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INTRODUCTION

Toric quasifolds are highly singular spaces that extend simplicial toric
varieties to nonrational fans. They were first introduced in the symplec-
tic category [17, 18], by means of a generalization of the classical Delzant
construction of symplectic toric manifolds [10]. Complex toric quasifolds,
on the other hand, first appeared in [2] and follow the construction of sim-
plicial toric varieties as complex quotients given by Audin in [1]. Toric
quasifolds provide an interesting class of examples of diffeological spaces:
the notion of diffeological quasifold was introduced, jointly with Iglesias–
Zemmour, in [14] and related to that of quasifold groupoid by Karshon–
Miyamoto in [15].

Quasifolds are locally the quotient of a manifold modulo the action of a
countable group. If the countable groups are all finite, quasifolds are orb-
ifolds; if they are all trivial, quasifolds are manifolds. Similarly to what
happens for manifolds, in order to define a quasifold structure we need
an atlas, namely a cover by mutually compatible local models. We have
shown in [2] that every n–dimensional complex toric quasifold has a finite
atlas whose local models are given by Cn modulo the action of a countable
subgroup of (S1)n. Now, recall from Danilov [9, Section 0.2] that a smooth
toric variety is characterized by the fact that it is covered by a finite number
of copies of Cn, with changes of charts expressed in terms of Laurent mono-
mials. In this article, we introduce generalized Laurent monomials and we
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prove that the changes of charts of toric quasifolds can be expressed, simi-
larly to what happens in the smooth case, in terms of generalized Laurent
monomials.

This allows for the possibility of defining toric quasifolds directly, by
starting with a collection of complex quasifold models and by gluing them
together by means of generalized Laurent monomials, thus extending what
was originally done for smooth toric varieties [11]. We plan to address this
matter and its implications in future work.

The article is structured as follows. In Section 1, we define generalized
Laurent monomials for local quasifold models. In Section 2, we recall the
construction of a complex toric quasifold, we describe the canonical affine
atlas and write the chart transitions in terms of generalized Laurent mono-
mials. Finally, in Section 3, we compute the monomials in a number of
interesting examples in dimensions 1, 2, and 3.

1. GENERALIZED LAURENT MONOMIALS

The goal of this section is to show that, in the quasifold setting, we can
make sense of the notion of Laurent monomials with real exponents.

Let us consider, first of all, an example of countable group that will be of
particular relevance for us, that of a quasilattice. We recall from [17, 18] that
a quasilattice Q in Rn is an additive subgroup of Rn given by the Z–span of
a finite generating subset of Rn. Notice that a quasilattice is a lattice if, and
only if, it is generated by a basis of Rn.

Let us now describe a quasifold of one chart which provides the local
model for toric quasifolds. First of all, write the exponential mapping from
the Lie algebra Cm to the torus (C∗)m as follows:

exp: Cm −→ (C∗)m
(z1, . . . , zm) 7−→ (e2πiz1 , . . . , e2πizm).

We denote exp also its restriction to the Lie algebra Rm of Rm/Zm = (S1)m.
If Q ⊂ Rn is a quasilattice, then Γ = exp(Q) is a countable subgroup of

Rn/Zn = (S1)n. We consider the quasifold on one chart

Cn/Γ.

We are now ready to introduce the generalized Laurent monomials. Con-
sider a = (a1, . . . , an) ∈ Q. If l ∈ {1, . . . , n} and [z1 : · · · : zn] ∈ (C∗)n/Γ,
then the class [za1l : · · · : zanl ] is well defined in (C∗)n/Γ. In fact, if we write

zl = e2πi(xl+hl+iyl),

with hl ∈ Z, then

zail = e2πiai(xl+hl+iyl).

Notice now that exp(hla) ∈ Γ.
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Similarly, consider a subset of indices I ⊆ {1, . . . , n} of cardinality k and
take al = (a1l, . . . , anl) ∈ Q, l ∈ I . Then the class[∏

l∈I
za1ll : · · · :

∏
l∈I

zanll

]
is well defined in (C∗)n/Γ. We call the single terms∏

l∈I
z
ajl
l , j = 1, . . . , n

generalized Laurent monomials.

2. THE CANONICAL ATLAS AND THE GENERALIZED LAURENT
MONOMIALS

2.1. Fans. Let us recall some basic facts on fans. For further details, we
refer the reader to Cox et al. [8] and Ziegler [21].

A fan Σ in Rn is a collection of strongly convex polyhedral cones in Rn,
such that each nonempty face of a cone in Σ is itself a cone in Σ, and such
that the intersection of any two cones in Σ is a face of each.

The cones of dimension n are called maximal cones, while the cones of
dimension 1 are called generating rays.

An important example of fan is the normal fan Σ∆ of a convex polytope
∆. It is the fan whose generating rays are inward pointing and orthogonal
to the polytope facets. The rays are grouped to generate all the cones of
the fan following the combinatorics of the polytope faces and we have an
inclusion–reversing bijection between cones in Σ∆ and faces of ∆.

Each cone of a fan is spanned by a subset of a set of generating vectors
X1, . . . , Xd. The fan is called simplicial if, for each cone, these vectors are
linearly independent. The normal fan of a convex polytope Σ∆ is simplicial
if, and only if, the polytope ∆ is simple. Consider a simplicial fan. Then, for
each maximal cone σ, there is a subset Iσ ⊂ {1, . . . , d} of n indices, such that
this maximal cone is generated by Xi, i ∈ Iσ. The faces of σ are in bijective
correspondence with the subsets of the set of indices Iσ, the 0–dimensional
cone of Σ corresponding to the empty set.

The support |Σ| of a fan Σ is the union in Rn of its cones. We will be
interested in fans that have convex support of full dimension; this implies
that |Σ| is the union of the maximal cones of Σ. A notable example is the
case of a complete fan, namely a fan whose support is the whole space Rn
like, for instance, the normal fan of a convex polytope.

A fan Σ in Rn is said to be rational if there exists a lattice L ⊂ Rn such that
the intersection of L with each generating ray of Σ is nonempty. A convex
polytope ∆ is said to be rational if its normal fan Σ∆ is.

We are interested in fans and polytopes that are not rational. In this
context, it is convenient to introduce a different notion. A fan Σ in Rn is said
to be quasirational with respect to a quasilatticeQ ⊂ Rn if the intersection of
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Q with each generating ray of Σ is nonempty. A convex polytope ∆ is said
to be quasirational if its normal fan Σ∆ is.

2.2. The construction of complex toric quasifolds. We recall from [2, The-
orem 2.2] the construction of toric quasifolds in the complex category. In
the original paper, we had considered simple convex polytopes, but the
same argument goes through in the more general setting of simplicial fans
with convex support of full dimension.

Let Q be a quasilattice in Rn, and assume that Σ is quasirational with
respect to Q. Let X1, . . . , Xd ∈ Rn be a choice of generators for the d rays of
Σ and assume that they lie in Q. In the case of the normal fan of a convex
polytope ∆, these vectors are each orthogonal to a different codimension
one face (facet) of ∆ and point inwards; we will be referring to them as
normals for ∆.

The fundamental triple

(Σ, Q, {X1, . . . , Xd})

effectively replaces the standard triple

(fan, lattice, primitive generators)

that is needed for the construction of toric varieties in the rational case.
We will in fact construct the n–dimensional complex toric quasifold, XΣ,
relatively to the fundamental triple above.

Before we proceed, we remark that, in this framework, tori are general-
ized by quasitori [17, 18, 2]. They are given by the quasifolds of one chart

Rn/Q

and
Cn/Q.

The first is real, while the second is complex. They are both abelian groups
and, when Q is a true lattice, Rn/Q and Cn/Q are true tori. Their Lie alge-
bras are given by Rn and Cn, respectively.

Let now σ be a maximal cone, and let Iσ denote the corresponding index
set. Consider the open subset of Cd given by

Uσ = { z ∈ Cd | zj 6= 0, j /∈ Iσ }.

Notice that we have

Uσ =
⊔
J⊂Iσ

{ z ∈ Cd | zj = 0 iff j ∈ J }.

Take now
UΣ =

⋃
σ maximal cone

Uσ.

This open subset of Cd is acted upon by a subgroup NC ⊂ (C∗)d that we
construct in the following way.
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Let {e1, . . . , ed} denote the standard basis of Rd and Cd; consider the sur-
jective linear mapping

π : Rd −→ Rn
ej 7−→ Xj

and its complexification

πC : Cd −→ Cn
ej 7−→ Xj .

Consider the quasitorus Rn/Q and its complexification Cn/Q. The map-
pings π and πC induce group homomorphisms

Π : (S1)d = Rd/Zd −→ Rn/Q

and
ΠC : (C∗)d = Cd/Zd −→ Cd/Q.

We define N to be the kernel of the mapping Π and NC to be the kernel of
the mapping ΠC. Notice that neither N nor NC are honest tori unless Q is a
honest lattice.

Then the complex toric quasifold corresponding the fundamental triple
(Σ, Q, {X1, . . . , Xd}) is given by the quotient

XΣ =
UΣ

NC
.

It is an n–dimensional complex quasifold. If Σ is the normal fan of a convex
polytope ∆, we will call this quasifold X∆.

Notice that the mapping ΠC induces an isomorphism

(C∗)d/NC −→ Cn/Q.

Thus the complex quasitorus Cn/Q acts on XΣ. This action is holomorphic
and, as in the rational case, XΣ is the disjoint union of the k–dimensional
orbits, each corresponding to an (n − k)–dimensional cone of Σ. In partic-
ular, there is a dense open orbit, corresponding to the 0–dimensional cone.
Also, there are a finite number of fixed points, one for each maximal cone
σ. They are given by the points [z1 : · · · : zd], with zj = 0, for j ∈ Iσ and
zj = 1 otherwise.

Remark 2.1. In recent years, nonrational toric geometry has been investi-
gated from several different, though interrelated, points of view. See [6] for
a detailed account.

2.3. The symplectic picture. It was shown in [17, 18] that, to each funda-
mental triple

(Σ∆, Q, {X1, . . . , Xd}),
with ∆ a simple convex polytope, there corresponds a 2n–dimensional
symplectic toric quasifoldM∆, endowed with the effective Hamiltonian ac-
tion of the real quasitorus Rn/Q. The image of the corresponding moment
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mapping Φ is the initial polytope ∆. The quasifold M∆ is obtained explic-
itly via symplectic reduction with respect to the subgroup N ⊂ (S1)d that
we have introduced above, thereby extending the classical construction of
symplectic toric manifolds by Delzant [10]. It is shown in [2, Theorem 3.2]
that M∆ and X∆ are equivariantly diffeomorphic, and that the complex
and symplectic structures are compatible, thus defining a Kahler structure
on X∆, exactly as in the rational case (for which we refer to Audin [1] and
Guillemin [13]). Moreover, the fixed points of the action of Cn/Q on X∆

correspond to the fixed points of the action of Rn/Q on M∆, and the latter
are mapped bijectively via Φ to the vertices of the polytope.

2.4. The canonical affine atlas and the generalized Laurent monomials.
We adapt from [2] the construction of the canonical atlas for XΣ. The
novelty here, besides the weaker assumptions on Σ, is that we write the
changes of charts explicitly in terms of generalized Laurent monomials.

Before we do so, notice that we can write the groups N and NC as fol-
lows:

N = { exp(X) | X ∈ Rd, π(X) ∈ Q }

NC = { exp(Z) | Z ∈ Cd, π(Z) ∈ Q }.
The respective Lie algebras are n = ker(π) and nC = ker(πC), which are lin-
ear subspaces of dimension d− n of Rd and Cd, respectively. The mapping
exp restricts to both.

Fix a maximal cone, σ, with its subset of n indices, Iσ. Consider the
restrictions πσ and (πσ)C of the mappings π and πC to the n–dimensional
subspaces

∏
i∈Iσ Rei ⊂ Rd and

∏
i∈Iσ Cei ⊂ Cd respectively. Both maps are

isomorphisms. We have the following lemma, that, in the complex setting,
is proven in [2, Lemma 2.3]. We give a new proof that is tailored to our
purposes:

Lemma 2.2. For each maximal cone σ, we have that N = Γσ exp(n) and NC =
Γσ exp(nC), where

Γσ =

 exp(X) | X ∈
∏
j∈Iσ

Rej , π(X) ∈ Q

 .

Proof: Let X ∈ Rd such that π(X) ∈ Q and let Y = π−1
σ (π(X)). Then

W = X−Y ∈ n and therefore exp(X) = exp(Y ) exp(W ), with exp(Y ) ∈ Γσ,
exp(W ) ∈ exp(n). The same argument applies to the complexified group
and Lie algebra. �

Remark 2.3. For each j /∈ Iσ denote aj = π−1
σ (Xj) ∈

∏
i∈Iσ Rei ⊂ Rd. The

d− n linearly independent vectors ej − aj form a basis of n and nC. Notice
that exp(aj) ∈ Γσ.

We are finally ready to prove the following
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Theorem 2.4. The complex toric quasifold XΣ corresponding to the fundamental
triple (Σ, Q, {X1, . . . , Xd}) is endowed with a generalized canonical atlas, having
a chart around each of the fixed points of the quasitorus action. The transition
mappings are written in terms of generalized Laurent monomials.

Proof: We define a chart for each maximal cone in the fan Σ. Given such a
cone, σ, we can assume, up to renumbering, that the corresponding index
set, Iσ, is given by {1, . . . , n}. Then the mapping

Cn/Γσ
ησ−→ Vσ = Uσ/NC

[z1 : · · · : zn] 7−→ [z1 : · · · : zn : 1 : · · · : 1]

is a homeomorhism and defines a chart around the fixed point

[0 : · · · : 0 : 1 : · · · : 1].

We will be referring to this chart as the quadruple (Cn,Γσ, Vσ, ησ).
Consider now a second chart (Cn,Γτ , Vτ , ητ ), corresponding to another

maximal cone τ , and assume that Vσ ∩ Vτ 6= ∅. This happens whenever
Iσ ∩ Iτ 6= ∅. Assume, again up to renumbering, that we have the following
partition

{1, . . . , h, h+ 1, . . . , n, n+ 1, . . . , n+ h, n+ h+ 1, . . . , d}, 1 ≤ h ≤ n− 1,

with
Iσ = {1, . . . , h, h+ 1, . . . , n},

Iτ = {h+ 1, . . . , n, n+ 1, . . . , n+ h},

Iσ ∩ Iτ = {h+ 1, . . . , n}.
Let us compute the transition mapping between these two charts. Take

[zh+1 : · · · : zn+h]
ητ7−→ [1 : · · · : 1 : zh+1 : · · · : zn+h : 1 : · · · : 1].

Let us now move the representative on the right–hand side within the NC–
orbit by acting via n+h∏

j=n+1

z
a1j
j , . . . ,

n+h∏
j=n+1

z
anj
j , z−1

n+1, . . . , z
−1
n+h, 1, . . . , 1

 ∈ exp(nC),

where aj = π−1
σ (Xj) = (a1j , . . . , anj). We obtain n+h∏

j=n+1

z
a1j
j : · · · :

n+h∏
j=n+1

z
ahj
j :

n+h∏
j=n+1

z
ah+1,j

j zh+1 : · · · :
n+h∏
j=n+1

z
anj
j zn : 1 : · · · : 1

 .
Write now

∏n+h
j=n+1 z

aij
j = zai , where z = (zn+1, . . . , zn+h) ∈ Ch and

ai = (ai,n+1, . . . , ai,n+h) ∈ Rh, i = 1, . . . , n.
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Then the transition mapping from (Cn,Γτ , Vτ , ητ ) to (Cn,Γσ, Vσ, ησ) can
be finally written in terms of generalized Laurent monomials as

η−1
τ (Vσ ∩ Vτ )

η−1
σ ◦ητ−→ η−1

σ (Vσ ∩ Vτ )
[zh+1 : · · · : zn+h] 7−→ [za1 : · · · : zah : zah+1zh+1 : · · · : zanzn].

�

3. EXAMPLES

We compute the generalized Laurent monomials in a number of inter-
esting examples. It will be convenient to label the charts relatively to the
index sets Iσ instead of the maximal cones σ themselves.

3.1. The quasisphere. The quasisphere is a toric quasifold that was first
introduced in [17, 18] and can be constructed as follows. Let a be a posi-
tive irrational number and consider the unit interval [0, 1]. Then the quasi-
sphere is the toric quasifold obtained from the fundamental triple

(Σ[0,1],Z + aZ, {X1 = a,X2 = −1}).
It is given by

Xa =
C2 \ {0}

{ (e2πir, e2πiar) ∈ (C∗)2 | r ∈ C }
and it is endowed with the holomorphic action of the complex dimension
one quasitorus (quasicircle)

C/(Z + aZ).

Notice that this quasicircle is the complexification of the irrational torus of
Donato–Iglesias [12]. The canonical atlas of the complex quasisphere is
made of two charts, one around the point [0 : 1], the other around the point
[1 : 0]. The first is given by (C,Γ1, V1, η1), where

Γ1 =
{
e2πih

a ∈ S1 | h ∈ Z
}
,

V1 = {[z1 : z2] ∈ Xa | z2 6= 0},
C/Γ1

η1−→ V1

[z] 7−→ [z : 1] .

While the second is given by (C,Γ2, V2, η2), where

Γ2 =
{
e2πiah ∈ S1 | h ∈ Z

}
,

V2 = {[w1 : w2] ∈ Xa | w1 6= 0},
C/Γ2

η2−→ V2

[w] 7−→ [1 : w] .

The transition map between these two charts is given by

η−1
1 (V1 ∩ V2)

η−1
2 ◦η1−→ η−1

2 (V1 ∩ V2)
[z] 7−→ [z−a] .
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Here we get the simplest possible Laurent monomial.
A thorough description of the quasisphere from the symplectic view-

point can be found in [20].

3.2. Generalized weighted projective space. Consider, for any positive
real number a, the right triangle Ta of vertices (0, 0), (a, 0), and (0, 1) (see
Figure 1).

FIGURE 1. The right triangle Ta and its normal fan.

Though this triangle is rational with respect to the lattice spanned by
(1, 0) and (0, a), it is interesting to view it in a nonrational setting, as fol-
lows. Let us take normals given by X1 = (1, 0), X2 = −(1, a) and X3 =
(0, 1). They span the quasilattice

Z× (Z + aZ) ⊇ Z2.

The toric quasifold corresponding to the fundamental triple

(ΣTa ,Z× (Z + aZ), {X1, X2, X3})

is given by

CP2
(1,1,a) =

C3 \ {0}
{ (e2πiu, e2πiu, e2πiau) ∈ (C∗)3 | u ∈ C }

.

It is endowed with the holomorphic action of the complex quasitorus

C2/[Z× (Z + aZ)] ' C∗ × (C/(Z + aZ)).

Notice that for a = 1 we get ordinary complex projective space CP2, while
for a = n, a positive integer, we get the weighted projective space CP2

(1,1,n).
This complex toric quasifold admits an atlas with three charts. Consider
the charts around the fixed points [1 : 0 : 0] and [0 : 1 : 0]. The first is given
by (C2,Γ23, V23, η23), where

Γ23 =
{

(1, e2πiah) ∈ (S1)2 | h ∈ Z
}
,

V23 = {[z1 : z2 : z3] ∈ CP2
(1,1,a) | z1 6= 0},
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C2/Γ23
η23−→ V23

[z2 : z3] 7−→ [1 : z2 : z3] .

The second is given by is given by (C2,Γ13, V13, η13), where

Γ13 =
{

(1, e2πiah) ∈ (S1)2 | h ∈ Z
}
,

V13 = {[w1 : w2 : w3] ∈ CP2
(1,1,a) | w2 6= 0},

C2/Γ13
η13−→ V13

[w1 : w3] 7−→ [w1 : 1 : w3] .

The transition map and Laurent monomials between these two charts are
given by

η−1
23 (V23 ∩ V13)

η−1
13 ◦η23−→ η−1

13 (V23 ∩ V13)
[z2 : z3] 7−→

[
z−1

2 : z−a2 z3

]
.

3.3. Generalized Hirzebruch surfaces. We recall the construction of a one–
parameter family of toric quasifolds generalizing Hirzebruch surfaces which
was first introduced jointly with Zaffran in [7].

Consider, for any positive real number a, the trapezoid Ta of vertices
(0, 0), (1, 0), (1, 1), and (a + 1, 0) (see Figure 2). We recall that Tn, for n a

FIGURE 2. The trapezoid Ta and its normal fan.

positive integer, is the polytope that corresponds to the Hirzebruch surface
Hn. Similarly to what happens with the right triangle Ta, the trapezoid
Ta is always rational with respect to the lattice generated by (1, 0), (0, a).
However, again as above, we view Ta in a nonrational setting. To do so,
we choose normals given by X1 = (1, 0), X2 = −(1, a), X3 = (0, 1), and
X4 = (0,−1); they too span the quasilattice Z×(Z+aZ). The toric quasifold
corresponding to the fundamental triple

(ΣTa ,Z× (Z + aZ), {X1, X2, X3, X4}).
is given, if z = (z1, z2, z3, z4) ∈ C4, by

Ha =
{ z | z1z3 6= 0 } ∪ { z | z1z4 6= 0 } ∪ { z | z2z3 6= 0 } ∪ { z | z2z4 6= 0 }

{ (e2πiu, e2πiu, e2πi(au+v), e2πiv) ∈ (C∗)4 | u, v ∈ C }
=
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=
(C2 \ {0})× (C2 \ {0})

{ (e2πiu, e2πiu, e2πi(au+v), e2πiv) ∈ (C∗)4 | u, v ∈ C }
.

It is also endowed with the holomorphic action of the complex quasitorus

C∗ × (C/(Z + aZ)).

Notice that for a = n we obtain the Hirzebruch surface Hn. This quasifold
is covered by 4 complex charts; let us describe the ones around the points
[1 : 0 : 0 : 1] and [0 : 1 : 0 : 1]. The chart around the point [1 : 0 : 0 : 1] is
given by (C2,Γ23, V23, η23), where

Γ23 =
{

(1, e2πiah) ∈ (S1)2 | h ∈ Z
}
,

V23 = {[z1 : z2 : z3 : z4] ∈ Ha | z1z4 6= 0},

C2/Γ23
η23−→ V23

[z2 : z3] 7−→ [1 : z2 : z3 : 1] .

On the other hand, the chart around the point [0 : 1 : 0 : 1] is given by
(C2,Γ13, V13, η13), where

Γ13 =
{

(1, e2πiah) ∈ (S1)2 | h ∈ Z
}
,

V13 = {[w1 : w2 : w3 : w4] ∈ Ha | w2w4 6= 0},

C2/Γ13
η13−→ V13

[w1 : w3] 7−→ [w1 : 1 : w3 : 1] .

The transition map between these two charts and the corresponding Lau-
rent monomials are given by

η−1
23 (V23 ∩ V13)

η−1
13 ◦η23−→ η−1

13 (V23 ∩ V13)
[z2 : z3] 7−→

[
z−1

2 : z−a2 z3

]
.

Notice that this change of charts is the same as the one for the weighted pro-
jective space above. This is not a coincidence, but rather a manifestation of
the fact that, analogously to what happens in the smooth case, the gener-
alized Hirzebruch surface Ha is the blow–up of the generalized weighted
projective space CP2

(1,1,a) at its third fixed point [0 : 0 : 1] (see [5, 7]).

3.4. The Penrose kite. The kite and dart tiling is an aperiodic tiling of the
plane introduced by Penrose [16]. The kite is a quadrilateral having three
of its angles equal to 2π

5 , the fourth equal to 4π
5 . Its long edges are φ times

the short edges, where φ = 1+
√

5
2 is the golden ratio (see Figure 3). The kite

is not rational, however it is quasirational with respect to the pentagonal
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FIGURE 3. The Penrose kite and its normal fan.

quasilattice Q5 generated by the fifth–roots of unity:

Y0 = (1, 0)
Y1 = (cos 2π

5 , sin
2π
5 ) = 1

2( 1
φ ,
√

2 + φ)

Y2 = (cos 4π
5 , sin

4π
5 ) = 1

2(−φ, 1
φ

√
2 + φ)

Y3 = (cos 6π
5 , sin

6π
5 ) = 1

2(−φ,− 1
φ

√
2 + φ)

Y4 = (cos 8π
5 , sin

8π
5 ) = 1

2( 1
φ ,−
√

2 + φ).

Choose normals X1 = −Y1, X2 = −Y3, X3 = Y2 and X4 = Y4. Notice that

φ = 1 +
1

φ

and that {
Y2 = − Y1 − φY4

Y3 = − φY1 − Y4.

The toric quasifold corresponding to the fundamental triple

(Σ∆, Q5, {X1, X2, X3, X4})

was first introduced and studied in [3]. It is given by

X∆ =
(C2 \ {0})× (C2 \ {0}){ (

e2πi(φu−v), e2πiu, e2πiv, e2πi(φv−u)
)
∈ (C∗)4 | u, v ∈ C

} .
It is shown in [3, Theorem 6.1] that it is not a global quasifold, namely not
the quotient of a manifold modulo the action of a countable group.

Again, here we have an atlas made of 4 charts; let us describe the ones
around the fixed points [0 : 1 : 1 : 0] and [1 : 0 : 1 : 0]. The first is given by
(C2,Γ14, V14, τ14), where

Γ14 =
{

(e2πiφh, e2πiφk) ∈ (S1)2 | h, k ∈ Z
}
,

V14 = {[z1 : z2 : z3 : z4] ∈ X∆ | z2z3 6= 0},

C2/Γ14
τ14−→ V14

[z1 : z4] 7−→ [z1 : 1 : 1 : z4] .
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The second is given by (C2,Γ24, V24, τ24), where

Γ24 =
{

(e2πiφhe2πiφk, e−2πiφh) ∈ (S1)2 | h, k ∈ Z
}
,

V24 = {[z1 : z2 : z3 : z4] ∈ X∆ | z1z3 6= 0},
C2/Γ24

τ24−→ V24

[w2 : w4] 7−→ [1 : w2 : 1 : w4] .

Their transition and Laurent monomials are given by

η−1
14 (V14 ∩ V24)

η−1
24 ◦η14−→ η−1

24 (V14 ∩ V24)

[z1 : z4] 7−→
[
z
− 1
φ

1 : z
1
φ

1 z4

]
.

3.5. The regular dodecahedron. Let us consider the regular dodecahedron
∆ having vertices

(±1,±1,±1)
(0,±φ,± 1

φ)

(± 1
φ , 0,±φ)

(±φ,± 1
φ , 0).

Σ∆ is not rational, but it is quasirational with respect to the quasilattice
P ⊂ R3 generated by the vectors

Y1 = ( 1
φ , 1, 0)

Y2 = (0, 1
φ , 1)

Y3 = (1, 0, 1
φ)

Y4 = (− 1
φ , 1, 0)

Y5 = (0,− 1
φ , 1)

Y6 = (1, 0,− 1
φ),

which is known in physics as the simple icosahedral lattice. In fact, the vectors
Xj = Yj , X6+j = −Yj , j = 1, . . . , 6, are normals for ∆ (see Figure 4). Notice

FIGURE 4. The regular dodecahedron and its normals.
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TABLE 1. The maximal cones for the dodecahedron

σ vertex fixed point Iσ
σ1 (−1,−1− 1) [0 : 0 : 0 : 1 : 1 : 1 : 1 : 1 : 1 : 1 : 1 : 1] 1, 2, 3

σ2 (0,−φ,− 1
φ) [0 : 0 : 1 : 0 : 1 : 1 : 1 : 1 : 1 : 1 : 1 : 1] 1, 2, 4

σ3 (−φ,− 1
φ , 0) [0 : 1 : 0 : 1 : 1 : 0 : 1 : 1 : 1 : 1 : 1 : 1] 1, 3, 6

σ4 (0,−φ, 1
φ) [0 : 1 : 1 : 0 : 1 : 1 : 1 : 1 : 1 : 1 : 0 : 1] 1, 4, 11

σ5 (−1,−1, 1) [0 : 1 : 1 : 1 : 1 : 0 : 1 : 1 : 1 : 1 : 0 : 1] 1, 6, 11

σ6 (− 1
φ , 0,−φ) [1 : 0 : 0 : 1 : 0 : 1 : 1 : 1 : 1 : 1 : 1 : 1] 2, 3, 5

σ7 (1,−1,−1) [1 : 0 : 1 : 0 : 1 : 1 : 1 : 1 : 1 : 1 : 1 : 0] 2, 4, 12

σ8 ( 1
φ , 0,−φ) [1 : 0 : 1 : 1 : 0 : 1 : 1 : 1 : 1 : 1 : 1 : 0] 2, 5, 12

σ9 (−1, 1,−1) [1 : 1 : 0 : 1 : 0 : 1 : 1 : 1 : 1 : 0 : 1 : 1] 3, 5, 10

σ10 (−φ, 1
φ , 0) [1 : 1 : 0 : 1 : 1 : 0 : 1 : 1 : 1 : 0 : 1 : 1] 3, 6, 10

σ11 (1,−1, 1) [1 : 1 : 1 : 0 : 1 : 1 : 1 : 1 : 0 : 1 : 0 : 1] 4, 9, 11

σ12 (φ,− 1
φ , 0) [1 : 1 : 1 : 0 : 1 : 1 : 1 : 1 : 0 : 1 : 1 : 0] 4, 9, 12

σ13 (0, φ,− 1
φ) [1 : 1 : 1 : 1 : 0 : 1 : 0 : 1 : 1 : 0 : 1 : 1] 5, 7, 10

σ14 (1, 1,−1) [1 : 1 : 1 : 1 : 0 : 1 : 0 : 1 : 1 : 1 : 1 : 0] 5, 7, 12
σ15 (−1, 1, 1) [1 : 1 : 1 : 1 : 1 : 0 : 1 : 0 : 1 : 0 : 1 : 1] 6, 8, 10

σ16 (− 1
φ , 0, φ) [1 : 1 : 1 : 1 : 1 : 0 : 1 : 0 : 1 : 1 : 0 : 1] 6, 8, 11

σ17 (1, 1, 1) [1 : 1 : 1 : 1 : 1 : 1 : 0 : 0 : 0 : 1 : 1 : 1] 7, 8, 9

σ18 (0, φ, 1
φ) [1 : 1 : 1 : 1 : 1 : 1 : 0 : 0 : 1 : 0 : 1 : 1] 7, 8, 10

σ19 (φ, 1
φ , 0) [1 : 1 : 1 : 1 : 1 : 1 : 0 : 1 : 0 : 1 : 1 : 0] 7, 9, 12

σ20 ( 1
φ , 0, φ) [1 : 1 : 1 : 1 : 1 : 1 : 1 : 0 : 0 : 1 : 0 : 1] 8, 9, 11

that we have the following relations

(1)


Y4 = 1

φY1 + 1
φY2 − Y3

Y5 = −Y1 + 1
φY2 + 1

φY3

Y6 = 1
φY1 − Y2 + 1

φY3.

Let us apply the generalized toric construction to the fundamental triple

(Σ∆, P, {X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X12}).

The corresponding toric quasifold was first introduced in [19] and further
studied, together with the toric spaces corresponding to all the other regu-
lar polyhedra, in [4]. It is given by

X∆ =

⋃20
j=1{ z ∈ C12 | zj 6= 0, j /∈ Iσj }

NC
,

where the σj ’s are the maximal cones of Σ∆; we identify each of them in
Table 1, together with the corresponding vertex, fixed point, and index set
Iσj . On the other hand,NC = exp(nC) ⊂ T 12

C , where nC is the 9–dimensional
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vector subspace of C12 having equations
u1 = u7 + u5 − u11 + 1

φ(u10 − u4 + u12 − u6)

u2 = u8 + u6 − u12 + 1
φ(u10 − u4 + u11 − u5)

u3 = u9 + u4 − u10 + 1
φ(u11 − u5 + u12 − u6).

We have 20 charts, one around each different fixed point.
Let us first consider the first two appearing in Table 1. Notice that the

two index sets, {1, 2, 3} and {1, 2, 4}, have two indices in common. This
entails that the corresponding vertices belong to the same edge of ∆.

The first chart is given by (C3,Γ123, V123, η123), where

Γ123 =
{

(e2πiφ(h+k), e2πiφ(h+l), e2πiφ(l+k)) ∈ (S1)3 | h, k, l ∈ Z
}
,

V123 = {[z] ∈ X∆ | zi 6= 0, i 6= 1, 2, 3},

C3/Γ123
η123−→ V123

[z1 : z2 : z3] 7−→ [z1 : z2 : z3 : 1 : 1 : 1 : 1 : 1 : 1 : 1 : 1 : 1] .

It is now useful to notice that the relations (1) can be rewritten as follows
Y3 = 1

φY1 + 1
φY2 − Y4

Y5 = − 1
φY1 + Y2 − 1

φY4

Y6 = Y1 − 1
φY2 − 1

φY4.

The second chart is given by (C3,Γ124, V124, η124), where

Γ124 =
{

(e2πiφ(h+k), e2πiφ(h+l), e2πiφ(l+k)) ∈ (S1)3 | h, k, l ∈ Z
}
,

V124 = {[z] ∈ X∆ | zi 6= 0, i 6= 1, 2, 4},

C3/Γ124
η124−→ V124

[w1 : w2 : w4] 7−→ [w1 : w2 : 1 : w4 : 1 : 1 : 1 : 1 : 1 : 1 : 1 : 1] .

The chart transition and generalized Laurent monomials are given by

η−1
123(V123 ∩ V124)

η−1
124◦η123−→ η−1

124(V123 ∩ V124)

[z1 : z2 : z3] 7−→
[
z1z

1
φ

3 : z2z
1
φ

3 : z−1
3

]
.

Let us now compare the second chart with the one around the third fixed
point in Table 1. The corresponding index sets, {1, 2, 4} and {1, 3, 6}, inter-
sect in only one index, which entails that the vertices belong to the same
facet, but not the same edge of the dodecahedron (see Figure 5 for the mu-
tual placement of all three vertices on their common facet). Let us show
how this reflects on further complexity of the Laurent monomials. Notice
first that we have 

Y2 = 1
φY1 + 1

φY3 − Y6

Y4 = Y1 − 1
φY3 − 1

φY6

Y5 = − 1
φY1 + Y3 − 1

φY6.
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{1,2,3}

{1,3,6}{1,2,4}

FIGURE 5. The three vertices on their common facet.

The third chart is given by (C3,Γ136, V136, η136), where

Γ136 =
{

(e2πiφ(h+k), e2πiφ(h+l), e2πiφ(l+k)) ∈ (S1)3 | h, k, l ∈ Z
}
,

V136 = {[z] ∈ X∆ | zi 6= 0, i 6= 2, 4, 5},

C3/Γ136
η136−→ V136

[w1 : w3 : w6] 7−→ [w1 : 1 : w3 : 1 : 1 : w6 : 1 : 1 : 1 : 1 : 1 : 1 : 1] .

The change of charts and generalized Laurent monomials are now given by

η−1
124(V124 ∩ V136)

η−1
136◦η124−→ η−1

136(V124 ∩ V136)

[z1 : z2 : z4] 7−→
[
z1z

1
φ

2 z4 : z
1
φ

2 z
− 1
φ

4 : z−1
2 z

− 1
φ

4

]
.
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