severely degraded, since stable low-jitter
clocks are key to modern high-performance synchronous
design.

Due to the above disadvantages, we feel that pausible
clocking currently only has a limited potential for use in
high-performance SoC design. Therefore, our approach cur-
rently focuses on clock gating instead.

3. New Approach —Part I: More Flexible Syn-
chronous Modules

This section presents a generalized encapsulation method
to enable the design of more flexible synchronous mod-
ules. The new approach is motivated by an example in Sec-
tion 3.1. An intuitive explanation is given in Section 3.2. Fi-
nally, a formal presentation is given in Section 3.3.

3.1. Motivation

Carloni et al.’s approach uses a simplifying assumption: ev-
ery input channel, as well as every output channel, is ex-
ercised by a module on every clock tick. This assumption
about a module’s communication is overly restrictive: e.g.,
a synchronous DSP core may actually need only a subset of
its inputs and may generate data for only a subset of its out-
put channels. Thus, their approach may cause a significant
loss of throughput by generating more stalls than necessary.
The following example illustrates this limitation.

Consider the program fragment of Figure 2, which de-
scribes a simple system. Figure 3 shows one possible hard-
ware implementation of this specification, using a decom-
position of the system into three distinct modules: M1, M2
and M3. Module M1 corresponds to the while loop and

while (true) do
input k;
for (i=0; 1<10; i++) do
input x;
compute y=f (x,k);
output y;
end for
end while

Figure 2. Example 1

M1
(while)

k

M2

(for)

M3

Figure 3. A possible implementation of the
nested loops of Example 1.

provides the input k to M2. M2 corresponds to the for
loop, and M3 provides the input x to M2.

There is a key feature of this system that makes it diffi-
cult to derive an implementation using Carloni et al.’s ap-
proach. In particular, for every input item that M2 receives
from M1, ten data items are read by M2 from M3. Thus, af-
ter a data item is received by M2 from M1, no further com-
munication is needed between those two modules for the
next nine clock cycles. Carloni et al.’s latency-insensitive
modules cannot be directly used here because they exercise
every input and output channel on every clock tick.* There-
fore, it becomes necessary to modify their approach in order
to allow the handling of situations where only a subset of in-
put channels must be read. Likewise, writing to only a sub-
set of output channels must be handled.

3.2. Generalized Latency-Insensitive Modules

We now propose a modification of the wrappers that make
synchronous modules latency-insensitive, in order to han-
dle more general input—output behavior. This modification
directly addresses the issues raised in Example 1 (Figure 3)
above, i.e., avoids unnecessary stalling when unavailable in-
puts are not actually needed.

Our modification applies to the stall generation circuitry
inside the wrapper circuits. The inputs to the stall genera-
tion circuitry are the valid and ready signals from input and

1 Carloni etal.’s approach can be made to work in this scenario provided
M2 sends nine “garbage” data values to M1. However, this approach
may introduce additional critical paths into the system, thereby poten-
tially causing loss of performance. Moreover, transmitting unneces-
sary data values is wasteful of power.

valid synch

Y read o

module 2

<=_-""1""1 s

K] stall ' Tl = < c

Q i H g

£ i 1 : S

G i ! 2

S 3

5 &
o
£

stall logic
(combinational
= AND gate
(@)
synch

module e

=

@ 2

=4

2 o

5 5

£ 2
[3)

s o

a 7]
£

(b)

Figure 4. Generalization of the stall logic from
(a) simple combinational gate, to (b) FSM.

output channels, respectively. The outputs of the stall cir-
cuitry are: (i) the ck_enable signal, used to gate the mod-
ule’s clock input, and (ii) stall signals for the channels.

Figure 4 shows the wrapper circuits before and after
our modifications. In particular, Figure 4(a) shows a sim-
plified view of Carloni et al.’s wrapper circuit of Figure 1.
The stall logic consists of a single AND gate, which gener-
ates the ck_enable signal, which in turn is used to gate the
clock of the synchronous module. The ck enable signal is
de-asserted if any of the input or output channels is unavail-
able. Figure 4(b) shows the stall circuitry after our modifi-
cation. In particular, the combinational logic that generates
stalls is now replaced by a more sophisticated finite-state
machine (FSM). In addition, instead of only one stall sig-
nal, several decoupled signals are generated: a ck _enable for
the synchronous module, and a stall for each channel.

The generalization of stall logic to a state machine al-
lows us to treat input and output channels in a more flexi-

2 Note that our valid, ready, ck_enable and stall signals are actually
negations of the signals of Carloni et al. (see Figure 1).

gclock

Figure 5. Wrapper FSM Implementation.

*/0

bc/l ac/l @
c e bc ac
O
(s

@ (b) ©

X Y

Figure 6. Wrapper FSM Example.

ble manner. For example, for a given state, only a particu-
lar subset of the input channels may need to be read, and
only a subset of the output channels may need to be writ-
ten. The remaining channels, which are not read or written,
are ignored for the next clock tick; unavailability of these
channels does not generate stalls.

The generalization presented here has two key benefits.
First, a significant reduction in unnecessary stalls may be
obtained, since stalls are no longer caused by the unavail-
ability of those channels that are not currently needed. Sec-
ond, modules that are not currently producing needed out-
puts can be safely stalled, without fear of stalling their
neighbors. As a result, significant savings in power con-
sumption may be obtained.

3.3. Wrapper Specification and Synthesis

This section presents in detail the implementation of the
FSM for the wrapper circuit stall logic.

The stall logic is implemented as a synchronous Mealy
machine, as shown in Figure 5. It consists of three compo-
nents: (i) a block of combinational logic, which produces
the output signals and the next state values, (ii) a register
for latching the state bits, and (iii) a register for latching the
outputs. The output signals generated are actually the nega-
tions of the stall signals, i.e., they indicate when the mod-
ule’s clock should be enabled, and which of its channels
should be enabled. To simplify the discussion, we only con-
sider the enable signal for the synchronous module’s clock;
the enable signals for the channels are similarly generated.
In the figure, clock is the original ungated clock signal, and
gclock is its gated version which controls the operation of
the associated module.

The key idea of the FSM’s operation is as follows. In
a given state, if the inputs represent availability of all re-
quired channels, then the combinational logic sets the sig-
nal g to “1,” which implies that at the next tick of the clock
signal, gclock is asserted so that the module can compute.
On the other hand, if any required channel is unavailable, g
is set to “0,” which suppresses the generation of gclock, ef-
fectively putting the module to sleep.

There are two interesting features of Figure 5 that need
further explanation. First, the machine’s output g is latched
by a register on the negative clock edge before being used
to gate the module’s clock. This latching action is needed to
ensure that the gated clock, gclock, will be free of glitches;
latching is performed on the negative clock edge so that
the gating signal itself is available in time for the next ris-
ing clock edge. The second feature is that the register that
stores the state bits is controlled by gclock, not by the origi-
nal clock (clock). This has the effect of stalling the state ma-
chine whenever the associated module is stalled. As a re-
sult, “busy waiting” is eliminated from the state machine,
thereby simplifying its specification and implementation.

We now present an example to illustrate the specification
and synthesis of the wrapper state machine. Consider the
synchronous module of Figure 6(a), with two input chan-
nels, a and b, and one output channel, ¢. Suppose that the
module reads data from only one of the input channels, and
passes it out onto the output channel. Further suppose that
the module alternates between the input channels, starting
with channel a. Then, Figure 6(b) represents an FSM spec-
ification for the stall logic, where SO and S1 represent the
two states of the stall logic, and ac and bc represent the con-
ditions corresponding to the availability of channels a and
¢, and that of channels b and c, respectively. The arcs la-
beled xx/1 represent those conditions when the module’s
clock is enabled. Similarly, the arcs labeled */0 represent
the remaining conditions, i.e., when the module is stalled.

The use of the gated clock (i.e., gclock) to latch the state
bits, instead of using the original clock allows us to sim-
plify the FSM specification and implementation. In particu-
lar, since the clock is gated for the arcs labeled */0 in Fig-
ure 6(b), those arcs simply represent a stalling of the FSM
itself; hence the */0 arcs can be eliminated. Further, since
all of the remaining arcs have the FSM output value of “1,”
the FSM can be simply represented by Figure 6(c).

The FSM can be implemented using one state variable,
y. Let state SO be encoded as y=0, and S1 as y=1. If g rep-
resents the FSM output, and Y is the next-state value, then

the following logic equations implement the FSM:

g = Tyac+ ybc
Y = 7yac

Itis interesting to note a similarity between the proposed
generalization and a particular style of asynchronous con-
trol synthesis: burst-mode synthesis [10]. In a burst-mode
controller, each state is associated with one or more input
bursts, where each input burst represents events on a sub-
set of the controller inputs. When an input burst is received,
the controller changes state, and produces an output burst,
i.e., events on a subset of the controller outputs. Signals that
do not belong to a burst do not change their values when
that burst occurs.

Using this terminology, the subset of channels that are
read by a synchronous module constitute an input burst, and
the subset of channels written constitute an output burst. At
any given time, the availability of any one of the expected
input bursts allows the synchronous module to operate on
the next clock tick, and produce an output burst. If no input
burst is available, the module is stalled. Note that, if deter-
minism is required, more than one input burst should never
be available simultaneously; as a corollary, no input burst
should be a proper subset of another input burst.

It must be borne in mind that the similarity between the
wrapper FSM notation and the burst-mode notation is inter-
esting only for the purpose of modeling. The FSM is actu-
ally synchronous, so its implementation is much easier than
that of asynchronous controllers.

It is crucial to formally verify the system for certain
properties, e.g., the absence of deadlocks. In particular, the
specifications of the wrappers and that of the communica-
tion network together yield a system specification, which
can be model-checked.

4. New Approach — Part Il: Arbitrary Com-
munication Network Topologies
The basic approach to latency-insensitive design assumes
that all channels in the system are point-to-point channels.
The aim of this section is to augment the basic approach
with arbitrary communication network topologies. First, an
example is presented in Section 4.1 to show the limitations
of existing approaches, and provide motivation for the new
approach. Section 4.2 then presents our proposed approach.
The approach of this section can be applied both to
single-clock as well as multi-clock systems. The specifica-
tion styles for both cases are the same, and only the under-
lying low-level implementations are somewhat different.

4.1. Motivation
Let us consider an example from the multi-clock domain.

Example 2. Consider the architecture of a three-stage
stream processor, shown in Figure 7. Assume that fast mod-
ules (i.e., IP blocks) are available for the first and third
stages, but only half-rate modules are available for the sec-
ond processing stage. In order to achieve full throughput,
two modules must be used for the second stage, necessitat-
ing a split-merge type of interconnection. In this case, the

Stage 1

fast |:(>/ \@ fast
P

Figure 7. lllustrating the need for more so-
phisticated communication networks, e.g.,
those involving splits and merges.

Stage 2 Stage 3

split distributes one high-speed stream of data into two half-
rate ones, and the merge combines them back into a single
stream. If only simple point-to-point communication chan-
nels were allowed, the designer may be forced to use a sin-
gle module for the second processing stage, resulting in a
50% loss of throughput.

In general, we can state the following for any system
composed of Carloni et al.-style synchronous modules con-
nected by point-to-point communication channels:

System throughput will be limited by the rate of
the slowest synchronous module.

The validity of the claim is obvious if one notes that the
synchronous modules of Carloni et al. [6] are required to
stall if even a single input channel is not ready with valid
new data, or if even a single output channel is not ready to
receive new data. Note, however, that the actual throughput
obtained may even be less than the rate of the slowest mod-
ule because, in addition, the slowest module may be stalled
at times.

Due to the limitation of point-to-point communication as
pointed out above, a more general approach is needed for
the design of the communication network.

4.2. Generalized Communication Network

We propose a generalization of the point-to-point communi-
cation channels to networks with arbitrary topologies. Due
to space limitations, we only provide an outline of the ap-
proach here.

Our approach consists of using a number of specialized
blocks to implement the communication network. Examples
of such specialized blocks include: (i) forks, which repli-
cate one input data stream onto multiple output channels;
(i) splits, which distribute data from one input channel onto
multiple output channels; and (iii) merges, which combine
(i.e., interleave) multiple input data streams onto one out-
put channel. These specialized blocks can be arbitrarily con-
nected to form a rich set of communication topologies.

The communication network is implemented using syn-
chronous or asynchronous circuit techniques. In particular,
if the SoC has multiple clocks, then the communication
network is implemented as an asynchronous subsystem to
“glue” together the different clock domains. On the other
hand, if the SoC has only one clock, then the communica-
tion network could be built either asynchronously, or syn-

chronously using that same clock. An asynchronous net-
work implementation effectively results in a globally asyn-
chronous locally synchronous (GALS) system architecture.

If the communication network is implemented syn-
chronously, then the network is implemented by compos-
ing specialized synchronous modules (e.g., forks, joins,
etc.), each of which is specified and implemented us-
ing our approach to designing stallable synchronous mod-
ules (Section 3).

On the other hand, if an asynchronous implementation
style is chosen, the specialized blocks are available as hand-
shake circuits from several well-known asynchronous com-
ponent libraries (e.g., [2, 9]). In order to ensure robustness
against metastability, the circuits immediately interfacing
with the synchronous IP blocks are based on ideas from the
mixed-timing approaches of Chelcea and Nowick [8], and
Chakraborty and Greenstreet [7].

Instead of specifying the network using the specialized
blocks, higher level specifications can be used, followed by
direct translation into a network of specialized blocks. For
example, two derivatives of the CSP language, Tangram [2]
and Balsa [9], are especially suitable for specifying com-
plex communication networks. In addition, they provide au-
tomated translation into an asynchronous circuit-level im-
plementation.

Once the communication network is implemented, a fi-
nal step is needed to handle those long wires whose latency
is greater than the target cycle time of the system. In partic-
ular, such long interconnects are divided into multiple seg-
ments. If the implementation of the communication network
is synchronous, “relay stations” are inserted between seg-
ments [5, 3]. If the network is implemented asynchronously,
our approach inserts asynchronous FIFO cells.

More specifically, our approach consists of three steps:

1. Specify the communication network topology, either
using the specialized blocks, or using a high-level
CSP-like language such as Tangram or Balsa.

2. Choose between a synchronous and an asynchronous
implementation. For single-clock systems, either could
be used; for multi-clock systems, an asynchronous im-
plementation is used. If synchronous, implement as
stallable finite-state machines. If asynchronous, imple-
ment using predesigned handshake circuits available in
Tangram and Balsa.

3. Identify wires with long latencies. Segment them, and
insert relay stations (synchronous) or FIFO handshake
cells (asynchronous).

The net impact of the proposed generalization of the
communication network is two-fold. First, a significantly
greater degree of expressivity is offered for the specification
of inter-module communication. Second, the designer is of-
fered much greater freedom to “mix-"n-match” modules of
different speeds and different types of interfaces. For exam-
ple, the designer is able to use multiple instances of a slower
module to interface with a faster module, using split-merge
structures. As a result, better overall hardware utilization is
achieved, thereby obtaining higher system throughput.

Finally, we would like to mention that some alterna-
tives to point-to-point channels have already been reported.
These approaches are based on simple topologies such as
shared buses and rings [11], or simple forks and joins [13].
While these are steps in the right direction, they are never-
theless point solutions. Our proposed approach represents
an important first step towards providing a formal frame-
work for the specification and synthesis of arbitrary com-
munication networks.

5. Conclusions and Future Work

This paper presented three generalizations to extend the no-
tion of latency-insensitive systems. The first extension al-
lows much greater flexibility in interfacing a synchronous
module with its I/O channels, thereby allowing higher sys-
tem throughput through elimination of unnecessary stalls.
The second extension proposes more general communica-
tion network topologies than the currently popular point-to-
point interconnects. The third extension allows the handling
of multiple clock domains.

The suggested extensions have been introduced using
motivating examples which demonstrate their benefit. In fu-
ture work, we intend to apply our methodology to large-
scale SoC designs.

References

[1] L. Benini and G. DeMicheli. Networks on chips: A new SoC
paradigm. IEEE Computer, 35(1):70-78, 2002.

[2] K. v. Berkel, J. Kessels, M. Roncken, R. Saeijs, and F. Schalij. The
VLSI-programming language Tangram and its translation into hand-
shake circuits. In Proc. European Conference on Design Automation
(EDAC), pages 384-389, 1991.

[3] L. Carloni, K. McMillan, and A. Sangiovanni-Vincentelli. The the-
ory of latency insensitive design. IEEE Transactions on Computer-
Aided Design, 20(9), September 2001.

[4] L. Carloni and A. Sangiovanni-Vincentelli. Coping with latency in
SoC design. IEEE Micro, Special Issue on Systems on Chip, 22(5),
Sep/Oct 2002.

[5] L.P. Carloni, K. L. McMillan, A. Saldanha, and A. L. Sangiovanni-
Vincentelli. A methodology for correct-by-construction latency in-
sensitive design. In Proc. International Conf. Computer-Aided De-
sign (ICCAD), pages 309-315, Nov. 1999.

[6] L. P. Carloni, K. L. McMillan, and A. L. Sangiovanni-Vincentelli.
Latency insensitive protocols. In Computer Aided Verification, pages
123-133, 1999.

[7] A. Chakraborty and M. R. Greenstreet. Efficient self-timed inter-
faces for crossing clock domains. In Proc. International Symposium
on Asynchronous Circuits and Systems, May 2003.

[8] T. Chelcea and S. M. Nowick. Robust interfaces for mixed-timing
systems with application to latency-insensitive protocols. In Proc.
ACM/IEEE Design Automation Conference, June 2001.

[9] D.Edwardsand A. Bardsley. Balsa: An asynchronous hardware syn-
thesis language. The Computer Journal, 45(1):12-18, 2002.

[10] S. M. Nowick and B. Coates. UCLOCK: automated design of high-
performance unclocked state machines. In Proc. International Conf.
Computer Design (ICCD). IEEE Computer Society Press, Oct. 1994.

[11] T. Villiger, H. Kaslin, F. K. Girkaynak, S. Oetiker, and W. Ficht-
ner. Self-timed ring for globally-asynchronous locally-synchronous
systems. In Proc. International Symposium on Asynchronous Cir-
cuits and Systems, May 2003.

[12] K.Y.Yunand R. P. Donohue. Pausible clocking: A first step toward
heterogeneous systems. In Proc. International Conf. Computer De-
sign (ICCD), Oct. 1996.

[13] S. Zhuang, W. Li, J. Carlsson, K. Palmkvist, and L. Wanhammar.
Asynchronous data communication with low power for gals systems.
In IEEE International Conference on Electronics, Circuits and Sys-
tems, 2002.

