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Generalized lattice Wilson–Dirac 
fermions in (1 + 1) dimensions for 
atomic quantum simulation and 
topological phases
Yoshihito Kuno1, Ikuo Ichinose2 & Yoshiro Takahashi1

The Dirac fermion is an important fundamental particle appearing in high-energy physics and 

topological insulator physics. In particular, a Dirac fermion in a one-dimensional lattice system exhibits 

the essential properties of topological physics. However, the system has not been quantum simulated 

in experiments yet. Herein, we propose a one-dimensional generalized lattice Wilson-Dirac fermion 

model and study its topological phase structure. We show the experimental setups of an atomic 

quantum simulator for the model, in which two parallel optical lattices with the same tilt for trapping 

cold fermion atoms and a laser-assisted hopping scheme are used. Interestingly, we find that the model 
exhibits nontrivial topological phases characterized by gapless edge modes and a finite winding number 
in the broad regime of the parameter space. Some of the phase diagrams closely resemble those of the 

Haldane model. We also discuss topological charge pumping and a lattice Gross-Neveu model in the 

system of generalized Wilson-Dirac fermions.

�e quantum simulation1 of Dirac fermions is of fundamental importance because they are ubiquitous in theoret-
ical physics. Dirac fermions appear in high-energy physics2,3 and the condensed matter physics, e.g. topological 
matter4, graphene physics, etc. In recent years, topological phases have become one of the most interesting sub-
jects in physics, where Dirac fermions play an important key role5,6. In particular, a variety of one-dimensional 
(1D) lattice models have been extensively studied from the view point of nontrivial topological phases7–13. 
Experiments on cold atomic gases in an optical lattice have started to construct a “quantum simulator” of 1D 
topological models. Very recently, the experimental realization of a lattice topological model has been reported 
in ref.14. As one of the recent remarkable successes in experiments concerning 1D topological models, we note 
the realization of topological �ouless pumping15,16 and a ladder topological model in a synthetic dimensional 
optical lattice17.

Despite such experimental successes, the Dirac fermion model on a lattice called the Wilson-Dirac model18 is 
still a toy model in the sense that it has not been realized and not yet quantum simulated in experiments. �e 1D 
Wilson-Dirac model is the simplest and fundamental model that exhibits the essence of a topological insulator5. 
�us, it is important to propose a quantum simulation for it and investigate its topological properties. Herein, we 
introduce a 1D generalized Wilson-Dirac model (GWDM) as an important quantum simulator. We propose fea-
sible experimental setups for the 1D GWDM and investigate the phase diagram of the 1D GWDM theoretically, 
in particular, the locations of topological phases.

Schemes for realizing quantum simulators for the standard Dirac-fermion systems, using cold-atomic gases 
in continuum and lattice systems, have been already proposed. Some of them are a Raman coupling scheme19–22, 
a modulation method on a tilted lattice23, and an e�ective model of two-component cold atoms in a 1D optical 
superlattice24. �e above works focus on the standard Dirac fermions. In this work, we are interested in construct-
ing a quantum simulator for extended lattice Wilson-Dirac fermions, which include the ordinary Wilson-Dirac 
fermions on the lattice as a speci�c case and has a large parameter space to be realized by experiments. �e 
1D GWDM, which contains nontrivial phases in the hopping terms, is an interesting model by itself because 
these phases work as free parameters that change the physical properties of the ordinary Wilson-Dirac fermion 
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model, e.g. the symmetries of the Hamiltonian, the energy spectrum, the ground state including nontrivial top-
ological phases, etc. Actually, in the experimental setups for the 1D GWDM, the phases can be controlled by a 
laser-assisted hopping scheme, which is familiar in experiments on cold atomic systems.

In order to realize the Dirac fermions by cold atomic gases in an optical lattice, the greatest di�culty is the 
creation of the Dirac-gamma matrices from the nearest-neighbor (NN) hopping amplitudes of cold atoms. To this 
end, we use two di�erent internal states of a fermionic atom and two parallel “tilted” optical lattices. �is setup is 
an important platform for realizing the 1D GWDM. In particular, we explain a general scheme for the generation 
of Dirac-gamma matrices by using a laser-assisted hopping technique. Furthermore, to understand the general 
construction scheme, we propose a concrete set up by using 171Yb atoms. A�er that, we study the symmetry prop-
erties and the topological phases of the 1D GWDM and provide the expected ground-state phase diagrams. 
Finally, we put = 1  throughout this paper.

Results
Generalized Wilson-Dirac fermions. As explained in the introduction, we consider two internal states for 
a single fermion and denote them by Ψj = (aj, bj)

t at lattice site j. �e GWDM in a 1D spatial lattice is de�ned by 
the following Hamiltonian,
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where σz is the Pauli matrix, θa, θb, θ 
+, and θ− are site-independent phases, ∆ is an energy-o�set; and |Ja|, |Jb|, |Jab| 

and | |−Jab  are hopping amplitudes. �e di�erent internal states aj and bj originate from, e.g. an internal spin, and 
have di�erent energy levels. In this case, the energy splitting is nothing but a hyper�ne energy splitting, which can 
be created by the Zeeman e�ect in an external magnetic �eld.

We express the model in Eq. (1) in terms of the fermion creation and annihilation operators †a a( )j j  and †b b( )j j , 
as

= + + + ++ −H H H H H H , (6)
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i , and = | | θ− − −
J J eab ab

i . In the following section, we shall show feasible 
methods for constructing each term in the above Hamiltonian H g

GWDM
( )  in experiments on ultra-cold fermion 
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gases. Before detailing the theoretical proposal, we note that by setting the hopping amplitudes as | | = | | =J J ta b  
and | | = | | = ′+ −J J tab ab  and the phases as θa = 0, θb = π and θ θ π= − = −+ − /2, the Hamiltonian in Eq. (1) reduces 
to the (1 + 1) D version of the ordinary Wilson-Dirac fermion model18, in which the Dirac gamma matrices are 
given by γ0 = σz, γ1 = σy and γ5 = γ0γ1, respectively. It should be emphasized that the phase conditions, θa = 0, 
θb = π and θ + = −θ− = −π/2 can be realized in real experiments by tuning the incident angle of Raman lasers. 
Herea�er, we call these conditions the Dirac condition.

Theoretical proposal for quantum simulation. Let us explain the general setup scheme for the 
Hamiltonian in Eq. (1) by ultra-cold atomic gases. To this end, we use two di�erent internal states of a single fer-
mionic atom in an optical lattice. In particular, the most important problem is the creation of the generalized 
gamma matrices in the Hamiltonian H WDM

g
G
( )  given by Eqs (2)–(5). Generally speaking, the experimental setup 

consists of three steps: (i) prepare two di�erent internal states of a fermionic atom and set two parallel deep opti-
cal lattices with the same tilt. (ii) apply four types of laser-assisted hopping that generate the matrices in Eqs (2)–
(5) by using some excitation lasers in addition to the o�-resonant laser of the optical lattice, and (iii) tune the 
intensity and frequency of the excitation lasers and set the appropriate incident angle of the excitation lasers to 
realize the uniform phase condition.

In order to clarify the above setup, we shall explain each step in detail in the rest of this section.

Two parallel optical lattice. In our proposal, we �rst prepare the two internal states of the fermionic atom 
denoted by | 〉a  and | 〉b  and consider two 1D parallel optical lattices with the same tilt25,26. Each optical lattice can 
trap one of two states, | 〉a  or | 〉b . �en, we set the optical lattices su�ciently deep to suppress the natural hopping 
process between NN lattice sites. Here, we call the optical lattice trapping the state | 〉a  the “a-lattice” and the other 
optical lattice trapping the state | 〉b  the “b-lattice”. We apply the tight-binding picture to each optical lattice system 
and assume that the potential minimums of the two lattices exist at the same locations27. �e lattice site label j is 
used for the a- and b-lattices as shown in Fig. 1(a), i.e. the a- and b-lattices comprise a parallel optical lattice sys-
tem. In this system, by choosing two appropriate internal levels of the fermionic atom | 〉a  and | 〉b , an energy-o�set 
∆ab at site j can be generated. In the second-quantized tight-binding picture, the energy-o�set ∆ab leads to 

∑ −∆ † †a a b b( )i j j j j2
ab , where the tight-binding operators of | 〉a  and | 〉b  are regarded as the operators aj and bj de�ned 

in the previous section. �erefore, the energy-o�set part HspinOL of Eq. (7) is identi�ed as ∆ = ∆ab/2.

Four types of laser-assisted hopping. For the realization of the hopping terms in Eqs (8)–(11), we apply 
four types of laser-assisted hopping to the two parallel optical lattice system. Laser-assisted hopping is created by 
the Λ-shaped scheme explained in Methods. By using the two parallel lattices, which are tilted by the same 
amount by certain experimental techniques, the tilted energy di�erence ∆t between the NN lattice can be intro-

duced. We denote the four types of hopping corresponding to Eqs (8)–(11) by Λ
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Figure 1. (a) Two parallel optical lattice. Each lattice traps a di�erent internal state of fermion. �e two lattices 
have the same tilt. (b) Four types of hopping term. In the exchange hopping term denoted by the black and 
green dashed arrows, the fermionic atoms hop to a di�erent site in a di�erent optical lattice with changing the 
internal spin.
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gram shown in Fig. 2, where, | 〉aj , | 〉bj , |bj + 1〉, and | 〉−bj 1  are two di�erent internal states of an atom on lattice sites j, 
j + 1 and j − 1, respectively. �e energy splitting ∆ab between | 〉aj  and | 〉bj  is related to the on-site energy-o�set 
2∆ = ∆ab, as explained before. ω = ∆ + ∆+

ab ab t is the frequency di�erence of the two excitation lasers used in the 
laser-assisted hopping Λ

+b

a

j

j

1
. (For a detailed de�nition, see Methods.) ω = ∆ − ∆−
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As explained above, by applying the four types of laser-assisted hopping Λ
+a

a

j

j

1
, Λ

+b

b

j

j

1
, Λ

+b

a

j

j

1
 and Λ

−b

a

j

j

1
 to the two 

parallel optical lattices with the same tilt, we can design the hopping terms in Eqs (8)–(11). �erefore, we can 
produce a quantum simulator of the 1D GWDM.

Furthermore, controlling the parameters of the excitation lasers enables us to set the uniform phases θa, θb, θ 
+, and θ− and the uniform hopping amplitudes rather freely.

Concrete example using 171Yb. In general, the above theoretical proposal can be performed by using some 
atomic species, e.g. alkali atoms. As one candidate, we consider 171Yb atoms. In particular, we employ the two 
internal states of 171Yb, | S0

1 , = 〉F 1/2z  and | S0
1 , = − 〉F 1/2z  as two component fermionic state, i.e.
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�en, the energy splitting ∆ab can be generated and controlled by a uniform magnetic �elds, i.e. ∆ab → ∆ab(B0). 
Actually, the nuclear g-factor of 171Yb is 0.985; therefore, the value of ∆ab is set to be 75 kHz with a magnetic �eld 
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states | 〉 | 〉 | 〉A B E{ , , } in the Λ-shaped scheme. (See Methods.) Here, we show the selection of the 171Yb internal 
states in Table 1. Here, the (LA, LB) line in Table 1 expresses the pattern of polarization of the two excitation lasers. 
(�e excitation lasers with π or σ± polarization are considered here.) Λ

+b

a

j

j

1
 and Λ

−b

a

j

j

1
 can be controlled inde-

pendently. Furthermore, Λ
+a

a

j

j

1
 and Λ

+b

b

j

j

1
 can be independently controlled since the two excited states | P1

3 , 

= 〉F 1/2z  and | P1
3 , = − 〉F 1/2z  can be well separated on the order of 100 MHz with magnetic �eld having a reason-

able strength about 100 G. Figure 3 shows schematics of the four types of laser-assisted hopping corresponding to 
Table 1. �e energy di�erence between the two excited states and the natural widths of the two excited states are 
denoted by ωz, ΓE1

 and ΓE2
, respectively. �en, the detuning δ for each type of laser-assisted hopping is allowed to 

satisfy δ ωΓ Γ  ,E E z1 2
 since ω π =/(2 ) 100z  [MHz] and πΓ ∼/(2 ) 200E1(2)

 [kHz]. �is condition allows an 

independent laser assisted hopping scheme. �e mutual interference could be suppressed to be on the order of 
δ ω ./ 0 1z . �at is, the four types of laser-assisted hopping can be produced independently. Here, we comment 
that the overlap integral +

Jj j, 1, which is explicitly de�ned in Eq. (29) in Methods, depends on the shape and loca-
tion of the potential minimum of the Wannier functions in the P1

3  excited states, which are used in the four types 

E

Figure 2. Energy condition for realizing the laser-assisted hopping Λ
+b

a

j

j

1
 and Λ

−b

a

j

j

1
.



www.nature.com/scientificreports/

5SCIENTIFIC REPORTS |  (2018) 8:10699  | DOI:10.1038/s41598-018-29143-w

of laser-assisted hopping. Generally, to make +
Jj j, 1 have a �nite and reasonably large value, the location of the 

potential minimum needs to be set on the potential maximum of the 1S0 lattice28,29. Furthermore, the Wannier 
function of the excited states needs to be su�ciently broad so that the overlap integral has a su�ciently large 
value. To this end, the relation between the polarization of the 3P1 excited states, denoted by αP, and that of 1S0, 
denoted by αS, plays an important key role. If α α| | − | | < 0P S  and α α= −sgn( ) sgn( )P S , the above requirement is 
satis�ed. In fact, the Yb atom satis�es the conditions for typical wave-lengths of optical lattice lasers, e.g. 532 nm 
and 1064 nm, etc30,31. �erefore, the overlap integral between the 1S0 and 3P1 Wannier functions can be su�ciently 
large.

Phase diagram and topological phase. As a next step, we study whether or not the GWDM has non-
trivial topological phases. �e system contains the uniform phases θa, θb, θ

+, and θ−, then, we shall clarify their 
parameter regime corresponding to topological phases. In what follows, we regard θa, θb, θ

+, and θ− as free param-
eters. �e above phases are fully tunable in real experiments; see Methods.

To discuss the above problem, we first study the symmetries of the GWDM by using the 
symmetry-classi�cation scheme in refs32,33. �e symmetries of the system depend on the phases {θ}. We shall 
also obtain the energy spectrum of the GWDM on a �nite lattice with open boundary condition (OBC). �en, 
the spectrum is expected to exhibit zero-energy edge states in some parameter regime of the phases {θ}. �e 
existence of the zero-energy edge states is a direct signal of a nontrivial topological phase in the bulk system by 
the bulk-edge correspondence.

Hereafter for simplicity, we impose conditions for the hopping amplitudes in Eqs (8)–(11) such as 
| | = | | = | | = | | =+ −J J J J 1a b ab ab  as they do not change the physical results. �e above condition again can be realized 
in certain experimental setups34.

We consider the system under periodic boundary condition, which preserves the discrete translational sym-
metry. We �rst focus on the symmetries of the bulk Hamiltonian and also the bulk topological properties of the 
GWDM. �e bulk-momentum Hamiltonian Hbulk(k) is obtained from Eq. (1) as,

θ
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where we have taken the lattice spacing as the length unit. Under the Dirac conditions θa = 0, θb = π, and 
θ θ π= − =+ − /2, Hbulk(k) is just the bulk-momentum Hamiltonian of the ordinary Wilson-Dirac fermion:

σ σ σ= ∆ − + ≡ ⋅H k k k k( ) [ 2 cos ] [2 sin ] d( ) , (13)z xbulk

where = = ∆ −k d d k kd( ) ( , ) (2 sin , 2 cos )x z . �is is the base model of 1D topological insulator5 and belongs 
to the BDI class Hamiltonian. [See later discussion.] �en, the nontrivial topological phase can be characterized 
by the winding number Nw

6, which is obtained by integrating the vector trajectory of d(k) de�ned by,
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For a nontrivial topological phase, Nw = +1 or −1, whereas for a trivial insulating phase Nw = 0. In the param-
eter regime − ≤ ∆ ≤2 2, a nontrivial topological phase with Nw = +1 is known to exist5,6.

We shall also consider the �nite lattice system of the 1D GWDM with OBC later and show the existence of 
degenerate zero-energy edge states by diagonalizing the Hamiltonian of the 1D lattice system with the system size 
L = 100 (generally, we take L to be an even integer). �e zero-energy edge state is a direct signal of the existence 
of nontrivial topological phases.

Symmetries, topological phases and zero-energy edge modes in the 1D GWDM. We shall show 
how to construct topologically nontrivial Hamiltonians in the 1D GWDM, and provide the experimental condi-
tions for the laser setups to realize them. As classi�cation theory indicates32,33, a 1D model, which has nontrivial 
topological phases, belongs to the BDI or AIII class. �is means that the 1D model must at least possess chiral 
symmetry35. �e relevant symmetries are the time-reversal symmetry ( ) and charge-conjugation symmetry () 
for the classi�cation scheme. �e system has time-reversal symmetry if and only if the Hamiltonian H satis�es the 
following condition;

Λ
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1
Λ
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1
Λ
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1

| 〉A S0
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1 , Fz = 1/2 S0

1 , Fz = 1/2

| 〉B S0
1 , Fz = 1/2 S0

1 , Fz = −1/2 S0
1 , Fz = −1/2 S0

1 , Fz = −1/2

| 〉E P1
3 , Fz = 1/2 P1
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(LA, LB) (π, π) (π, π) (σ(π), π(σ)) (σ(π), π(σ))

Table 1. Four types of laser-assisted hopping by using the hyper�ne structure of 171Yb.
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T K K = =† † ⁎U H U U H U H: , (15)T T T T

where UT is a unitary operator and  is the complex-conjugation operator. Similarly, for charge-conjugation 
symmetry (particle-hole symmetry),

C K K = = −† † ⁎U H U U H U H: , (16)C C C C

where UC is again a unitary operator. �e BDI class has   and  symmetries with = +12  and  = +12 , whereas 
the AIII class has only S T C≡ ⋅  symmetry, which is called chiral symmetry. Under , k and θ’s transform as (k, 
θ’s) → −(k, θ’s). �en, it is seen that the Hamiltonian of the ordinary Wilson-Dirac fermion [Eq. (13)] has both 
time-reversal and charge-conjugation symmetries with UT = σz and UC = σx, respectively. From the time-reversal 
and charge conjugation operators, the chiral operator is directly obtained as US = σy.

To search the parameter regime of the chiral symmetric Hamiltonian in the 1D GWDM, we �rst assume the 
Dirac condition, i.e. θ π= −+ /2 and θ π=− /2, but relax θa and θb as free parameters. �en, we show the typical 
behavior of the energy spectra of the �nite lattice system including the edge modes. In Fig. 4(a), we plot the 
energy spectra for θa = 3π/4 and θb = 0 by varying the parameter ∆. �e results show the spectrum of the edge 
modes is located at the center of the spectra. A close look at the calculations reveals that the edge modes have 
non-vanishing energies, except for ∆ = 0 and the spectrum tilts along ∆. �is indicates that the present system 
does not have chiral symmetry, except in the case of ∆ = 0.

To study further, by �xing θb = 0 and ∆ = 0, we calculate energy spectra by varying the parameter θa. �e 
results are shown in Fig. 4(b). We �nd interesting behavior in the regimes of π θ π− ≤ ≤ − /2a  and π θ π≤ ≤/2 a , 
i.e. the zero-energy edge modes survive as long as the bulk-gap does not close.

It is instructive to visualize the energy spectrum of the bulk system obtained from the bulk Hamiltonian 
Hbulk(k) in Eq. (12). For arbitrary θa and θb with ∆ = 0, the bulk energy spectrum E±(k) is obtained as,

j
j+1

j
j+1

j
j+1 j

j-1

Figure 3. Schematics of four types of laser-assisted hopping in the 171Yb atom system. �e energy di�erence 
between the NN sites (j and j ± 1), and that between Fz = 1/2 and Fz = −1/2 in the S0

1  manifold at the same site 
are ±∆t and ∆ab, respectively. �e detunings for the excited states take the same value δ.

Figure 4. (a) Energy spectra for θa = 3π/4 and θb = 0. (b) Energy spectra for ∆ = 0 and θb = 0.
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θ θ θ θ

θ θ

= − + + + ± + + +

− + + − .

±E k k k k k

k k k

( ) (cos( ) cos( )) [(cos( ) cos( ))

4 cos( )cos( ) 4sin ] (17)

a b a b

a b

2

2 1
2

when the �rst term on the right-hand side (RHS) of Eq. (17) is non-vanishing, the spectrum is asymmetric, i.e. 
≠ −+ −E k E k( ) ( ), this means that the spectrum is non-relativistic. On the other hand, once the �rst term vanishes, 

the spectrum is symmetric around E = 0, i.e. = −+ −E k E k( ) ( ). �e spectrum is the relativistic (massive) Dirac 
type. From this consideration, in order to make the 1D GWDM chiral symmetric, we should impose a condition 
such as

θ θ π= ± . (18)a b

herea�er, we call Eq. (18) the chiral symmetry (CS) condition. �is observation of the bulk energy spectra gives 
an important insight about the parameter regime of the topologically nontrivial Hamiltonian in the GWDM as 
well as the above numerical results of the edge modes in the �nite system.

Let us focus our attention on the CS case of the bulk Hamiltonian by setting θa = θb ± π in Eq. (12);

θ σ θ θ σ

θ θ σ

= ∆ − + + − + + +

+ − + + + .

+ −

+ −

H k k k k

k k

( ) [ 2 cos( )] [ cos( ) cos( )]

[ sin( ) sin( )] (19)

S
a z x

y

bulk
C

As the Hamiltonian H k( )S
bulk
C  in Eq. (19) contains all three components of the Pauli matrices, one may think 

that it cannot be chiral symmetric unless further conditions are imposed. However, we shall show that it is not 
only chiral symmetric but also time-reversal and charge-conjugate symmetric. To this end, we introduce the 
rotated Pauli matrix σ ρ ( )j  de�ned as follows (see Methods):

σ ρ
ρ
σ σ

ρ
σ

σ ρ ε σ ρ

≡


−













= +

 i i( ) exp
2

exp
2

cos sin , (20)

j i j i

j ijk k

where εijk is the totally anti-symmetric tensor, i.e. εxyz = 1, etc. By using the rotated Pauli matrix σ ρ ( )x , it can be 
shown that H k( )S

bulk
C  is expressed as,

θ σ

θ θ
σ
θ θ

= ∆ − +

+









 −

− 














+ 



.

+ − + −



H k k

k

( ) [ 2 cos( )]

2 cos
2 2 (21)

S
a z

x

bulk
C

�is expression shows that the system Hamiltonian H k( )S
bulk
C  possesses time-reversal and charge-conjugation 

symmetries. In fact, for time-reversal symmetry,

θ θ σ= ++ −U iexp[ ( ) ], (22)T z

and for charge-conjugation symmetry,

σ θ θ σ= + .+ −U iexp[ ( ) ] (23)C y z

We note that from the above consideration, the CS condition is an important condition for the BDI class 
bulk-momentum Hamiltonian. �at is, the CS condition in Eq. (18) is a su�cient condition for the BDI class 
in our quantum simulator of the 1D GWDM. �is means that we do not need to implement the ordinary 1D 
Wilson-Dirac fermion in the atomic simulator to simulate the topological properties of the Dirac model.

We turn to the investigation of the phase diagram including nontrivial topological phases under the CS con-
dition. It is expected that interesting results are obtained because the additional phase parameters enlarge the 
regime of topological phases from that of the standard Wilson-Dirac model.

By shi�ing the wave vector as θ θ→ + −+ −k k ( )/2, the Hamiltonian H k( )S
bulk
C  is expressed as

θ
θ θ

σ

σ θ θ

=





∆ −




 + +

− 










+ + .

+ −

+ −

H k k

k

( ) 2 cos
2

[2 cos ] (( )/2) (24)

S
a z

x

bulk
C

�en, the Bloch vector is given by the following general form with an angle α:

α= ≡ ∆ − −k d k d k k kd( ) ( ( ), ( )) (2 cos , 2 cos( )),x z

where α θ θ θ= − − −+ −( )/2a  in the present case. We calculate the energy spectrum of the 1D GWDM on the 
�nite lattice. In particular, we focus on the zero-energy edge modes. By diagonalizing the system Hamiltonian, we 
obtain the phase diagram including nontrivial topological phases in the (α − ∆) plane. We have used the exist-
ence of the zero-energy edge modes to identify topological phases.
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�e obtained phase diagram for θ θ= −+ − is shown in Fig. 5(a) and a typical energy spectrum in the �nite 
lattice system is shown in Fig. 5(b). In this case, the rotated Pauli matrix reduces to the original one, i.e. 
σ θ θ σ+ →+ − (( )/2)x x. As expected, there exist two topologically nontrivial phases, and they are labeled by the 
winding number Nw = ±1. Interestingly, the obtained phase diagram is similar to that of the Haldane model36,37. 
Analytically, the phase boundaries between the trivial (Nv = 0) and nontrivial topological phases (Nw = ±1) are 
given by ∆ = ±sinα. Compared to the Haldane model, the present topological phases are characterized by Nw and 
not the Chern number, whereas α seems to correspond to the “�ux parameter” of the Haldane model. At α = π/2 
or α = 3π/2, if θa = 0, the 1D GWDM reduces to the ordinary 1D Wilson-Dirac model. �e typical trajectories of 

α= ≡ ∆ − −k d k d k k kd( ) ( ( ), ( )) (2 cos , 2 cos( ))x z  obtained by sweeping k are plotted in Fig. 5(c), which gives 
the winding number Nw, and in the Boch vector space, (dx, dz) = (0, 0) corresponds to the gap closing point. From 
this plot, we can obtain the winding number Nw [Eq. (14)] from the bulk momentum Hamiltonian.

It is interesting to see the phase diagrams corresponding to the “nontrivial” case with the rotated Pauli matrix 
σ θ ( )x  in [Eqs (19), (24)]. To this end, we �x θa = 0, θb = π and θ+  = 0; then, the remaining parameters are θ− and 
∆. �e obtained phase diagram is shown in Fig. 6(a). �e 1D GWDM on the �nite lattice has a topological phase 
diagram including a broad regime of nontrivial topological phase with Nw = +1, and there exist clear edge modes 
as seen in Fig. 6(b). From the results in Figs 5 and 6, we conclude that if the CS condition Eq. (18) is satis�ed, 
nontrivial topological phases form in rather broad parameter regimes. �is fact exhibits �exibility for the actual 
experimental realization of the 1D GWDM as a quantum simulator of a 1D topological insulator.

Topological charge pumping and the realization of the 1D lattice Gross-Neveu model. A topo-
logical pump can be realized in the 1D GWDM by adding a CS breaking term. As an example, the 1D GWDM, 
which satis�es the CS condition in Eq. (18) and also θ θ=+ −, can be a topological charge-pump model by adding 
a σy-channel term to the GWDM. Explicitly, the σy-channel term associated with σ θ+ ( )y  is given by

∑ σ θ= Ψ Ψσ
+†H M ( ) ,

(25)j
j y jy

where M is the coupling constant of the σy channel. In experiments, this term can be created by using another 
laser-assisted hopping scheme, as shown in Methods. With the term in Eq. (25), the bulk-momentum 
Hamiltonian of Eq. (21) is changed to

θ σ σ θ σ θ= ∆ − + + + .+ + H k k k M( ) [ 2 cos( )] [2 sin ] ( ) ( ) (26)a z x ybulk
P

As we vary the parameters ∆ and M adiabatically with the period T, such as

π π∆ → ∆M t T M t T( , ) ( cos(2 / ), cos(2 / ))

Figure 5. (a) Phase diagram of the 1D GWDM for θa = θb ± π, θ+ = −θ−, and α ≡ θ− − θa. �e phase diagram 
has a similar structure to that of the Haldane model on a honeycomb lattice. ∆ and α are free parameters. 
(b) Energy spectra with a zero-energy edge state at α = π/4. (c) Hamiltonian trajectories when sweeping k. 
θa = θb ± π, θ+ = −θ−, and α ≡ θ− − θa. (dx, dz) = (0, 0) is the gap closing point in our model.
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[here, T 1 for the adiabatic condition], then the model in Eq. (26) is expected to exhibit topological charge 
pumping phenomena. �e phenomena can be observed by measuring the bulk-particle current, which corre-
sponds to a shi� in the center of the Wannier function at an optical lattice site15,16. A similar argument can be 
applied to a more general case of the 1DGWDM.

It is interesting to include the interactions between atoms, in particular, those between the di�erent internal 
states. �e interspecies interactions such as,

∑ † †Va a b b
j

j j j j

with a coupling constant V can be expressed in terms of spinor notation Ψj as,

∑ ∑ γ= = Ψ Ψ .† † †V Va a b b
V

2
( )

(27)j
j j j j

j
j jint 0

2

�en, the model HWDM + Vint is nothing but the lattice version of the Gross-Neveu model38, which plays an 
important role in quantum �eld theory and elementary particle physics. Even in (1 + 1) D, the Gross-Neveu 
model has a nontrivial phase diagram with a phase transition. A similar model to the above has been proposed in 
ref.24 by using an optical superlattice. In real experiments, 173Yb atom, for example, is a candidate, which has �nite 
s-wave scattering length between the two di�erent internal states in S0

1 , whereas the 171Yb atom has a much 
smaller on-site interaction. Although adding the interaction term disturbs the conditions of lasers in laser-assisted 
hopping, the �ne-tuning of lasers may allow one to realize a quantum simulator of the Gross-Neveu model.

Discussion
In this work, we theoretically proposed the realization of the 1D generalized Wilson-Dirac Hamiltonian in a 
tilted optical lattice. A combination of two parallel optical lattices with the same tilt and laser-assisted hopping is 
employed for the atomic quantum simulation of the system. As a concrete example, we suggested 171Yb fermionic 
atom and also the candidates of energy levels to be used in laser-assisted hopping. �e model can be a quantum 
simulator of a 1D topological insulator.

Next, we studied the GWDM from the view point of symmetry classi�cation theory, which plays an impor-
tant role in searching for topologically nontrivial phases. Interestingly enough, we found that the CS condition 
is a su�cient condition that makes the 1D GWDM belong to the BDI class, and we veri�ed this observation by 
numerically calculating the energy spectra and winding number. �is result is important as it shows the �exibility 
and versatility of the 1D GWDM, i.e. we do not need to create the exact 1D Wilson-Dirac model in experiments 
as long as we focus on constructing a quantum simulator of a 1D topological insulator.

We obtained the phase diagrams of the model including nontrivial topological phases, and found that some of 
them have a feature similar to that of the Haldane model.

Finally, we showed that the 1D GWDM possibly exhibits the topological charge pumping if the rotated 
σy-channel is included in this model. We also suggested that by adding inter-species interactions, the model 
can be a quantum simulator of the lattice version of Gross-Neveu model38. Analysis of the 1D GWDM with 
many-body interactions is an important subject and is expected to lead to richer nontrivial phases. We hope 
that the proposal in this work will be used for the realization of atomic quantum simulators of 1D Dirac fermion 
physics for observing, e.g. the Zitterbewegung phenomena in lattice systems23,39–42, and other related models22,43.

Figure 6. (a) Phase diagram of the existence of the zero-energy edge state for θa = θb ± π = 0 and θ + = 0. θ− and 
∆ are free parameters. (b) Energy spectra for ∆ = 1
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Methods
Laser-assisted hopping: General case. To generate the hopping terms in Eqs (8)–(11) in the 1D GWDM, 
we use excitation lasers in addition to the optical lattice lasers and generate laser-assisted hopping17,28,34,44–50. �is 
method is the standard method to create NN hoppings with a nontrivial phase. In general, three states with dif-
ferent energy levels are considered; then, laser-assisted hopping is generated by using Λ-shaped scheme through 
Rabi coupling49. Here, we explain the single Λ-shaped scheme proposed in refs28,45,51,52.

First, as shown in Fig. 7, we consider two quantum states with di�erent energy levels and di�erent positions 
denoted by | 〉A  and | 〉B , and one excited state | 〉E . �e energy gap between | 〉A  and | 〉B  is denoted by ωAB, and the 
energy gaps between | 〉A  and | 〉E , and between | 〉B  and | 〉E  are denoted by ωAE and ωBE, respectively. �en by using 
two excitation lasers LA and LB, we can couple | 〉A  and | 〉B  to | 〉E . Here, LA(B) is set at the detuned-frequency ωAE(BE) 
− δ, where δ is the detuning with δ ω AE BE( ) and δ Γ E, where ΓE is the natural width of | 〉E , and has the wave 
vector kA(B), which is determined by ω δ| | = − ck ( )/A B AE BE( ) ( )  (c is the speed of light). From the two excitation 
lasers, Rabi coupling can be generated through an electric dipole interaction. �e Rabi couplings are denoted by 
ΩAE and ΩBE. In this setup, we can estimate the e�ects of the excited state | 〉E  by using the second-order perturba-
tion analysis. Consequently, the coupling between | 〉A  and | 〉B  is e�ectively generated. In the single particle picture, 
the coupling constant between | 〉A  and | 〉B  in the rotating frame is given by 

δ

Ω ′ Ω ′
4

AE BE . A detailed calculation is 

shown in Supplementary Materials.
Next, the single Λ-shaped scheme is applied to a 1D tilted deep single optical lattice, and we consider 

laser-assisted hopping. �e lattice tilt and deep lattice-depth suppress the natural tunneling between NN lattice 
sites. �e lattice tilt can be engineered, e.g. by using a magnetic �eld gradient, an electric �eld (light-shi�) gradi-
ent and gravity, and leads to an energy di�erence ∆t between each pair of NN lattice sites. �en, the application 
of LA and LB to the entire system triggers a Λ-shaped transition of each NN lattice sites. �erefore, if we put 
non-interacting atoms in the 1D lattice, the tight-binding model is e�ectively given by

∑= + . .+ +
 †H J g g( h c ),

(28)

nd g

j
j j j j

2 ( )
, 1 1

∫δ
=
|Ω′ ||Ω′ |

× − −δ
+ +

⋅ ⁎J d W e W
4

r (r r ) (r r ),
(29)j j

AE BE
j j, 1 1

k r

where †g g( )
j j

 is a creation (annihilation) operator of an atom on lattice site j, and +
Jj j, 1 is a complex hopping 

parameter determined by a localized wave function ≡W w x w y w z(r) ( ) ( ) ( )ws . Here, wws(x) is the Wannier-Stark 
state52,53, determined by the tilted optical lattice and, w(y) and w(z) are the Wannier states, determined by the y- 
and z-direction optical lattices, which create a strong con�nement potential creating a 1D system. δk is de�ned as 
δk = kA − kB. By appropriate tuning of the incident angles of the excitation lasers, δk can be uniform along the 1D 
lattice. Here, it is noted that in Eq. (29), if we set ω ω− ∼ ∆BE AE t, the tilt energy di�erence ∆t between NN sites 
does not appear owing to the rotating wave approximation (RWA) with the rotating frame of ωAB

34. �e hopping 
terms in Eq. (28) are a basic ingredient for the creation of the hopping terms in Eqs (8)–(11).

Uniform phase creation. �e phase created when in applying laser-assisted hopping is spatially dependent 
since the phase is determined by δk as in Eq. (29). However, since our target model is 1D, if we prepare a three 
dimensional cubic optical lattice, 1D optical lattice chains with uniform phases are created by making the remain-
ing lattice potential su�ciently deep to con�ne atoms with many 1D tubes. When the direction of 1D tube in this 
lattice con�guration is regarded as the x-direction, the condition δ = − −k k k kk (0, , )A

y
B
y

A
z

B
z  leads to a uniform 

Figure 7. Λ-shaped schema.
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phase along the x-direction, even though the value of the uniform phase of each tube is di�erent. Figure 8 shows 
schematics of incident lasers for the laser-assisted hopping with the uniform phase. �e blue ellipses represent a 
1D gas trapped in two parallel optical lattice. �e le� panel shows two types of laser-assisted hopping, Λ

+a
a

j

j

1
 and 

Λ
+b

b

j

j

1
. Similarly, the right panel shows two types of laser-assisted hopping, Λ

+b

a

j

j

1
 and Λ

−b

a

j

j

1
. Both cases create the 

hopping with the uniform phase along the x-direction.

Rotational transformed Pauli matrix. �e Pauli matrix can be transformed by performing a rotational 
transformation in the spin space. �e full rotation of the spin space is determined by two rotational angles. In 
general, the rotated Pauli matrix σj along the i-component spin (i = 1(x), 2(y), 3(z)) axis is given by a formula 
incorporating the rotational angle ρ:

σ ρ σ σ ρ ε σ ρ≡ = + .ρσ ρσ− e e( ) cos sin (30)j
i

j
i

j ijk k
/2 /2i i

If one takes (i, j, k) = (3, 1, 2), and sets ρ φ= , the rotated x- and y-component Pauli matrices rotated around 
the z-spin axis are given as

σ φ ≡












ϕ

φ−
 e

e
( ) 0

0
,

(31)
x

i

i

σ φ ≡






− 




.

φ

φ−
 ie

ie
( ) 0

0 (32)
y

i

i

�e rotated sigma matrices (σ φ ( )x , σ φ ( )y , σz) also satisfy the SU(2) commutation relation. By the complex 
conjugate transformation ,

 σ φ σ φ= − . ( ) ( ) (33)x x
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