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Abstract

This paper proposes a method of averaging generalized least squares (GLS)
estimators for linear regression models with heteroskedastic errors. We derive two
kinds of Mallows’ Cp criteria, calculated from the estimates of the mean of the
squared errors of the fitted value based on the averaged GLS estimators, for this
class of models. The averaging weights are chosen by minimizing Mallows’ Cp

criterion. We show that this method achieves asymptotic optimality. It is also
shown that the asymptotic optimality holds even when the variances of the error
terms are estimated and the feasible generalized least squares (FGLS) estimators are
averaged. Monte Carlo simulations demonstrate that averaging FGLS estimators
yields an estimate that has a remarkably lower level of risk compared with averaging
least squares estimators in the presence of heteroskedasticity, and it also works when
heteroskedasticity is not present, in finite samples.

JEL classification: C51, C52
Keywords: model averaging, GLS, FGLS, asymptotic optimality, Mallows’ Cp

1 Introduction

Model averaging is an important research topic in recent econometrics and statistics lit-

erature. It is often difficult to specify a “correct” or “best” statistical model a priori

when we conduct data analysis. For example, it is often uncertain which variables should

be used as explanatory variables in regression analysis. Numerous model selection tech-

niques, such as the Akaike information criterion by Akaike (1973), Mallows’ Cp criterion

by Mallows (1973) and the Bayesian information criterion by Schwarz (1978), have been

proposed and many researchers have investigated their properties. Relatively recently,

model averaging techniques, which combine several candidate models rather than se-

lecting one particular model as done in model selection, have gained the attention of
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many researchers. Many works have examined Bayesian model averaging, such as Draper

(1995). See, e.g., Hoeting, Madigan, Raftery and Volinsky (1999) for a literature review.

Frequentist model averaging has also become important in the recent literature. Hjort

and Claeskens (2003) propose model averaging estimators in parametric models and study

their asymptotic properties using the local misspecification approach. Liang, Zou, Wan

and Zhang (2011) propose a method of selecting model weights based on the exact mean

squared error of the estimator of parameter of interest in the context of linear regression.

The book by Claeskens and Hjort (2008) provides an excellent overview of the literature

on model selection and model averaging. Yuan and Yang (2005) and Zhang, Wan and

Zhou (2012) discuss under what circumstances model averaging performs better than

model selection.

Hansen (2007) proposes a method of averaging least squares estimators for linear

regression models with homoskedastic errors in the presence of many regressors. His

method uses Mallows’ criterion for choosing the model weights and the objective is to

minimize the mean squared error (MSE) from the fit of the averaging estimator. He

shows that the proposed method has asymptotic optimality in the sense of Li (1987).

Wan, Zhang and Zou (2010) provide an alternative proof of the optimality of Hansen’s

method in different situations. Hansen and Racine (2010) and Liu and Okui (2012)

extend the method of Hansen (2007) to models with possibly heteroskedastic errors.

Heteroskedasticity is a common phenomenon in economic applications and it is im-

portant to develop methods that take into account the possibility of the presence of

heteroskedasticity. The methods of Hansen and Racine (2010) and Liu and Okui (2012)

are robust to heteroskedasticity but still average least squares estimators. However, in

the presence of heteroskedasticity, generalized least squares (GLS) estimators should pro-

vide better prediction than least squares estimators because GLS estimators have smaller

variances. This observation motivates the research reported in this paper.

This paper proposes a method of averaging GLS estimators for linear regression models

with heteroskedastic errors. Our aim is to construct an estimate that best predicts the

value of the dependent variable in the presence of a large number of regressors. We

propose using a weighted average of various GLS estimators, where each estimator uses

a different set of regressors. We derive two kinds of Mallows’ (1973) Cp-like criteria. The

first criterion is an estimate of the MSE of the model fit, and the other is an estimate

of the weighted MSE. The averaging weights are selected by minimizing these Mallows

criteria. The minimization problems are standard quadratic programming problems and

can be easily implemented by many numerical or statistical programming packages. We

show that these methods have asymptotic optimality in the sense of Li (1987), such that

the weights chosen by the proposed methods can attain the same MSE or weighted MSE

as the optimal one asymptotically. This optimality result is one of our main theoretical

contributions.
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We also consider averaging feasible generalized least squares (FGLS) estimators. As

the variances of error terms are unknown in many applications, it is important to consider

FGLS estimators. We assume that the variances can be specified by a finite number of

parameters that can be estimated at the rate
√
n. We discuss briefly the cases in which the

variances are estimated by nonparametric methods. We also assume that all the FGLS

estimators to be averaged use the same variance estimator. The weights are chosen by

minimizing the Mallows criteria. We prove that this method based on FGLS estimators

also achieves asymptotic optimality. The optimality of the model averaging method for

the FGLS estimators is new and its proof is nontrivial. It thus constitutes another main

theoretical contribution of this paper.

Several model averaging methods have been proposed for linear regression models with

heteroskedastic errors. We discuss briefly the relationship between our new method and

other alternative methods. As mentioned previously, the methods of Hansen and Racine

(2010) and Liu and Okui (2012) are robust to heteroskedasticity, although they average

least squares estimators. Our method combines GLS estimators with the aim of reducing

the variance of the estimator. Magnus, Wan and Zhang (2011) extend the approach of

Magnus, Powell and Prüfer (2010) and propose a method to average GLS estimators by

combining the Bayesian and frequentist approaches. Our objective, however, is to obtain

an estimator whose fit achieves a small MSE and we choose the weights directly by

minimizing an estimate of the MSE. Liu (2011) proposes an alternative model averaging

estimator for heteroskedastic models. His method follows the approach of Hjort and

Claeskens (2003) and examines the MSE of some finite-dimension parameters. Thus, the

objectives of our model averaging differ from those of Liu (2011).

We conduct Monte Carlo simulations to examine the performance of the proposed

methods in finite samples. In particular, we compare the proposed methods with other

alternative existing methods. The simulation results demonstrate that our methods per-

form better than the methods of Hansen and Racine (2010) and Liu and Okui (2012),

which are robust to heteroskedasticity, but which average least squares estimators and

not GLS estimators. Our methods show superior performance compared with the model

averaging estimator of Magnus, Wan and Zhang (2011), which also averages FGLS esti-

mators. However, note that our simulations use as a performance measure the MSE from

the fitted model, the reduction of which is the aim of our proposed methods, whereas

Magnus, Wan and Zhang (2011), in developing their model averaging methods, consider

reducing a measure of risk or regret of the estimator of the coefficient, not the fit of the

model.

For the settings in which the error terms are homoskedastic, our method works as

well as the method of Hansen (2007), which is designed for homoskedastic models. Thus,

even in the absence of heteroskedasticity, the cost of using our method is not severe.

Finally, we examine the performance of the estimator that averages the FGLS estimators
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of Robinson (1987), which are based on nonparametric variance estimates. Note that we

do not provide theoretical support for this nonparametric method. Nonetheless, we find

that averaging the nonparametric version of the FGLS estimators provides good estimates

in the simulations. This result indicates that it is worthwhile considering averaging FGLS

estimators even when the form of the heteroskedasticity is not known.

The rest of the paper is organized as follows. Section 2 describes our setting and

the GLS and FGLS estimators. Section 3 introduces Mallows’ Cp criterion and shows

its optimality. Section 4 provides the results of Monte Carlo simulations. Section 5

concludes. The proofs of the theorems are given in the Appendix.

2 Model averaging based on GLS estimators

Suppose that we observe the random sample, (yi, xi) for i = 1, . . . , n, where yi is a real-

valued scalar random variable and xi = (xi1, xi2, . . . , ) is a countably infinite real-valued

vector.1 The relationship between yi and xi is described by the following linear regression

model:

yi = µi + ei, (1)

where:

µi =
∞∑
j=1

θjxij,

and ei is an unobserved error term that satisfies:

E(ei|xi) = 0,

E(e2i |xi) = σ2
i .

The sequence θj, j = 1, . . . is a sequence of unknown parameters, and we assume that∑J
j=1 θjxij converges in mean square to µi as J → ∞. Our setup allows heteroskedasticity

as in Hansen and Racine (2010) and Liu and Okui (2012). Most of the theoretical results

we present are for distributions conditional on X, where X = (x1, . . . , xn). For simplicity,

we omit the conditional expressions hereafter.

Our objective is to estimate µi. For this purpose, we consider using models that

contain finite subsets of the elements of xi. We consider M candidate models. The mth

approximation model has km > 0 regressors. We assume that k1 ≤ k2 ≤ · · · ≤ kM

and the sequence of the models is nested in the sense that the mth model contains all

1We do not need to observe all the elements of xi, because it is sufficient to observe only those elements
of xi that are used in the estimation. However, it is convenient to describe the procedure and the theory
by assuming that every element is observable. An example in which all the elements of xi are observed
is nonparametric sieve estimation where xi consists of the basis functions of a sieve.
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the regressors appearing in the jth model for j ≤ m, as in Hansen (2007). The mth

approximation model of (1) is:

yi =
km∑
j=1

θjxij + bmi + ei, (2)

for m = 1, 2, . . . ,M , where bmi = µi −
∑km

j=1 θjxij =
∑∞

j=km+1 θjxij is the approximation

error.

The matrix representation of (1) is Y = µ + e, where Y = (y1, . . . , yn)
′, µ =

(µ1, . . . , µn)
′, and e = (e1, . . . , en)

′. Let Ω = diag(σ2
1, . . . , σ

2
n) denote the n × n pos-

itive definite variance–covariance matrix of the error terms. The matrix form of the

approximation model (2) is:

Y = XmΘm + bm + e,

whereXm is an n×km matrix of the regressors with ij-th element xij, Θm = (θ1, . . . , θkm)
′,

and bm = (bm1, . . . , bmn)
′.

In this paper, we use GLS estimators to construct an estimate of µ. In the case of

standard linear regression models, it is known that the GLS procedure provides a more

efficient estimator than does the least squares estimator in the presence of heteroskedas-

ticity. We therefore expect the approach based on GLS estimators to yield a better

estimate of µ even in the infinite dimensional linear regression models considered in this

paper.

The GLS estimator of Θm in the mth model is Θ̂m = (X ′
mΩ

−1Xm)
−1X ′

mΩ
−1Y . The

estimator of µ from the mth model is:

µ̂m = XmΘ̂m = Xm(X
′
mΩ

−1Xm)
−1X ′

mΩ
−1Y.

When the variance matrix Ω is unknown, we use the FGLS estimators. Let Ω̂ be an

estimate of Ω. The estimation of Ω is discussed in Section 3.2. The FGLS estimator of µ

from the mth model is:

µ̂F
m = XmΘ̂

F
m = Xm(X

′
mΩ̂

−1Xm)
−1X ′

mΩ̂
−1Y.

We propose that averaging the estimators of µ from various models would produce a

better estimator than the estimator from each individual model. Let W = (w1, . . . , wM)′

be an M × 1 weighting vector in:

HM =

{
W ∈ [0, 1]M :

M∑
m=1

wm = 1

}
.

The generalized least squares model averaging (GLSMA, hereafter) estimator of µ is
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defined as:

µ̂(W ) =
M∑

m=1

wmµ̂m

=
M∑

m=1

wmXm(X
′
mΩ

−1Xm)
−1X ′

mΩ
−1Y

= G(W )Y,

for some W ∈ HM , where the matrix G(W ) =
∑M

m=1wmXm(X
′
mΩ

−1Xm)
−1X ′

mΩ
−1 is

introduced for later use. Similarly, the feasible generalized least squares model averaging

(FGLSMA) estimator is:

µ̂(W ) =
M∑

m=1

wmµ̂
F
m

=
M∑

m=1

wmXm(X
′
mΩ̂

−1Xm)
−1X ′

mΩ̂
−1Y

= GF (W )Y,

where GF (W ) is defined similarly to G(W ). Note that we assume that all FGLS estima-

tors to be averaged use the same variance estimator, Ω̂.

3 Choice of the weighting vector

This section discusses the choice of the weighting vector and the properties of the proposed

procedure. We propose choosing the weighting vector by minimizing an estimate of the

MSE of the fit from the model averaging estimator. This approach yields criteria similar

to Mallows’ (1978) criterion, and this procedure is easy computationally. Section 3.1

discusses the estimation method of the GLSMA estimator. The method of the FGLSMA

estimator is discussed in Section 3.2.

3.1 Mallows’ criterion for GLSMA

We would like to use a weight vector that achieves a small MSE for the fitted model. The

relevant loss function is therefore:

LH (W ) = ∥µ− µ̂(W )∥2H
= (µ̂(W )− µ)′H−1(µ̂(W )− µ)

for some n× n positive definite matrix H. The risk function is:

RH(W ) = E(LH(W )).
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In this paper, we consider two choices of the weighting matrix H: H = In and H = Ω.

Although we could consider alternative weighting matrices, we believe that these two are

the most natural choices.

We estimate the loss function and use the estimated loss function as the criterion for

choosing the weighting vector. This results in a criterion in the spirit of Mallows (1973).

Mallows’ criterion CIn for LIn(W ) is defined as:

CIn(W ) = ∥Y − µ̂(W )∥2In + 2tr

(
M∑

m=1

wmXm(X
′
mΩ

−1Xm)
−1X ′

m

)
= ∥Y − µ̂(W )∥2In + 2tr (G(W )Ω) ,

and CΩ for LΩ(W ) is defined as:

CΩ(W ) = ∥Y − µ̂(W )∥2Ω + 2tr(
M∑

m=1

wmΩ
−1/2Xm(X

′
mΩ

−1Xm)
−1X ′

mΩ
−1/2′)

=
∥∥Ω−1/2Y − Ω−1/2µ̂(W )

∥∥2
In
+ 2

M∑
m=1

wmkm.

Note that the CΩ criterion is equivalent to the Mallows criterion derived by Hansen

(2007) applied to the data (Ω−1/2Y,Ω−1/2X). Another important observation is that

E(CIn(W )) = E(LIn(W )) + tr(Ω) and E(CΩ(W )) = E(LΩ(W )) + n. These criteria are

unbiased estimators of the corresponding loss functions plus some constants that do not

depend on the weights.

We choose the weighting vector by minimizing Mallows’ criterion. Let

ŴIn = arg min
W∈HM

CIn(W ).

and

ŴΩ = arg min
W∈HM

CΩ(W ).

We then use µ̂(ŴIn) or µ̂(ŴΩ) as our estimate of µ. These minimization problems are

standard quadratic programming problems and can be implemented easily by many sta-

tistical or numerical packages.

We note that, although this paper focuses on model averaging, these criteria may also

be used for model selection.

Next, we establish an optimal property of the proposed procedure for weight choice.

The optimality considered in this paper is similar to that of Li (1987). We examine

whether the loss evaluated at the chosen weights asymptotically achieves the minimum

loss. To demonstrate optimality, we follow the proof strategy of Hansen (2007) and we

restrict the weighting vector to be discrete, i.e., for some integer N < ∞, the elements

of the weighting vector are restricted to be one of the set {0, 1/N, 2/N, . . . , 1} and let

7



HM(N) be the subset of HM restricted to this set of weighting vectors. We note that

in practice this restriction may be ignored because the weights chosen from HM can be

arbitrarily close to that from HM(N) by making N sufficiently large, although a large N

imposes a heavy restriction on the moments of e.

We first consider CIn(W ). We use the following assumptions.

Assumption 1. E(|ei|4(N+1)) ≤ κ < ∞ for some κ.

Assumption 2. ξn ≡ infW∈Hn(N) RIn(W ) → ∞ as n → ∞.

Assumption 3. limn→∞ supW∈Hn(N) λ(G(W )G(W )′) < ∞ where λ(A) denotes the max-

imum eigenvalue of the matrix A.

Assumption 4. 0 < infi σ
2
i ≤ supi σ

2
i < ∞.

Assumption 1 imposes a bound on the moments of e. It may look strong but such an

assumption is made in most of the model averaging literature (see, e.g., Hansen (2007)).

Assumption 2 requires that any finite approximation of the true model is misspecified, i.e.,

modeling biases are not zero. This assumption is standard in the nonparametric regression

literature. Assumption 3 is quite natural (see, for example, Li (1987)). Assumption 4

excludes degeneracy and divergence of the variances.

We now have the following theorem about the optimality of the weighting vector

chosen by minimizing CIn(W ).

Theorem 1. We assume 1, 2, 3 and 4. Then, as n → ∞,

LIn(W̃In)

infW∈Hn(N) LIn(W )
→p 1,

where W̃In = argminW∈HM (N) CIn(W ).

For CΩ(W ), we use the following assumption instead of Assumption 2.

Assumption 5. ξΩn ≡ infW∈HM (N)RΩ(W ) → ∞ as n → ∞.

We then obtain the following theorem for the optimality of CΩ(W ).

Theorem 2. We now assume 1, 4 and 5. Then, as n → ∞,

LΩ(W̃Ω)

infW∈Hn(N) LΩ(W )
→p 1,

where W̃Ω = argminW∈HM (N)CΩ(W ).

These theorems show that the squared error evaluated at the weighting vector chosen

by using the GLS-based Mallows criteria is asymptotically equivalent to that evaluated

at the infeasible optimal weighting vector.
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The proof of Theorem 1 is in the Appendix. It is an application of Theorem 2.1 of

Li (1987) and follows the steps taken by the proof of Theorem 1 of Hansen (2007). The

proof of Theorem 2 is omitted because CΩ(W ) is equivalent to the criterion considered

by Hansen (2007) applied to the data (Ω−1/2Y,Ω−1/2X). These transformed data are

homoskedastic so this theorem follows immediately from Theorem 1 of Hansen (2007).

Although considering the restricted set HM(N) may not cause a serious problem

in applications and is the approach chosen by Hansen (2007) and Hansen and Racine

(2010), this restriction may still appear to be somewhat unsatisfactory. We can relax this

restriction and consider the unrestricted setHM by imposing different sets of assumptions.

This approach is selected by Wan, Zhang and Zou (2010) and Liu and Okui (2012).

Kuersteiner and Okui (2010) also provide a different proof strategy.

3.2 Mallows’ criterion for FGLSMA

In this subsection, we extend the Mallows criteria described in the previous subsection

to the FGLSMA estimator. The loss function is defined to be:

LF
H (W ) =

∥∥µ− µ̂F (W )
∥∥2
H

= (µ̂F (W )− µ)′H−1(µ̂F (W )− µ).

Analogous to the case for GLSMA, we consider the Mallows criteria for H = In and

H = Ω, which are:

CF
In(W ) =

∥∥Y − µ̂F (W )
∥∥2
In
+ 2tr

(
M∑

m=1

wmXm(X
′
mΩ̂

−1Xm)
−1X ′

m

)
and

CF
Ω (W ) = ∥Y − µ̂F (W )∥2Ω̂ + 2

M∑
m=1

wkm

=
∥∥∥Ω̂−1/2Y − Ω̂−1/2µ̂F (W )

∥∥∥2
In
+ 2

M∑
m=1

wkm.

We choose the weights for the FGLSMA estimator by minimizing these criteria.

The main purpose of this subsection is to show the asymptotic optimality of the

criteria CF
In
(W ) and CF

Ω (W ). We use the following additional assumptions.

Assumption 6. limn→∞
∑n

i=1 x
2
m,j,i/n is bounded uniformly in m and j.

Assumption 7. The maximum eigenvalue of
∑n

i=1 xmix
′
mi/n is bounded uniformly in n

and m. The minimum eigenvalue of
∑n

i=1 xmix
′
mi/n is away from zero uniformly in n

and m.

Assumption 8. There exists C < ∞ such that limn→∞
∑n

i=1 µ
2
i /n < C.
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Assumption 9. supi |σ̂−2
i − σ−2

i | = Op(n
−1/2), where σ̂2

i is the ith diagonal element of

Ω̂.

Assumption 10. k2
M/n → 0 and kM/ξn → 0, as n → ∞.

Assumptions 6 and 7 state that the regressors are uniformly bounded. Assumption 8

is a standard moment condition.

Assumption 9 require that the variances can be estimated at a
√
N parametric rate.

These assumptions do not allow us to use the FGLS estimator based on nonparametric

variance estimates as considered by Robinson (1987). An extension to such an estimator

seems to be a promising future research agenda.

Assumption 10 may look strong as a condition that restricts the size of the largest

model M . For example, if the coefficients θj = j−α for some α and the errors are

homoskedastic, we have ξn = O(n1/(1+2α)) (see, e.g., Hansen (2007)). In this case, As-

sumption 10 requires kM = o(n1/(1+2α)). This restriction is the cost of using estimated

variances in the GLS estimation. However, as long as α is small (i.e., as long as the

coefficients do not decline drastically as the model gets large), we can consider a large

number of regressors.

The following theorems show that the optimality holds even when the variances are

unknown and must be estimated.

Theorem 3. Suppose that Assumptions 1, 2, 3 4, 6, 7, 8, 9, and 10 hold. Then, as

n → ∞:

LF
In
(W̃In)

infW∈Hn(N) LIn(W )
→p 1,

where W̃In = argminW∈HM (N) C
F
In
(W ).

Theorem 4. Suppose that Assumptions 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10 hold. Then, as

n → ∞:

LF
Ω(W̃Ω)

infW∈Hn(N) LΩ(W )
→p 1,

where W̃Ω = argminW∈HM (N)C
F
Ω (W ).

The proofs of these theorems are in the Appendix. The main part of the proof is

to show that the estimation errors in the variances do not affect the squared errors

asymptotically. The additional assumptions are used for this purpose. The proofs are

new and they are the main technical contribution of this paper. Note that Theorem 4

uses Assumptions 2 and 3, which are not needed for Theorem 2. This is because the proof

of Theorem 4 uses some results from the proofs of Theorems 1 and 3. These assumptions

can be relaxed at the cost of lengthening the proofs greatly.
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These theorems are remarkable in the sense that the squared error attained by Mal-

lows’ criteria with estimated variances is equivalent asymptotically to the minimum of the

loss function with true variance. In other words, even if we need to estimate the variance,

we can achieve the minimum loss that is computed by assuming that the variances are

known. This result provides strong support for the use of the FGLSMA estimator. The

cost is that we need to impose additional assumptions whose main practical implication

is that the number of regressors should be small. We investigate to what extent this cost

is important in the simulations.

4 Monte Carlo studies

We conduct Monte Carlo simulations to investigate the finite sample performance of our

method and compare it with those of existing methods. In particular, we examine the

performance of the FGLSMA estimator.

4.1 Design

The following simulation design is almost the same as that of Liu and Okui (2012). We

draw a random sample of {xi, ei} for each replication such that xi = (xi1, . . . , xi10000),

xi1 = 1 and other xijs are independent over j with xij ∼ N(0, 1). The error term ei is

independent of xij for any j and ei ∼ N(0, σ2
i ), where σ2

i = x4
2i + 0.01. This specification

of variances is similar to that of Hansen and Racine (2010), but we add 0.01 in order to

guarantee that the variances are strictly positive. The dependent variable yi is generated

by:

yi =
10000∑
j=1

θjxij + ei,

where the parameters are specified as θj = c
√
2αj−α−1/2. The parameter α, which

determines how quickly the magnitude of θj decays as j increases, is set at α = 0.5

and we vary the values of c so that the population R2 increases with c from 0.1 to

0.9. We note that the population R2 is defined as R2 = (var(yi) − var(ei))/var(yi)

and it is (
∑∞

j=1 θ
2
j )/(

∑∞
j=1 θ

2
j + var(ei)), where var(ei) is the unconditional variance and

var(ei) = E(σ2
i ) = 3.01 in our case. The sample size is n = 150. The number of observ-

able regressors is K = 10, 20, 30 and 40. We consider K different models so that M = K

and km = m for any m. The kth model includes the first k regressors and the (k + 1)th

model nests the kth model. The number of replications is 1000.

To compute the FGLSMA estimator, we need to estimate the variance matrix Ω. We

consider the following model:

σ2
i = β0 + β1x

2
i2 + β2x

4
i2.
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The parameters (β0, β1β2) are estimated by maximum likelihood using the model whose

mean function includes all the available regressors. We then obtain the variance esti-

mate for i by σ̂2
i = (β̂0 + β̂1x

2
i2 + β̂2x

4
i2)(n/(n −K)), where n/(n −K) is the degrees of

freedom correction because we essentially estimate the variance using the residuals from

the regression with K regressors. We note that this specification is correct in the sense

that the model includes the data-generating process by setting (β0, β1, β2) = (0.01, 0, 1).

The FGLSMA estimator is constructed by computing K different FGLS estimators and

averaging them using the weights chosen by minimizing CF
In
(W ) or CF

Ω (W ). We use the

same variance estimates (which are estimated from the largest model) for all the FGLS

estimators to be averaged and to compute the criteria.

We also compute the following six alternative model averaging estimators. The gen-

eralized Cp (GC) method by Liu and Okui (2012), the weighted average least squares

(WALS) estimator by Magnus, Wan and Zhang (2011), the jackknife model averaging

(JMA) method by Hansen and Racine (2010), Mallows’ model averaging (MMA) pro-

cedure by Hansen (2007) and the estimator based on the smoothed Akaike information

criterion (SAIC) and the smoothed Bayesian information criterion (SBIC) by Buckland,

Burnham and Augustin (1997).2 We note that MMA, SAIC and SBIC are not designed

for heteroskedastic data. GC and JMA are robust to heteroskedasticity, but they average

least squares, not GLS, estimators. The WALS estimator is based on the FGLS esti-

mator, but its averaging procedure and averaging objective are different from ours. For

the WALS estimator, we use the same model for the variance as that for the FGLSMA

estimator.

The measure of performance of each estimator is the MSE. Let µr be the vector of

the true value of µ in the rth replication and µ̂(r) be the vector of the estimator of

µ(r). The MSE is computed as
∑1000

r=1 (µ̂
(r) − µ(r))′(µ̂(r) − µ(r))/1000 =

∑1000
r=1

∑n
i=1(µ̂

(r)
i −

µ
(r)
i )2/1000. The sample weighted mean squared error (WMSE) defined as WMSE =∑1000
r=1

∑n
i=1((µ̂

(r)
i −µ

(r)
i )2/σ2

i )/1000 is used for the comparison with the FGLSMA estima-

tor based on CF
Ω (W ). We report the ratios of the MSEs and WMSEs that are calculated

using the MSE and WMSE of the FGLSMA estimators based on CF
In
(W ) and CF

Ω (W ) as

the denominator, respectively.

4.2 Results

The simulation results are summarized in Figures 1 and 2. Figure 1 plots the sample MSE

ratios against the population R2 for the comparison with CF
In
(W ), and Figure 2 plots the

sample WMSE ratios against the population R2 for the comparison with CF
Ω (W ).

The FGLSMA estimator performs remarkably well, particularly when the cardinality

of the set of models is large and/or the population R2 is small. This result illustrates that

2SAIC was originally suggested by Akaike (1979) and extended by Buckland, Burnham and Augustin
(1997).
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Figure 1: Performance of the FGLSMA estimator based on CF
In
(W ) and alternative

estimators in the heteroskedastic design with n = 150.

the GLS procedure effectively reduces the variability of the estimator and provides a much

more precise estimate. Moreover, the result indicates that the FGLSMA estimator works

well even when the variances are estimated and the number of regressors is not small, while

the asymptotic theory that supports the use of the FGLSMA estimator imposes a rather

stringent condition on the number of regressors. Among the alternative procedures, the

performance of SAIC and SBIC is not encouraging. This result is not surprising because

these procedures are made for homoskedastic data but here we use heteroskedastic data.

It is somewhat surprising that the performance of MMA is comparable to that of GC or

JMA. WALS does not perform well particularly when R2 is small and M is large. Note

that the theory of WALS assumes that M is fixed so it is designed for situations with a

small M . Our procedure outperforms WALS even when M = 10. Note that the WALS

estimator is developed with a different objective (not minimizing the MSE of the fit) and

it may be natural that its performance is inferior to our procedure, which minimizes the

estimate of the MSE, when the measure of performance is the MSE.
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Figure 2: Performance of the FGLSMA estimator based on CF
Ω (W ) and alternative esti-

mators in the heteroskedastic design with n = 150.

4.3 Homoskedastic cases

In this section, we present the results of additional simulations in which the error terms

are homoskedastic. The purpose of this simulation exercise is to evaluate a possible loss

in terms of the MSE associated with using our FGLSMA estimator when there is no

need to use the FGLS estimators. The design of the experiments is the same as the

one presented in Section 4.1 except that we now set σ2
i = 1 for any i. We compare the

FGLSMA estimator with MMA, SAIC, SBIC and WALS.

The results are summarized in Figures 3 and 4. It is remarkable that the performance

of the FGLSMA estimator is similar to that of MMA in most of the cases. When M is

large and R2 is small, MMA performs noticeably better than FGLSMA based on CΩ(W ),

but they are almost indistinguishable when CIn(W ) is used. This result indicates that

the estimation of the variance does not worsen performance significantly, even when the

estimation is not necessary. Other procedures do not perform well compared with MMA

and FGLSMA in terms of the MSE in many cases.
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Figure 3: Performance of the FGLSMA estimator based on CF
In
(W ) and alternative

estimators in the homoskedastic design with n = 150.

In summary, we observe that using the FGLSMA estimator may not cause a serious

loss even when homoskedasticity is plausible as long as M is not very large or R2 is not

very small.

4.4 Nonparametric variance estimation

Finally, we examine the performance of the FGLSMA estimator based on nonparametric

variance estimates. We compute the semiparametric GLS estimators proposed by Robin-

son (1987) and average them using Mallows’ criteria. This procedure is not supported by

the theory presented in this paper because the variance estimators are not
√
n consistent.

Nonetheless, it is sometimes difficult to specify the model correctly for the variances and

it would be worthwhile to examine the performance of the procedure that does not require

correct modeling of the variance function. We use the same data-generating process as

that in Section 4.1.

The variances are estimated by the kth nearest neighbor (k-NN) estimator as sug-
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Figure 4: Performance of the FGLSMA estimator based on CF
Ω (W ) and alternative esti-

mators in the homoskedastic design with n = 150.

gested by Robinson (1987). We estimate the largest model by least squares and use the

squared residuals from this regression as the dependent variable when we estimate the

variance function nonparametrically. We use all available regressors as regressors in the

nonparametric estimation. For k-NN, we need to determine the tuning parameter, called

the k nearest neighbors and denoted as kNN , used in the estimation. We use the leave-

one-out method to select kNN . As a value of kNN that is too large will not give us a good

estimate, we restrict 1 ≤ kNN ≤ 11. We employ the triangular k-NN weights defined in

Robinson (1987) to perform k-NN estimation.3

The summarized results are presented as Figures 5 and 6. Note that the WALS

estimator is not based on the nonparametric variance estimates and is the same as that

examined above. The results are encouraging. The FGLSMA estimators still perform well

3To simplify the derivation of the properties of the estimator, Robinson (1987) does not use the ith
observation for the estimation of the ith diagonal element of the variance matrix. We find that this type
of data split technique causes poor performance of the estimator. Hence we include the ith observation
in the estimation.
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Figure 5: Performance of the FGLSMA estimator with nonparametric variance estimates
based on CF

In
(W ) and alternative estimators in the heteroskedastic design with n = 150.

even when the variances are estimated nonparametrically. The performance is inferior to

that where the variances are estimated at the parametric rate. (Note that the scales of the

horizontal axes are different from those in Figures 1 and 2.) Nonetheless, it outperforms

other procedures.

We also examine the performance of the FGLSMA estimator with nonparametric

variance estimates in homoskedastic cases using the design in Section 4.3. Figures 7 and

8 summarize the results. When the errors are homoskedastic, we see that unnecessarily

estimating the variances can deteriorate the performance of the estimators. In particular,

the performance of the FGLSMA estimator is substantially worse than those of other

estimators when M = 30 and M = 40 and R2 is small. Nonetheless, when M = 10,

the performance can be comparable to MMA and can be better than other estimators.

Therefore, the FGLSMA estimator based on nonparametrically estimated variances may

be considered when M is small and its theoretical justification would be a promising area

of future research.
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Figure 6: Performance of the FGLSMA estimator with nonparametric variance estimates
based on CF

Ω (W ) and alternative estimators in the heteroskedastic design with n = 150.

5 Conclusion

This paper proposes a model averaging estimator for linear regression models with pos-

sibly heteroskedastic errors. The estimator is a weighted average of the GLS estimators.

The weighting vector is chosen by minimizing Mallows’ criteria, calculated from the esti-

mates of the MSE of the fit of the estimator. The criteria are shown to achieve asymptotic

optimality in the sense that the squared error evaluated at the chosen weight is asymp-

totically indistinguishable from the minimum of the squared error. We also consider a

weighted average of the FGLS estimators, derive Mallows’ criteria for it and prove its

asymptotic optimality. The Monte Carlo simulations show that our methods work well

compared with existing procedures.

There are several promising areas for future research. The Monte Carlo simulations

indicate that the model averaging estimator based on the FGLS estimators with nonpara-

metrically estimated variances can perform well. As such an estimator is not supported

by the theoretical argument provided in this paper, some theoretical work on it would be
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Figure 7: Performance of the FGLSMA estimator with nonparametric variance estimates
based on CF

In
(W ) and alternative estimators in the homoskedastic design with n = 150.

an interesting research topic. Other future research topics include an extension to time

series data analysis, an extension to nonlinear models such as probit models or hazard

models and an extension to models defined by moment conditions.

A Mathematical appendix

This appendix presents the proofs of the theorems in the paper. Let || · || denote the

Euclidean norm so that || · ||In = || · ||. Let supW be an abbreviation of supW∈HM (N).

A.1 Proof of Theorem 1

Proof. The proof consists of two steps: first, we propose the sufficient conditions for the

results of Theorem 2.1 of Li (1987) to be applied to the current case, and second, we show

that these sufficient conditions are met in our setup following the same steps as those for

the proof of Theorem 1 of Hansen (2007).
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Figure 8: Performance of the FGLSMA estimator with nonparametric variance estimates
based on CF

Ω (W ) and alternative estimators in the homoskedastic design with n = 150.

Step 1 : First, we show that the following three conditions are sufficient to prove the

desired result:

lim
n→∞

sup
W

λ(G(W )′G(W )) < ∞, (3)

E(|ei|4(N+1)) ≤ κ < ∞, (4)∑
W∈HM (N)

RIn(W )−(N+1) → 0 as n → ∞. (5)

We observe:

CIn(W ) = ∥e∥2 + LIn(W ) + 2⟨e, (I −G(W ))µ⟩+ 2 (tr(G(W )Ω)− ⟨e,G(W )e⟩)

and the first term does not depend on a weight vector W . Lemma A.9 of Donald and
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Newey (2001) tells us that it is sufficient to show that:

sup
W

⟨e, (I −G(W ))µ⟩
RIn(W )

→p 0, (6)

sup
W

|tr(G(W )Ω)− ⟨e,G(W )e⟩|
RIn(W )

→p 0, (7)

sup
W

∣∣∣∣LIn(W )

RIn(W )
− 1

∣∣∣∣→p 0. (8)

For (6), using the Bonferroni inequality and the Chebyshev inequality, we have, for

any δ > 0:

P

(
sup
W

|⟨e, (I −G(W ))µ⟩|/RIn(W ) > δ

)
≤

∑
W∈HM (N)

P (|⟨e, (I −G(W ))µ⟩|/RIn(W ) > δ) (Bonferroni)

≤
∑

W∈HM (N)

E(⟨e, (I −G(W )µ⟩2(N+1))

RIn(W )2(N+1)δ2(N+1)
. (Chebyshev)

Theorem 2 of Whittle (1960) implies that E(⟨e, (I−G(W )µ⟩2(N+1)) ≤ C∥(I−G(W ))µ∥2(N+1).

As we can writeRIn(W ) = ∥µ−G(W )µ∥2+tr(G(W )′G(W )Ω), we have ∥(I−G)(W )µ∥2 ≤
RIn . Thus, it holds that:∑

W∈HM (N)

E(⟨e, (I −G(W )µ⟩2(N+1))

RIn(W )2(N+1)δ2(N+1)
≤ Cδ−2(N+1)

∑
W∈HM (N)

RIn(W )−(N+1) → 0.

Similarly, for (7), the Bonferroni inequality, the Chebyshev inequality and Theorem

2 of Whittle (1960)) imply:

P

(
sup
W

|tr(G(W )Ω)− ⟨e,G(W )e⟩|
RIn(W )

> δ

)
≤ C

δ2(N+1)

∑
W∈HM (N)

E (tr(G(W )Ω)− ⟨e,G(W )e⟩)2(N+1)

RIn(W )2(N+1)

≤ C

δ2(N+1)

∑
W∈HM (N)

tr(G(W )′G(W ))(N+1)

RIn(W )2(N+1)
.

Let γi be the ith diagonal element of G(W )′G(W ). Noting that γi ≥ 0, it follows that:

tr(G(W )′G(W )) =
n∑

i=1

γi ≤
n∑

i=1

γi
σ2
i

infj σ2
j

= (inf
j
σ2
j )

−1tr(G(W )′G(W )Ω).
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Moreover, the definition of RIn(W ) gives tr(G(W )′G(W )Ω) ≤ RIn(W ). Thus, we have:

C

δ2(N+1)

∑
W∈HM (N)

tr(G(W )′G(W ))(N+1)

RIn(W )2(N+1)

≤ C

δ2(N+1)

∑
W∈HM (N)

(
inf
i
σ2
i

)−(N+1) tr(G(W )′G(W )Ω)(N+1)

RIn(W )2(N+1)

≤ C

δ2(N+1)

(
inf
i
σ2
i

)−(N+1) ∑
W∈HM (N)

RIn(W )−(N+1) → 0.

To prove (8), we observe:

LIn(W ) = ∥µ− µ̂(W )∥2

= ∥(I −G(W ))µ∥2 + tr(G(W )′G(W )Ω) + ∥G(W )e∥2

−tr(G(W )′G(W )Ω)− 2⟨(I −G(W ))µ,G(W )e⟩

= RIn(W ) + ∥G(W )e∥2 − tr(G(W )′G(W )Ω)− 2⟨(I −G(W ))µ,G(W )e⟩.

Thus, if we show that:

sup
W

|∥G(W )e∥2 − tr(G(W )′G(W )Ω)|
RIn(W )

→p 0, (9)

sup
W

|⟨(I −G(W ))µ,G(W )e⟩|
RIn(W )

→p 0, (10)

we have (8). Using the same argument as for proving (6) and (7), Chebyshev’s inequality,

Theorem 2 of Whittle (1960), ∥G(W )e∥2 = ⟨e,G(W )′G(W )e⟩ and

tr(G(W )′G(W )G(W )′G(W )) ≤ λ(G(W )′G(W ))tr(G(W )′G(W ))

≤ CRIn(W )

implies (9). Similarly to (9), because ⟨(I − G(W ))µ,G(W )e⟩ = ⟨G(W )′(I − G(W ))µ, e⟩
and

∥G(W )′(I −G(W ))µ∥2 ≤ λ(G(W )′G(W ))∥(I −G(W ))µ∥2

≤ CRIn(W ),

(10) holds. This completes Step 1.

Step 2 : We show that three conditions, (3), (4) and (5), are satisfied in our setup.

As (3) and (4) hold by the assumptions of the theorem, we only need to prove (5). Let

Wj1,...,jN ∈ HM(N) denote the discrete weight set for some fixed integer N < ∞ as in

Hansen (2007). More precisely, (ji, . . . , jN) is the set of integers satisfying 1 ≤ j1 ≤ j2 ≤

22



· · · ≤ jN , and the ji element of Wj1,...,jN = 1/N and the other elements are zero. We then

observe that:

RIn(Wj1,...,jN ) ≥ tr(G(Wj1,...,jN )ΩG(Wj1,...,jN )
′)

=
N∑

m=1

N∑
l=1

N−2tr
(
Xjm(X

′
jmΩ

−1Xjm)
−1X ′

jmΩ
−1Xjl(X

′
jl
Ω−1Xjl)

−1X ′
jl

)
.

If jm ≤ jl, we can write Xjm = XjlF for some matrix F and it holds that:

Xjm(X
′
jmΩ

−1Xjm)
−1X ′

jmΩ
−1Xjl(X

′
jl
Ω−1Xjl)

−1X ′
jl

= Xjm(X
′
jmΩ

−1Xjm)
−1F ′X ′

jl
Ω−1Xjl(X

′
jl
Ω−1Xjl)

−1X ′
jl

= Xjm(X
′
jmΩ

−1Xjm)
−1F ′X ′

jl

= Xjm(X
′
jmΩ

−1Xjm)
−1X ′

jm .

Let γ̃i be the ith diagonal element of Xjm(X
′
jmΩ

−1Xjm)
−1X ′

jm . Note that γ̃i ≥ 0.

Thus, when jm ≤ jl we have:

tr(Xjm(X
′
jmΩ

−1Xjm)
−1X ′

jm) =
n∑

i=1

γ̃i

≥
n∑

i=1

γ̃i
σ−2
i

supi σ
−2
i

=
(
inf
i
σ2
)
tr(Xjm(X

′
jmΩ

−1Xjm)
−1X ′

jmΩ
−1)

=
(
inf
i
σ2
)
kjm .

Thus, we observe that:

N∑
m=1

N∑
l=1

N−2tr
(
Xjm(X

′
jmΩ

−1Xjm)
−1X ′

jmΩ
−1Xjl(X

′
jl
Ω−1Xjl)

−1X ′
jl

)
≥ (inf

i
σ2
i )

N∑
m=1

N∑
l=1

N−2min(kjm , kjl)

≥ (inf
i
σ2
i )N

−2kjN

≥ (inf
i
σ2
i )N

−2jN .

If we replace the bound Rn(Wj1,...,jN ) ≥ σ2jN/N
2 in the proof of Theorem 1 of Hansen

(2007) with the bound above, the proof of (5) is the same as that of Theorem 1 of Hansen

(2007). This completes the proof.

A.2 Lemmas for the proofs of Theorems 3 and 4

Let ∥ · ∥ denote the Euclidean norm (∥A∥ =
√
tr(A′A)) and ∥ · ∥1 denote the Banach

norm (∥A∥1 = supx ̸=0(∥Ax∥/∥x∥)) of the matrices. See Wiener and Masani (1958) and

Lewis and Reinsel (1985) for properties of these norms. In particular, we use the following

result: ∥AB∥ ≤ ∥A∥1∥B∥.

23



Lemma 1. Suppose that Assumptions 6 and 9 hold. Then, as n → ∞:

sup
m

∥∥∥∥ 1nX ′
mΩ̂

−1Xm − 1

n
X ′

mΩ
−1Xm

∥∥∥∥ = Op

(
kM√
n

)
.

Proof. We observe that:∥∥∥∥ 1nX ′
mΩ̂

−1Xm − 1

n
X ′

mΩ
−1Xm

∥∥∥∥ =

∥∥∥∥∥ 1n
n∑

i=1

(
1

σ̂2
i

− 1

σ2
i

)
xmix

′
mi

∥∥∥∥∥
≤ sup

i

∣∣∣∣ 1σ̂2
i

− 1

σ2
i

∣∣∣∣ 1n
n∑

i=1

∥xmix
′
mi∥ .

As Assumption 9 gives:

sup
i

∣∣∣∣ 1σ̂2
i

− 1

σ2
i

∣∣∣∣ = Op

(
1√
n

)
and Assumption 6 implies:

sup
m

1

n

n∑
i=1

∥xmix
′
mi∥ = sup

m

1

n

n∑
i=1

√
tr(xmix′

mixmix′
mi) ≤ sup

m

1

n

n∑
i=1

km∑
j=1

x2
m,j,1 = O(kM),

we have the desired result.

Lemma 2. Suppose that Assumptions 4, 6, 7 and 9 hold. Then, if n → ∞ and k2
M/n → 0,

then:

sup
m

∥∥∥∥∥
(
1

n
X ′

mΩ̂
−1Xm

)−1

−
(
1

n
X ′

mΩ
−1Xm

)−1
∥∥∥∥∥
1

= Op

(
kM√
n

)
(11)

and

sup
m

∥∥∥∥∥
(
1

n
X ′

mΩ̂
−1Xm

)−1
∥∥∥∥∥
1

= Op (1) . (12)

Proof. Let

Âm =
1

n
X ′

mΩ̂
−1Xm, and Am =

1

n
X ′

mΩ
−1Xm.

As

Am =
1

n

n∑
i=1

1

σ2
i

xmix
′
mi,

Assumptions 4 and 7 imply that supm ||A−1
m ||1 ≤ F < ∞ for some constant F . Similarly

to Theorem 1 of Lewis and Reinsel (1985) or Lemma 3 of Berk (1974), we can write:

Â−1
m − A−1

m = Â−1
m (Âm − Am)A

−1
m =

[
A−1

m +
(
Â−1

m − A−1
m

)]
(Âm − Am)A

−1
m ,
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and thus:

||Â−1
m − A−1

m ||1 ≤
(
||A−1

m ||1 + ||Â−1
m − A−1

m ||1
)
||Âm − Am||1||A−1

m ||1

≤
(
F + ||Â−1

m − A−1
m ||1

)
||Âm − Am||1F.

We note that supm ||Âm−Am||1 ≤ supm ||Âm−Am|| →p 0 by Lemma 1 and the conditions

of this lemma. Thus, with probability approaching one, we have F ||Âm −Am||1 < γ < 1

for any m and for some γ:

sup
m

||Âm
−1

− A−1
m ||1 ≤ sup

m

F 2||Âm − Am||1
1− F ||Âm − Am||1

.

The above inequality implies (11).

(12) follows because:

sup
m

||(Âm)
−1||1 ≤ sup

m
||A−1

m ||1 + sup
m

||(Âm)
−1 − A−1

m ||1 ≤ F + op(1) = Op(1),

where the first inequality is the triangular inequality and the second inequality follows

from the assumption of the lemma.

Lemma 3. Suppose that Assumptions 4, 6, 7 and 9 hold. As n → ∞ and k2
M/n → 0, it

holds that

sup
W

∣∣∣∣∣tr
(

M∑
m=1

wmXm(X
′
mΩ̂

−1Xm)
−1X ′

m

)
− tr

(
M∑

m=1

wmXm(X
′
mΩ

−1Xm)
−1X ′

m

)∣∣∣∣∣
= Op

(
k2
M√
n

)
.

Proof. We observe that:

sup
m

∣∣∣tr (Xm(X
′
mΩ̂

−1Xm)
−1X ′

m

)
− tr

(
Xm(X

′
mΩ

−1Xm)
−1X ′

m

)∣∣∣
= sup

m

∣∣∣∣∣ 1n
n∑

i=1

x′
mi

((
1

n
X ′

mΩ̂
−1Xm

)−1

−
(
1

n
X ′

mΩ
−1Xm

)−1
)
xmi

∣∣∣∣∣
≤ sup

m

∥∥∥∥∥
(
1

n
X ′

mΩ̂
−1Xm

)−1

−
(
1

n
X ′

mΩ
−1Xm

)−1
∥∥∥∥∥
1

sup
m

1

n

n∑
i=1

x′
mixmi

= Op

(
k2
M√
n

)
,

where the inequality stems from the definition of the Banach norm and the last equality

follows from Lemma 2. It therefore holds that:

sup
W

tr

∣∣∣∣∣
(

M∑
m=1

wmXm(X
′
mΩ̂

−1Xm)
−1X ′

m

)
− tr

(
M∑

m=1

wmXm(X
′
mΩ

−1Xm)
−1X ′

m

)∣∣∣∣∣
= sup

W

M∑
m=1

wm

(
tr
(
Xm(X

′
mΩ̂

−1Xm)
−1X ′

m

)
− tr

(
Xm(X

′
mΩ

−1Xm)
−1X ′

m

))
= Op

(
k2
M√
n

)
.
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Lemma 4. Suppose that Assumptions 4, 6, 7, 8 and 9 hold. As n → ∞ and k2
M/n → 0,

it holds that:

sup
m

∥∥∥Θ̂m − Θ̂F
m

∥∥∥ = Op

(√
kM
n

)
.

Proof. The difference between Θ̂m and Θ̂F
m can be written as follows. Let ê(m) = Y −

X ′
mΘ̂m. Then, we have:

Θ̂F
m = (X ′

mΩ̂
−1Xm)

−1X ′
mΩ̂

−1Y = Θ̂m + (X ′
mΩ̂

−1Xm)
−1X ′

mΩ̂
−1ê(m).

Therefore, it follows that

Θ̂m − Θ̂F
m = −(X ′

mΩ̂
−1Xm)

−1X ′
mΩ̂

−1ê(m).

We now examine the order of the term X ′
mΩ̂

−1ê(m). Since X ′
mΩ

−1ê(m) = 0 by the

definition of ê(m), we have:

1

n
X ′

mΩ̂
−1ê(m) =

1

n
X ′

mΩ̂
−1ê(m)− 1

n
X ′

mΩ
−1ê(m)

=
1

n
X ′

m

(
Ω̂−1 − Ω−1

)
ê(m) =

1

n

n∑
i=1

xmi

(
1

σ̂2
i

− 1

σ2
i

)
êi(m),

where êi(m) is the ith element of ê(m). By the Cauchy-Schwarz inequality, we have:∥∥∥∥∥ 1n
n∑

i=1

xmi

(
1

σ̂2
i

− 1

σ2
i

)
êi(m)

∥∥∥∥∥
≤ sup

i

∣∣∣∣ 1σ̂2
i

− 1

σ2
i

∣∣∣∣ ·
(
1

n

n∑
i=1

∥xmi∥2
)1/2(

1

n

n∑
i=1

ei(m)2

)1/2

.

Assumption 6 implies that supm

∑n
i=1 ∥xmix

′
mi∥

2 /n = O(kM). Assumptions 1 and 8

imply that supm

∑n
i=1 ei(m)2 = Op(1). Therefore, by Assumption 9, it holds that:

sup
m

∥∥∥∥ 1nX ′
mΩ̂

−1ê(m)

∥∥∥∥ = Op

(√
kM
n

)
.

Therefore, by Lemma 2, it follows that:

sup
m

∥∥∥Θ̂m − Θ̂F
m

∥∥∥ = sup
m

∥∥∥(X ′
mΩ̂

−1Xm)
−1X ′

mΩ̂
−1ê(m)

∥∥∥
≤ sup

m

∥∥∥∥∥
(
1

n
X ′

mΩ̂
−1Xm

)−1
∥∥∥∥∥
1

· sup
m

∥∥∥∥ 1nX ′
mΩ̂

−1ê(m)

∥∥∥∥
= Op

(√
kM
n

)
.
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A.3 Proof of Theorem 3

Proof. We show that:

LF
In
(W̄ )

infW∈HM (N) L
F
In
(W )

→p 1,

where W̄ = argminW∈HM (N) C
F
In
(W ).

Lemma A.9 of Donald and Newey (2001) demonstrates that it is sufficient to show

that:

sup
W

(
CF

In
(W )− LF

In
(W )

LF
In
(W )

)
→ 0.

As we have already established that:

sup
W

∣∣∣∣LIn(W )

RIn(W )
− 1

∣∣∣∣→p 0

and

sup
W

∣∣∣∣CIn(W )− LIn(W )

LIn(W )

∣∣∣∣→p 0,

we need to show that:

sup
W

∣∣∣∣CF
In
(W )− CIn(W )

RIn(W )

∣∣∣∣→p 0,

sup
W

∣∣∣∣LF
In
(W )− LIn(W )

RIn(W )

∣∣∣∣→p 0.

To do so, we observe that:

CF
In(W )− CIn(W )

= 2(Y − µ̂(W ))′(µ̂F (W )− µ̂(W )) + ∥µ̂F (W )− µ̂(W )∥2

+2

(
tr

(
M∑

m=1

wmXm(X
′
mΩ̂

−1Xm)
−1X ′

m

)
− tr

(
M∑

m=1

wmXm(X
′
mΩ

−1Xm)
−1X ′

m

))
,

and

LF
In(W )− LIn(W ) =

∥∥µ̂(W )− µ̂F (W )
∥∥2 + (µ− µ̂(W ))′(µ̂(W )− µ̂F (W )).

Thus, it is sufficient to show the following three conditions:

sup
W

∣∣∣∣(Y − µ̂(W ))′(µ̂F (W )− µ̂(W ))

RIn(W )

∣∣∣∣→p 0, (13)

sup
W

∣∣∣∣∥µ̂F (W )− µ̂(W )∥2

RIn(W )

∣∣∣∣→p 0, (14)
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and

sup
W

∣∣∣∣∣∣
tr
(∑M

m=1wmXm(X
′
mΩ̂

−1Xm)
−1X ′

m

)
− tr

(∑M
m=1wmXm(X

′
mΩ

−1Xm)
−1X ′

m

)
RIn(W )

∣∣∣∣∣∣→p 0.(15)

We first consider condition (14). We observe:

∥µ̂F (W )− µ̂(W )∥2

=
M∑

m=1

M∑
l=1

wmwl

∣∣∣n(Θ̂F
m − Θ̂m)

′(n−1X ′
mXl)(Θ̂

F
l − Θ̂l)

∣∣∣
≤

M∑
m=1

M∑
l=1

wmwln

(
(Θ̂F

m − Θ̂m)
′
(
1

n
X ′

mXl

)(
1

n
X ′

lXm

)
(Θ̂F

m − Θ̂m)

) 1
2

×
(
(Θ̂F

l − Θ̂l)
′(Θ̂F

l − Θ̂l)
) 1

2

≤
M∑

m=1

M∑
l=1

wmwlλ
1/2
max

[
X ′

mXl

n

X ′
lXm

n

]
n∥Θ̂F

m − Θ̂m∥∥Θ̂F
l − Θ̂l∥,

where the first inequality follows by the Cauchy–Schwarz inequality and the second in-

equality follows by the property of the largest eigenvalue and the definition of the norm.

Thus, by Lemma 4, we have:

sup
W

∥µ̂F (W )− µ̂(W )∥2 = Op (kM) .

Condition (14) thus holds by the assumption of the theorem.

Next, we examine condition (13). As Y = µ+ e, we have:∣∣∣∣(Y − µ̂(W ))′(µ̂F (W )− µ̂(W ))

RIn(W )

∣∣∣∣
≤

∣∣∣∣(µ− µ̂(W ))′(µ̂F (W )− µ̂(W ))

RIn(W )

∣∣∣∣+ ∣∣∣∣e′(µ̂F (W )− µ̂(W ))

RIn(W )

∣∣∣∣ .
By the Cauchy–Schwarz inequality, it follows that:∣∣∣∣(µ− µ̂(W ))′(µ̂F (W )− µ̂(W ))

RIn(W )

∣∣∣∣
≤

(
∥µ− µ̂(W )∥2

RIn(W )

)1/2(∥µ̂F (W )− µ̂(W )∥2

RIn(W )

)1/2

.

As in the proof of Theorem 1, we have:(
∥µ− µ̂(W )∥2

RIn(W )

)
= O(1).

Therefore, because we have already shown condition (14), it holds that:

sup
W

∣∣∣∣(µ− µ̂(W ))′(µ̂F (W )− µ̂(W ))

RIn(W )

∣∣∣∣→p 0.
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We see that:

|e′(µ̂F (W )− µ̂(W ))| =

∣∣∣∣∣
M∑

m=1

wm(Θ̂
F
m − Θ̂)′X ′

me

∣∣∣∣∣
=

∣∣∣∣∣
M∑

m=1

wmn(Θ̂
F
m − Θ̂)′

1

n

n∑
i=1

X ′
miei

∣∣∣∣∣
≤

M∑
m=1

wmn
∥∥∥Θ̂F

m − Θ̂
∥∥∥ · ∥∥∥∥∥ 1n

n∑
i=1

X ′
miei

∥∥∥∥∥ .
Lemma 4 implies that supm

∥∥∥Θ̂F
m − Θ̂

∥∥∥ = Op(
√
kM/n). Furthermore, it is easy to see

that:

sup
m

∥∥∥∥∥ 1n
n∑

i=1

X ′
miei

∥∥∥∥∥ = Op

(√
kM
n

)
.

It therefore holds that:

sup
W

|e′(µ̂F (W )− µ̂(W ))| = Op (kM) .

Thus, condition (13) holds by the assumption of the theorem.

Lastly, we consider condition (15). By Lemma 3, we have:

sup
W

∣∣∣∣∣tr
(

M∑
m=1

wmXm(X
′
mΩ̂

−1Xm)
−1X−1

m

)
− tr

(
M∑

m=1

wmXm(X
′
mΩ

−1Xm)
−1X−1

m

)∣∣∣∣∣
= Op

(
k2
M√
n

)
.

Therefore, condition (15) holds by the assumption of the theorem.

A.4 Proof of Theorem 3

Proof. We consider a slightly modified version of the criterion:

C̄F
Ω (W ) = CF

Ω (W ) + e′(Ω−1 − Ω̂−1)e.

As C̄F
Ω (W ) differs from CF

Ω (W ) only by the term that does not depend on W , the weights

obtained by minimizing C̄F
Ω (W ) are the same as that from CF

Ω (W ). Thus, it is sufficient

to show the optimality of C̄F
Ω (W ).

Similarly to the proof of Theorem 2, we need to show that:

sup
W

∣∣C̄F
Ω (W )− CΩ(W )

∣∣
RΩ(W )

→p 0.
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First, we observe that:

C̄F
Ω (W )− CΩ(W )

= ∥Y − µ̂(W )∥2Ω − ∥Y − µ̂F (W )∥2Ω + ∥Y − µ̂F (W )∥2Ω − ∥Y − µ̂F (W )∥2Ω̂
= −2Y ′Ω−1µ̂ (W ) + µ̂′ (W ) Ω−1µ̂ (W )−

(
−2Y ′Ω−1µ̂F (W ) + µ̂′

F (W ) Ω−1µ̂F (W )
)

+ (Y − µ̂F (W ))′
(
Ω−1 − Ω̂−1

)
(Y − µ̂F (W ))

= 2Y ′Ω−1 (µ̂F (W )− µ̂ (W )) + (µ̂ (W )− µ̂F (W ))′ Ω−1µ̂F (W ) + µ̂′ (W ) Ω−1 (µ̂ (W )− µ̂F (W ))

+ (Y − µ̂F (W ))′
(
Ω−1 − Ω̂−1

)
(Y − µ̂F (W ))

= (Y − µ̂F (W ))′Ω−1 (µ̂F (W )− µ̂ (W )) + (Y ′ − µ̂ (W )) Ω−1 (µ̂F (W )− µ̂ (W ))

+ (Y − µ̂F (W ))′
(
Ω−1 − Ω̂−1

)
(Y − µ̂F (W ))

= (µ− µ̂F (W ))′Ω−1 (µ̂F (W )− µ̂ (W ))

+ (µ− µ̂ (W ))′ Ω−1 (µ̂F (W )− µ̂ (W )) + 2e′Ω−1 (µ̂F (W )− µ̂ (W ))

+ (µ− µ̂F (W ))′
(
Ω−1 − Ω̂−1

)
(µ− µ̂F (W )) + 2e′

(
Ω−1 − Ω̂−1

)
(µ− µ̂F (W )) .

As

RIn(W )

RΩ(W )
=

E ∥µ− µ̂ (W )∥2

E ∥µ− µ̂ (W )∥2Ω

=
E ∥µ− µ̂ (W )∥2

E (µ− µ̂ (W ))′ Ω−1 (µ− µ̂ (W ))

≤ E ∥µ− µ̂ (W )∥2

infi
(
σ−2
i

)
E ∥µ− µ̂ (W )∥2

= O (1) ,

and because we have shown in the proof of Theorem 2 that:

sup
W

∥µ̂F (W )− µ̂ (W )∥2

RIn(W )
→p 0,

sup
W

∥µ− µ̂ (W )∥2

RIn(W )
= Op(1),

we have:

sup
W

∣∣(µ− µ̂F (W ))′Ω−1 (µ̂F (W )− µ̂ (W ))
∣∣

RΩ(W )

≤ sup
W

supi

(
σ−2
i

)
∥µ− µ̂F (W )∥ ∥µ̂F (W )− µ̂ (W )∥

RΩ(W )

= sup
W

supi

(
σ−2
i

)
∥µ− µ̂F (W )∥ ∥µ̂F (W )− µ̂ (W )∥

RIn(W )

RIn(W )

RΩ(W )

= op (1) .
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Moreover, we have:

sup
W

∣∣∣(µ− µ̂F (W ))′
(
Ω−1 − Ω̂−1

)
(µ− µ̂F (W ))

∣∣∣
RΩn(W )

≤ sup
W

supi

∣∣σ−2
i − σ̂−2

i

∣∣ ∥µ− µ̂F (W )∥2

RIn(W )

RIn(W )

RΩ(W )

= op (1) ,

and

sup
W

∣∣∣e′ (Ω−1 − Ω̂−1
)
(µ− µ̂F (W ))

∣∣∣
RΩ(W )

≤ sup
W

supi

∣∣σ−2
i − σ̂−2

i

∣∣ ∥e∥ ∥µ− µ̂F (W )∥
RIn(W )

RIn(W )

RΩ(W )

= sup
W

Op

(
n−1/2

)
∥e∥ ∥µ− µ̂F (W )∥
RIn(W )

RIn(W )

RΩ(W )

= Op

(
n−1/2

)
Op

(
n1/2

)
op (1)O (1) = op (1) .

By Lemma 4, it follows that:

sup
W

|e′Ω−1 (µ̂F (W )− µ̂ (W ))|
RΩ(W )

= sup
W

∣∣∣∣∑M
m=1wm

(
Θ̂F

m − Θ̂m

)′
X ′

mΩ
−1e

∣∣∣∣
RΩ(W )

= sup
W

∣∣∣∣∑M
m=1wmn

(
Θ̂F

m − Θ̂m

)′
1
n
Σn

i=1X
′
miσ

−2
i ei

∣∣∣∣
RΩ(W )

≤ sup
W

∑M
m=1wmn

∥∥∥Θ̂F
m − Θ̂m

∥∥∥∥∥ 1
n
Σn

i=1X
′
miσ

−2
i ei

∥∥
RIn(W )

RIn(W )

RΩ(W )

= O (n)Op

(√
kM/n

)
Op

(√
kM/n

)(
inf

W∈HM (N)
RIn(W )

)−1

= Op (kM)

(
inf

W∈HM (N)
RIn(W )

)−1

= op (1) ,

and we have the desired result.
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