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SUMMARY

This paper deals with the synthesis of information from different studies when there is lack of
independence in some of the contrasts to be combined. This problem can arise in several different
situations in both case-control studies and clinical trials. For efficient estimation we appeal to the method
of generalized least squares to estimate the summary effect and its standard error. This method requires
estimates of the covariances between those contrasts that are not independent. Although it is not possible
to estimate the covariance between effects that have been adjusted for confounding factors we present a
method for finding upper and lower bounds for this covariance. In the simplest discussion homogeneity
of the relative risks is assumed but the method is then extended to allow for heterogeneity in an overall
estimate. We then illustrate the method with several examples from an analysis in which case-control
studies of cervical cancer and oral contraceptive use are synthesized.

Keywords: Case-control studies; Correlation; Meta-analysis; Overview; Overdispersion.

1. INTRODUCTION

This paper deals with some issues arising in the synthesis of information from different studies when
there is lack of independence in some of the contrasts to be combined. One simple illustration arises
from a series of case-control studies in which two or more distinct contrasts with a common control are
to be combined. If the full data are available there would be no special problem in that a full analysis
assuming the contrasts are identical could be done and, where appropriate, mutual consistency of the
separate contrasts studied. Very often, however, all that is available for analysis are the relevant contrasts,
log relative risks, and their estimated standard errors, typically obtained after adjusting for potential
confounding variables by logistic regression.

For example, in an analysis where a series of published case-control studies of cervical cancer and oral
contraceptive use were synthesized (Smithet al., 2003), in most of the publications authors had presented
relative risks for all types of cervical cancer combined. However, a few authors published the relative risk
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Table 1. Two case-control studies of cervical cancer and
oral contraceptive (OC) use that share the same group of

controls

Cancer type
Invasivea In situb

Duration of OC use �10 yrs Never �10 yrs Never
Cases 38 269 31 87
Controls 60 386 60 386
Adjusted relative risk 1.82 1.40
Adjusted SE 0.277 0.335
Unadjusted SE 0.222 0.251
aBrinton et al., 1986.bJoneset al., 1990. Relative risks (and their
standard errors) were adjusted for number of sexual partners and
number of cervical smears.

associated with oral contraceptive use separately for two sub-types of cervical cancer (invasive and in
situ cancers, see Table 1). Because the same control group was used to calculate the relative risk for each
sub-group the two risks are not independent. As the relative risks were also adjusted for other potential
confounding factors the standard errors (SEs) are inevitably somewhat greater than they would have been
had there been no such adjustment (the unadjusted SE). If the risks had not been adjusted, estimation of
the relative risk for both sub-types of cancer combined could easily have been obtained by the pooling
of the relevant frequencies. However, due to the adjustments this would not be appropriate in the present
instance.

Such issues can arise in several ways. The first is the situation just described where the risks are
published for two sub-groups (such as type of cancer) relative to the same group of controls. The second
situation is when some authors have published relative risks for a finer stratification of exposure than others
have used. For the example of the synthesis of cervical cancer studies, most authors published relative
risks for cervical cancer associated with�5 years of oral contraceptive use compared with never-users.
However, some authors used a finer degree of stratification of�2 and 3–5 years of oral contraceptive use
compared with never-users. These two relative risks are not independent as they share the same baseline
comparison group of never-users of oral contraceptives.

As well as for case-control studies somewhat similar problems can arise in connection with clinical
trials. Yet another possibility is the construction of a regression analysis of log risk regressed on a measure
of exposure bringing together information from a number of sources each with a common control group.
Greenland and Longnecker (1992) discuss this by methods similar to those used here; see Section 2.3 for
further comment.

In all the above situations if the correlation between the sub-groups is ignored, i.e. a method such as
standard weighted least-squares analysis is used, then the amount of information that is available will be
overestimated, the summary estimate will not be quite optimal and its variance will be underestimated.
Therefore, in this paper we describe a method that can be used to address this problem taking the
correlation into account. In the simplest discussion homogeneity of the series is assumed. However, it
is also important to check for appreciable heterogeneity. The method is, therefore, extended to allow for
heterogeneity between the series that are being synthesized, revising the estimate and its uncertainty. We
then illustrate the method with several examples from an analysis in which case-control studies of cervical
cancer and oral contraceptive use are synthesized.
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2. METHOD

2.1 Generalized least-squares

We start with a series of log relative risks, where appropriate adjusted for potential confounders, and
denoted byθ̂k for k = 1, . . . , n. Now if the separatêθk are independent, the covariance matrixV of
then × 1 vector θ̂ is diagonal and is known; quite often in applications it is determined from published
normal-theory-based confidence limits. If, however, two or more of theθ̂k are not independent thenV is
not diagonal. In fact,V will typically be block diagonal with each block corresponding to values ofθ̂k

with the same control.
We assume temporarily that these covariances also have been estimated and that the matrixV is

therefore known. For efficient estimation we appeal to the method of generalized least-squares to estimate
the summary log relative risk(β̂) and its variance(var(β̂)) under the model̂θ = Xβ + ε whereX is a
matrix of explanatory variables. Then, in matrix notation,

β̂ = (XTV −1X)−1XTV −1θ̂ (1)

and

var(β̂) = (XTV −1X)−1, (2)

where

X =



1
...

1


 , V =




v11 . . . v1n
...

...

vn1 . . . vnn


 , θ̂ =




Y1
...

Yn


 . (3)

The off-diagonal termsv jk represent the covariances between the sub-groups or studies. If all these
terms are zero, because the series are all independent, then the procedure simplifies to the method of
weighted least-squares. These formulae apply also when a more general linear model is fitted, specified
by an appropriateX .

2.2 Estimating the covariances

From each publication it should be possible to extract estimates of the log relative risks(θ̂1, . . . , θ̂n), their
variances(v11, . . . , vnn) and the numbers of exposed and unexposed cases and controls. The terms(v jk),
the covariances between the log relative risks for the non-independent series, will not generally be known
and it is therefore necessary to estimate them from whatever data are available. If the relative risks have
been adjusted for confounding variables then ideally we require an estimate of the covariance between
these adjusted risks. However, the information necessary to estimate these will almost certainly not be
available in the publications although it would be recoverable from the original detailed analysis, should
this be available.

One possible solution is to assume that the covariance between the adjusted log relative risks is
approximately equal to the covariance between the unadjusted log relative risks. Under the first situation
described in the introduction, in which there are two risks estimated from two sub-types of cervical cancer
relative to the same group of controls, then using the notation given in Table 2,c j = ck andd j = dk and
the covariance(v jk) between the log relative risks is approximately

v jk = 1

c j
+ 1

d j
. (4)
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Table 2.Cell frequencies for the numbers of exposed
and unexposed cases and controls from the two sub-

groups

Sub-groupj Sub-groupk
Exposed Unexposed Exposed Unexposed

Cases a j b j ak bk
Controls c j d j ck dk

In the second and third situations where the two sub-groups are two categories of exposure that both
share the same baseline comparison group then, using the notation in Table 2,b j = bk andd j = dk . In
this situation the covariance between the two log relative risks is approximately

v jk = 1

b j
+ 1

d j
. (5)

Equations (4) and (5) follow, for example, by treating the observed counts as independent Poisson
variables, and the log relative risks as contrasts among the log counts (Breslow and Day, 1980). A further
possibility is that the controls in the two sub-groups are not exactly the same but rather that one group
of controls is a sub-set of the other group of controls. For the cervical cancer investigation, there were
two studies conducted by the World Health Organization where this situation arose. The first was a case-
control study of invasive cervical cancer with 13 868 controls (WHO, 1993) and the second was a study
of in situ cervical cancers for which a sub-set of 3488 of the original 13 868 controls were used (Yeet al.,
1995). To include both these studies in the calculation of a summary relative risk requires that this lack of
independence is taken into account. In this instance the covariance between the log relative risks in these
two studies is also approximately

v jk = 1

b j
+ 1

d j
, (6)

whereb j andd j are the number of exposed and un-exposed controls in the first (i.e. the larger) study.

2.3 Upper and lower bounds for the covariance estimates

Although it is not possible to estimate the covariance between the adjusted relative risks it is possible to
find upper and lower bounds for it. These bounds can then be entered into the calculations to assess the
sensitivity ofβ̂, var(β̂) and the heterogeneity test(Q) (see Section 2.4) to a range of possible covariances.

It can be shown that for any logistic regression in which the regression effects are relatively small, the
sampling errors in the resulting estimates are of the same general form as in ordinary least-squares theory.
Thus if θ̂A, θ̂U are the adjusted and unadjusted log relative risks then

θ̂A = θ̂U + γ̂ , (7)

where γ̂ is an estimated adjustment. We can therefore arrange thatγ̂ is essentially like a regression
correction in analysis of covariance, so that cov(γ̂ , θ̂U) ≈ 0. Further,γ̂ has essentially the form

γ̂ = −λ̂T z, (8)

whereλ̂ is an estimated vector of regression coefficients and the elements of the vectorz specify the mean
differences between cases and controls in the variables used for adjustment. Then

var(θ̂A) = var(θ̂U) + var(γ̂ ), (9)
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where var(γ̂ ) = zT cov(λ̂)z. In the context considered here the major complication arises becauseλ̂ andz
are typically not available; were they available a more detailed analysis would, of course, be feasible. We
can, however, use the value of var(θ̂A) obtained from the published data combined with var(θ̂U) derived
directly from the observed frequencies to obtain var(γ̂ ) by subtraction.

However, it is more difficult to calculate the covariance between two estimatesθ̂A j , θ̂Ak , say with a
common control. Then

cov(θ̂A j , θ̂Ak) = cov(θ̂U j , θ̂Uk) + cov(γ̂ j , γ̂k) (10)

and again cov(θ̂U j , θ̂Uk) can be calculated from the frequencies (as described in Section 2.2). It is
conceivable that the two adjustments are derived from different explanatory variables. In that case it
is impossible to make a detailed calculation of cov(γ̂ j , γ̂k). If, however, a common set of explanatory
variables and a single regression coefficient are used then we have that

cov(γ̂ j , γ̂k) = zT
j cov(λ̂)zk (11)

so that by the Cauchy–Schwarz inequality

−√{var(γ̂ j )var(γ̂k)} � cov(γ̂ j , γ̂k) � √{var(γ̂ j )var(γ̂k)}. (12)

In the Examples that follow we have used this to bound the variances of interest, namely the variance of
the optimal linear combination of̂θA j andθ̂Ak .

Because the adjustments to the crude estimates depend on the discrepancies between cases and
controls in the explanatory variables, the directions of these discrepancies in the two or more groups
of cases may tend to be in the same direction. This makes a positive covariance in (12) more likely than
a negative covariance, although there is no necessity for this. This is one reason for preferring the upper
bound on the variance of the estimated contrast to the lower bound. While we have not proved this formally
it is likely that the worst case for the variance of the overall estimate arises when the individual covariance
estimates are all taken at their upper limits. Greenland and Longnecker (1992), in their treatment of this
issue uses a correlation approximately equivalent to

cov(θ̂A j , θ̂Ak)√{var(θ̂A j )var(θ̂Ak)}
= cov(θ̂U j , θ̂Uk)√{var(θ̂U j )var(θ̂Uk)}

. (13)

As noted above, the covariance depends on the relations between the explanatory variables in the groups
under comparison and we have preferred the cautious route of taking this as unknown.

2.4 Heterogeneity

With the same assumptions regarding the elements of the covariance matrixV , then under the method of
generalized least-squares the test statisticQ for heterogeneity between the series of estimates is

Q = (θ̂ − XTβ̂)V −1(θ̂ − XTβ̂), (14)

whereQ is, under the null hypothesis, distributed approximately as chi-squared withn − 1 degrees of
freedom. If significant heterogeneity is detected then it may be appropriate to use a random effects model
to re-estimate the summary effect and its variance taking into account this between-series component of
variance. This heterogeneity may be due to true differences between the risks or to differences in study
design, type of controls, data collection methods or data quality. For a critical review of some of the issues
involved in the present context, see Cox and Solomon (2002, Section 4.5).
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Such over-dispersion can be taken into account by recalculatingβ̂ and var(β̂) under the model̂θ =
Xβ∗ + η + ε whereE(ηηT) = σ 2

η I andE(εεT) = V . It can then be shown that

E(Q) = (n − 1) + σ 2
η [tr(V −1) − tr(V −1X (XTV −1X)−1XTV −1)] (15)

therefore

σ̂ 2
η = Q − (n − 1)

tr(V −1) − tr(V −1X (XTV −1X)−1XTV −1)
. (16)

where tr denotes the trace of a matrix. We then replaceV in equations (1) and (2) withV ∗ = V + σ 2
η I so

that under the new model

β̂∗ = [XT(V ∗)−1X ]−1XT(V ∗)−1θ̂ (17)

var(β̂∗) = [XT(V ∗)−1X ]−1, (18)

and Q is redefined with the covariance matrixV ∗ and corresponding estimatêβ∗. These estimates are
not fully efficient statistically although, provided that any overdispersion is relatively small, the estimates
are unlikely to be capable of appreciable improvement. One route to an efficient estimate is to iterate to
convergence using a new form ofQ with a revised covariance matrix.

3. EXAMPLES

Individual patient data from the UK cervical cancer study (Berringtonet al., 2002) were used to
investigate the performance of our method in practice. From these data log relative risks were estimated
for four risk factors using the individual patient data with adjustment for various confounding factors.
These are referred to as the ‘actual values’. Then each of these risk factors were divided into two strata
and the log relative risks calculated for each. For example, for oral contraceptive use,<5 years of use
was divided into�2 and 3–4 years of use. These two strata are not independent as they both share the
same baseline group of never-users of oral contraceptives. The two strata were then recombined using
the method described in this paper, first using the unadjusted covariance estimates (see Section 2.2) then
using the lower and upper bounds for the covariance (see Section 2.3). These values are referred to as the
‘estimated values’. The ‘actual value’ and the three ‘estimated values’ for each risk factor are shown in
Table 3.

For oral contraceptive use, the log relative risks (and SE) associated with�2 and 3–4 years of oral
contraceptive use compared with never-users were 0.121 (0.408) and 0.232 (0.431) respectively. The
‘actual’ log relative risk associated with<5 years of oral contraceptive was 0.165 with a SE of 0.387
(Table 3). The method of generalized least-squares with the unadjusted covariance gives an ‘estimated’
log relative risk associated with<5 years of oral contraceptive of 0.169, which is slightly higher than the
‘actual value’ of 0.165, with a SE of 0.373, slightly lower than the ‘actual value’ of 0.387. For three of the
four risk factors in this example the estimated SE based on the upper bound for the covariance were the
closest to the ‘actual values’. For all four risk factors the upper covariance bound gave the highest, and
hence most conservative, error estimate.

The method was then applied to the synthesis of cervical cancer case-control studies mentioned in the
introduction, the results of which have been published elsewhere (Smithet al., 2003). Briefly, the aim of
the study was to synthesise the risks of cervical cancer associated with short (<5 years), medium (5–9
years) and long (10+ years) duration of oral contraceptive use. First, relative risks of cervical cancer and
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Table 3.Actual and estimated adjusted relative risks for cervical cancer associated with various risk factors

Unadjusted values Actual values Estimated values
Unadjusted cov. Lower bound cov. Upper bound cov.

Risk factora SE(logRR) cov(logRR) logRR (SE) logRR (SE) logRR (SE) logRR (SE)
OC use
(<5b years/never) 0.352 0.104 0.165 (0.387) 0.169 (0.373) 0.171 (0.352) 0.163 (0.392)
Smoking
(everc/never) 0.173 0.018 -0.210 (0.200) -0.223 (0.193) -0.225 (0.176) -0.177 (0.206)
AFI
(�16d yrs/�20 yrs) 0.251 0.049 1.055 (0.289) 1.015 (0.276) 0.989 (0.253) 1.079 (0.294)
Negative smears
(1+e/0) 0.171 0.014 -0.842 (0.191) -0.841 (0.186) -0.839 (0.173) -0.843 (0.198)
a Data are from the UK national case-control study of cervical cancer (Berringtonet al., 2002) all risks are adjusted
for age, number of sexual partners, and each of the risk factors above. The two strata that were combined for each risk
factor wereb �2 and 3–4 years of oral contraceptive use,c 1–9 yrs and 10+ yrs of smoking,d age at first intercourse
(AFI) �16 and 16–17 years, ande number of previous negative smears 1 and�2.

their 95% confidence intervals associated with short duration of oral contraceptive use (<5 years) were
extracted from publications. However, 25 of the 31 risks associated with short duration of use were found
not to be independent for one or other of the reasons discussed in the introduction. Also, as there are many
important confounding factors that may affect the association between oral contraceptive use and cervical
cancer risk, all the risks had been adjusted for factors such as smoking and number of cervical smears.

Table 4 shows the comparison of the estimates of the summary log relative risks for short duration
of oral contraceptive use (<5 years) from these 31 studies estimated first using the method of weighted
least-squares (WLS) which incorrectly assumed that all the studies were independent and then using the
method of generalized least-squares (GLS) taking into account the fact that many of then studies were
not independent. Three estimates for the method of GLS are shown, first using the unadjusted covariance
estimates for all the non-independent studies, second using lower bounds for the covariances and third
using upper bounds for the covariances. The values ofQ for the fixed-effects model are considerably
larger than the expected value, 31, and provide very strong evidence of additional variability. Therefore,
the analysis was repeated using a random-effects model. The same method was then applied to estimate
the summary relative risk for the 14 studies that published risks associated with long duration of oral
contraceptive use (10+ years), six of which were not independent (Table 5). Note that whileQ for the
fixed-effects model exceeds its expectation, the evidence for over-dispersion from Table 5 on its own is
less strong. Nevertheless, for comparability the random effects analysis is reported here also.

In the fixed-effects analysis of short duration of use, in which 25 of 31 risks were not independent, the
SE of the log relative risk obtained using the upper covariance bounds was just slightly larger than that
from the unadjusted covariances. In the random-effects analysis this difference was somewhat greater.
In the analysis of long duration of use, in which only six of the 14 studies were not independent, the
pattern was similar but the differences between the estimated SEs were smaller. The relatively small but
systematic differences between the point estimates obtained in fixed- and random-effects analysis reflect
the somewhat reduced relative weight given to the large studies in the second form.
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Table 4.Log relative risk (logRR) of cervical cancer associated with
<5 years oral contraceptive use

Model Method n logRR (SE) Q
Fixed effects WLSa 31 0.1164 (0.0312) 58.9

GLS (unadjusted cov)b 31 0.1016 (0.0346) 56.9
GLS (upper bound cov)c 31 0.1070 (0.0359) 104.8
GLS (lower bound cov)d 31 0.0930 (0.0316) 73.4

Random effects WLS 31 0.0989 (0.0564) 39.1
GLS (unadjusted cov) 31 0.0873 (0.0571) 39.8
GLS (upper bound cov) 31 0.0893 (0.0708) 39.0
GLS (lower bound cov) 31 0.1001 (0.0577) 39.3

aWeighted least-squares.bGeneralized least-squares using the unadjusted
covariance estimates,cusing the upper bound for each of the covariance
estimates anddusing the lower bound for each of the covariance estimates.
Measure of dispersionQ: approximately chi-squared withn − 1 degrees of
freedom.

Table 5.Log relative risk (logRR) of cervical cancer associated with
�10 years oral contraceptive use

Model Method n logRR (SE) Q
Fixed effects WLSa 14 0.6844 (0.0681) 20.5

GLS (unadjusted cov)b 14 0.6866 (0.0698) 19.6
GLS (upper bound cov)c 14 0.6813 (0.0717) 20.2
GLS (lower bound cov)d 14 0.6902 (0.0668) 20.1

Random effects WLS 14 0.6269 (0.0986) 15.6
GLS (unadjusted cov) 14 0.6374 (0.0969) 15.5
GLS (upper bound cov) 14 0.6341 (0.0991) 15.7
GLS (lower bound cov) 14 0.6354 (0.0960) 15.5

aWeighted least-squares.bGeneralized least-squares using the unadjusted
covariance estimates,cusing the upper bound for each of the covariance
estimates anddusing the lower bound for each of the covariance estimates.
Measure of dispersionQ: approximately chi-squared withn − 1 degrees of
freedom.

4. DISCUSSION

There is an extensive literature on the many different problems that are encountered during the
synthesis of published data, see for example Brumbacket al. (2000). In this paper we have presented
a method for dealing with one such problem, that is the synthesis of information from different studies
when there is lack of independence in some of the contrasts to be combined. We have given three answers,
all based on generalized least-squares but using three different estimates of the covariances involved. For
general use we recommend the approach using the upper bound on the covariances. There are several
reasons for this. Firstly, it is likely to give the most cautious assessment of error and this is sensible on
general grounds. Secondly, we have already noted below (12) that positive covariances are more likely
than negative ones. Finally, in our empirical comparison based on Table 3 it gives results closest to the
estimates and SEs based on the full information, thus confirming in that situation the general theoretical
point just alluded to. Note that these considerations concern the SE of the estimated log RR; the estimates
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themselves differ by amounts that are small compared with the relevant SEs and we can see no simple
basis for choosing between them.

A further point to note with respect to the random-effects model is that using all the upper or all
the lowest covariance bounds does not necessarily provide the most extreme estimates of the possible
error of the log relative risk. Some combinations of covariance estimates could give more extreme
results. Estimates under every possible permutation of covariance estimates (unadjusted, upper and lower
bound) would be needed to find the most extreme results. However, as discussed above, we recommend
the approach using the upper bound for the covariances along with a sensitivity analysis to assess the
magnitude of the effect that the use of the lower bounds or the unadjusted covariance estimates has on
the summary log relative risk and its SE. In most applications it is likely that the conclusions will not be
sensitive to these choices.
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