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Abstract

We propose and prove a family of generalized Lieb-Schultz-Mattis (LSM) theorems for

symmetry protected topological (SPT) phases on boson/spin models in any dimensions.

The “conventional” LSM theorem, applicable to e.g. any translation invariant system

with an odd number of spin-1/2 particles per unit cell, forbids a symmetric short-range-

entangled ground state in such a system. Here we focus on systems with no LSM anomaly,

where global/crystalline symmetries and fractional spins within the unit cell ensure that

any symmetric SRE ground state must be a non-trivial SPT phase with anomalous bound-

ary excitations. Depending on models, they can be either strong or “higher-order” crys-

talline SPT phases, characterized by non-trivial surface/hinge/corner states. Further-

more, given the symmetry group and the spatial assignment of fractional spins, we are

able to determine all possible SPT phases for a symmetric ground state, using the real

space construction for SPT phases based on the spectral sequence of cohomology the-

ory. We provide examples in one, two and three spatial dimensions, and discuss possible

physical realization of these SPT phases based on condensation of topological excitations

in fractionalized phases.
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1 Introduction

Since the discovery of topological band insulators [1,2], symmetry-protected topological (SPT)

phases have attracted considerable research interests both theoretically and experimentally [3–

5]. Unlike conventional phases of matter within the Landau paradigm which are fully cap-

tured by their symmetries, SPT phases exhibit quantized bulk response functions as well as

topological boundary excitations protected by symmetry. Examples of SPT phases include

topological insulators and superconductors of weakly interacting electrons, which can be re-

alized in semiconductors and other electronic materials [1, 2]. On the other hand, there also

exists a large family of SPT phases in bosonic systems which necessitate strong interactions

to be stabilized [3–5], such as 1D Haldane phase [6–8] and 2D bosonic integer quantum Hall

states [9–11]. The requirement of strong and often complex interactions significantly hinders

the physical realization of those phases. One nature question is: how to identify an interacting

physical system that is likely to host these bosonic SPT phases?

Symmetries of a quantum many-body system, when combined with certain restrictions

on representations on the many-body Hilbert space, can strongly constrain the nature of pos-

sible ground states of the (possibly interacting) system. One famous example is the Lieb-

Schultz-Mattis (LSM) theorem [12], which forbids a symmetric gapped ground state in any

translational-invariant one-dimensional (1D) spin-1/2 chain. The LSM theorem has been

generalized to higher spatial dimensions and other symmetries, where certain space group

symmetries (such as translation, mirror, and nonsymmorphic symmetries) forbid symmetric

short-range-entangled (SRE) ground states in a generic interacting Hamiltonian within this

many-body Hilbert space [13–23].

Recently, a new class of LSM-type theorems for SPT phases has been discovered [24–26],

where magnetic translation symmetries combined with certain restrictions on the Hilbert space

dictate that any symmetric SRE ground state must be a non-trivial (strong) SPT phase in two

spatial dimensions (2D). In contrast to the conventional LSM theorems, here an SRE ground

state is allowed, but it has to be a non-trivial SPT phase, i.e. with symmetry-protected topo-

logical excitations on its boundary.

In this work, we generalize these 2D results to other spatial dimensions and other inter-

nal/crystalline symmetries, where we coin these new theorems as “SPT-LSM” theorems. In a

broader context of classifying SPT phases protected by both crystalline and internal symme-

tries, SPT-LSM theorems highlight an important feature in this problem, namely the classifi-

cation depends on the precise manner in which the total symmetry group is represented in

local (i.e. “on-site") Hilbert space. This is quite different from pure internal symmetry groups,

where all one needs to know is the group structure.

The goal of this work is to provide a general framework to systematically construct and

prove SPT-LSM theorems in an interacting quantum many-body system with both internal and
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crystalline symmetries, together with certain restrictions on its local Hilbert space. For ex-

ample, we consider the cases where a fractional spin is assigned to certain high-symmetry

locations. This framework allows us to derive more SPT-LSM theorems with various symme-

tries in various spatial dimensions, which can guide the future search for physical realizations

of SPT phases in strongly correlated systems.

The constraints on ground states in conventional LSM theorems can be understood more

systematically in terms of matching ’t Hooft anomalies, since these theorems can be interpreted

using bulk-boundary correspondence of crystalline SPT phases in one dimension higher [19,

20]. In other words, the ground state of a lattice system satisfying the conditions of a certain

LSM theorem must be able to “resolve” the anomaly. However, this interpretation does not

directly carry over to SPT-LSM theorems discussed here, as the fact that a SRE ground state

exists means the (fictitious) higher-dimensional bulk is topologically trivial. This difficulty

calls for a new angle to systematically understand SPT-LSM theorems.

In this work, we propose a general approach to construct SPT-LSM theorems from the “con-

ventional” LSM theorems. The procedure is based on the observation that all SPT-LSM theo-

rems obtained so far require that lattice symmetries (e.g. translation symmetries [24–26]) are

realized “projectively”. One starts from a conventional LSM theorem, where the total symme-

try group is a direct product of the lattice and internal symmetries. In such a system, one may

realize a symmetric gauge theory. The LSM anomaly matching condition implies that symme-

tries have to be implemented non-trivially in the gauge theory. In particular, we will look for

a realization where the gauge charge transforms projectively under the lattice symmetry (but

linearly under the internal symmetry). Once such a gauge theory is identified, condensing

gauge charges (binding with some symmetry charges) leads to a SPT phase and a candidate

SPT-LSM system, where the gauge symmetry now becomes a global symmetry. We then prove

this SPT-LSM theorem in a more rigorous approach, based on (i) a real-space construction

of crystalline SPT phases [20, 27–31] and (ii) in certain cases entanglement-spectrum-based

argument [18, 24] to find the precise constraints on the ground state. Using this method, we

devise several new examples of SPT-LSM theorems in various dimensions, going beyond the

known results in two ways. Firstly, we show by example how such theorems can be established

with just point-group symmetries and internal symmetries (without translation symmetries).

Secondly, we establish examples of SPT-LSM theorems for strong SPT phases in 3D. We also

notice that the gauge-charge condensation picture approach can be used as a tool to guide the

design of spin/boson Hamiltonians to realize SPT phases.

This paper is organized as follows. In Section 2, we warm up with a 1D example of SPT-

LSM system enforced by a mirror reflection symmetry. An SPT phase is realized as the ground

state of an exact solvable model. We discuss how various methods can be used to approach this

problem, including entanglement-spectrum-based argument, decorated domain wall picture,

group cohomology calculation as well as the real space construction. All these methods can be

generalized to higher dimensions. In Section 3, we propose a general framework to approach

and prove all SPT-LSM theorems, using real-space construction based on spectral sequence of

cohomology theory. Examples of higher dimensional SPT-LSM systems are given in Section 4.

Finally, in Section 5, we summarize and discuss future directions.

Technical details and more mathematical formulations are summarized in the Appendices.

Here we highlight some appendices which may be interesting in their own right. Appendix B

generalizes fixed point wavefunctions proposed in Ref. [32], described by the mathematical

framework of equivariant cohomology, which gives a classification and construction of bosonic

topological crystalline phases. Appendix C presents an algorithm to calculate bosonic SPT

phases in a SPT-LSM system based on equivariant cohomology and we apply this algorithm

to compute examples given in Section 4. Appendix D give an overview on how to obtain SPT

phases by condensing topological excitations in fractionalized phases.
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2 A 1D example

In this section, we provide a simple 1D spin chain system as an example for SPT-LSM systems.

We study this 1D example from various points of view:

1. We provide an exact solvable model, which realize the non-trivial SPT phases with dan-

gling fractional spins at the open edge.

2. Based on entanglement properties for a generic symmetric SRE phase in 1d, we then

argue that the non-trivial SPT phase persists beyond the exact solvable model. In fact,

gapped quantum phases supported by the 1D spin chain system (with the specific sym-

metries and local Hilbert space) either spontaneously break symmetry, or if symmetric,

must be non-trivial SPT phases. We call such systems that enforce non-trivial SPT phases

as SPT-LSM systems.

3. We show that the symmetry enforced SPT phase can also be understood from decorated

domain wall picture: by condensing domain walls from a specific spontaneously sym-

metry breaking (SSB) phase, we either obtain another SSB phase, or get a non-trivial

SPT phase.

4. We perform some calculations based on group cohomology, which is related to the gen-

eral framework of real space construction for the non-trivial SPT phase. It is also shown

that the non-trivial SPT phase presented here is beyond the conventional cohomological

classification of bosonic crystalline phases obtained in Ref. [33,34].

Various methods applied to this simple 1D example can all be generalized to higher dimen-

sions and other symmetry groups. We will give a general framework and examples in higher

dimensions of SPT-LSM systems in the next few sections.

2.1 Models and symmetry

Let us consider a 1D chain system, where the local Hilbert space is isomorphic toC16 ∼ C4⊗C4.

The 16 basis states are labeled as |α,β〉, with α,β = 0,1, 2,3.

This system hosts global Z
g

4 ×Zh
4 symmetry, whose generators are labeled as g and h respec-

tively. Meanwhile, it also preserves translation symmetry T2x and mirror reflection symmetry

σ, as shown in Fig. 1. Local Hilbert space consists of one fractional spin on each reflection axis

(i.e. each site in Fig. 1), each forming a projective representation of the Z
g

4 × Zh
4 symmetry

group.

There are four inequivalent projective representations of Z
g

4 × Zh
4 , which are classified by

the second cohomology group: H2[Z
g

4 × Zh
4 , U(1)] = Z4. These four inequivalent projective

representation are characterized by commutation relation between Wg and Wh, with W label-

ing the representation:

W 4
g =W 4

h
= 1 , WgWh = iη ·WhWg , (1)

where η = 0,1, 2,3.

In our setup, there are two sites (and hence two reflection axes) per unit cell, and the

Hilbert space on each site forms a η = 2 projective representation. Crucially, we require that

the system has the site-centered inversion symmetry σ. Note that fractional spins are not well

defined without σ, as we can always fuse two sites to get an integer spin.

To be more concrete, we introduce 4× 4 matrix µ’s and ν’s, which acts as

µz |α,β〉= iα|α,β〉 , µx |α,β〉= |[α+ 1],β〉 ;
νz |α,β〉= i β |α,β〉 , νx |α,β〉= |α, [β + 1]〉 , (2)
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where [α]≡ αmod 4. In particular, we have µzµx = iµxµz as well as νzνx = iνxνz .

The onsite symmetry action can be expressed as tensor product of unitary operators on

local Hilbert space, which reads

Wg( j) = µ
x
j ⊗ νx

j ;

Wh( j) =

¨
µz

j
⊗ νz

j
, j even

(µz
j
)3 ⊗ (νz

j
)3 , j odd .

(3)

Notice that Wg and Wh anti-commute on a single site j:

Wg( j)
4 =Wh( j)

4 = 1 ,

Wg( j)Wh( j) = −Wh( j)Wg( j) . (4)

Compared with Eq. (7), we conclude that Z
g

4 × Zh
4 acts projectively on the local Hilbert space

with η = 2.

We also list action of lattice symmetries, including site-center reflection σ and two lattice-

spacing translation T2x :

σ : µ j → ν− j , ν j → µ− j ;

T2x : µ j → µ j+2 , ν j → ν j+2 , (5)

where we ignore the z/x superscripts of µ j(ν j) for brevity. Notice that a unit cell consists of

two sites, so in total transforms linearly under Z
g

4 × Zh
4 . The symmetry group and local Hilbert

space are presented in Fig. 1.

Now, let us propose an exact solvable model defined by summation of commuting projec-

tors, which reads

H =
∑

j

(1− P x
j+1/2

Pz
j+1/2

) , (6)

where

P x
j+1/2

=
1

4

�
1+ νx

j µ
x
j+1 + (ν

x
j µ

x
j+1)

2 + (νx
j µ

x
j+1)

3
�

,

Pz
j+1/2

=
1

4

�
1+ νz

j (µ
z
j+1)

3 + (νz
jµ

z
j+1)

2 + (νz
j )

3µz
j+1

�
. (7)

η=1 η=−1 η=1
µ ν

σ

T2x

Figure 1: The 1D chain system, with local Hilbert space isomorphic to C4 ⊗C4. The

onsite symmetry group for this system is Z
g

4 × Zh
4 , and act projectively on each site,

as shown in Eq. (3). And the lattice symmetries include translational symmetry with

two lattice spacing T2x , as well as reflection along site center σ. Ground state for

Hamiltonian in Eq. (6) is AKLT-like, which hosts non-trivial edge states.

The local projector 1−Pz
j+1/2

P x
j+1/2

projects out a single state of Hilbert space at j and j+1

as

�
1− P x

j+1/2
Pz

j+1/2

�� 3∑

a=0

|νz
j = a,µz

j+1 = a〉
�
= 0 . (8)
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Thus, there is a unique zero-energy ground state in systems with periodic boundary condition,

which reads

|Ψ〉=
⊗

j

�
3∑

a=0

|νz
j = a,µz

j+1 = a〉
�

. (9)

It is easy to check that all other excited states is separated by a finite energy gap.

Since there is no degeneracy in the ground state manifold, we conclude that the ground

state has no long-range order. In other words, it must be a symmetric SRE phase.

Next we show this ground state belongs to a non-trivial SPT phase. To see this, we put the

system on an open boundary system with 2n sites, and then the Hamiltonian reads

Hopen =

2n−1∑

j=0

(1− P x
j+1/2

Pz
j+1/2

) . (10)

We point out that although this open chain system breaks both T2x and σ symmetry, it shares

the same bulk properties as the closed chain system, since the open chain construction is

derived from the closed chain. Thus, it is reasonable to study boundary modes of the open

chain as a manifestation of its bulk properties.

It is straightforward to see that there are dangling spins on boundaries: µ spin on left

edge and ν spin on right edge. Due to these dangling spins, the ground state degeneracy on

the open boundary system equals 16 = 4× 4. These dangling spins are actually protected by

Z
g

4 × Zh
4 symmetry. To see this, we identify boundary symmetry operators as

W L
g = µ

x , W L
h
= µz ;

W R
g = ν

x , W R
h
= νz . (11)

Thus, the W L/R forms η = −1 projective representation of Z
g

4 × Zh
4 . And due to spatial separa-

tion, local symmetric perturbations only lead to exponentially small splitting of the degeneracy.

As shown in Fig. 1, the ground state construction is similar as the famous AKLT wavefunc-

tion [35]: an η = 2 local state is decomposed to two η = 1(−1) states, and the η = 1 state

from the left/right site pairs with the η = −1 state from the right/left site. Consequently, if

one puts the system on an open boundary, there will be an unpaired η = ±1 zero mode at

each boundary, where ± sign depends on the even/oddness of the edge site.

We point out a key difference of this 1D system from the spin-one system. In a S = 1

spin chain with SO(3) symmetry, depending on the interaction, one may either obtain a non-

trivial SPT phase or obtain a trivial symmetric phase. The non-trivial SPT phase has AKLT-

type wavefunction, while the trivial symmetric phase can be constructed by splitting local

spin-one into two integer spins and then pair spins in one bond. However, for the system

discussed above, the only splitting consistent with the site-centered inversion is to split an

η = 2 representation into two η = ±1, which always yields a non-trivial SPT phase. We will

argue that this result is in fact completely general and holds beyond the exact solvable models.

2.2 Entanglement based argument

By analyzing entanglement spectrum, We now argue that gapped symmetric ground states for

this system must be non-trivial SPT phases.

Given a quantum many-body wavefunction |ψ〉 on a 1D chains, one can “cut” the system

into two halves along bond ( j, j + 1) and do Schmidt decomposition as

|ψ〉=
N∑

α=1

λα|φL
α〉 ⊗ |φR

α〉 , (12)
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where N is named as Schmidt rank, and λ’s are positive number characterizing entanglement

between left and right parts. Here, we require λ1 ≥ λ2 ≥ · · · ≥ λN . |φL/R
α 〉 are left/right

entanglement states (respect to bond ( j, j + 1)). If |ψ〉 describes gapped symmetric ground

state, the entanglement spectrum, defined as {− lnλ2
α | α = 1,2, · · · }, is also gapped in the

thermodynamic limit of a 1D system.

In general, entanglement states transform projectively under the on-site symmetry group.

Namely, for g ∈ SGonsi te,

U L/R
g |φL/R

α 〉=
∑

β

(V L/R
g )αβ |φL/R

β
〉 , (13)

where U L/R
g is the physical symmetry action restricted in the left/right system while V L/R

g is an

N × N unitary matrix, which forms a projective representation of SGonsite.

For Z
g

4 × Zh
4 group, according to Eq. (1), we can express projective representation of V L/R

g

as

V L/R
g · V L/R

h
= exp
�

i
π

2
·ηL/R

j+1/2

�
V

L/R

h
· V L/R

g , (14)

where η
L/R

j+1/2
∈ {0,1, 2,3}. One may wonder if V L/R can be divided to several blocks, where

different block represents different projective representations. However, states with blocked

diagonalized V L/R are in fact cat states, and thus spontaneously break symmetries [36].

Z
g

4 × Zh
4 global symmetry requires

ηR
j+1/2

+ηL
j+1/2

= 0 mod 4 . (15)

Suppose we move the entanglement cut by one site, we expect that

ηL
j+1/2

= ηL
j−1/2

+η0 , (16)

where η0 labels site projective representation. This is because the Schmidt states at the two

cuts are related by adding the intervening sites, and we also assume that the ground state is

short-range correlated.

Reflection symmetry along site j requires

ηR
j−1/2

= ηL
j+1/2

. (17)

By solving above equations, we find 2ηL
j+1/2

+ η0 = 0. The existence of a symmetric gapped

ground state means that this equation is solvable, so η0 must be even, leaving two possibilities

η0 = 0,2. For η0 = 0, one finds a trivial solution ηL/R = 0, corresponding to a trivial gapped

phase.

For η0 = 2 which is the system we have in hand, the solutions are η
L/R

2 j−1/2
= η

R/L

2 j+1/2
= ±1.

The nonzero ηL/R also indicates edge modes transform projectively under Z
g

4 × Zh
4 symmetry,

and the symmetric phases obtained must be non-trivial SPT phases.

Lastly, if η0 is 1 or 3, there is no integer solution for ηL/R, meaning that a gapped symmetric

state is impossible. Indeed, in this case, in each unit cell, there is non-trivial projective repre-

sentation with η = 2, satisfying the condition of a conventional LSM theorem and excluding

gapped symmetric phases.

2.3 SPT phases from domain wall condensation

In the following, we will construct possible symmetric phases of this systems by considering

condensation of domain walls.
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First, let us perform the Z4 version of Kramers-Wannier duality. We define

τx
j+1/2

= (µz
j )

†µz
j+1 , (τz

j−1/2
)†τz

j+1/2
= µx

j ν
x
j . (18)

Here, τz
j+1/2

can be expressed as string operator: τz
j+1/2

=
∏

j′≤ j µ
x
j′ν

x
j′ . We have commutation

relation: τz
j+1/2

τx
j+1/2

= iτx
j+1/2

τz
j+1/2

. τx
j+1/2

can be interpreted as measuring g-domain wall

at bond ( j, j + 1), and τz
j+1/2

is the g-domain wall creation operator.

Using the mapping defined in Eq. (18), we are able to work out the symmetry action on g

domain wall:

g : τz
j+1/2
→ τz

j+1/2
,

h : τz
j+1/2
→ (−) jτz

j+1/2
,

σ : τz
j+1/2
→ (τz

− j−1/2
)† ,

T2x : τz
j+1/2
→ τz

j+2+1/2
. (19)

Besides, there is an additional fZ g

4 “g-domain wall conservation” symmetry, which is generated

by eg =
∏

j τ
x
j+1/2

, and acts as

eg : τz
j+1/2
→−iτz

j+1/2
. (20)

We point out that any local operator should transform trivially under eg.

We are interested in symmetric phases, which are obtained by condensation phases of g-

domain walls while preserving all other symmetries. In the following, we will show that naive

condensation pattern of domain walls always break global symmetries.

To see this, we notice that when acting on domain walls, h and σ have non-trivial commu-

tation relation:

hσ ◦τz = −σh ◦τz = eg2σh ◦τz . (21)

We claim that this non-trivial commutation relation forbids a symmetric phase by condensing

τz variables. Actually τz condensed phases either break Zh
4 symmetry or break σ symmetry.

For example, let us consider the uniform condensation pattern of τz: 〈τz
j+1/2
〉 6= 0 which

is independent of j. Since domain walls are non-local variables, to determine the symmetry

breaking pattern, we should consider representation of local observables formed by τz ’s, which

can be expressed as (τz
j+1/2

)†τz
k+1/2

+ h.c.. Under Zh
4 transformation, local operators such as

(τz
j−1/2

)†τz
j+1/2

+h.c. obtains minus sign, and thus carries double Zh
4 charge. So, this uniform

condensation phase breaks Zh
4 symmetry down to Z2.

On the other hand, we may only condense even bond τz: 〈τz
2 j+1/2
〉 6= 0, 〈τz

2 j−1/2
〉 = 0. In

this case, Zh
4 is preserved, since all local operators with nonzero expectation value, which are

τz
2 j+1/2

τz
2k+1/2

, is a Zh
4 singlet. However, this condensation pattern breaks σ symmetry, since

σ maps even bond τz to odd bond τz .

To get a fully symmetric phase, the key step is to condense the bound state of g domain

wall and h-charge µx , νx . In particular, the composite of domain wall and h-charge can be

chosen as

τ̃z
2 j−1/2

≡ τz
2 j−1/2

(νx
2 j)

† = µx
2 jτ

z
2 j+1/2

. (22)

9

https://scipost.org
https://scipost.org/SciPostPhys.11.2.024


SciPost Phys. 11, 024 (2021)

One can easily verify the following symmetry transformation rules for the composite τ̃z:

g : τ̃z
2 j−1/2

→ τ̃z
2 j−1/2

,

h : τ̃z
2 j−1/2

→ (−) j i τ̃z
2 j−1/2

,

σ : τ̃z
2 j−1/2

→ (τ̃z
−2 j+1/2

)† ,

T2x : τ̃z
2 j−1/2

→ τ̃z
2 j+2−1/2

. (23)

One can easily verify that [h,σ] = 0 when acting on the composite object τ̃z
2 j−1/2/

of a

g-domain wall and h gauge charge, and therefore when it condenses 〈τ̃z
2 j−1/2
〉 6= 0, all local

observables with non-zero expectation values are singlets under global symmetry action, which

makes the condensing phase symmetric. Furthermore, according to Ref. [32, 37] and discus-

sion in Appendix D.1, condensation of bound states of domain walls and symmetry charges

leads to non-trivial SPT phases.

From domain wall condensation picture, one also obtain the possible phases for other η0.

For example, when η0 = 1, action of h on domain walls becomes

h : τz
j+1/2
→ i jτz

j+1/2
. (24)

Thus, commutator between h and σ reads

hσ ◦τz = iσh ◦τz = eg3σh ◦τz . (25)

In this case, domain walls transform projectively under symmetry actions, and thus condensing

domain walls always breaks symmetry. On the other hand, for the case with η0 = 0, we have

hσ ◦ τz = σh ◦ τz . One can safely condense “bare” domain wall τz without breaking any

symmetry, which gives the trivial SPT phase.

We mention that in fact that g-domain walls should be viewed as fZ g

4 gauge charges, and

the SPT phase is obtained by condensing bound states of gauge charges and symmetry charges.

This point of view can be easily generalized to higher dimensions, and serves as a useful tool

to construct generic SPT-LSM systems.

2.4 Group cohomology calculation

As shown in Ref. [33,34], the classification of bosonic crystalline SPT phases with global sym-

metry SG is the same as the classification of bosonic SPT phases with internal symmetry group

SG (i.e the same abstract group structure), as long as orientation reversing spatial symmetries

are treated as antiunitary onsite symmetries. This is known as the “crystalline equivalence

principle".

1D bosonic onsite SPT phases is classified by the second group cohomology H2[SG, U(1)T ]

[16, 38]. According to the “crystalline equivalence principle", SPT phases protected by onsite

Z
g

4 × Zh
4 and reflection symmetry Zσ2 are classified by H2[Z

g

4 × Zh
4 × Zσ2 , U(1)σ], where σ act

non-trivially on U(1) coefficient1. This cohomological group can be calculated using Künneth

formula [9,19,39] as

H2[Z
g

4 × Zh
4 × Zσ2 , U(1)σ] = H3[Z

g

4 × Zh
4 × Zσ2 ,Zσ]

=

3∏

p=0

H3−p[Zσ2 ,
�
H p[Z

g

4 × Zh
4 ,Z]
�
σ
]

= H3[Zσ2 ,Zσ]× H0[Zσ2 , (Z4)σ] = Z2 × Z2 , (26)

1We ignore translation symmetry T2x here, since the SPT phase we considered is still non-trivial even if we

break T2x symmetry
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where Mσ denotes an Abelian group M equipped with the non-trivial action of σ. And in the

first line, we use Hn[SG, U(1)] = Hn+1[SG, Z] for n> 0 and compact SG.

Generators of these two Z2, labeled as ν1 = 1 and ν2 = 1 respectively, give two root SPT

phases. ν1 = 1 corresponds to reflection protected Haldane phases in 1+1D, while ν2 = 1 is

the SPT phase protected by Z
g

4 × Zh
4 with η = 2 projective representation as edge states.

Clearly, the SPT phase we found in the 1D SPT-LSM system is beyond this classification. The

reason is that the classification for crystalline SPT phases developed in Ref. [33, 34] actually

makes a hidden assumption: global (i.e. onsite) symmetries act linearly on the local Hilbert

space. When the local Hilbert space forms a projective representation of the symmetry group,

one needs to develop a new framework to classify possible SPT phases. We will answer this

question in the next few sections.

2.5 Real-space construction

Here, we present an algebraic calculation to capture the non-trivial SPT phases in this section.

The input data for this calculation includes the lattice structure, the global symmetry group

and projective representation of local Hilbert space. And the output data give us possible SPT

phases supported by this system.

We use the idea of real space construction [20, 30, 40] to obtain possible SPT phases. To

proceed, we assume that the correlation length ξ is much smaller than the size of unit cell a,

and thus it is meaningful to talk about decoration of gapped phases within a unit cell. In this

kind of systems, the local Hilbert space is identified as effective low-energy degree of freedom

in a unit cell. Although this assumption might not be true for most systems, we expect the

classification of SPT phases remains to be true even if the assumption fails.

We then focus on a given bond, say bond [0,1], and decorate it with some SPT phase. The

invariant symmetry group for bond [0, 1] is Z
g

4 × Zh
4 , while lattice symmetry σ and T2x maps

bond [0, 1] to other bonds. So the decoration of SPT phases on bond [0,1] is characterized

by η[0,1] ∈ H2[Z
g

4 × Zh
4 , U(1)] = Z4, where η[0,1] ∈ {0, 1,2, 3}. And edge states of this phase

transform projectively under Z
g

4 ×Zh
4 : the projective representation of left edge state is labeled

by η[0,1] while that of right edge state is labeled by −η[0,1].

Decorations on other bonds are related with decoration on bond [0, 1] by lattice symme-

tries. And the SPT phase of this system is constructed by decorations on all bonds, which is

determined by decoration on bond [0,1].

In particular, decorations on bond [−1, 0], labeled as η[−1,0], is related to η[0,1] by the

following relation

η[−1,0] = σ ◦η[0,1] = −η[0,1] mod 4 , (27)

where the minus sign comes from non-trivial action of σ.

Bond [0,1] and bond [−1, 0] share a common edge, which is site 0. The projective repre-

sentation of local Hilbert space at site 0 is determined by right edge of [−1,0] and left edge

of [0, 1] as

η0 = −η[−1,0] +η[0,1] = 2η[0,1] mod 4 . (28)

For our system, η0 = 2, and thus η[0,1] = −η[−1,0] = ±1. Decorations on other bonds are

obtained by action of T2x :

η[2n,2n+1] = T n
2x ◦η[0,1] = η[0,1](= −η[−2n−1,2n]) . (29)

Thus, the gapped SPT phase on this system can be constructed by the bond decoration, as

shown in Fig. 1.
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It is straightforward to check that projective representation at site n is

ηn = −η[n−1,n] +η[n,n+1] = 2 , (30)

which is consistent with the input data.

We mention that, by adding SPT phases obtained in Eq. (26) to the above decoration, we

still have a valid decoration for the 1D spin chain system. In fact, phase labeled by η[0,1] = 1

and η[0,1] = −1 are related by the root phase of the second Z2 in Eq. (26). Therefore, we still

get four phases consistent with Eq. (26), but now the classification should be understood as a

torsor over Z2×Z2. Here torsor emphasizes the fact that none of the phase can be regarded as

the “identity" since they are all non-trivial (in the group cohomology classification the trivial

product state is the identity ), but the difference of any two phases is a proper element of the

group. This is in fact a common feature for SPT-LSM systems.

3 General framework for SPT-LSM systems – real space construc-

tions

In this section, we present a general framework for SPT-LSM systems: given the global sym-

metry group and its action on local Hilbert space for a given system, we are able to iden-

tify whether this system is an SPT-LSM system or not. And for SPT-LSM systems, we can

classify and construct all possible SPT phases. This framework is based on the real space

construction [20, 27, 28, 30], which is a high-dimensional generalization of method used in

Section (2.5).

The real space construction has a layered structure, which is related to the recently emerg-

ing concept of “high-order SPT phases” [41–47]. A d-dimensional SPT phase is called “nth

order" if the codimension of protected boundary states equals n, while boundary states in

lower codimensions can be gapped preserving symmetries. SPT phases protected by onsite

symmetry, which host d − 1 dimensional gapless edge states, are named as first order SPT in

this language. Second order SPT phases in d = 3 supports “hinge states" on surfaces. From

the point of view for real space construction, an nth order SPT ground state can be deformed

into an assemble of block states with dimensions less than d − n+ 1. For example, dth order

SPT phases, which host degenerate states at high symmetry points on the boundary, can be

constructed using coupled 1D SPT phases.

Accordingly, an SPT-LSM system is called nth order if it allows nth order SPT phase but

disallows (n+ 1)th order SPT phase (the (d + 1)th order SPT phase is identified as the trivial

symmetric phase). Notice that it is possible that systems with non-trivial projective represen-

tations do not allow any symmetric SRE phases, and this kind of systems are “conventional”

LSM systems, which require long-range entangled phases as gapped symmetric ground states.

This section is divided to two parts. In the first part, according to action of global symme-

tries, we give a classification of local Hilbert space structures for a given system and symmetry

group. In the second part, we start by presenting a physical picture for real space construc-

tions, and based on this picture, we give an algorithm to classify/construct symmetric SRE

phases for a given SPT-LSM system. A more mathematical treatment based on exact solvable

models and spectral sequence of equivariant cohomology is presented in Appendix B and C.

3.1 The global symmetry group and local Hilbert spaces

Naively, one may think SG contains enough input data for the purpose of classification of SPT

phases. It is indeed true if SG is onsite symmetry group. In this case, various mathemat-

ical tools are proposed to classify SPT phases, including group cohomology [9], cobordism
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theory [48], generalized cohomological theory [49, 50], etc. An introduction to group coho-

mology and classification/construction of bosonic SPT phases protected by onsite symmetries

is presented in Appendix A.

When SG contains lattice symmetries, the classification of SPT phases (or topological

crystalline phases) is enriched, and becomes more complicated. There are basically two ap-

proaches to classify/construct topological crystalline phases. On one hand, it was argued that

one should treat spatial symmetries and onsite symmetries on the same footing, and the clas-

sification of SPT phases is given by group cohomology Hd+1[SG, U(1)PT ], with time reversal

and orientation reversing lattice symmetries act non-trivially on U(1) coefficient [33, 34].2

On the other hand, a more physical way to understand SPT phases protected by both spatial

and onsite symmetries is to construct these SPT phases by real space block states [27,31,40],

which provides construction of SPT phases by decorating high-symmetry points, lines and

planes with lower dimensional strong SPT phases protected by onsite symmetries. In recent

works, it has been shown that this real-space construction is in one-to-one correspondence to

classes in Hd+1[SG, U(1)PT ] [28,30].

It is worth mentioning that when deriving the above classification result, one actually takes

a hidden assumption: local Hilbert spaces are linear representations of their little groups. In

general, symmetries can act projectively on local Hilbert spaces. For example, consider 1D spin

chains with SO(3) spin rotation symmetries. While SO(3) group acts linearly on the spin-1

chain, it acts projectively on the spin-1/2 chain. In the following, for brevity, we will use the

words local Hilbert spaces and spins interchangeably. And Hilbert spaces which transform as

linear/projective representations are also referred as integer/fractional spins.

In the absence of lattice symmetry, for fractional spin systems, we can always group several

fractional spins to form integer spins. With this coarse-graining procedure, the classification

results for onsite symmetry SPT phases are the same for integer and fractional spin systems.

However when we include lattice symmetries, the coarse-graining procedure may break lattice

symmetry, and is hence disallowed. Therefore, in general, fractional and integer spin systems

need to be treated separately and the resulting classifications can be very different. We have

already seen the 1D example in Section 2. Here, we consider a more well-known example of

translational symmetric spin chains.

There are two kinds of translational symmetric spin chains, with an integer or half-integer

spin per unit cell. They share the same symmetry group: SO(3)× Z where Z counts for the

translation group. Yet possible symmetric phases in these two systems are completely different,

as first pointed out by Haldane [7]. For integer spin chains, there are two symmetric gapped

phases, one trivial symmetric phase and the other is the Haldane phase. For half-integer spin

chains, the famous LSM theorem forbids any gapped symmetric phases, and the ground state

must be either gapless or breaks translational symmetry by forming valence bond solid order.

From the above discussion, we learn that phases realized on fractional spin systems are in

general quite different from those realized on integer spin systems. Moreover, there may be

more than one type of fractional spin systems, and the classifications of phases on different

fractional spin systems may be distinct from each other. Therefore to classify SPT phases on

fractional spin systems, the first step is to classify/characterize different fractional spins for a

given symmetry group SG.

Let us consider an arbitrary lattice system, where spins live on site: for site i, the corre-

sponding local Hilbert space is labeled as Hi . We define SGi as the little group of Hi , which is

the maximal subgroup of SG mapping Hi to itself. Onsite symmetry group, labeled as SGonsite,

is a normal subgroup of SGi . In general, Hi forms a projective representation of SGi , which

is classified by the second group cohomology H2[SGi , U(1)T ], where U(1)T denotes the non-

2There are crystalline SPT phases beyond group cohomological classification [27, 51]. We will not focus on

those phases here.
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trivial action of antiunitary action on U(1) coefficient (see Appendix A.1 for details).

If Hi is mapped to H j by lattice symmetry action g0, projective representation of these two

Hilbert spaces are related. First, SGi and SG j are isomorphic to each other by the following

outer automorphism map:

SG j = g0 · SGi · g−1
0 . (31)

To figure out how these two projective representations are related, let us write down lattice

symmetry g0 action on Hi explicitly:

g0|φa〉i =
∑

b

[V (g0)]ab|φb〉 j . (32)

Here, {|φa〉i | a = 1, . . . , dim(Hi)} is an orthonormal basis of Hi and V (g0) is some unitary

matrix. We label Ui/ j as the projective representation of SGi/ j . Then, we have

g0 gi g
−1
0 |φa〉 j = [U j(g0 gi g

−1
0 )]ab|φb〉 j
�
V (g0)

−1 · g0 Ui(gi) · V (g0)
�

ab
|φb〉 j , (33)

where gi ∈ SGi and g0 gi g
−1
0 ∈ SG j .

g0 Ui(gi) equals to Ui(gi)/[Ui(gi)]
∗ if g0 is an uni-

tary/antiunitary symmetry

Therefore for gi1
, gi2
∈ SGi , according to the definition of projective representation, we

have

Ui(gi1
) · Ui(gi2

) = ηi(gi1
, gi2
)Ui(gi1

gi2
) , (34)

where ηi(g1, g2) is an U(1) phase which satisfies two cocycle condition. Thus, according to

Eq. 33, we have

η j(g0 gi1
g−1

0 , g0 gi2
g−1

0 ) = [V (g0)]
−1 · g0ηi(gi1

, gi2
) · V (g0) =

g0ηi(gi1
, gi2
) , (35)

where g0ηi = ηi/η
∗
i

if g0 is a lattice transformation together with a unitary/antiunitary action.

We divide local Hilbert space to several groups according to lattice symmetries: Hi and H j

are in the same group if and only if they are related by lattice symmetry. We pick up one site

in each group, and denote this representative set as S. Then, the projective representation for

this system is classified by
⊕

i∈S

H2[SGi , U(1)T ] . (36)

And the projective representation of local Hilbert space within one group can be determined

by Eq. (35).

From the above discussion, we are able to obtain classification of fractional spins for a given

lattice. However, for a given symmetry group, there exist infinite many lattices, which give

rise to infinite classes of fractional spins. For example, for translational symmetric systems,

the number of sites within one unit cell can be any positive integer. Projective representations

on sites within one unit cell can be chosen independently, leading to many different classes of

fractional spins. This unphysical situation can be fixed by grouping all sites within one unit cell

together, and consider the total projective representation after fusing these spins. Notice that

we are not allowed to group sites beyond one unit cell, as it breaks translational symmetry.

In general, two fractional spin systems are considered equivalent, if they belong to the same

class after some symmetric grouping procedure.

Another way to formulate this procedure is by allowing symmetrically moving and fusing

local Hilbert space. For the translational symmetric system, we can always move all spins

within one unit cell to a single site and fuse them to a single spin. For systems with point group

symmetry, by performing some symmetric movement, all local Hilbert space can be moved to

high symmetry submanifolds (usually to be high symmetry points), known as Wyckoff positions

of a space group. - And we will focus on such systems in the following discussion.
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3.2 Real space constructions on SPT-LSM systems

In this part, we provide a recipe to classify and construct possible SPT phases for SPT-LSM

systems. A more detailed and more mathematically rigorous treatment can be found in Ap-

pendix B and Appendix C.

3.2.1 Lattices and cells

We now give some basic definition about lattices and cells. Consider a d-dimensional spin

system defined on lattice Y , where spins (can be either integer or fractional) live on sites of Y .

We call sites/links/. . . of Y as 0-cells/1-cells/. . . . And we define Yn as the set formed by n-cells

of Y . The recipe presented in this section works for a special kind of lattice Y satisfying the

following condition. For an arbitrary cell ∆ ∈ Yn and its little group SG∆ ⊂ SG which maps

∆ to itself, we require any g ∈ SG∆ has a pointwise action on ∆. In other words, SG∆ acts as

an internal symmetry group locally on ∆. In addition, we also assign orientation for cells of

Y , which is required to be invariant under symmetry action. As an example, we present cell

decomposition for 2D lattice with wallpaper symmetry group P2 (generated by translation

Tx ,y and 180◦-rotation C2) in Fig. 2.

We notice that most lattices do not satisfy the above condition. For example, let us consider

square lattice with translational symmetry Tx ,y and C4 rotation at plaquette center. C4 maps

plaquette to itself, but the action is not pointwise. Yet, we are able to construct a new lattice

which satisfies the pointwise-action condition by adding sites at every plaquette center, and

connecting plaquette centers and original sites by adding new links. For an arbitrary lattice

Y , we can always construct a new lattice Y ′ from Y by adding new cells, such that Y ′ satisfies

the pointwise-action condition.

A new spin system on Y ′ is constructed by adding integer spins on the new sites of Y ′ while

keep the spins on sites of Y untouched. Although the real-space construction algorithm only

works for the new spin system on Y ′, we expect to get the same classification result for the

µ0

τ3

C2τ3

· · · µ3

τ2

C2Txτ2

Txµ3 · · ·

Txτ2

C2τ2

.

.

.

Tyµ2

µ2

.

.

.

Tyµ1

µ1

TxTyµ1

Txµ1

Tyτ1

C2τ1

τ1

C2Tyτ1

σ
⊗

C2σ

⊗

Figure 2: The cell decomposition for 2D wall paper group. The rotation center is

marked in red. Here, we use σ to label 2-cells, τ for 1-cell and µ for 0-cell. Cell gα

is obtained from α by acting symmetry g. Their orientation are marked by arrows.
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original spin system on Y .

We mention that the mathematical formulation of cells and their boundaries is presented

in Appendix B.1.

3.2.2 Physical picture for real-space construction

Now, let us describe the physical picture behind real-space construction method. This con-

struction method works for gapped states satisfying conditions that the correlation length ξ

is much smaller than the unit cell spacing a: ξ≪ a. So, lattice Y mentioned in the last part

can be viewed as “effective lattice”, where cells of Y (∼ a) are formed by many microscopic

cells with lattice constant l ∼ ξ. And spins on sites of Y are treated as effective degrees of

freedom, which are obtained by renormalization of microscopic spins. Under this assumption,

it is legitimate to talk about decoration of gapped symmetric phases on an individual cell of

Y . And gapped phases on the whole systems are then smoothly connected to some decoration

of gapped phases on every cell of Y .

We focus on lattice Y which satisfies the pointwise-action condition mentioned in the last

part: for cell ∆ ∈ Yn, the global symmetry for spin system on ∆ are identified as SG∆, which

acts as onsite symmetry. We then decorate each cell with phases respecting onsite symmetry

identified as the little group of the cell.

In the presence of lattice symmetry, decorations on cells related by lattice symmetry g

should be consistent with g action. Let us label decoration on cell ∆ as φ∆. For decoration

on g(∆), where g ∈ SG is a lattice transformation, we can formally express the decoration

as φg(∆) = g ◦ φ∆. (Meaning of φ and g action on φ will be elaborated in Section 3.2.3.)

Thus, for systems with lattice symmetry, it is enough to focus on decorations on a maximal

subset of lattice symmetry independent cells, since decorations on cells beyond the subset can

be generated by lattice symmetry action. This subset contains at least one element of n-cells,

for any 0 ≤ n ≤ d. Decoration pattern on this subset also gives us information about “orders”

of SPT phase. If we put trivial SPT phase on all n-cells for any n > d0 cells, and decorate

non-trivial SPT phase on d0 cells, we then expect to have (d − d0 + 1)th order SPT phases.

One may think that by decorating each cell with some gapped SPT phases consistent with

lattice symmetries, one obtains an SPT phase on the whole system, and different decorations

give different SPT phases. Actually, the relation between cell-decoration and SPT phases of

the whole system is more complicated and far from one-to-one correspondence. We would

like to stress the following three issues.

First, as we will see, some decorations lead to gapless or symmetry breaking modes on

interfaces between different cells, and fail to give a gapped symmetric phase for the whole

system. It is necessary to figure out the consistent conditions for a valid decoration which

leads to gapped symmetric phases.

Second, two seemingly different decorations may just differ by “a trivial decoration”, which

belong to the same phase. It is thus important to construct all possible “trivial decorations”,

and mod out those trivial decorations from all possible legitimate decorations.

Last but not the least, as we see in the 1D example presented in Section 2, fractional spin

systems may give a distinct classification of SPT phases from integer spin systems. For a system

with LSM anomaly, all symmetric SRE ground states are forbidden. For a system with SPT-LSM

anomaly, the only allowed symmetric SRE ground states are SPT phases (but not the trivial

state with no boundary excitations). Using this real-space construction formulation, can we

identify whether a fractional spin system has “LSM anomaly” or “SPT-LSM anomaly”? For

those SPT-LSM systems, can we systematically classify/construct SPT phases?

In the following, let us try to provide solutions to these three issues based on physical

argument. More mathematical treatment is given in the next part, with details provided in

Appendix B and C.
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For the first issue, let us give a concrete decoration leading to gapless/symmetry break-

ing modes. In a d-dimensional lattice Y , let us consider decorations on two neighbouring

d-cells ∆d
1 and ∆d

2 which intersect at a (d − 1)-cell ∆d−1. If they are decorated by two dis-

tinct SPT phases, there will be gapless or symmetry breaking modes at ∆d−1. More generally,

decoration on n-cells ∆n
1, · · · ,∆n

s which intersect at (n−1)-cell ∆n−1 will always lead to some

boundary modes at ∆n−1. When “the summation” of decorations on those n-cells is a trivial

n-dimensional SPT phase, we are able to gap out the boundary modes on∆n−1 by adding some

symmetric mass terms. Instead, if the summation of decorations gives non-trivial SPT phase,

we are unable to symmetrically gap out the boundary modes at ∆n−1.

Yet there are more subtle cases. In general, even if decorations on n-cells avoid gapless

modes on all (n−1)-cells, it is still possible that gapless modes appear at (n−2) or even lower

dimensional cells. In the next part, we present a mathematical tool to compute the boundary

modes at interfaces, by which we are able to write down consistent equations for gapped SPT

phases on the whole system.

The second issue is relatively easy to resolve. We simply define a trivial decoration as

decorating every cell with some trivial SPT states. Notice that nearby cells in general are

decorated with different trivial SPT states (which are all adiabatically connected to vacuum),

leading to boundary modes at the interfaces. Yet these modes can be gapped out by adding

symmetric mass terms on the interface. Thus, strictly speaking, for each cell, trivial decorations

contains two elements: the trivial decorations and the symmetric mass term.

The issue about fractional spins are closely related to the issue of gapless boundary modes.

A crucial observation is that fractional spins can be identified as gapless boundary modes on

0-cells. Thus, SPT phases on fractional spin systems corresponding to those decorations that

are gappable in all n> 0 cells, but are gapless in 0-cells, with the gapless mode characterized

by a particular class of projective representation. As we will show in the next part, inequivalent

fractional spin systems have different classification of SPT phases, and these different classes

have no common element. In other words, given a SPT decoration, it can never be realized in

two inequivalent fractional spin systems.

Fractional spin systems can be divided to different categories according to the pattern of

decorations. We first notice that a fractional spin system can never realize the trivial SPT

phase, and thus must have either SPT-LSM anomaly or LSM anomaly. A fractional spin system

is named as d0th order SPT-LSM system, if the highest order SPT phases supported by this

system are d0th order SPT phases, which are obtained by non-trivial decorations in (d−d0+1)-

cells and trivial decoration on all higher dimensional cells. Notice that one can also realize

different nth order SPT phases (n ≤ d0) on a d0th order SPT-LSM system by stacking an nth

order SPT phase supported by integer spin systems.

There are fractional spin systems which can never realize any decorations with SPT phases.

Such systems actually belong to the conventional LSM systems, where the symmetric phases

realized in these systems must be long-range entangled.

3.2.3 Algorithm for real-space construction

In this part, we provide a well-defined algorithm to compute possible SPT phases on SPT-LSM

systems. Derivation and detailed explanation of this algorithm is given in Appendix B and C.

As mentioned in the last part, we can label the decoration on n-cell ∆ ∈ Yn as φ∆, for any

0 ≤ n ≤ d. Mathematically, φ∆ is a (homogeneous) (n+ 1)-cochain, which maps n+ 2 group

elements to a U(1) phase: φ∆(g0, · · · , gn+1) ∈ U(1), for gi ∈ SG. φ∆ is required to satisfy the

homogeneous condition for any h ∈ SG∆:

φ∆(hg0, · · · , hgn+1) = ρT (h) ·φ∆(g0, · · · , gn+1) , (37)

where ρT (h) = ±1 if h is unitary/antiunitary action.
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Furthermore, for lattice symmetry g ∈ SG, decoration on g(∆) are related to φ∆ by g

action, which is defined as

φg(∆)(g0, · · · , gn+1) = ρT (g)φ∆(g
−1 g0, · · · , g−1 gn+1) . (38)

Notice that Eq. (38) includes Eq. (37) as a special case.

Physically, the contribution of φ∆ comes from two parts: the first part is the decoration of

SPT phases on∆ protected by SG∆, and the second part is the symmetric “mass term” gapping

out boundary modes of SPT phases decorated on nearby higher dimensional cells.

This physical picture is manifested in the relation between decorations on ∆ ∈ Yn and its

nearby (n+ 1)-cells. For 1≤ n≤ d, the relation reads

dφ∆(g0, · · · , gn+2) =
∑

∆
′∈Yn+1

∆ is part of ∂∆′

±φ∆′(g0, · · · , gn+2) , (39)

where dφ∆ is the group coboundary operator defined as

dφ∆(g0, · · · , gn+2) =

n+1∑

k=0

(−1)kφ∆(g0, · · · , ĝk, · · · , gn+2) , (40)

and ∂∆′ denotes boundary n-cells of ∆′. ± sign in Eq. (39) denotes that direction of ∆ is

consistent/inconsistent with direction of ∂∆′. We also define Yd+1 as an empty set, which

contains no cell. So for ∆ ∈ Yd , Eq. (39) becomes a group cocycle condition:

dφ∆(g0, · · · , gd+2) = 0 . (41)

For a legitimate decoration φ, it satisfies Eq. (39) for any cells ∆.

However, this consistent condition only applies for decorations on integer spin systems.

For fractional spin systems, one should modify Eq. (39) for ∆ ∈ Y0 as following. Fractional

spins on an arbitrary 0-cell∆ ∈ Y0 is characterized by [ν∆] ∈ H2 [SG∆, U(1)T ], where ν∆ also

satisfies the homogeneous condition in Eq. (38) in order to be consistent with lattice symmetry

actions. Here, [.] means equivalent class by modding out coboundary elements. The gapping

out condition for ∆ ∈ Y0 should be modified as

ν∆(g0, g1, g2) =
∑

∆
′∈Y1

∆ is part of ∂∆′

±φ∆′(g0, g1, g2) , (42)

where the equation holds up to coboundary. Any decoration φ• satisfying Eq. (38), (39), and

(42) gives an SPT state for fractional spins labeled by ν•.
We mention that two different decorations φ1

• and φ2
• may only differ by a “trivial deco-

ration”, and thus belong to the same SPT phase. Here, the trivial decoration is constructed in

the following way. We start by decorating all cells with trivial phases consistent with lattice

symmetry action in Eq. (38). The trivial decorations on an arbitrary n-cell∆ are characterized

by a n+ 1 coboundary dϕ∆, where ϕ∆ is a homogeneous n-cochain satisfying

ϕg(∆)(g0, · · · , gn) = ρT (g)ϕ∆(g
−1 g0, · · · , g−1 gn) , (43)

for any g, gi ∈ SG.

Nearby cells in general are decorated by different coboundaries, and thus will leave bound-

ary modes on the interface. Yet these boundary modes can always be gapped by symmetric
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mass terms on the interfaces. So, the final decoration on an arbitrary n-cell ∆ again con-

tains two parts: the mass term part and the trivial decoration part. Mathematically, trivial

decoration on ∆ ∈ Yn reads

φ0
∆
(g0, · · · , gn+1) = dϕ∆(g0, · · · , gn+1) +

∑

∆
′∈Yn+1∆

is part of ∂∆′

±ϕ∆′(g0, · · · , gn+1) , (44)

where the second line are symmetric mass terms.

As a consistent check, in Appendix B.3, we show that φ0
• satisfies Eq. (39) and Eq. (42)

with ν to be a coboundary, and thus φ0
• indeed gives an SPT phase supported by integer spins.

Any two decorations differ by such φ0
• should be treated as the same phase.

Solutions of Eq. (38), (39), and (42) can be solved in a iterative method. We consider

solution with non-trivial decoration on d0-cells and no decoration on higher dimensional n-

cells (φ∆n = 0 for any ∆n ∈ Yn with n> d0). Such a solution gives a (d − d0 + 1)th order SPT

state.

In this case, Eq. (39) for n= d0 becomes group cocycle condition

dφ∆(g0, · · · , gd0+2) = 0 . (45)

These equations constraint the decoration on d0-cells to be cocycles (SPT states). However,

there is no constraint on nearby cells if they are not related by any lattice symmetry.

We then consider equations for an arbitrary (d0 − 1)-cell ∆d0−1, which reads

dφ
∆

d0−1(g0, · · · , gd0+1) = ±φ∆d0
1

(g0, · · · , gd0+1)±φ∆d0
2

(g0, · · · , gd0+1) , (46)

where ∆d0−1 = ∆
d0

1

⋂
∆

d0

2 , and ± sign depends on relative orientations. This equation puts

constraints on possible decorations of neighbouring d0-cells: SPT states decorated on∆
d0

1 and

∆
d0

2 at most differ by a coboundary.

By examining equations on n-cells with 1 < n < d0, we exclude those decorations on d0-

cells that result in gapless mode on n-cells. And finally, decorations on nearby d0-cells meeting

at site ∆0 should give fractional spins ν∆0 .

It is easy to see that solutions for different ν’s have no overlap. Furthermore, if φ1
• is a

solution for fractional spins ν1 and φ2
• is a solution for ν2, φ1

• +φ
2
• will then be a solution of

ν1 + ν2. In particular, once we know a single decoration for fractional spins ν, all other SPT

decorations can be obtained by adding solutions for integer spins.

4 Examples for SPT-LSM systems in higher dimension

In this section, we provide examples of SPT-LSM systems in various dimensions for both strong

and higher order SPT phases. We also propose a way to construct SPT-LSM systems realizing

a given SPT phase from conventional LSM systems, based on the gauge charge condensation

mechanism. For some examples, we give entanglement-spectrum based arguments to identify

the nature of those enforced SPT phases.

The outline of this section is as following. We first provide a two-dimensional second order

SPT-LSM system on honeycomb lattice. We argue that second order SPT phases on this system

support degenerate boundary modes on symmetric samples with odd number of sites. While

dth order SPT-LSM systems in d dimension are somewhat trivial examples, we move to more

non-trivial cases by proposing a procedure to construct SPT-LSM systems supporting strong

SPT phases based on gauge charge condensation mechanism. Using the general procedure,

we are able to identify several interesting examples in both 2D and 3D, including systems with

“magnetic inversion” or “monopole translations”.

19

https://scipost.org
https://scipost.org/SciPostPhys.11.2.024


SciPost Phys. 11, 024 (2021)

4.1 Half-integer spins on honeycomb lattice – an example of 2nd order SPT-LSM

systems

Let us consider possible gapped symmetric phases on the spin-1/2 honeycomb lattice.

It is well known that a square lattice with spin-1/2 per site satisfies a conventional LSM

theorem. This is the consequence of an odd number of spin-1/2’s in a unit cell. In fact, spin-1/2

at C4 rotation center is enough to guarantee LSM anomaly.

In contrast, for the spin-1/2 system on honeycomb lattice, the total spin quantum number

in a unit cell is integer, and therefore there is no LSM-type obstruction to realize a SRE sym-

metric ground state. Indeed, one can construct four classes of “featureless insulators” in this

systems [52,53], which are all symmetric gapped phases with trivial bulk excitations.

Here, instead of spin-1/2’s, we present a construction of featureless insulators for spin-

3/2’s, which is more straightforward. As shown in Fig. 3, we decompose spin-3/2’s to three

spin-1/2’s, and put them to point to three link directions respectively, and then make a singlet

on a link from two spin-1/2’s at two ends of the link. By choosing the sign of singlets carefully,

we are able to construct featureless states respecting all lattice symmetries. This construction

can be viewed as a 2D generalization of the AKLT construction in a 1D spin-1 chain. By us-

ing tensor networks, this fix-point wavefunction construction can be generalized to generic

variational wavefunctions and also to other half-integer spin systems [53].

When the fix-point wavefunction is put on an open system with C3 symmetry and an odd

number of sites, it exhibits corner states with three free spin-1/2’s related by C3 symmetry.

These C3 symmetric corner states on odd-number-site samples are robust against symmetric

perturbations, and are present for any of the four featureless insulators on this system. In this

sense, these featureless insulators are identified as second order SPT phases.

To see the robustness of corner states, we present the following argument. Since the total

spin is half-integral on odd number of sites, there are at least two-fold degeneracy in the ground

state manifold protected by the SO(3) symmetry. This degeneracy either comes from bulk

states or edge states. If the bulk states are degenerate, it means that bulk excitations carry half-

integer spin, which indicates that these excitations must be anyons (as local excitations have

Figure 3: AKLT construction for spin-3
2 system on honeycomb lattice. A red point

denotes one spin-1
2 , and a blue circle on honeycomb site fuse three spin-1

2 ’s to one

spin-3
2 . A bond connecting two spin-1

2 ’s projects them to a spin singlet.
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integer spins, e.g. magnons). So, for featureless insulators without bulk anyons, degeneracy

must come from free spin-1/2’s on edge states. To preserve C3 symmetry, free spin-1/2’s should

appear in triples on the edge.

Note that the above argument applies to all honeycomb systems with half-integer spin each

site, and thus, if we get a symmetric SRE phase in such systems, there must be edge/corner

modes, which is a characterization of 1st/2nd order SPT phases.

We mention that different from conventional second order SPT phases, for featureless in-

sulators on samples with even number of sites, all edge states can be gapped out.

4.2 General procedure to SPT-LSM systems

In this part, we describe a general procedure helping us to search for SPT-LSM systems, which

enforces more interesting SPT phases. For these systems, decoration on 1-cell (coupled Hal-

dane chain construction) is not able to absorb sites’ fractional spins. Instead, decoration of

higher dimensional (onsite) SPT phases are required in these systems.

To proceed, we first mention that many onsite SPT phases can be constructed by condens-

ing bound states of gauge charges and symmetry charges of some symmetric gauge theory [33].

We review this condensation mechanism for one, two, and three dimensional SPT phases in

Appendix D. To find the SPT-LSM system for a given SPT phase, our first step is to identify a

symmetric gauge theory, where the desired SPT phase can be obtained by condensing gauge

charge. There are various choice of gauge charge condensation. For example, by condensing

“bare gauge charges” (labeled as bg) which are singlets under global symmetries, one obtains

a trivial symmetric phase.

To exclude this possibility, we would like to construct systems prohibiting condensation

of bg . This can be achieved by introducing additional lattice symmetries and constructing a

conventional LSM system. And local Hilbert spaces of this system transform projectively un-

der symmetries. One example is the 2D spin-1/2 system with spin rotation and translational

symmetry. Excitation of the Z2 gauge theory on this system (also known as Z2 spin liquid)

has non-trivial symmetry properties: spinon carry half-integer spin while vison pick up a mi-

nus sign under Tx Ty T−1
x T−1

y . Thus, condensing either quasiparticles leads to spontaneously

symmetry breaking. Different from the usual convention, we always identify gauge charges as

quasiparticles transforming linearly under onsite symmetry, which are vison in this system. In

the LSM system, gauge charge bg transform projectively under lattice symmetries, and con-

densing them leads to spontaneous symmetry breaking. The searching for such conventional

LSM system is relatively easier than for the SPT-LSM system, as we have more intuition (such

as parton construction) for constructing symmetric gauge theories.

Despite being a singlet of onsite symmetry s, the bound state bg bs of gauge charge bg

and symmetry charge (labeled as bs) transforms projectively under lattice symmetries in such

system, and the condensation of bg bs gives a mixture of onsite SPT and lattice SSB phase.

To obtain a fully symmetric phase, one way is to modify lattice symmetry by entangling it

with onsite symmetries, such that bs transforms oppositely from bg under the modified lat-

tice symmetry. Example for such lattice symmetries includes magnetic translation group. We

mention that one should be very careful for the modification of lattice symmetries: it is not

guaranteed that the symmetric gauge theory on the original system will survive for the modi-

fied system. We provide an counterexample in Appendix E, where it is impossible to construct

the symmetric gauge theory with the modified lattice symmetries.

This construction method ensure the system we obtained is the desired SPT-LSM system.

However, one may able to realize more than one type of SPT phases on such system. In

particular, the SPT-LSM system may support higher order SPT phase, in addition to the 1st-

order strong SPT phases. We provide an example in Section 4.4, where one can realize both

1st-order and 2nd-order SPT phases in a 3D SPT-LSM system.
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Calculation based on real space construction method is provided in Appendix C.

4.3 2D SPT-LSM system with magnetic inversion symmetry

In this part, we construct SPT-LSM systems which enforce a 2D strong SPT phase protected by

onsite symmetry Z s
2 × ZT

2 = {1, s} × {1,T }.
We first provide the classification of SPT phases with Z s

2 × ZT
2 . Using group cohomology,

these phases are classified by H3[Z s
2 × ZT

2 , U(1)T ] = Z2
2 . The first Z2 root phase, labeled as

νs = 1, is the well-known Levin-Gu SPT phase protected by Z s
2 symmetry [54], while the second

Z2 root phase, labeled as νsT = 1, comes from interplay between Z s
2 and ZT

2 . In particular,

νsT = 1 phase has a decorated domain wall picture: domain walls of Z s
2 are decorated with

ZT
2 Haldane chains [32]. A Z s

2 domain wall can terminate on a Z s
2 symmetry flux, which then

carries a Kramers doublet.

Our goal is to construct SPT-LSM systems with νsT = 1 (νs can be either 0 or 1). We

mention that an example based on magnetic translation group is presented in Ref. [25]. Here,

we give a new example based on inversion symmetry.

The global symmetry group for the system is Z
eI
4 × ZT

2 , where Z
eI
4 is generated with “mag-

netic inversion“ eI with eI2 = s and eI4 = 1. At inversion center, the local Hilbert space trans-

forms as a Kramers doublet. As we will show in the following, this system is an SPT-LSM

system, where a symmetric SRE phase in this system must be an SPT phase with νsT = 1.

4.3.1 νsT = 1 SPT phases from gauge charge condensation

In this part, we follow the general procedure in Section 4.2 to “derive” the SPT-LSM system.

1. The first step is to identify a symmetric gauge theory, such that condensing its gauge

charge leads to νsT = 1 phase.

We start from a Z2 gauge theory (toric code topological order) with global symmetry

Z s
2 × ZT

2 , with gauge flux m transforming as a Kramers doublet. Gauge charge e here

carries linear representation. Symmetry action on these anyons can be expressed as

T
2 ◦m= −m , s2 ◦m= m ;

T
2 ◦ e = s2 ◦ e = e . (47)

νsT = 1 phase is obtained by condensing bound state of e and a Z s
2 charge excitation

Rs [33], while condensing e leads to trivial SPT phase. Details of this condensation

mechanism can be found in Appendix D.3.

2. To design an SPT-LSM system, we should prohibit the condensation of bare gauge charge

e. As we showed in Section 4.2, one way is to add lattice symmetry and start from a

“conventional” LSM system.

In this example, we add inversion symmetry I, and we present a simple cell decompo-

sition for systems with symmetry I in Fig. 4.

The LSM condition for this system can be satisfied by putting a Kramers double at in-

version center. All Z2 symmetric gauge theories realized in this system is “anomalous”:

both e and m transform projectively under total symmetry group. One particular choice

of symmetry action is:

I
2 ◦ e = −e , T

2 ◦m= −m . (48)

Due to the non-trivial symmetry action on both e and m, condensing either quasiparticle

leads to spontaneously symmetry breaking phase. In particular, by condensing bound
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τ Ĩ ◦ τµ

⊗

⊗

σ

Ĩ ◦ σ

Figure 4: Cell decomposition of Y = R2 respecting inversion symmetry around

µ. Cells are grouped according to their dimension as Y2 =
�
σ, eI ◦σ, . . .
	
,

Y1 =
�
τ, eI ◦τ, . . .
	
, and Y0 = {µ, . . . }, where . . . denote cells that are not drawn

here. 1-cells τ and eI ◦τ point towards µ, while directions of 2-cells σ and eI ◦σ are

pointing into the paper.

state of e and Z s
2 charge Rs, we get mixture phase with νsT = 1 SPT and inversion

symmetry breaking.

3. In order to obtain a fully symmetric SPT phase, we modify inversion to “magnetic in-

version” eI with eI2 = s. In other words, we have eI2 ◦ Rs = −Rs as well as eI2 ◦ e = −e.

Then, bound state of e and Rs transform trivially under the modified symmetry group:
eI2 ◦ (eRs) = eRs. By condensing eRs, we obtain the νsT = 1 phase without breaking any

lattice symmetry.

We point out that SPT phases obtained in this system is not unique, which is related to the fact

that symmetry action on the Z2 gauge theory is not uniquely determined in the original LSM

system. For example, we could start from a different symmetric gauge theory with additional

non-trivial Z s
2 action s2 ◦m= −m. Condensing eRs in this case leads to phase νs = νsT = 1.

4.3.2 Entanglement argument

In this part, we give an entanglement-based argument to prove that any gapped symmetric

ground state must be a SPT phase with νsT = 1.

Without loss of generality, we consider a square lattice model, where Ising charges (neutral

under time reversal T ) live on each lattice site r= (x , y) ∈ Z2. Besides, there is a Ising-neutral

spin-1/2, which is a projective representation of time reversal symmetry T , living on each

plaquette center (x + 1
2 , y + 1

2). The magnetic inversion symmetry Ĩ is implemented as

Ĩ ≡
�∏

r(sr)
y
�
· I , (49)

(x , y)
I−→ (1− x , 1− y) ,

where we have chosen the inversion center to be each plaquette center. It is straightforward

to check that Ĩ2 =
∏

r sr = s is indeed satisfied, where sr denotes Z2 spin rotation on each site

r.

One can always embed the Z2 Ising symmetry s in a U(1) group, for example by choosing

s = eiπQ̂ , s2 = e2πiQ̂ = 1 , (50)

U(1)≡ {eiφQ̂|0≤ φ < 2π} .
The magnetic inversion symmetry Ĩ implements the following constraint on the U(1) vector

potential

~A(1− x , 1− y) = −~A(x , y) + (0,π) , (51)
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which has the following solution in the Landau gauge

~A(x , y) = (0,πx) . (52)

This implies the presence of aπ flux (i.e. an Ising symmetry flux) in each plaquette, in addition

to the spin-1/2 at the plaquette center.

When put on a cylinder with infinite length Lx −→ +∞ and an odd circumference L y =

odd, the boundary condition along ŷ direction oscillates between periodic and anti-periodic

boundary conditions between different columns x = even and x = odd. Below we present an

argument based on entanglement spectrum properties of a SRE quasi-1D cylinder with time

reversal symmetry [18], which dictates that any symmetric SRE ground state must be a strong

SPT phase with νsT = 1 in a way similar to Ref. [24,25,55].

We consider the entanglement spectra of the L y = odd cylinder at two different cuts

x̄ = ε ∈ (0,1/2) and x̄ = 1 − ε, which are related by inversion symmetry Ĩ. We write the

Schmidt decompositions of the symmetric SRE ground state |ψ〉 w.r.t. the two cuts as

|ψ〉=
∑

λε

λε |Lλ,ε〉 ⊗ |Rλ,ε〉=
∑

λ1−ε

λ1−ε |Lλ,1−ε〉 ⊗ |Rλ,1−ε〉 .

Since there is an odd number of Kramers doublet between the two cuts, the degeneracy of

Schmidt eigenstates at the two cuts must differ by 2-fold due to Kramers degeneracy [18].

Without loss of generality, we assume Schmidt eigenstates (e.g. |Lλ,ε〉) at cut ε are Kramers

singlets (non-degenerate) and those at cut 1−ε (e.g. |Rλ,1−ε〉) are Kramers doublets (two-fold

degenerate). However due to magnetic inversion symmetry Ĩ, under pure spatial inversion

operation which maps the spatial region of |Lλ,ε〉 to the region of |Rλ,1−ε〉, the only change to

the many-body Hamiltonian is the twisting of boundary condition along L y direction by the

onsite Z2 symmetry s. This indicates that twisting boundary condition by s for any symmetric

SRE state must also change the entanglement spectrum by a Kramers degeneracy. This is a

defining property for 2D SPT phase with νsT = 1, where a Kramers doublet of T symmetry is

bound to each flux of Ising symmetry s [32]. Therefore we have shown that this is indeed a

1st-order SPT-LSM system, where each symmetric SRE ground state must be a 1st-order (i.e.

strong) 2D SPT phase with νsT = 1.

4.3.3 Model Hamiltonian

We now briefly describes a model that realizes such a SPT-LSM system. The model is in fact

identical to one studied in for a SPT-LSM theorem with magnetic translation symmetry. We

will only describe the setup and sketch the Hamiltonian, referring the details to Ref. [25].

Consider a spin-1/2 triangular lattice, and the dual honeycomb lattice. On the dual lattice

we place Ising spins on each site. The system has SO(3) spin rotation symmetry acting on

spin-1/2’s on the triangular lattice, and Z2 symmetry on the Ising spins on the dual lattice,

generated by
∏

pσ
x
p .

We also define a “magnetic" site inversion symmetry on the triangular lattice. First we

define the coordinate system. We label the honeycomb sites on one sublattice by m, n so its

coordinate is r= ma+nb, where a= (1, 0),b= (1
2 ,
p

3
2 ). The other sublattice is ma+nb+ a+b

3 .

Denote I the “normal" inversion that only operates on the spatial coordinates,

Ĩ =
∏

r

[σx
r ]

n · I . (53)

We now briefly describe the Hamiltonian, which is in fact identical to the one given in

Ref. [25]. There are three kinds of terms in the Hamiltonian:

H = HIsing + Hbinding + HA , (54)
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S

σ

Figure 5: Illustration of the 2D Hamiltonian, where spin-1/2’s form a triangular lat-

tice, and Ising spins reside on the dual honeycomb lattice. Thicken bonds denote

frustrated Ising couplings.

where HIsing takes the following form:

HIsing = −K
∑

〈pq〉
spqσpσq . (55)

The signs spq are chosen such that around each hexagonal plaquette the product of s’s is equal

to −1, i.e. a π flux lattice. One choice is depicted in Fig. 5. Thus the Ising couplings are

frustrated. Next Hbinding couples the Ising spins and the spin-1/2’s:

Hbinding = −λ
∑

e

(1− spqσpσq)Pe , (56)

where e sums over nearest-neighbour edges of the triangular lattice, and Pe projects the two

spins connected by e to a spin singlet. p and q denote the two plaquettes adjacent to e. HA gives

dynamics to the spin singlets and its form is quite complicated, so we refer the readers to for

details. Due to the frustrated Ising couplings, the (honeycomb plaquette-centered) inversion

symmetry must be magnetic, given in Eq. (53). As shown in Ref. [25], in the limit λ→∞,

the model realizes precisely the SPT phases expected from the SPT-LSM theorem.

4.4 3D SPT-LSM system with magnetic inversion

Now we consider a 3D SPT-LSM system with Z s
2×ZT

2 global symmetry and magnetic inversion.

The 3D inversion again satisfies eI2 = s. Notice that the 3D inversion is an orientation-reversing

operation. One simple cell decomposition is presented in Fig. 6.

Interestingly, now we can construct at least two completely different kinds of SPT phases

in this system:

1. A strong SPT phase protected by Z s
2 × ZT

2 .

2. A 2nd order SPT phase: restricted to an arbitrary plane passing through the inversion

center, we find exactly the same 2D SPT-LSM system discussed in the previous section.

Thus one can form the 2D SPT phase with νsT = 1 on this plane.
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ρ ρ̄

σ

σ̄

τ

τ̄

µ

Figure 6: Cell decomposition for a 3D lattice respecting inversion symmetry with

inversion center µ. Cell s̄ and cell s are related by (magnetic) inversion symmetry eI :
s̄ = eI ◦ s. Orientations for 1-cells and 2-cells are denoted by arrows, while 3-cells ρ

and ρ̄ = eI ◦ρ have opposite orientations.

Let us discuss in more detail how to realize the first option, i.e. a strong SPT phase. We

start from a LSM theorem, with a Kramers doublet at the 3D inversion center and the inversion

I2 = 1. In such a system, one may realize a U(1) spin liquid. We assume that under the time

reversal and the inversion, the gauge fields transform as

T : E→−E,B→ B ,

I : E→ E,B→−B .
(57)

Notice that the Gauss law ρ =∇·E implies that the gauge charge density ρ changes sign under

I. Therefore, T 2 is well-defined for magnetic monopoles and I2 is well-defined for electric

charges. We set I2 = −1 on electric charge and T 2 = −1 on monopoles, which realizes the

LSM anomaly.

Now we condense the bound state of an electric charge with a Z s
2 charge Rs, which trans-

forms as Ĩ2 = s. This object transforms trivially under all symmetries and thus the condensa-

tion leads to a SPT phase.

In order to understand the nature of the SPT phase, it is convenient to first Higgs the gauge

symmetry down to Z
g

2 . This can be done by condensation of a pair of electric charges. After

the condensation, monopoles are confined and there emerges π flux loops. Two identical flux

loops fuse into a 2π flux loop, whose end points correspond to (now confined) unit magnetic

monopoles. Recall that these monopoles are Kramers doublets. In other words, we can think

of a 2π flux loop as carrying a Haldane chain. Therefore, a π flux loop must carry a “half"

Haldane chain. This phenomenon can be regarded as a generalization of the familiar fractional

charges of anyons in 2D, while integer charges are identified as 0D SPT states.

Now we further condense the bound state of a Z
g

2 gauge charge with a Z s
2 charge Rs. This

step is essentially the same as before. The condensation now implies that we may identify

the Z s
2 symmetry flux loop with the Z

g

2 flux loop, which carries a half Haldane chain. This

corresponds to the following term in the Künneth decomposition of H4[ZT
2 × Z s

2, U(1)]:

H3[ZT

2 , H1[Z s
2, U(1)]] = Z2 , (58)

where the non-trivial element in H1[Z s
2, U(1)] = Z2 characterizes the Z s

2 symmetry flux loop,

and H3[ZT
2 , Z2] describes decoration of half-Haldane chain.

We also perform a spectral sequence calculation and confirm the results in Appendix C.3.
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4.5 3D SPT-LSM with monopole translation

In this part, we propose an SPT-LSM system enforcing strong SPT phases in 3+1D protected

by onsite symmetry group Us(1) × ZT
2 . Physically, this case corresponds to a time reversal

invariant spin system in which the z component of spin is conserved. Cohomological group

calculation gives Z3
2 classification:

H4
�
Us(1)× ZT

2 , UT (1)
�
= Z3

2 . (59)

And there is another Z2 class beyond group cohomology classification [48,56].

There are two ways to characterize these phases: either by studying the surface state [56,

57] or by by coupling Us(1) charge to external compact electromagnetic field, and studying

properties of external monopole excitations. Properties of these SPT phases, as well as ap-

proaches to obtain them from monopole condensation are reviewed in Appendix D.4.

Here, we focus on one Z2 root phase, whose external monopole transforms as a Kramers

doublet under time reversal. To design an SPT-LSM system enforcing such a phase, we follow

the procedure presented in Section 4.2. We first identify a possible route to obtain this SPT

phase by condensing quasiparticles of a symmetric gauge theory. One starts from a compact

Ug(1) quantum spin liquid (QSL) with global symmetry Us(1)× ZT
2 . Excitations of this spin

liquid are gauge charges, monopoles as well as photons. For the purpose here, we can safely

ignore photons, and focus on symmetry properties of gauge charges and monopoles. We men-

tion that monopoles and gauge charges are dual to each other: monopoles can be viewed as

gauge charges of a dual fUg(1) gauge field.

The Ug(1) gauge field can be killed by condensing gauge charges or monopoles or their

bound states. Here, we focus on phases obtained from monopole condensation.

We assume the following symmetry properties of this Ug(1) QSL: gauge charge, labeled as

bg , is a Kramers doublet, while the monopole Mg is transformed into its antiparticle M†
g under

time reversal. Both of them transform trivially under Us(1). We claim that condensing bound

state of monopole Mg and a unit Us(1) charge leads to the SPT phase with Kramers doublet

monopole of Us(1). Notice that monopole Mg of Ug(1) gauge field and the external monopole

of Us(1) are two different objects, and should not be confused with each other. The detailed

argument for this condensation mechanism is presented in Appendix D.4.3.

More precisely, under onsite symmetry Us(1) × ZT
2 , gauge charge bg and monopole Mg

transform as

Us(θ ) : bg → bg , Mg → Mg ;

T : bg → iσ y · bg , Mg → M†
g , i →−i , (60)

where bg = (bg↑, bg↓)
t is a two component bosonic operator with spin index.

Notice that there is an important distinction between onsite unitary and anti-unitary sym-

metries. Under onsite unitary symmetry action, both bg and Mg should either remain in the

same topological sector or both transform to their antiparticles. However for onsite anti-

unitary action, in order to preserve commutation relation between electric field ~Eg and vector

potential ~Ag , if bg transforms to its antiparticle b†
g , Mg must remain in the same topological

sector, and vice versa.

This Ug(1) spin liquid can be realized in a spin system, where local Hilbert space contains

one qubit (with basis | ↑〉 and | ↓〉) and one qutrit (with basis |0〉 and |±1〉). The qubit is a

Kramers doublet, but carry no Us(1) charge. Meanwhile the qutrit is a Kramers singlet, and car-

ries Us(1) charge. By introducing ~S as spin-1/2 operator for qubit and B± as raising/lowering

operator for qutrit, the symmetry action reads

Us(θ ) : ~S→ ~S , B±→ e±iθB± ,

T : ~S→−~S , B+↔ B− , i →−i . (61)
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Then, Ug(1) QSL can be constructed using parton formulation. Ug(1) gauge charge bg are

identified as partons for spin operator

~S ∼ 1

2
b†

g · ~σ · bg . (62)

Then, under global symmetry, bg transforms in the same way as shown in Eq. (60). The desired

Ug(1) spin liquid phase is obtained by putting bg on a trivial gapped Mott insulator, and thus

monopoles transform linearly under global symmetry. The SPT phase with Kramers doublet

Us(1) external monopoles is obtained by condensing the bound state of Mg and Us(1) charge

S+.

Having identified the symmetric gauge theory, the next step to figure out a 3+1D LSM

system to support this Ug(1) gauge theory with the same onsite symmetry action defined in

Eq. (60). Here, let us start from a cubic lattice system with one qubit living on each lattice site

with onsite symmetry defined in Eq. (61). We also impose translational symmetry as

Ti : ~S( j)→ ~S( j + êi) . (63)

(We will add qutrit later for this construction.)

This system has LSM anomaly due to a single Kramers doublet per unit cell, and disallows

symmetric SRE phase. We are able to construct Ug(1) QSL phase with the same onsite symme-

try properties defined in Eq. (60) by parton construction. Physical Hilbert space is identified

as one boson per site. Due to this restriction, one effectively introduces Ug(1) gauge field, and

bg is identified as gauge charge, while Mg lives on the cubic center (or dual lattice site). One

can choose mean field ansatz for bg with onsite chemical potential and nearest neighbouring

pairing terms. This ansatz is invariant under a global Ug(1) transformation with

Ug(φ) : bg( j)→ e±iφ bg( j) . (64)

Here, we choose+φ for even sites and−φ for odd sites where for site j = ( jx , jy , jz), even/odd

lattice site means jx + jy + jz is an even/odd number. This action is actually a gauge trans-

formation, and is named as invariant gauge group (IGG), which determines low-energy gauge

dynamics [58]. Notice that nearest neighbouring hopping breaks Ug(1) IGG to Z2, and is

identified as Higgs terms.

How do gauge charges and monopoles transform under lattice symmetries? We notice

that translations have non-trivial action on IGG: TαUg(φ)T
−1
α = Ug(−φ). In other words,

translations act as charge conjugation on gauge charges. (Remember that bg( j) at even/odd

j carries positive/negative gauge charge.)

To preserve commutation relation between ~E and ~A, Tα should also map Mg( j) to its an-

tiparticle M†
g( j + êα) up to a phase factor. Every site lives a single bg , which is interpreted

as background gauge charge: there is one positive gauge charge on each even site, and one

negative gauge charge on each odd site. Due to the background gauge charge distribution,

magnetic monopole Mg would acquire non-trivial Berry phase when hopping around a closed

loop. A specific hopping ansatz for Mg to characterize “odd number of gauge charges per unit

cell” is given in Ref. [59]. Here, we present the ansatz in Fig. 7.

According to this mean field ansatz, we extract translation action on Mg as

Tx : Mg( j)→ M†
g( j + x̂) ,

Ty : Mg( j)→ M†
g( j + ŷ) ,

Tz : Mg( j)→ i (x+y)2+2x M†
g( j + ẑ) . (65)
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Figure 7: (a) Monopole on dual cubic lattice with ±1 background gauge charge per

unit cell. A/B denotes gauge charge −1/+ 1 as the drain/source of electric line. (b)

Hopping ansatz for monopole with the above non-trivial gauge charge background.

Monopole picks up phase factor exp (±iπ/12) when hops along the same/opposite

direction of single arrow, while picks up exp (±i 5π/12). Thus, monopole will pick

up ±π3 Berry phase when travelling around a plaquette.

As shown in Ref. [59], while condensation of bg leads to magnetic ordered phases, conden-

sation of monopole always breaks translational symmetry, and patterns of the resulting VBS

orders depend on details of condensation.

Now, let us add one qutrit at every site. Qutrits carry Us(1) charge, as shown in Eq. (60). As

discussed before, condensation of the bound state of Mg and B+ leads to the SPT phase with

Kramers doublet external Us(1) monopole. However this condensation breaks translational

symmetry assuming translation act trivially on qutrits, and leads to mixture of VBS and SPT

phase. To avoid lattice symmetry breaking and obtain fully symmetric phase, the last step is

to carefully design translation actions on qutrits, such that hopping ansatz for qutrits is the

complex conjugate of hopping ansatz for Mg . Thus, the bound state of Mg and B+ will hop in

a zero flux background. By condensing the bound state (or design correlated hopping of Mg

and B+) at Γ point, we get a symmetric SRE phase, with the desired SPT index.

Let us now identify the modified translation symmetries for this B+ hopping ansatz. Since

background flux for B+ would be opposite to flux for Mg , translation symmetry action on spin

operators becomes

Tx : B+( j)→ B−( j + x̂) ;

Ty : B+( j)→ B−( j + ŷ) ;

Tz : B+( j)→ (−i )(x+y)2+2x B−( j + ẑ) . (66)

We coin the above modified translation operators as “monopole translation operators”.

One may worry if it is possible to obtain trivial symmetric SRE phase by condensing other

bound states of gauge charges and monopoles (dyons). A dyon can be labeled by a 2D integer

vector (e, m), where e denotes the electric charge and m is the magnetic charge. In this QSL,

charge (1,0) and monopole (0, 1) are boson, so when e · m is even/odd, dyon (e, m) is a

boson/fermion [60].

Let us consider condensation of bosonic dyons. When gcd(e, m) = n> 1, condensing dyon

leads to discrete Zn gauge theory. So, we require the condensed dyon satisfying gcd(e, m) = 1.

Under T action, (e, m)→ (e,−m). When e and m are both nonzero, the condensed phase

would break T symmetry. We are only left with options with electric charge (±1,0) and mag-

netic monopole (0,±1). However, condensing charge (±1, 0) would break Us(1) symmetry

according to Eq. (60). So, to obtain symmetric SRE phase from this Ug(1) QSL, the only
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choice is to condense monopole/anti-monopole. In order to preserve monopole translation

symmetry after condensation, we should condense the bound state of monopole and Us(1)

charge B+, and the resulting phase is nothing but the desired SPT phase.

Now, we are able to identify the global symmetry group by commutation relations of gen-

erators, which are

T
2 = 1 ;

T Us(θ )T
−1 = Us(θ ) , Tα T T−1

α = T ;

Tα Us(θ ) T
−1
α = Us(−θ ) , α= x , y, z ;

Tx Ty = Ty Tx ; Ty Tz = Us

�π
2

�
Tz Ty ;

Tz Tx = Us

�π
2

�
Tx Tz . (67)

We point out a subtlety in the above definition. Let us define ω(α,β) = TαTβT−1
α T−1

β
, where

ω(α,β) ∈ Us(1). ω(α,β) is not an invariant quantity: by redefining generator Tα/β →
ϕα/βTα/β , with ϕα/β ∈ Us(1), ω(α,β) changes to ω(α,β) ·ϕ2

αϕ
−2
β

. Instead, ω(x , y) ·ω(y, z) ·
ω(z, x) is an invariant quantity. In this case, this quantity equals to Us(π), and it is natural to

interpret it as an odd number of background external monopoles in one unit cell.

We have shown that for system with symmetry group defined in Eq. (67) and a single

Kramers doublet per unit cell, we are able to construct strong bosonic SPT phases in 3+1D with

external Kramers doublet monopoles. One may wonder if it is possible to have higher order

SPT phases in this system. The answer is no. As shown in Section 3.2, high order SPT phases

can be constructed by layering lower dimensional (1D or 2D) SPT in a way preserving lattice

symmetries. These 1D/2D SPT phases are classified by the second/third group cohomology of

symmetry Us(1)× ZT
2 , which are

H2[Us(1)× ZT

2 , UT (1)] = Z2
2 ,

H3[Us(1)× ZT

2 , UT (1)] = Z1 . (68)

We conclude 2nd order SPT phases are not possible due to the vanishing H3. It is easy to check

3rd order SPT phases are also not possible in this system: to preserve translation symmetry

of cubic lattice, we should always decorate some 1D SPT on even number of links with the

same end point. Due to the Z2 nature of the classification, the end point should support linear

representation of Us(1)×ZT
2 , which contradicts with the fact that there is one Kramers doublet

per site.

We also perform a spectral-sequence calculation to confirm this result. To simplify the

calculation, we replace the Us(1) symmetry by a Z8 symmetry. This replacement can be under-

stood physically as breaking the Us(1) symmetry to Z8. The strong SPT state in H4[Us(1)×ZT
2 ,

UT (1)] remains non-trivial, and becomes a strong SPT state in H4[Z8 × ZT
2 , UT (1)]. For this

simplified symmetry group, which is discrete, the spectral sequence reviewed in Appendices B

and C is computed using the free resolution constructed in Ref. [61]. The calculation reveals

that there is a non-trivial d3 map on the third page, pointing from the aforementioned strong-

SPT class in H4[Z8 × ZT
2 , UT (1)] to the anomaly in H2[ZT

2 , UT (1)] ⊂ H2[Z8 × ZT
2 , UT (1)],

representing the anomaly of one Kramer’s doublet per magnetic unit cell. This d3 map proves

an (1st-order) SPT-LSM Theorem relating the anomaly to the 3D strong SPT class.

5 Conclusion and future directions

In this paper, we present a general theoretical framework for LSM-type theorems for bosonic

SPT phases through a real-space construction, and also describe a general approach to con-
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struct new SPT-LSM theorems from known results of more conventional LSM theorems. Our

main results are summarized as below:

1. Topological crystalline phases can be constructed by symmetrically decorating SPT phases

on all cells. nth order SPT phases are constructed by non-trivial decorations on (d−m+1)-

cells and trivial decorations on all higher dimensional cells.

2. For a given symmetry group, systems are classified according to patterns of fractional

spins (projective representations of local Hilbert spaces). For a given pattern, only cer-

tain symmetric decorations of SPT phases are allowed, and can be calculated using al-

gorithm provided in Section 3.2. Different patterns of fractional spins support different

decorations of SPT phases. We point out that there exist certain fractional spin patterns,

where no such decorations are allowed. These patterns actually give the conventional

LSM systems, and no SRE phases are allowed in such systems (see more discussion on

Appendix C).

3. On one hand, many SPT phases can be obtained by condensing topological excitations

from symmetric gauge theories. On the other hand, symmetric gauge theories on con-

ventional LSM systems are anomalous, in the sense one can never obtain symmetric SRE

phases from condensing topological excitations. By making use of these two facts, we

design a way to obtain a large class of SPT-LSM systems from conventional LSM systems

by properly modifying lattice symmetries for various dimensions.

The real-space construction method presented here are quite general, and may be applied

to many other contexts. A natural future direction is to generalize the real-space construction

to fermionic symmetry protected topological phases, and classify possible SPT-LSM theorems.

Some partial results along this line have been obtained for rotational symmetries [62].

As pointed in Ref. [28], the idea of real space construction can also be used in classify-

ing symmetry enriched topological (SET) phases. While for the case of SPT phases, real-space

construction fits perfectly in the mathematical framework of equivariant cohomology and spec-

tral sequence, it is unclear how to implement an algorithm to construct/classify SET phases,

especially for the case where symmetry operations permute anyons.

We may also apply this idea to coupled wire construction. While coupled wire methods

usually breaks lattice rotational symmetries, it seems possible to have a more symmetric con-

struction based on the real space construction of these LSM-SPT systems. This approach may

potentially leads to a better understanding of symmetry implementations on gapless systems.

From a practical point of view, while this paper focuses on possible phases given the global

symmetries and fractional spins, it is desirable to find a microscopic Hamiltonian to realize

these SPT phases. For example, in Section 4.5, we found LSM theorems for SPT phases in 3D,

through dyon condensation in a parent U(1) spin liquid. An important question is to construct

a realistic Hamiltonian, similar to the 2D model, to realize this scenario, and make connections

with candidate materials for U(1) spin liquids. And in order to simulate these spin models, it

is important to construct variational wavefunctions for the SPT phases in the SPT-LSM system.

While tensor network constructions for SPT phases on systems with integer spins are obtained

in Ref [33], where cohomology data can be extracted from tensor equations, it is unclear how

to relate tensor equations to spectral sequence on fractional spin systems. We will leave it as

a future project.
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A Group cohomology and bosonic SPT phases protected by onsite

symmetry

In this part, we briefly review group cohomology theory, and its application to the (partial)

classification and construction of bosonic onsite SPT phases. Bosonic SPT phases involving

lattice symmetries will be discussed in Appendix B.

A.1 Mathematical definition of group cohomology

There are many equivalent definitions of group cohomology. In this paper, we mainly use

definition based on the homogeneous cochains. A n-cochain φ for group G with coefficient M

in is a function that maps (n+ 1)-tuple (g0, g1, · · · , gn) of elements of G, to an abelian group

M :

φ(g0, · · · , gn) ∈ M , (69)

and we require this function to be invariant under G-action: g ◦φ = φ , ∀g ∈ G .

The definition of G-action on φ is based on G-action on (g0, g1, ..., gn), where

g · (g0, g1, · · · , gn) = (g g0, g g1, · · · , g gn) , ∀g ∈ G (70)

as well as G-action on M , labeled asρ, which is required to be compatible with group operation

of M :

ρ(g)(m1 +m2) = ρ(g)m1 +ρ(g)m2, ∀g ∈ G, m1, m2 ∈ M . (71)

Then, G-action is defined “diagonally” on φ:

(g ◦φ)(g0, g1, · · · , gd+1)≡ ρ(g)φ(g−1 g0, g−1 g1, · · · , g−1 gn) . (72)

Thus, invariance of homogeneous n-cochain φ under ρ(g) action is expressed as

ρ(g)φ(g0, g1, · · · , gn) = φ(g g0, g g1, · · · , g gn) . (73)

For most cases considered in this paper, M is chosen to be U(1). Since our convention for

abelian group M is addition instead of group multiplication, U(1) group elements are treated

as phase angles modulo 2π.

Action of G on M is usually given by three Z2 gradings of the symmetry group. First, we use

ρT (g) = ±1 to denote whether g is antiunitary operation (e.g. time reversal): ρT (g) = 1 (−1)

if g is unitary (antiunitary). Second, ρP(g) = ±1 to denote whether g reverses the spatial
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orientation: a proper transformation, including a translation, a rotation and a skew rotation,

has ρP(g) = 1; an improper transformation, including a mirror-reflection, a 3D inversion and

a glide reflection, has ρP(g) = −1. Finally, we use ρPT to denote ρPT (g) = ρP(g)ρT (g).

We also use MT , MP and MPT to denote coefficient with the corresponding symmetry actions:

g ∈ G acts as a unitary (antiunitary) operator on coefficients in MX if ρX (g) = ±1, respectively.

All n-cochains form an abelian group, which is equipped with trivial G-action, labeled as

Cn[G, MX ]. We now define a coboundary map dn from n-cochain Cn[G, MX ] to (n+1)-cochain

Cn+1[G, MX ] as

dnφ(g0, · · · , gn+1) =

p+1∑

k=0

(−1)kφ(g0, · · · , ĝk, · · · , gn+1) , (74)

where ĝk means the element gk is skipped. The superscript n in dn denotes the cochain space

it acts upon, and we often omit it when it can be determined from the context.

The coboundary operator satisfies the condition

dndn−1 = 0 , (75)

which can be verified straightforwardly. Linked by dn, the cochain spaces form a cochain

complex:

· · · → Cn−1[G, MX ]
dn−1

−−→ Cn[G, MX ]
dn

−→ Cn+1[G, MX ]→ · · · , (76)

where we set Cn[G, MX ] = 0 for n< 0.

We define n-cocycle Zn[G, MX ] ≡ ker dn and n-coboundary Bn[G, Mx] ≡ imagdn−1. Ac-

cording to Eq. (75), Bn[G, MX ] ⊆ Zn[G, MX ] ⊆ Cn[G, MX ]. The group cohomology of G is

defined as a subquotient abelian group of Cn[G, MX ]:

Hn[G, MX ] = Zn[G, MX ]/B
n[G, MX ] . (77)

A.2 Bosonic SPT phase from group cohomology

In this part, we use group cohomology to construct fix point wavefunction for bosonic SPT

phase. We focus on onsite symmetry group SG0 with finite number of elements.

Let us start with a d-dimensional lattice with a triangularization and a branching structure.

The vertices of the lattice is organized to d-dimensional simplices (lines in 1D, triangles in 2D

and tetrahedral in 3D). The branching structure is a set of orientations on all links between

vertices, satisfying the condition that the links do not form any oriented loop. The branching

structure can be obtained by first labelling all vertices with ordered numbers and then choose

the link orientation from the vertex labeled by a smaller number to the vertex labeled by a

larger number.

We then build a physical system in this triangulated lattice. The Hilbert space for this

system is formed by local Hilbert spaces on each vertex, spanned by basis vector |gi〉 for every

gi ∈ SG0. And symmetry action is defined as g|gi〉= |g gi〉.
We focus on the case where the underlying manifold is closed, i.e. it has no boundary.

Given φ ∈ Cd+1[SG0, U(1)T ], we construct a physical wavefunction by equal weight super-

position of all configurations, and the phase factor for each phase is given by summation of

contributions from all d-simplex, as shown in the following:

|Ψ[φ]〉=
∑

{gi}

∏

∆i0...id

exp
�
i s(i0, · · · , id)φ(1, gi0

, · · · , gid
)
�
|g1, g2, · · · , gN 〉 . (78)

33

https://scipost.org
https://scipost.org/SciPostPhys.11.2.024


SciPost Phys. 11, 024 (2021)

Here, N is number of vertices, and i0 < i1 < · · ·< id labels ordered vertices of some d-simplex.

The product runs over all d-dimensional simplices in the lattice. s(i0, · · · , id) = ±1 denotes

whether the orientation of the simplex is the same or opposite to an overall orientation of

the underlying manifold. The orientation of simplex ∆i0...id
is determined by its branching

structure: a d-dimensional local coordinate system is determined as

{~e1, · · · ,~ed} ≡ {
−→
i0i1, · · · ,−−−→id−1id} , (79)

and this local coordinate {~ei} defines the orientation of the simplex.

Under g0 ∈ SG0 action, we have

g0|Ψ[φ]〉=
∑

{gi}

∏

∆i0...id

exp
�
i s(i0, · · · , id)φ(g0, gi0

, · · · , gid
)
�
|g1, g2, · · · , gN 〉 , (80)

which can be derived from Eq. (73). Notice that the absence of ρT (g0) here is due to an

additional complex conjugate action on i when g0 is antiunitary.

It is easy to see that a generic cochain φ breaks symmetry. Yet if φ ∈ Zd+1[SG0, U(1)T ]

which satisfies dφ = 0, |Ψ[φ]〉 is invariant under SG0 [9].

We mention that one is able to construct an exact solvable Hamiltonian with |Ψ[φ]〉 serving

as ground state wavefunction, and is uniquely determined on any closed manifold.

One may wonder if there is one-to-one correspondence between cocycles and SPT phases.

The answer is negative: different cocycles may describe the same SPT phase. In particular,

two cocycles differ by a coboundary ϕ ∈ Bd+1[SG0, U(1)T ] characterize the same SPT phases.

To see this, we can put different cocycles on nearby d-simplex. If these two cocycles describe

the same SPT phases, we should be able to gap out the boundary modes at the interphase of

these two simplices. In the next part, we will show that this statement is true iff two cocycles

differ by a coboundary.

A.3 Boundary between two SPT phases

Let us consider systems containing two SPT phases and study the boundary state between

these two phases. These two SPT phases are generated by (d + 1)-cocycles φ1 and φ2, and

they live in region B1 and B2 respectively, where the whole manifold is formed by B1∪B2. We

assume B1 and B2 has the same orientation as the underlying manifold. The interface, labeled

as ∂ B1 = B1 ∩ B2, is composed by (d − 1)-simplices, and its orientation is induced by B1. A

generic boundary state can be generated by attaching some d-cochain ϕ to ∂ B1.

Wavefunction for the whole system contains contributions from φ1, φ2, and ϕ, which can

be written as

|Ψ[φ1,φ2,ϕ]〉=
∑

{gi}
Φ
φ1

bulk
({gi |i ∈ B1})Φφ2

bulk
({gi |i ∈ B2})Φϕbdr y

({gi |i ∈ ∂ B1})|g1, g2, · · · , gN 〉 .

(81)

The bulk wavefunction reads

Φ
φt

bulk
({gi |i ∈ Bt}) =

∏

∆i0...id
∈Bt

exp
�
i s(i0, · · · , id)φt(1, gi0

, · · · , gid
)
�

, t = 1, 2 , (82)

where s(i0, · · · , id) = ±1 when the orientation of simplex ∆i0...id
has the same/opposite orien-

tation of Bt .

The boundary wavefunction is

Φ
ϕ

bdr y
({gi |i ∈ ∂ B1}) =

∏

∆i0...id−1
∈∂ B1

exp
�
i s(i0, · · · , id−1)ϕ(1, gi0

, · · · , gid−1
)
�

. (83)
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Here, s(i0, · · · , id−1) = ±1 when orientation of (d − 1)-simplex ∆i0...id−1
is consistent/inconsis-

tent with the induced orientation of boundary ∂ B1.

For simplicity, let us consider the case where the underlying manifold is a d-sphere, and

its triangulation is given by faces of a single (d + 1)-simplex, which contains d + 2 number of

d-simplices. SPT phase generated by φ1 sits on simplex ∆12...d+1, while SPT phase generated

by φ2 occupies other d-simplices. Using the cocycle condition, we are able to simplify the bulk

wavefunction amplitude for state |g1, · · · , gd+2〉 as

Φ
φ1

bulk
Φ
φ2

bulk
(g1, · · · , gd+2) = exp [i (φ1(1, g1, · · · , gd+1)−φ2(1, g1, · · · , gd+1))] . (84)

While the boundary wavefunction can be simplified as

Φ
ϕ

bdr y
(g1, · · · , gd+2) = exp [i (dϕ(1, g1, · · · , gd+1)−ϕ(g1, · · · , gd+1))] . (85)

If φ1 and φ2 generate the same SPT phases, we should be able to gap out boundary modes

at the interface B1∩B2. In other words, there exists a (d−1)-cochain ϕ such that wavefunction

|Ψ[φ1,φ2,ϕ]〉 is invariant under SG0 for the case where φ1 and φ2 belong to the same class.

By equating g|Ψ〉 and |Ψ〉 and plug in Eq. (84) and Eq. (85), we obtain the following condition

for symmetric gapped boundary modes

φ1 −φ2 = dϕ . (86)

Here, we also use the fact thatϕ(g1, · · · , gd) is symmetric under SG0 action from homogeneous

cochain condition in Eq. (73).

In other words, the symmetric gapping condition means thatφ1 andφ2 can only differ by a

coboundary: they are in the same cohomology class. The above calculation can be generalized

to an arbitrary d-dimensional triangulated manifold. One can show that once Eq. (86) is

satisfied, the wavefunction is invariant under SG0.

Notice that whenφ1 andφ2 belong to different cohomology class, Eq. (86) has no solution,

and the boundary state must be either gapless or break symmetry, and thus wavefunctions

generated by φ1 and φ2 belong to different SPT phases. So, we reach the conclusion that

cohomology group Hd+1[SG0, U(1)T ] gives a classification of SPT phases.

B Classification and construction for bosonic topological crystal-

line phases by equivariant cohomology

Topological crystalline phases are defined as SPT phases involving spatial symmetries. In this

appendix, we introduce the mathematical framework named as equivariant cohomology to

construct and classify bosonic topological crystalline phases [28–30].

The outline of this appendix is as following. We first carefully define systems support-

ing fixed point wavefunction for bosonic topological crystalline phases. We then construct a

large class of symmetric wavefunctions using simplex-dependent phase factors. We will see

that equivariant cohomology naturally pops up when we imposing symmetry constraint on the

wavefunction, which has a physical interpretation as real-space construction. To get classifi-

cation from those fixed point wavefunction, we should be able to identify when two wave-

functions are in the same phase. So, we discuss the meaning of trivial topological crystallines

wavefunctions in this settings, and any two wavefunctions differ by a trivial wavefunction

should be treated as in the same class. Finally, we introduce more formal mathematical lan-

guages for the above constructions.
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B.1 Defining the lattice system

B.1.1 Triangulated lattice and boundary operator

We consider a triangulated d-dimensional lattice Y with branching structure. We define the

set Yp as

Yp = {p− dimensional simplices belongs to Y } . (87)

For example, Y0 is the collection of all sites (vertices), and Y1 is the collection of all links. For

p < 0 or p > d, Yp is defined as empty set.

We use {1, · · · , N} to label sites (vertices) in this system, and N is the total number of

sites. This labelling naturally induce a branching structure: the orientation of a given link is

fixed as from site labeled by a small number to site labeled by a large number. An element

of Yp consists of p + 1 vertices. For p-simplex ∆p with vertices {i0, · · · , ip} (i0 < · · · < ip),

we label it as [i0 · · · ip]. Orientation of [i0 · · · ip] is determined by local coordinate induced by

branching structure, as shown in Eq. (79). We use −[i0 · · · ip] to denote the simplex which

reverses orientation from the simplex [i0 · · · ip].

A free abelian group, labeled as Cp(Y ), is generated by elements of Yp. It is defined as

Cp(Y ) =

( ∑

∆p∈Yp

a∆ |∆p〉

������
a• ∈ Z
)

, (88)

where summation of simplex is understood as a formal sum. Here we use Dirac’s bra-ket

notation to label elements of this group.

For later convenience, we also define the dual bra space eCp(Y ) as free abelian group gen-

erated by basis 〈∆p| for each ∆p ∈ Yp. Here, the dual basis 〈∆p| is determined by its inner

product to all ket states:

〈∆p

1|∆
p

2〉= δ∆p

1
,∆

p

2
. (89)

For p > d or p < 0, Cp(Y ) (eCp(Y )) is identified as the trivial group with only identity element.

Let us also introduce boundary operators, which is defined as

∂ p : Cp(Y )→ Cp−1(Y )

[i0 . . . ip] 7→
∑

k

(−1)k[i0 . . . îk . . . ip] . (90)

The geometric meaning for ∂ p is clear: for a given p-simplex, it picks out all its boundary

(p − 1)-simplex. The additional (−)k in the above expression make sure that orientation of

the boundary (p − 1)-simplex is consistent with orientation of p-simplex [i0 . . . ip]. It is then

straightforward to check that ∂ p−1∂ p = 0.

Action of boundary operator ∂ on the bra space follows Eq. (90):

∂ p : eCp−1(Y )→ eCp(Y )

〈∆p−1| 7→
∑

∆p

〈∆p−1|∂ p|∆p〉〈∆p| . (91)

Namely, |∆p−1〉 gives summation of all p-simplices that intersect at 〈∆p−1|. In the following,

we also use the left/right action of boundary operator to distinguish its action on ket/bra state:

∂∆p ≡ ∂ p|∆p〉 and ∆p−1∂ ≡ 〈∆p−1|∂ p.
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B.1.2 Global symmetry and local Hilbert space

Now, let us assign global symmetry group SG and local Hilbert spaces on this triangulated

lattice system. We focus on the case where SG is a discrete group, which includes both onsite

and lattice symmetry.

For an arbitrary p-simplex∆p ∈ Yp, we define SG∆p as the subgroup that maps∆p to itself

while preserving orientation of ∆p. Notice that internal symmetry, labeled as SG0, is always a

normal subgroup of SG∆p .

The triangulation as well as the branching structure is chosen to be invariant under SG

action. Namely, for any g ∈ SG and ∆
p

1 ∈ Yp, there exists ∆
p

2 ∈ Yp, such that ∆
p

2 = g(∆
p

1),

without additional minus sign. Furthermore, we choose triangulation such that SG∆p to be a

pointwise action on ∆p. That is to say, SG∆p acts as an onsite symmetry group locally on ∆p.

Under this choice, for ∆p ∈ Yp and ∆p−1 ∈ Yp−1, if 〈∆p−1|∂∆p〉 6= 0, then SG∆p ⊆ SG∆p−1 .

And for any d-simplex ∆d , we have SG∆d = SG0.

We then define local Hilbert spaces on this triangulated lattice. Local Hilbert spaces live on

sites, and dimension of each local Hilbert space equals |SG|, defined as the number of elements

in SG. For local Hilbert space living on site [i], its basis vector is labeled by group elements as

|g〉[i] with g ∈ SG.

Action of symmetry g ∈ SG is defined as

g|gi〉[i] = |g gi〉g([i]) , ∀gi ∈ SG . (92)

Notice that lattice symmetry both acts on internal degree of freedom as well as moves the site.

B.2 Fixed point wavefunctions for topological crystalline phases

Let us now construct quantum states on this lattice system. We focus on a special class of

wavefunctions, which are equal weight amplitude superposition of basis states |g1, g2, · · · , gN 〉,
∀gi ∈ SG. Here, |g1, g2, · · · , gN 〉 is a shorthand for |g1〉[1] ⊗ · · · ⊗ |gN 〉[N]. Intuitively, this

kind of wavefunctions, when respecting symmetry, can be interpreted as condensation of all

possible domain wall configurations. And we expect they belong to symmetric phases rather

than spontaneously symmetry breaking phases (namely, they are not cat states).

Since all configurations has the same weight amplitude, different quantum phases are

distinguished by phase factors of different configurations. We will focus on the case where

phase factors for a given configuration is determined by local quantum state of every simplex.

Namely, the phase factor for configuration |g1, g2, · · · , gN 〉 can be factorized to phase factors

from every simplex.

In this case, the most generic wavefunction reads

|Ψ[φ]〉=
∑

{gi}

d∏

p=0

∏

[i0···
ip]∈Yp

exp
�
iφ[i0···ip](1, gi0

, · · · , gip
)
�
|g1, g2, · · · , gN 〉 . (93)

Here, φ is a mapping from a p-simplex [i0 · · · ip] and a (p+2)-tuple of group elements (g0, gi0
,

· · · , gip
) to a phase factor φ[i0···ip](g0, gi0

, · · · , gip
) ∈ [0,2π) for any 0≤ p ≤ d.

In Eq. (93), the first argument ofφ[i0···ip] is fixed to be identity, which seems to be redundant

and can be moved away. Yet as we will see later, this argument will be useful when we impose

symmetry constraint.
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Now, let us consider symmetry action on |Ψ[φ]〉. Under g ∈ SG action, we have

g|Ψ[φ]〉=
∑

{gi}

d∏

p=0

∏

[i0···ip]
exp
�
iφ[i0···ip](1, gi0

, · · · , gip
)
�
|g g1〉g([1]) ⊗ · · · ⊗ |g gN 〉g([N])

=
∑

{gi}

d∏

p=0

∏

[i0...ip]

exp
�
ρT (g)iφg−1([i0...ip])

(1, g−1 gi0
, · · · , g−1 gip

)
�
|g1, · · · , gN 〉

=
∑

{gi}

d∏

p=0

∏

[i0···ip]
exp
�
iφ[i0···ip](g, gi0

, · · · , gip
)
�
|g1, · · · , gN 〉 . (94)

The last line follows from the definition below:

φ[i0···ip](g, gi0
, · · · , gip

)¬ ρT (g)φg−1([i0···ip])(1, g−1 gi0
, · · · , g−1 gip

) . (95)

This definition can be expressed as the homogeneous condition for φ, which reads

ρT (g)φ[i0···ip](g0, g1, · · · , gp+1) = φg([i0···ip])(g g0, g g1, · · · , g gp+1) . (96)

We call such φ equivariant cochain. We will discuss it in detail in Appendix B.4.

We require wavefunction defined in Eq. (94) to be invariant under g ∈ SG action (up to a

U(1) phase factor): g|Ψ[φ]〉= exp[iα(g)]|Ψ[φ]〉. Here, α form a 1D representation for SG.

Symmetric condition puts following constraints on φ:

d∑

p=0

∑

[i0···ip]∈Yp

φ[i0···ip](g − 1, gi0
, . . . , gip

) = α(g) , (97)

for an arbitrary configuration {g1, . . . , gN}. Here we define

φ(. . . , g ± h, . . .)≡ φ(. . . , g, . . .)±φ(. . . , h, . . .) , (98)

where g±h is understood as formal summation/subtraction, and should not be confused with

multiplication operation of group elements gh.

In order to solve Eq. (97), we define two operators acting on φ to simplify the equation.

The first operator is labeled as d∧, which is the analog of the coboundary operator for group

cochain defined in Eq. (74). Action of d∧ on φ reads

(d∧φ[i0...ip]
)(g0, · · · , gp+2)≡

p+2∑

k=0

(−1)kφ[i0...ip]
(g0, · · · , ĝk, · · · , gp+2) . (99)

And it is straightforward to verify that d2
∧ = 0.

The second operator, labeled as d>, is induced by boundary operator defined in Eq. (91).

For an arbitrary p-simplex ∆p, we define (d>φ)∆p as

(d>φ)∆p ≡ φ∆p∂ , (100)

where ∆p∂ = 〈∆p|∂ p+1 ∈ eCp+1(Y ). Here, the right side of Eq. (100) follows the following

definition: for any
∑

i ai∆
p

i
∈ eCp(Y ), we define

φ∑
i ai∆

p

i
=
∑

i

aiφ∆p

i
, ai ∈ Z . (101)
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The physical meaning of d> can be interpreted as following: it produce boundary modes at

the p-dimensional interface of several (p+ 1)-simplices.

By inserting definition of boundary operator in Eq. (90, 91), we obtain the explicit expres-

sion for Eq. (100) as

(d>φ)[i0...ip]
(g0, · · · , gp+2)≡

p+1∑

k=0

∑

ik−1< j<ik
[...ik−1, j,ik ... ]∈Yp+1

(−1)kφ[...ik−1, j,ik ... ](g0, · · · , gp+2) . (102)

Notice that for a d-simplex∆d , we have (d>φ)∆d = 0. It is easy to verify that d> is also satisfies

coboundary condition: we have d2
> = 0, which is induced by ∂ 2 = 0.

By using these two new operators defined in Eq. (99) and Eq. (102), we are able to simplify

Eq. (97) as following
∑

p

∑

[i0···ip]
φ[i0···ip](g − 1, gi0

, . . . , gip
)

=
∑

p

∑

[i0... ]

¨
d∧φ[i0···ip](1, g, gi0

, · · · , gip
)−

p∑

k=0

(−1)kφ(1, g, gi0
, · · · , ĝik

, · · · , gip
)

«

=

d−1∑

p=0

∑

[i0... ]

§�
(d∧ − d>)φ
�
[i0...ip]

(1, g, gi0
, · · · , gip

)

ª
−
∑

i

φ[i](1, g)

=α(g)mod 2π (103)

for any |g1, g2, · · · , gN 〉 state.

The above equation is satisfied if we require
�
(d∧ − d>)φ
�
∆p
(1, g, g0, · · · , gp) = f∆p(1, g) , ∀∆p ∈ Yp ,∀gi ∈ SG , 0≤ p ≤ d , (104)

where f∆p is a function depending only on the first two arguments of φ∆p . Notice that f also

satisfies homogeneous condition in Eq. (105): ρT (g) f∆p(g1, g2) = fg(∆p)(g g1, g g2).

Here, we focus on the simple case where f = 0. In this case, we obtain

(d∧ − d>)φ = 0 . (105)

Mathematically, it is equivalent to say that φ belongs an equivariant cocycle Zd+1
SG
[X ; U(1)PT ],

where X is the dual lattice of Y . We will discuss this in full details in Appendix B.4.

Quantum number of g action can be easily extracted as

exp[iα(g)] = exp

�
i

N∑

i=1

φ[i](1, g)

�
. (106)

As a consistency check, let us prove that phase factor α forms a 1D representation of SG. For

action of g2 · g1, α should satisfy the equation α(g2) + ρT (g2)α(g1) = α(g1 g2). To see this,

we insert Eq. (106)

α(g2) +ρT (g2)α(g1) =
∑

i

�
φ[i](1, g2) +ρT (g2)φ[i](1, g2)

�

=
∑

i

�
φ[i](1, g2) +φg2([i])

(g2, g2 g1)
�

=
∑

i

�
d∧φ[i](1, g2, g2 g1) +φ[i](1, g2 g1)

�

=
∑

i

(d>φ)[i] (1, g2, g2 g1) +α(g2 g1)

= α(g2 g1) , (107)
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where we use Eq. (96) to obtain the third line, and use Eq. (105) to obtain the fifth line. And

the last equation is due to
∑

[i]

(d>φ)[i] = φ
∑

i[i]∂
= 0 , (108)

according to the definition of boundary operator ∂ .

Now, let us give physical interpretation for Eq. (105). We claim that it is related to the real

space construction of SPT phases. To see this, we first consider Eq. (105) for a d-simplex ∆d .

In this case, the equivariant cocycle condition becomes

d∧φ∆d = 0 . (109)

Readers may notice that the above equation looks similar to the group cocycle condition.

However, there is an important difference from group cocycle. Notice that the homoge-

neous condition defined in Eq. (96) is different from the usual homogeneous condition for

group cochain defined in Eq. (73). In particular, when restrict on p-simplex ∆p and its little

group SG∆p , Eq. (96) becomes

ρT (g)φ∆p(g0, g1, · · · ) = φ∆p(g g0, g g1, · · · ) , ∀g ∈ SG∆p , (110)

where g0, g1, · · · take value in SG, while g take value in SG∆p . Here, φ∆p satisfying Eq. (110)

is called SG-valued SG∆p group (p+ 1)-cochain (labeled as C
p+1

SG
[SG∆p , U(1)T ]).

Even with this difference, we can still interpret Eq. (109) as decorating d-simplex ∆d by a

d-dimensional SPT phase protected by SG∆d . And the homogeneous condition in Eq. (96) re-

lates decorations on all symmetry related d-simplices. Roughly speaking, one should decorate

“the same SPT phases” on lattice symmetry related d-simplices 3. However, Eq. (109) does not

put any constraint on the decoration of d-simplices that are not related by any symmetries.

We then move to other constraint imposed by Eq. (105). On an arbitrary p-simplex ∆p

with p < d, the equivariant cocycle condition reads

[(d∧ − d>)φ]∆p = d∧φ∆p −φ∆p∂ = 0 . (111)

This constraint can be interpreted as “no-open-edge” condition, as we will explained.

Remember that ∆p is “the common edge” of several (p + 1)-simplices, which we label

as ∆
p+1

i
, with i = 1,2, · · · , n. According to definition of boundary operator ∂ , we have

∆
p∂ =
∑n

i=1(±)∆
p+1

i
, where ± depends on orientation. Then, the second term φ∆p∂ , is

interpreted as the gapless edge mode on ∆p, generated by bulk wavefunctions φ
∆

p+1

i

. Thus,

symmetric condition Eq. (111) simply means that this edge mode can be gapped out by a

symmetric mass term on ∆p, which is expressed as d∧φ∆p .

We point out that Eq. (111) puts constraint both on symmetric mass term d∧φ∆p as well as

bulk wavefunctions φ
∆

p+1

i

. For example, when p = d − 1, Eq. (111) tells us that if ∆d
1 and ∆d

2

share a common (d −1)-dimensional boundary, then the decoration on these two cells should

belong to the same SPT phase: they differ at most by a coboundary.

There is an especially interesting case, where φ
∆p′ vanishes for all ∆p′ with p′ > p. In this

case, the equivariant cocycle condition for ∆p simply becomes

d∧φ∆p = 0 . (112)

Then, φ∆p should be an SG-valued SG∆p p + 1-cocycle. Namely, decoration on ∆p is inter-

preted as p-dimensional SPT phases, which would give (p−1)-dimensional edge modes. This

phenomena is actually the defining feature for (d + 1− p)th order SPT phases.

3For symmetry related simplex ∆1 and ∆2 = g(∆1), SG∆1
and SG∆2

are in general different. Yet they are

isomorphic to each other by relation SG∆2
= g · SG∆1

· g−1. And their decoration are related by Eq. (96), which

can be interpreted as decorating the same SPT phases.
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B.3 Mod out equivalent classes

In the last part, we show that for any φ satisfying Eq. (105) (known as equivariant cocycle

condition), we are able to construct a symmetric fixed point wavefunction, which has physical

interpretation related to real space construction. Distinct φ’s in general give distinct wave-

function. To classify bosonic topological crystalline phases, we should be able to identify in

which case different φ’s actually represent the same phases. In other words, we need to figure

out definition of equivariant coboundary, and then the classification is given by cocycle mod

out coboundary.

Physically, states generated by equivariant coboundary is adiabatic connecting to vacuum,

which can be formulated using the “bubble equivalence” picture [27,40]. We start by decorat-

ing trivial SPT state on every simplex. For p-simplex ∆p with 0 ≤ p ≤ d, the decoration can

be written as d∧ϕ∆p , where ϕ∆p is a (p− 1)-cochain satisfying

ρT (g)ϕ∆p(g0, g1, · · · , gp) = ϕg(∆p)(g g0, g g1, · · · , g gp) . (113)

When restricting on p-simplex and its little group SG∆p , ϕ∆p is an SG-valued SG∆p group

p-cochain: ϕ∆p ∈ C
p

SG
[SG∆p , U(1)T ].

Decoration of trivial SPT phases on neighbouring cells will produce gapless edge modes

at their interfaces. Formally, for a p-simplex ∆p (p < d), which is the common edge of some

(p+ 1)-d simplices, the edge mode is written as (d>d∧ϕ)∆p = (d∧ϕ)∆p∂ . It is easy to see that

this edge mode can be gapped out by symmetric mass terms.

Thus, wavefunction at ∆p, labeled as φ0
∆p , contains two contributions: trivial SPT deco-

rated at ∆p as well as symmetric mass terms. Mathematically, we have

φ0 = (d∧ + d>)ϕ . (114)

And the fixed point wavefunction |Ψ(φ0)〉 is generated using Eq. (93). We claim that φ0

defined in the above equations gives equivariant coboundary.

As a consistency check, we will show wavefunction |Ψ(φ0)〉 is symmetric under SG. To see

that, we check the symmetric condition in Eq. (105):

(d∧ − d>)φ
0 = (d∧ − d>)(d∧ + d>)ϕ

= d2
∧ϕ − d2

>ϕ + (d∧d> − d>d∧)ϕ = 0 . (115)

Here, to obtain the last line, we use coboundary condition d2
∧ = d2

> = 0 as well as identity

d∧d> = d>d∧.

B.4 Mathematical formulation

In this part, we provide a more mathematical formulation for the classification and construc-

tion of bosonic topological crystalline states. As we will see, the construction of symmetric

wavefunctions discussed in the last two parts naturally fits to the framework of equivariant

cohomology [34, 63]. We also provide an algorithm, known as spectral sequence method, to

solve equivariant cohomology.

B.4.1 Dual lattice formulation

In order to be more consistent with the convention in mathematical literature, we construct

dual lattice X for the d-dimensional lattice Y . When Y is a triangulated space, X becomes a

trivalent lattice. The collection of p-cells in X is labeled as Xp, and we use ∆̄p to label the

element in Xp. By definition, there is a one-to-one correspondence between ∆
p

i
∈ Yp and

∆̄
d−p

i
∈ Xd−p.
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Orientation of ∆̄d−p is induced by orientation of ∆p in the following way. Remember

that orientation of a manifold is determined by chirality of local coordinates of this mani-

fold. We denote the local coordinate for ∆p as {~e1, · · · ,~ep}. For triangulated lattice, this

local coordinate is induced by its branching structure, as shown in Eq. (79). Then, the lo-

cal coordinate {~e′1, · · · , ~e′d−p} for the dual cell ∆̄d−p is chosen such that the combination

{~e1, · · · ,~ep, ~e′1, · · · , ~e′d−p} matches orientation of the underlying d-dimensional manifold.

Then, action of symmetry g ∈ SG on X is induced by action of g on Y . By construction,

for ∆
p

1 ∈ Yp and g ∈ SG, we can find ∆
p

2 = g(∆
p

1) for some ∆
p

2 ∈ Yp. Correspondingly, for

∆̄
d−p

1,2 ∈ Xd−p, we have ∆̄
d−p

2 = ρP(g) g(∆̄
d−p

1 ), where ρP(g) = ±1 for orientation preserv-

ing (reversing) symmetry g.

We mention that although we focus on the case where Y is a triangulated space (and

X is trivalent), equivariant cohomology is defined in more general context. For example,

Ref. [28, 30] consider an SG-symmetric cellular decomposition of the underlying manifold,

which includes triangulated space as a special case.

B.4.2 Double cochain complex and equivariant cohomology

In the dual lattice X , local Hilbert spaces are associated with elements of Xd , with basis states

|g〉 labeled by g ∈ SG. Following similar procedure in Appendix B.2, fixed point wavefunctions

are generated by functionφ: given any ∆̄p ∈ Xp and quantum state |g1, . . . , gd+1−p〉 associated

with ∆̄p, φ∆̄p(1, g1, . . . , gd+1−p) provides a U(1) phase factor.

We consider those φ’s belong to equivariant (d+1)-cochains defined in Eq. (96), . Collec-

tion of equivariant (d+1)-cochains forms an Abelian group, labeled as Cd+1
eqv , where the group

multiplication rule is given by

(φ1 +φ2)∆̄d−p(g0, · · · , gp+1)≡ φ1
∆̄d−p(g0, · · · , gp+1) +φ

2
∆̄d−p(g0, · · · , gp+1) , (116)

for any 0≤ p ≤ d.

It is convenient to decompose φ in the following way:

φ =
d⊕

p=0

φp+1,d−p , (117)

with

φp,q : SGp+1 × Xq→ U(1)�
(g0, · · · , gp), ∆̄

q
�
7→ φp,q

∆̄q
(g0, . . . , gp) . (118)

Clearly, collection of φp,q for fixed p and q also forms an Abelian group C p,q induced by U(1).

Thus, we have

C p+q
eqv =
⊕

p,q∈Z
C p,q . (119)

And C p,q is set to be zero (group with only identity element) when p < 0 or q < 0.

Now, let us study the structure of C p,q in more detail. We claim that equipped with

coboundary operator d∧ and d>, C p,q becomes a double cochain complex. Namely, by fix-

ing q and focusing on function acting on (p + 1)-tuple of group elements, we obtain a group

cochain complex C•,q induced by d∧, while by fixing p and focusing on function acting on Xq,

we obtain another cochain complex C p,• induced by d>.

In the following, let us study these two cases separately.
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1. First, we consider the case with fixed q and varying p.

Function acting on (p+1)-tuples of group elements induced by φp,q ∈ C p,q is defined as

φ
p,q

#
: (g0, · · · , gp) 7→ φp,q

#
(g0, · · · , gp) ∈

Nq⊕

j=1

U(1) , (120)

where Nq is number of elements in Xq. φ#(g0, · · · , gp+1) is a q-cell dependent phase

factors, where U(1) phase on a q-cell ∆̄q is given as φ∆̄q(g0, · · · , gp+1).

Coboundary map increasing p is identified as d∧ in Eq. (99), whose definition reads

d
p
∧ : C p,q→ C p+1,q ,

φ
p,q

#
(g0, · · · , gp) 7→

p+1∑

k=0

(−1)kφ
p,q

#
(g0, · · · , ĝk, · · · , gp+1) . (121)

As discussed before, this operator satisfies the condition d
p+1
∧ d

p
∧ = 0, which makes C•,q

a cochain complex linked by d∧ for fixed q. In fact, it is a group cochain complex

C•[SG, Mq], where the coefficient Mq for this group cochain complex is identified as

the q-cell dependent phase factors:

Mq =

Nq⊕

j=1

U(1) . (122)

For a complete characterization of this group cochain, we should figure out the group

action on Mq, which should be consistent with the homogeneous condition in Eq. (96).

Let us define the action of g ∈ SG on Mq as following: for f# ∈ Mq, and ∆̄q ∈ Xq, g

action reads

g : f∆̄q 7→ ρPT (g) fg−1(∆̄q) , (123)

where f−∆̄q ≡ − f∆̄q .

By definition, group cochain φp,q should be invariant under the diagonal group actions

on Mq and (p+ 1)-tuples of group elements:

φ
p,q

∆̄q
(g0, · · · , gp) = (g ◦φp,q)∆̄q(g0, · · · , gp)

= ρPT (g)φ
p,q

g−1(∆̄q)
(g−1 g0, · · · , g−1 gp) . (124)

In direct lattice, the above equation becomes

φ
p,q

∆d−q(g0, · · · , gp) = ρT (g)φ
p,q

g−1(∆d−q)
(g−1 g0, · · · , g−1 gq) , (125)

which is indeed consistent with homogeneous condition in Eq. (96). Here, the absence

of ρP(g) in Eq. (125) is due to the fact that under orientation reversing symmetry action,

∆̄
q obtain an extra minus while ∆d−q does not.

To further explore the structure of C•[SG, Mq], let us consider a fixed ∆̄q ∈ Xq. Cobound-

ary operator for φ
p,q

∆̄q
is induced by definition in Eq. (121), which makes φ

p,q

∆̄q
a group

p-cochain. Notice that although φ
p,q

∆̄q
takes value in elements of SG, it only satisfies

homogeneous condition for gs ∈ SG∆d−q action. It makes φ
p,q

∆̄q
an SG-valued SG∆d−q -

cochain, with the coefficient identified as U(1)T . And the collection of cochain φ
p,q

∆̄q

forms an Abelian group C
p

SG
[SG∆d−q , U(1)T ].
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Once cochain φ
p,q

∆̄q
is fixed, all lattice symmetry related cochains φ

p,q

g(∆̄q)
can be gener-

ated by Eq. (124). We then define Σq as a representative set for orbits Xq/G. Namely,

Σq is a maximal set of symmetry independent elements of Xq. According to the above

discussion, φ
p,q

#
is determined by

¦
φ

p,q

∆̄q
|∆̄q ∈ Σq

©
. In other words, cochain complex

C•[SG, Mq] is isomorphic to the following decomposition:

C•[SG, Mq]≃
⊕

∆̄q∈Σq

C•SG[SG∆d−q , U(1)T ] . (126)

Equipped with coboundary operator d∧, we are able to define group cocycle Z•[SG, Mq],

group coboundary B•[SG, Mq] as well as group cohomology H•[SG, Mq] ≡
Z•[SG, Mq]/B

•[SG, Mq]. Following similar argument, H•[SG, Mq] also has the follow-

ing decomposition:

H•[SG, Mq]≃
⊕

∆̄q∈Σq

H•SG[SG∆d−q , U(1)T ] . (127)

2. To identify cochain complex with fixed p and varying q, let us consider Cq(X ), which is

the free abelian group generated by Xq:

Cq(X ) =




∑

∆̄q∈Xq

a∆̄q |∆̄q〉

������
a• ∈ Z



 . (128)

We define boundary operator ∂̄ q acting on Cq(X ) as

〈∆̄q−1|∂̄ q|∆̄q〉 ≡ 〈∆d−q|∂ d−q+1|∆d−q+1〉 . (129)

Superscripts of ∂̄ q are often omitted when it can be determined from the context. Ap-

parently, we have ∂̄ q−1 ◦ ∂̄ q = 0

To see the cochain complex structure of C p,•, we first point out that φp,q ∈ C p,q can also

be viewed as function defined on Xq

φp,q : ∆̄q 7→ φp,q

∆̄q
. (130)

We then define coboundary operator on this function d> : C p,q→ C p,q+1 as following:

�
d

q
>φ

p,q
�
∆̄q+1 = (−1)p+q−dφ

p,q

∂ ∆̄q+1
. (131)

It is straightforward to verify that d
q+1
> d

q
> = 0, which makes C p,• a cochain complex (but

not a group cochain complex).

Here, the definition of d> here differs from Eq. (100) by a phase factor. Due to this phase

factor, we deduce that d∧ and d> anticommute with each other:

(d
p
∧d

q
> + d

q
>d

p
∧)φ

p,q = 0 . (132)

In summary, C p,q can be viewed as a double cochain complex: by fixing q and varying p,

we obtain a group cochain complex C•,q[SG, Mq] induced by d∧, while for the other case with

fixing p and varying q, we obtain another cochain complex induced by d>.
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We then define the “total coboundary operator” dn acting on Cn
eqv =
⊕

p∈Z C p,n−q as

dn =
⊕

p

(d
p
∧ + d

n−p
> ) : Cn

eqv → Cn+1
eqv . (133)

By equation d2
∧ = d2

> = 0 and d∧d> + d>d∧ = 0, it is easy to verify that

dn+1dn = 0 . (134)

So, C•eqv forms a cochain complex linked by the total coboundary operator d. The cohomology

group for this cochain complex is named as equivariant cohomology, which is defined as

Hn
SG[X , U(1)PT ]≡ kerdn/imagdn−1 . (135)

As we show in the fixed point wavefunction construction, the equivariant cohomology

group Hd+1
SG
[X , U(1)PT ] classifies SPT phases protected by SG for systems on d-dimensional

lattice X . When X is a lattice system defined on Rd , Hd+1
SG
[X , U(1)PT ] = Hd+1[SG, U(1)PT ]

[63]. This is consistent with the classification result of bosonic crystalline phases obtained in

Ref. [33,34].

B.4.3 Real space construction and spectral sequence

Equivariant cohomology group not only gives a classification of bosonic topological crystalline

phases, but also provides real space constructions of these phases. In this part, we discuss in

detail about real space constructions, which arise naturally when one tries to solve equivariant

cohomology equations. Mathematically, real space constructions are closely related to the

spectral sequence method.

To get a better understanding for the structure of equivariant cochain, we introduce a two

dimensional network representation for double cochain complex C•,• as following:

...
...

...

↑ ↑ ↑
· · · → C p+1,q−1

d>−−→ C p+1,q
d>−→ C p+1,q+1 → · · ·xd∧
xd∧
xd∧

· · · → C p,q−1
d>−→ C p,q

d>−→ C p,q+1 → · · ·xd∧
xd∧
xd∧

· · · → C p−1,q−1
d>−→ C p−1,q

d>−→ C p−1,q+1 → · · ·
↑ ↑ ↑
...

...
...

(136)

This network is bounded from left and below: C p,q = 0 for p < 0 or q < 0.

Then, the nth equivariant cochain Cn
eqv =
⊕

p∈Z C p,n−p, which is the direct sum of diagonal

elements in the above network. And φ(n) ∈ Cn
eqv is decomposed as φ(n) =

⊕
pφ

p,n−p with

φp,n−p ∈ C p,n−p. Under this decomposition, the equivariant cocycle condition dφ(n) = 0 reads

d∧φ
p,n−p + d>φ

p+1,n−p−1 = 0 , ∀p ∈ Z . (137)

And the equivariant coboundary condition φ(n) = dφ(n−1) reads

φp,n−p = d∧φ
p−1,n−p + d>φ

p,n−p−1 , ∀p ∈ Z . (138)
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Since network in Eq. (136) is bounded by zeros from both left and below, for p = n, the cocycle

condition becomes d∧φ
n,0 = 0, and the coboundary condition reads φn,0 = d∧φ

n−1,0.

In the following, let us provide an algorithm, known as the spectral sequence method, to

solve these equations to obtain Hd+1
SG
[X , U(1)PT ].

The strategy is to solve different dimensional decoration separately. For a fix d0 with

0 ≤ d0 ≤ d, we focus on a special case where φd0+1,d−d0 6= 0 and φp+1,d−p = 0 for any

p > d0 . Then, the decomposition of φ(d+1) becomes

φ(d+1) =
⊕

0≤p≤d0

φp+1,d−p . (139)

The collection of φ(d+1) satisfying the above equation are labeled as Sd0+1,d−d0 , which is a

subset of Cd+1
eqv . Physically, solutions for equivariant cocycle/coboundary equations within

Sd0+1,d−d0 give (d + 1− d0)th order SPT phases.

Before moving on, let us comment on the simplest case with p = −1. Remember X is the

dual lattice for d dimensional lattice Y , and thus we have Xd+1 = 0, which gives φ0,d+1 = 0.

We can ignore φ0,d+1 and focus on φp+1,d−p with p > 0.

To obtain solutions for Eq. (137) and Eq. (138) within Sd0+1,d−d0 , the key step is to solve

constraints imposing on φd0+1,d−d0 . These constraints can be solved using spectral sequence

method [30,63], as we will explain in detail in the following.

First page

We first consider the cocycle/coboundary conditions for p = d0, which read:

d∧φ
d0+1,q0 = 0 (cocycle) ,

φd0+1,q0 = d∧φ
d0,q0 (coboundary) , (140)

where q0 = d − d0. Remember that d∧ is a group coboundary operator, which acts on group

cochain complex C•[SG, Mq0
], with Mq0

defined in Eq. (122). Solution of the above cocy-

cle (coboundary) equation is actually group cocycle (coboundary) Zd0+1[SG, Mq0
]

(Bd0+1[SG, Mq0
]). And we obtain group cohomology classification from these two equations,

as

Hd0+1[SG, Mq]≃
⊕

∆̄q∈Σq

H
d0+1

SG
[SG∆d−q , U(1)T ] , (141)

where the identity follows Eq. (127).

The physical meaning for Hd0+1[SG, Mq] is interpreted as following. We choose a repre-

sentative set of Xq0
/SG asΣq0

⊆ Xq0
, where any two elements ofΣq cannot be related by lattice

symmetry. We then decorated every q0-cell in Σq with some d0 dimensional SPT phases. Dec-

orations of SPT phases on q0-cells beyond Σq are generated by lattice symmetry, whose action

is defined in Eq. (124).

Hd0+1[SG, Mq] is also known as first page of degree (d0 + 1, q0), labeled as E
d0+1,q0

1 .

For convenience, we also define C p,q as zeroth page, labeled as E
p,q

0 . Then d∧ can be viewed

as coboundary operators defined on zeroth page, relabeled as d0:

d
p,q

0 : E
p,q

0 → E
p+1,q

0 . (142)

We define cocycle and coboundary for d0 as

Z
p,q

1 ≡ kerd
p,q

0 = Z p[SG, Mq] ,

B
p,q

1 ≡ imagd
p−1,q

0 = Bp[SG, Mq] . (143)

Thus, first pages can be viewed as cohomology based on zeroth page and d0 as

E
p,q

1 = kerd
p,q

0 /imag d
p−1,q

0 = Z
p,q

1 /B
p,q

1 . (144)
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Second pages

Yet, not all elements in first pages give a consistent solution for Eq. (137) and Eq. (138).

For equivariant cocycle, we also require that elements in Z
d0+1,q0

1 also satisfy “the second

level” cocycle condition, which reads

d∧φ
d0,q0+1 + d>φ

d0+1,q0 = 0 . (145)

Physically, this cocycle equation is interpreted as “no-open-edge” condition discussed after

Eq. (111): when several d0-dimensional SPT phases, which live on different q0-cells of dual lat-

tice, meet at the (q0+1)-cell interface, we should be able to gap out those (d0−1)-dimensional

edge states. Only a subset of ker d
d0+1,q0

0 satisfies Eq. (145), and is named as Z
d0+1,q0

2 .

Similarly, coboundary condition in Eq. (140) does not give the most general equivalence

relation. We express “the second level” coboundary condition as following:

φd0+1,q0 = d>φ
d0+1,q0−1 + d∧φ

d0,q0 ,

d∧φ
d0,q0 = 0 . (146)

And φd0+1,q0 ’s generated by “the second level” coboundary equation should also be treated

as trivial decoration on q0-cells of dual lattice. As discussed in Appendix B.3, the coboundary

equation denotes “bubble equivalence”: it says that those (q0+1)th order SPT phases should be

considered as trivial, when they can be constructed by decorating trivial (d0+ 1)-dimensional

SPT phases in (q0−1)-cell on dual lattice. We define Abelian group B
d0+1,q0

2 ⊆ Cd0+1,q0 , whose

elements give consistent solution for Eq. (146). By definition, we have B
d0+1,q0

1 ⊆ B
d0+1,q0

2 .

We define the second page E
d0+1,q0

2 as

E
d0+1,q0

2 = Z
d0+1,q0

2 /B
d0+1,q0

2 . (147)

The physical meaning of E
d0+1,q0

2 is clear: elements of E
d0+1,q0

2 are those d0-dimensional SPT

decorations that can be gapped on Yd0−1 yet cannot be trivialized by (d0 + 1)-dimensional

“trivial SPT bubbles”.

Higher pages

E
d0+1,q0

2 is a better approximation for equivariant cohomology when comparing to E
d0+1,q0

1 .

And we are able to obtain even better approximations by adding “rth level” cocycle/coboundary

conditions for r ≥ 2. The solution is named as rth page E
d0+1,q0
r . When r →∞, we recover

equivariant cohomology equation, and thus the classification of (q0 + 1)th order SPT on d

dimension is given by∞-page, labeled as E
d0+1,q0
∞ .

Let us works out rth pages for general r ≥ 0. The cocycle conditions from the first level to

the rth level are

d∧φ
d0+1,q0 = 0 ,

d>φ
d0+1,q0 + d∧φ

d0,q0+1 = 0 ,

· · · · · ·
d>φ

d0−r+3,q0+r−2 + d∧φ
d0−r+2,q0−r+1 = 0 . (148)

Those φd0+1,q0 consistent with above equations forms an Abelian group, labeled as Z
d0+1,q0
r .

And we also define Z
d0+1,q0

0 = Cd0+1,q0 . We then have Z0 ⊇ Z1 ⊇ · · · ⊇ Z∞
The physical meaning of Z

d0+1,q0
r is interpreted as following. Let us use elements in Z

d0+1,q0
r

to decorate Yd0
, and leave Yd ′ undecorated for d1 > d0. We can then add symmetric mass terms
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on Yd2
to avoid gapless modes for d2 ≥ d0−r+2. However, we are not guaranteed to be able to

add symmetric mass terms on Yd0−r+1 (or lower dimensions), and thus incapable to construct

symmetric SRE state.

Similarly, the rth level coboundary equations reads

0= d∧φ
d0+r−1,q0−r+1 ,

· · · · · ·
0= d>φ

d0+2,q0−2 + d∧φ
d0+1,q0−1 ,

φd0+1,q0 = d>φ
d0+1,q0−1 + d∧φ

d0,q0 . (149)

Solutions of φd0+1,q0 for these equations form an Abelian group named as B
d0+1,q0
r . We define

B
d0+1,q0

0 = 0. Then, we have B0 ⊂ B1 ⊂ · · · ⊂ B∞.

Physically, by decorating Yd0
with elements in B

d0+1,q0
r , we are actually constructing trivial

(q0 + 1)th order SPT phases, which can be trivialized by “bubbles” on Yd0+r−1.

Since C p,q = 0 when p < 0 or q < 0, calculation for Zr (Br) will converge at certain rz (rb),

namely, for r ≥ rz (rb), we have Zr = Z∞ (Br = B∞). In consequence, we have Er = E∞ for

r >max(rz , rb), where Er ≡ Zr/Br .

Cohomology of pages

We mention that the (r + 1)th page E
d0+1,q0

r+1 can be viewed as cohomology of rth pages

equipped with coboundary operator dr , which is induced by “total coboundary operator” d of

double complex.

To see this, let us define Abelian group Sp0,n−p0 ⊂ Cn
eqv , where for φ(n) ∈ Sp0,n−p0 with

decomposition φ(n) =
⊕

pφ
p,n−p, we have φp,n−p = 0 for p > p0 and φp0,n−p0 6= 0.

We then define abelian group S
d0+1,q0
r ⊂ Cd+1

eqv as

Sd0+1,q0
r =
�
φ(d+1) |φ(d+1) ∈ Sd0+1,q0 , dφ(d+1) ∈ Sd0+2−r,q0+r

	
. (150)

By definition, we have S
p,n−p

0 = Sp,n−p. Also, for φ(n) ∈ S
p,n−p
∞ , it is easy to check dφ(n) = 0.

Compare Eq. (148) and Eq. (149) with Eq. (150), we conclude that the leading term for

φ(d+1) ∈ S
d0+1,q0
r is an element of Z

d0+1,q0
r , and elements of B

d0+1,q0
r are leading terms for

φd+1 ∈ dS
d0+r−1,q0−r+1

r−1 . Mathematically, the leading terms can be extracted by following ex-

pression:

Zd0+1,q0
r = Sd0+1,q0

r /S
d0,q0+1

r−1 , Bd0+1,q0
r = dS

d0+r−1,q0−r+1

r−1 /S
d0,q0+1

r−1 . (151)

And rth page can be written as

Ed0+1,q0
r =

Z
d0+1,q0
r

B
d0+1,q0
r

=
S

d0+1,q0
r

dS
d0+r−1,q0−r+1

r−1 + S
d0,q0+1

r−1

, (152)

where the plus sign in denominator is understood as the abelian group multiplication opera-

tion.

Now, let us act equivariant coboundary operator on Sr . According to definition of Sr , we

have

dSd0+1,q0
r ⊆ S

d0−r+2,q0+r
∞ ⊆ Sd0−r+2,q0+r

r ,

d
�
dS

d0+r−1,q0−r+1

r−1 + S
d0,q0+1

r−1

�
= dS

d0,q0+1

r−1 . (153)
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According to Eq. (152), we have

Ed0−r+2,q0+r
r =

S
d0−r+2,q0+r
r

dS
d0,q0+1

r−1 + S
d0−r+1,q0+r+1

r−1

. (154)

Thus, action of equivariant coboundary operator on Sr naturally induce coboundary operator

dr on rth page defined as

dd0+1,q0
r : Ed0+1,q0

r → Ed0−r+2,q0+r
r , (155)

with coboundary condition d
d0+r,q0−r
r d

d0+1,q0
r = 0. A schematic representation of dr is shown

in Fig. 8.

d0
d1

d2

d3

.

.

.

(d0 + 2, q0)

(d0 + 1, q0) (d0 + 1, q0 + 1)

(d0, q0 + 2)

(d0 − 1, q0 + 3)

Figure 8: A pictorial representation of coboundary operators dr mapping between

rth pages.

Here, we claim without proof that

E
d0+1,q0

r+1 = ker dd0+1,q0
r /imagdd0+r,q0−r

r . (156)

Equivariant cohomology and real space constructions from E∞
As we shown before, E

d0+1,q0
r eventually converges to E

d0+1,q0
∞ . By varying d0 from 1 to d,

we can work out all E∞. Physically, elements of E
d0+1,q0
∞ are decorations on Yd0

for (q0 + 1)th

order SPT phases.

Now, let us relate real space construction of SPT phases with E∞. Let us consider an

arbitrary [φd0+1,q0] ∈ E
d0+1,q0
∞ , where [.] denotes equivalent class respect to B∞. By inserting

this φd0+1,q0 to Eq. (137) and set all φp,d+1−p = 0 for p > d0 + 1, we are able to obtain

one solution φ(d+1) with decomposition φ(d+1) =
⊕

p>d0
φp,d+1−p, which gives a real space

construction for a (q0 + 1)th order SPT phase.

One can then add any φp,d+1−p (p ≤ d0), which satisfies [φp,d+1−p] ∈ E
p,d+1−p
∞ , to φ(d+1)

obtained above. This gives a distinct (q0 + 1)th order SPT phases but with the same SPT

decoration on Yd0
.

One may naively think the equivariant cohomology Hd+1
SG
[X , U(1)PT ] is given by⊕

p E
p,d+1−p
∞ , however, in general it is not true. Actually, we have the following filtration

Gd+1→ Gd → · · · → G1→ Hd+1
SG [X , U(1)PT ] , (157)

where arrows here are inclusion maps, and Gn satisfies G i/G i+1 = E
i,d+1−i
∞ , and Gd+1 ≡ E

d+1,0
∞ .

In other words, a d-dimensional bosonic SPT phase are labeled by a list of numbers ~ν =

(νd+1,νd , · · · ,ν1), where νi ∈ E
i,d+1−i
∞ .
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If G i is a trivial extension of G i+1 for all i: G i = G i+1 × E
i,d+1−i
∞ , we then have

Hd+1
SG [X , U(1)PT ] =

⊕
p

E
p,d+1−p
∞ . (158)

However, there are many cases where Gi is a non-trivial extension of G i+1 for certain i. In these

cases, Eq. (158) does not hold, and the summation rule of ~ν does not follow the simple vector

sum rule. The exact form of mapping Gi+1 → Gi cannot be obtained by spectral sequence

method.

C SPT-LSM systems from equivariant cohomology

In this appendix, based on equivariant cohomology, we discuss the classification and real space

construction of SPT phases in SPT-LSM systems.

Consider systems defined on an oriented d-dimensional lattice Y with cell decomposition,

whose dual lattice is X . As in Appendix B, we use Yp/Xp (0≤ p ≤ d) to label the collection of

p-dimensional cells in Y /X . The cell decomposition of Y are chosen such that Yp is invariant

under global symmetry SG for any p. For ∆p ∈ Yp, we label the corresponding cell in Xd−p as

∆̄
d−p

Local Hilbert spaces live on Y0/Xd . As discussed in Section 3.1, the local Hilbert space at

site i ∈ Y0, labeled as Hi , forms a projective representation of its little group SGi , which is

classified by H2[SGi , U(1)T ]. If site i is transformed to site j by symmetry operation g0 ∈ SG,

then SG j = g0 · SGi · g−1
0 , and their projective representations are related by Eq. (35). Thus,

as shown in Section 3.1, the “UV property” of systems on lattice Y with global symmetry SG

are classified by Eq. (36). In dual lattice language, the classification reads

⊕

ī∈Σd

H2[SGi , U(1)T ] , (159)

where Σd denotes a representative set for orbits Xd/SG.

Comparing the above equation with Eq. (127) and the definition of first page, the “UV

property” is actually characterized by E
2,d
1 :

E
2,d
1 = H2[SG, Md]≃

⊕

ī∈Σd

H2[SGi , U(1)T ] . (160)

Physically, H2[SGi , U(1)T ] classify edge states of 1D SPT phase with symmetry SGi . Thus,

E
2,d
1 = H2[SG, Md] can also be interpreted as decoration of Xd/Y0 with edge states of 1D SPT

phase in a way preserving all lattice symmetries.

One may naively think that the non-trivial decoration on Xd/Y0 can be viewed as edge

states of (d + 1)-dimensional dth order SPT phases. Due to LSM anomaly, the d-dimensional

phase must be either spontaneously symmetry breaking phases, or symmetric long-range en-

tangled phases. However, not all elements in E
2,d
1 gives non-trivial SPT phases in Hd+2

SG
[X ,

U(1)PT ], according to our discussion on spectral sequence. Some elements in E
2,d
1 may be

trivialized by dr defined in Eq. (155) for r ≥ 1. In other words, some projective representa-

tion patterns may corresponds to boundary of a trivial (d + 1)-dimensional SPT phases, and

thus do not have LSM anomaly. In these cases, the projective representations can actually be

absorbed by some d-dimensional SPT phases. In the following, for a given projective represen-

tation pattern, we give an algorithm to determine if it hosts LSM anomaly, and if not, which

SPT phases can absorb this pattern.
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We use [φ2,d]1 ∈ E
2,d
1 to label the projective representation pattern, where φ2,d ∈ C2,d

and [.]1 denotes equivalent class respect to B1 defined in Eq. (143). It is easy to see that

φ
(d+2)
0 ≡ φ2,d is an equivariant cocycle satisfying dφ

(d+2)
0 = 0. Since φ(d+2) is defined on a

d-dimensional lattice X , it can be interpreted as the boundary state of a (d + 1)-dimensional

SPT phase.

The corresponding “bulk” (d + 1) dimensional SPT phase may be a trivial symmetric SPT

phase. In other words, there may exist φ
(d+1)
0 , such that

φ
(d+2)
0 = dφ

(d+1)
0 . (161)

Assuming φ
(d+1)
0 is one solution for this equation, φ

(d+1)
0 +φ

(d+1)
1 is also a solution if and only

if ∀φ(d+1)
1 ∈ Zd+1

SG
[X , U(1)PT ]. Notice that φ

(d+1)
0 /∈ Zd+1

SG
[X , U(1)PT ], meaning SPT phases

supported on systems with projective representations can never be realized on systems with

local Hilbert spaces as linear representations.

If the above equation has no solution, then the “bulk” (d + 1) dimensional SPT phase is

non-trivial. In this case, the system has LSM anomaly, which makes it impossible to support

SPT phases.

For cases where there exist solutions to Eq. (161), and consider decomposition of an arbi-

trary solution φ
(d+1)
j

, which reads

φ
(d+1)
j

=
⊕

p≤d j

φ
p+1,d−p

j
. (162)

Here, (d j + 1, d − d j) is the index for leading term: φp+1,d−p = 0 for p > d j . Then, φ
(d+1)
j

can

be interpreted as a (d − d j + 1)th order SPT phase, obtained by symmetrically decorating Yd j

with d j-dimensional SPT phase.

Among all solutions, there is a special type of solutions, whose leading term φdm+1,d−dm

has the smallest index dm. Then, for systems characterized by [φ2,d]1 ∈ E
2,d
1 , the symmetric

SRE phase should at least be (d − dm + 1)th order.

To solve Eq. (161) and find dm, we start from decoration of Y1 with 1D SPT:φ(d+1) = φ2,d−1

⊕φ1,d , where [φ2,d−1]1 ∈ E
2,d−1
1 . If we are not able to find solution in this form, we then try

decoration of Y2 with 2D SPT φ(d+1) = φ3,d−2 ⊕φ2,d−1 ⊕φ1,d , where [φ3,d−1]1 ∈ E
2,d−1
1 , and

so on so forth.

In the following, we will present spectral sequence calculation for some examples from

main text.

C.1 Half-integer spins on honeycomb lattice

Consider a half-integer spin system on honeycomb lattice discussed in Section 4.1. The pro-

jective representations of this system are classified by

E
2,d
1 ≃ H2[SO(3)× C3, U(1)] , (163)

where C3 is the three fold rotation around a honeycomb site, which leaves this site invari-

ant. The system considered in the main text transforms linearly under C3, and transforms

projectively under SO(3). As shown in the main text, half-integer spins can be trivialized by

symmetrically decorating Haldane chains on links, which gives a second order SPT phase.

C.2 2D SPT-LSM system with magnetic inversion

Let us consider the example in Section 4.3, where the global symmetry group is Z
eI
4 × ZT

2 . The

generator of Z
eI
4 is the “magnetic inversion” eI, where eI2 gives an onsite Z2 symmetry action,

labeled as s. And we require the local spin at inversion center to be a Kramers doublet.
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To proceed, it is enough to focus on a small portion of cell decomposition of direct lattice

Y = R2 respecting inversion symmetry, as shown in Fig. 4. The (right) boundary mapping

reads

〈µ|∂ = −〈τ| − 〈eI ◦τ| ;
〈τ|∂ = −〈eI ◦τ|∂ = −〈σ|+ 〈eI ◦σ| ;
〈σ|∂ = 〈eI ◦σ|∂ = 0 . (164)

Local Hilbert spaces live on 0-cells. In this case, there is a Kramers doublet sitting at µ.

Namely, the local Hilbert space form a projective representation U , characterized by [ν] ∈
H2[Z
eI
4 × ZT

2 , U(1)T ].

U(g0) · U(g1) = exp[iν(1, g0, g1)]U(g0 g1) . (165)

To see the explicit form of ν, let us present symmetry g as g = eIneI(g) · T nT (g), where neI ∈
{0, 1,2, 3} and nT ∈ {0, 1}. Then a particular cocycle ν reads

ν(g0, g1, g2) = π · [nT (g0)− nT (g1)] · [nT (g1)− nT (g2)] . (166)

First, it is not hard to see that decoration of 1-cells cannot trivialize the Kramers doublet at

µ. One can decorate 1-cells τ and eI ◦τ with 1D SPT protected by Z2× ZT
2 = {1, eI2}× {1,T }.

These two 1D SPT are related by symmetry eI, and thus their edge states should host the

same property under T action: it is not possible to have one Kramers singlet and one Kramers

doublet. And when meet at µ (under d> operation), one always get Kramers singlet, which

contradicts with our settings.

We then consider decoration of 2-cells: [φ3,0]1 ∈ E
3,0
1 ≃ H3[Z2 × ZT

2 , U(1)T ]. A solution

for φ3,0
σ reads

φ3,0
σ (g0, g1, g2, g3) = [ns(g0)− ns(g1)] · ν(g1, g2, g3) , (167)

where gi = eIneI(gi) · T nT (gi), and ns = [neI/2] ∈ {0,1}, where [.] means take integer part.

And ν is defined in Eq. (166). We point out that φ3,0
σ corresponds to the non-trivial element

in H1
�
Z2, H2[ZT

2 , U(1)T ]
�
⊂ H3[Z2 × ZT

2 , U(1)T ], which can be interpreted as decorating Z2

domain wall with Haldane chain protected by T .

According to Eq. (96), we have

φ
3,0

eI◦σ(g0, g1, g2, g3) = φ
3,0
σ

�eI−1 ◦ (g0, g1, g2, g3)
�

=
�
ns

�eI−1 g0

�
− ns

�eI−1 g1

��
· ν(g1, g2, g3) . (168)

Then, φ2,1 can be obtained by solving equation d∧φ
2,1 = d>φ

3,0. Using Eq. (164), the equiv-

ariant coboundary equation on τ is

dφ2,1
τ (g0, g1, g2, g3) =

�
−φ3,0

σ +φ
3,0

eI◦σ

�
(g0, g1, g2, g3) . (169)

One solution for the above equation reads

φ2,1
τ (g0, g1, g2) = 〈neI(g0)〉2 · ν(g0, g1, g2) , (170)

where

〈n〉α = n mod α . (171)
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And φ
2,1

eI◦τ is obtained by eI action on φ2,1
τ as

φ
2,1

eI◦τ(g0, g1, g2) = 〈neI(eI−1 g0)〉2 · ν(g0, g1, g2) . (172)

It is easy to check that

φ2,1
τ +φ

2,1

eI◦τ = ν . (173)

Namely, fractional spin at µ can be trivialized by the 2D SPT phase described above.

C.3 3D SPT-LSM systems with magnetic inversion

Let us consider the example in Section 4.4. We start with a 3D lattice system, where the global

symmetry group of this system is the same as the last part, which reads Z
eI
4 × ZT

2 . Cells around

the inversion center is shown in Fig. 6, where we can read off the boundary mappings of these

cells:

〈µ|∂ = −〈τ| − 〈τ̄| ;
〈τ|∂ = −〈τ̄|∂ = 〈σ| − 〈σ̄| ;
〈σ|∂ = 〈σ̄|∂ = 〈ρ|+ 〈ρ̄| ;
〈ρ|∂ = 〈ρ̄|∂ = 0 . (174)

We then put a Kramers doublet at inversion center, labeled by a 2-cocycle ν defined in

Eq. (166). Following similar calculation in the last part, we conclude that to accommodate the

Kramers doublet at inversion center, we at least require 2nd order SPT, which is constructed

by decorating σ and σ̄ with a non-trivial 2D SPT protected by Z2 × ZT
2 defined in Eq. (167)

and (168).

As shown in the main text, it is also possible to have a strong SPT phase to cancel the

“SPT-LSM anomaly”, which is constructed by decorating 3-cells with an SPT phase protected

by Z2 × ZT
2 symmetry. To identify the decoration, we first calculate the group cohomology

using Künneth formula as

H4
�
Z2 × ZT

2 , U(1)T
�
= H4
�
ZT

2 , U(1)T
�
× H3
�
ZT

2 , H1 [Z2, U(1)T ]
�
× H1
�
ZT

2 , H3 [Z2, U(1)T ]
�

= Z3
2 . (175)

We claim that the 3-cell-decoration is characterized by the generator of H3
�
ZT

2 , H1 [Z2, U(1)T ]
�

= Z2.

To see this, we first express any g ∈ Z
eI
4 ×ZT

2 as g = eIneI(g)T nT (g), where neI(g) ∈ {0,1, 2,3}
and nT (g) ∈ {0, 1}. We also define ns(g) = [neI(g)/2] ∈ {0,1} for later use. We then decorate

ρ with cocycle φρ, which reads

φρ(g0, g1, g2, g3, g4) = [ns(g0)− ns(g1)] · β(g1, g2, g3, g4) , (176)

where β(g1, g2, g3, g4) = π ·
∏3

i=1 [nT (gi)− nT (gi+1)]. Hence, decoration on ρ̄ can be ob-

tained by action of eI:

φρ̄(g0, g1, g2, g3, g4) = φρ(g0, g1, g2, g3, g4)

=
�
ns

�eI−1 g0

�
− ns

�eI−1 g1

��
· β(g1, g2, g3, g4) . (177)

Decoration on 2-cell σ satisfies equation dφσ = φσ∂ = φρ +φρ̄. One solution reads

φσ(g0, g1, g2, g3) = 〈neI(g0)〉2 · β(g0, g1, g2, g3) . (178)
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And decoration on σ̄ can be generated by eI as

φσ̄(g0, g1, g2, g3) = 〈neI(eI−1 g0)〉2 · β(g0, g1, g2, g3) . (179)

Decorations on 1-cells τ is obtained by solving equation dφτ = φτ∂ = φσ −φσ̄, and one

solution for φτ reads

φτ(g0, g1, g2) =





π/2 if nT (g0) = nT (g2) = 0, nT (g1) = 1

−π/2 if nT (g0) = nT (g2) = 1, nT (g1) = 0

0 otherwise

. (180)

We then obtain φτ̄ = eI ◦φτ = φτ.

Finally, on site µ, we have

φµ∂ = −φτ −φτ̄ = −2φτ = ν , (181)

where ν is defined in Eq. (166), which is a non-trivial cocycle labelling Kramers doublet.

To summarize, 3D spin system with global symmetry Z
eI
4 × ZT

2 and Kramers doublet at

inversion center has SPT-LSM anomaly, which can be trivialized either by second order SPT

phase obtained by decorating an inversion symmetric plane, or by a 3D strong SPT phase.

D SPT phases from condensation of fractional quasi-particles

In this appendix, we show that many bosonic SPT phases can be obtained by condensing frac-

tional quasi-particle excitations. Examples of fractional quasiparticles include domain walls in

1+1D, vortex or anyon in 2+1D and dyons of compact U(1) gauge field in 3+1D.

This condensation mechanism provides us hint to realize bosonic SPT phases using inter-

acting spin models. Although all cohomological bosonic SPT phases are known to be ground

states of some exact solvable models, these models usually involve interactions between many

(∼ 10) spins, which makes them too complicated to realize. The condensation picture gives us

an alternative way to realize SPT phases, and possible by simpler spin models. Furthermore,

the condensation picture also helps to search "symmetry enforced" SPT phases in various di-

mensions, as we shown in Section 4.

In principle, given the symmetric gauge theory and a specific "condensation pattern", there

should be a "formula" to calculate the resulting SPT index. However, for the purpose of this

paper, we will not try to find the general answers, instead, we focus on examples in various

dimensions, and leave the general framework in the future work.

Many results presented here are known, and have appeared in many literatures [11,25,32,

33,64–72]. These papers use different languages, such as decorated domain wall, condensing

bound states of vortex and charge, anyon condensation, etc. We feel it is convenient to have

a unified language and try to understand these mechanisms in one framework, where we

present in this appendix. Besides, the condensation mechanism to obtain 3+1D SPT phases

by monopole condensation may be new to readers.

Let us first describe the general idea of condensation of fractional quasiparticles (especially

bosonic gauge charges here). We start from a symmetric gauge theory with Abelian gauge

group GG and global symmetry group SG. Since the gauge charges are nonlocal objects, they

transform under group PSG, which is an extension of SG by GG [58], and is classified by

the second cohomology group H2[SG, GG]. Condensing gauge charges will Higgs gauge field,

leading to symmetric short-range entangled (SRE) phases or spontaneously symmetry breaking

phases. If PSG is a non-trivial extension, we always get symmetry breaking phase [73]. So,
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to obtain SPT phases, we require PSG of gauge charges to be a trivial extension. In the trivial

PSG case, gauge charges are labeled by different linear representations of SG, and we can

choose the condensed gauge charge to carry different certain representations R. In order to

obtain a fully symmetric phase, any condensed local operator should transform trivially on SG,

which puts constraint on R. Roughly speaking, fusion of R should be consistent with fusion

of gauge charges.

We point out that symmetry properties of gauge charges do not fully characterize the sym-

metric gauge theory. Given PSG of gauge charges, there may exist multiple symmetric gauge

theories, which are differ by symmetry properties of gauge fluxons/monopoles. Here, gauge

fluxons/monopoles may or may not be a local object. For example, for U(1) gauge theory in

2+1D, monopole is identified as instanton, and thus is a local object. Instead, for U(1) gauge

theory in 3+1D, the monopoles are nonlocal excitations, and can be viewed as gauge charges

of the dual magnetic eU(1) gauge field. And symmetry properties of local fluxons/monopoles

are characterized by its quantum number (representation) eR, while for nonlocal excitations,

symmetry properties are characterized byßPSG, which is SG extension of the dual gauge group
gGG. We mention that, in 3+1D, “fluxons” of ZN gauge theory are loops, which makes their

symmetry properties more complicated. We will not consider loop excitations here, and leave

them for the future exploration.

It turns out that by condensing gauge charges with trivial linear representation R, one

would always obtain a trivial SPT phase, regardless of symmetry properties of fluxons/mono-

poles. Besides, when symmetry properties of fluxons/monopoles are trivial4, the symmetric

gauge charge condensed phase will also be trivial SPT. Yet, when fluxons/monopoles transform

non-trivially under the global symmetry, by condensing gauge charges carrying non-trivial

linear representation R, it is possible to obtain non-trivial SPT phases.

There are at least two ways to identify the SPT index: either by studying edge properties

on an open boundary sample, or by studying properties of "defects" of SG. In this part, we try

to identify the SPT phases by studying properties of symmetry defects. Let us discuss examples

in various dimensions in the following.

D.1 The simplest example: decorated domain walls in 1+1D

Consider system with Za
2 × Z b

2 symmetry, it is well known that there is an AKLT-like SPT phase,

characterized by edge modes carrying projective representation of Za
2 × Z b

2 . As shown in

Ref. [32], starting from the ordered phase of Za
2 , this SPT phase can be obtained by condensing

the bound state of Za
2 domain wall and Z b

2 charge.

Let us rephrase this process using the gauge charge condensation language. We first point

out that Za
2 domain walls are identified as fZa

2 gauge charges, while Za
2 charges are identified

as fZa
2 (spacetime) fluxons (or instanton). When fZa

2 charges are gapped, fZa
2 fluxon would pro-

liferate, leading spontaneous symmetry breaking phase of Za
2 . To obtain a symmetric phase of

Za
2 , we condense bound states offZa

2 gauge charges and Z b
2 charges. Notice that any condensed

local operator contains even number of this bounded operators, and is uncharged under Z b
2 .

So, this condensation would preserves Z b
2 symmetry, and in the mean time, it would kill Za

2

order parameter. Furthermore, nonzero long-range correlators of this bounded operator is just

the familiar string operator in the non-trivial SPT phase [74].

This decorated domain wall picture can easily be generalized to global symmetry group

Zn × Zm [37], and we applied this method for 1D SPT-LSM system in Section 2.3.

4For local excitations, trivial symmetry property means trivial representation, while for non-local excitations, it

means the corresponding PSG is a trivial extension.
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D.2 Vortex condensation in 2+1D

In 2+1D system with charge conservation symmetry Uc(1), the vortex excitation are identified

as Ug(1) gauge charge by duality mapping. Under this mapping, charged bosons are identified

as magnetic monopole of Ug(1) gauge theory.

Bound states of a single vortex and n bosons have bosonic/fermionic statistics if n is an

even/odd integer. By condensing the bound state of one vortex and 2m bosons, we get bosonic

integer quantum Hall phase with σx y = 2m [11].

If the system also hosts time reversal symmetry, we are able to get bosonic quantum spin

Hall phases by condensing vortices that are odd under time reversal [69].

D.3 Anyon condensation in 2+1D

Now, we present the approach to get 2+1D SPT phases from symmetric anyon condensation.

A complete survey based on tensor network construction can be found in Ref. [33].

Let us first consider example where global symmetry SG = Z s
2 × ZT

2 = {1, s} × {1,T }. We

start from a symmetric Z
g

2 gauge theory (toric code), where gauge flux m transforms as a

Kramers doublet under ZT
2 , while gauge charge e transforms linearly under SG. To obtain a

non-trivial SPT phase, we choose to condense the bound state of e and Z s
2 symmetry charge

Rs. To see the nature of this condensed phase, let us study properties of symmetry defect of

Z s
2. We first gauge symmetry Z s

2, and label s as Z s
2 flux. After condensing the bound state of

e and s, both Z
g

2 gauge flux m and Z s
2 flux s are confined, due to their non-trivial braiding

statistics with the condensed particle. However, the bound state of m and s is a deconfined

quasi-particle in the condensed phase, which is a Kramers doublet under ZT
2 . Thus, in the

ungauged theory, where Z s
2 is treated as global symmetry, and Z s

2 fluxons, which are identified

as ends of Z s
2 domain walls, carry Kramers doublets. In other words, Z s

2 domain walls in this

symmetric phase is decorated with Z T
2 Haldane phase, which is the signature for a non-trivial

SPT [32].

The above anyon condensation construction can be easily generalized to symmetry group

SG, where Z s
N is a normal subgroup of SG. In this case, we start from Z

g

N gauge theory,

and gauge flux m carries non-trivial projective representation of SG with coefficient in Z s
N .

The non-trivial SPT can be obtained by condensing the bound state of gauge charge e and

symmetry charge of Z s
N .

This construction can also capture SPT phases beyond decorated domain wall picture. For

example, let us consider SG = Z s
2 = {1, s}. We start with symmetric Z

g

2 gauge theory, where

m carry half Z s
2 charge (s2 ◦m = −m), and e carry integer Z s

2 charge. By condensing bound

state of e and Z s
2 charge, we obtain a symmetric phase, which we claim to be the famous

Levin-Gu Z s
2 SPT phase [54]. To see this, let us study properties of the Z s

2 defect. Following

similar argument above, we conclude that the "deconfined" Z s
2 defect carries half Z s

2 charge,

which hosts topological spin ±i , and is identified as semion. As shown in Ref. [54], this is the

hallmark of the non-trivial SPT phase.

D.4 Monopole condensation in 3+1D

Now, let us turn to 3+1D SPT phases. It has been explored in the past literatures to obtain

bosonic SPT phases by so called dyon-condensation mechanism [68,70,75–77].

Here, we present an overview of SPT phases protected by Us(1) × ZT
2 from monopole

condensation. Us(1) can be understood as spin rotation symmetry along z-axis, and time

reversal action T flips spins. Cohomology group calculation gives SPT classification as [9]

H4[Us(1)× ZT

2 , U(1)T ] = Z3
2 , . (182)

56

https://scipost.org
https://scipost.org/SciPostPhys.11.2.024


SciPost Phys. 11, 024 (2021)

Two of these three Z2 root phases are due to interplay between Us(1) and ZT
2 , while the third

one denotes the SPT phase protected by time reversal only.

The first two Z2 root phases are characterized by Witten effect [70, 78]. One introduces

external compact U(1) gauge field As coupled to Us(1) charge, and studies properties of mag-

netic monopoles of As. Monopoles in the first Z2 root SPT phase are Kramers doublets, while

monopoles in the second Z2 root SPT phase have fermionic statistics. In contrast, the third Z2

root phase cannot detect by monopoles. The diagnostic for this phase is its anomalous surface

state — the eT mT surface topological order phase [56].

To obtain these three root phases, we start from a symmetric Ug(1) gauge theory, where

gauge field is labeled as ag . Excitations of the deconfined phase of this gauge theory include

electric charge bg , magnetic monopole Mg , as well as gapless photon. In the condensed matter

context, this phase is also named as Ug(1) quantum spin liquid. And formally, the Ug(1) gauge

field emerges in local boson/spin systems by parton construction [79] or gauge mean field

theory [80]. Here, we consider the case where both bg and Mg are bosonic excitation.

For a given symmetry group, there are many Ug(1) spin liquids, which are differed by

symmetry properties of their excitations. First, we require that under the action of T , electric

field is invariant, while magnetic field changes sign. In other words, T reverses the magnetic

charge while leaves electric charge invariant.

bg and Mg are non-local objects, and in general, they carry projective representation with

coefficient in U(1). Here, we consider the case where bg carries non-trivial projective represen-

tation under Us(1)× ZT
2 , while Mg transform linearly under this symmetry group. Projective

representation of Us(1)× ZT
2 is classified by the second cohomological group

H2[Us(1)× ZT

2 , UT (1)] = Z2
2 . (183)

The physical meaning of these two Z2’s are clear. Roughly speaking, the first Z2 generator

indicates that bg is a Kramers doublet, while the second Z2 generator means that bg carries

half-integer Us(1) charge.

The magnetic monopole Mg is coupled to dual gauge field fUg(1). Symmetry action on Mg

is set to be

fUg(φ) : Mg → eiφ ·Mg

Us(θ ) : Mg → Mg

T : Mg → M†
g , (184)

where fUg(φ) belongs to the dual gauge field fUg(1).

In the following, we will start from these symmetry enriched Ug(1) quantum spin liquid

with bg carry projective representation. Then, by condensing bound state of Mg and certain

symmetry charge, we are able to obtain SPT phases protected by Us(1)× ZT
2 .

D.4.1 Trivial SPT phase

Starting from any quantum spin liquids, by condensing trivial monopole Mg without attaching

any symmetry charge, one always obtains a trivial SPT phase.

D.4.2 SPT phase with Kramers-doublet Us(1) monopoles

We start from spin liquid phase with bg transform as Kramers doublets under T and carry

integer Us(1) charge. To realize it, we assign bg with spin index, labeled as bg ≡ (bg↑, bg↓)
t.
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The simplest symmetry assignment on bg reads

Ug(φ) : bg → eiφ · bg ,

Us(θ ) : bg → bg ,

T : bg → iσ y · bg , i →−i . (185)

Namely, bg carry no Us(1) charge and T 2 ◦ bg = −bg .

We then add another layer formed by local bosons, labeled as Bs, which carries unit Us(1)

charge. Under T , Bs transform to B†
s .

By condensing the bound state of Mg and Bs, we Higgs out Ug(1) gauge group. Both Us(1)

and T are preserved in this Higgs phase, since all condensed local operators carry no global

symmetry charge.

To determine which SPT phase it belongs to, we study properties of external Us(1)monopole

by coupling Us(1) charge to external gauge field As. Due to condensation of Bs and Mg bound

states, the bare Us(1) monopole, which picks nonzero Berry phase when winding around Bs,

is confined. The deconfined Us(1) monopole is identified as bound state of Us(1) monopole

and bg , which transforms as Kramers doublets under T . This is a signature of a non-trivial

bosonic SPT phase [56,81,82].

D.4.3 SPT phase with fermionic Us(1) monopoles

Similar as the previous case, we start with two-component gauge charge: bg ≡ (bg↑, bg↓)
t. And

we require bg to carry half charge under Us(1), and transforms as a Kramers singlet under T .

Then a natural symmetry assignment on bg reads

Ug(φ) : bgσ→ eiφ · bgσ ,

Us(θ ) : bg↑→ eiθ/2 · bg↑ , bg↓→ e−iθ/2 · bg↓ ,

T : bg↑↔ bg↓, i →−i . (186)

Here, bg can be viewed as parton decomposition for the physical spins ~S:

~S ∼ 1

2
b†

g · ~σ · bg , (187)

where bg ’s are glued by gauge field ag to recover the physical Hilbert space.

On spin operator, Us(1) is identified as spin rotation symmetry along z-axis while T flips

spin:

Us(θ ) : S+→ e−iθS+ , Sz → Sz ,

T : S±→ S∓ , Sz →−Sz , i →−i . (188)

We claim that the Higgs phase obtained by condensing the bound state of Mg and S+ would

be a non-trivial SPT phase, which is characterized by “statistical Witten effect”, where Us(1)

monopoles have fermionic statistics [78].

To see this, let us couple Us(1) charge to an external compact gauge field As. Then, S+ is

identified as gauge charge for As. And due to the compactness of As, there are also monopole

excitations for As.

Let us study the deconfined phase for Ug(1) gauge theory first. Topological excitations, or

dyons, for this deconfined phase are labeled by a four component vector ~n = (qg , mg ; qs, ms),

where qg (qs) counts charge number for ag (As) gauge field, and mg (ms) counts monopole

number of ag (As) gauge field.
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Under T action, gauge charge/monopole number changes as

T : (qg , mg ; qs, ms)→ (qg ,−mg ;−qs, ms) . (189)

The next step is to figure out quantization conditions for these dyons by studying the ac-

cumulated Berry phase when winding them around each other [83, 84]. Given two arbitrary

dyons labeled by ~n1 and ~n2, where ~ni = (q
i
g , mi

g ; qi
s, mi

s), we put ~n1 dyon in the origin and

move ~n2 dyon along a closed path encircling an solid angle Ω respective to the origin. Then,

the Berry phase accumulated in this process is given by

exp

�
iΩ

2

�
q2

g m1
g − q1

g m2
g + q2

s m1
s − q1

s m2
s

��
. (190)

The quantization condition comes from the fact that the above Berry phase should be invariant

for the chose of Ω or 4π−Ω. So, we get the quantization condition as

q2
g m1

g − q1
g m2

g + q2
s m1

s − q1
s m2

s ∈ Z . (191)

In the case considered here, according to Eq. (186) and Eq. (188), dyonic charge for various

operators is determined as

bg↑ ∼ (1,0;
1

2
, 0) , bg↓ ∼ (1,0;−1

2
, 0) ,

Mg ∼ (0,1; 0,0) , S+ ∼ (0,0;−1, 0) . (192)

In particular, since bgσ carries half Us(1) charge, the “bare” Us(1)monopole with dyonic charge

(0, 0; 0, 1) would be disallowed by quantization condition Eq. (191). Instead, monopole oper-

ator

Ms+ ∼ (0,
1

2
; 0,1) , Ms− ∼ (0,−1

2
; 0,1) (193)

are deconfined excitations. Besides, we emphasis that the quasiparticles mentioned above are

all bosonic.

In fact, it is convenient to use bg↑/↓ and Ms± as basis of the four dimensional “charge-

monopole lattice” for this Us(1)× Ug(1) gauge theory. In particular, we can express Mg and

S+ using these four basis as

Mg ∼ Ms+M
†
s− , S+ ∼ b

†
g↑bg↓ . (194)

These four vectors can be grouped into two sets
�

bg↑, Ms+

	
,
�

bg↓, Ms−
	

. (195)

According to Eq. (190), quasiparticles belonging to different groups are invisible to each other,

while quasiparticles within one set “statistically interact” as charge and monopole.

Now, to kill gauge field ag , let us condense the bound state of Mg and S+, which is labeled

as D ∼ (0, 1;−1,0). The local operator D†D carries no symmetry charge, so the condensed

phase should belong to some symmetric SRE phase. To see the SPT index of this symmetric

SRE phase, let us study properties of monopoles of external gauge field As.

After condensation, the “deconfined” external monopole should pick trivial Berry phase

when encircling around MgS+. According to Eq. (190), the simplest deconfined excitations

carrying unit external monopole number are

Ms+b
†
g↑ ∼ (−1,

1

2
;−1

2
, 1) , Ms−b

†
g↓ ∼ (−1,−1

2
;

1

2
, 1) ;

Ms+b
†
g↓ ∼ (−1,

1

2
;

1

2
, 1) , Ms−b

†
g↓ ∼ (−1,−1

2
;−1

2
, 1) . (196)
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Notice that the first two operators are only differ by the condensed object (0,1;−1,0), and

thus can be identified as the same excitation in the Higgs phase, labeled as M f . Importantly,

M f has fermionic statistics, as Ms+ (Ms−) and b
†
g↑ (b

†
g↓) statistically interact as charge and

monopole. On the contrary, the last two excitations in Eq. (196), labeled as Mb+ and Mb−, are

bosonic excitations. Under T action, M f is invariant, while Mb± transforms to each other.

We then count Us(1) charge of M f and Mb±. Naively, one may think M f , Mb± are charge-

1/2 excitations. However, it is no longer valid to identify qs as Us charge number after con-

densation In fact, in the condensed phase, the Us(1) charge carried by the excitation labeled

as (qg , mg ; qs, ms) is

Qs = qs +mg . (197)

The reason is due to screening effect. In the condensed phase, D ∼ MgS+ form a Debye-

plasma with short-range interaction. Quasi-particle (qg , mg ; qs, ms) would be Debye screened

by D’s: it will be surrounded by a cloud of D’s and D†’s with total D number equals to −mg .

Since D carry Us(1) charge −1, the screening cloud carry Us(1) charge mg . And the total Us(1)

charge Qs of the quasi-particle (qg , mg ; qs, ms) in the condensed phase is qs +mg . Then, it is

straightforward to see that fermionic As monopole M f carries no Us(1) charge, while bosonic As

monopole Mb± carries plus/minus unit Us(1) charge. This phenomena is named as statistical

Witten effect in Ref. [78] and is proved to be the feature of a non-trivial bosonic SPT phase.

One can also figure out statistical Witten effect by studying T action on monopoles. It is

easy to see that

T : M f → M f , Mb+↔ Mb− , S+↔ S− . (198)

Since Us(1) electric charge changes sign under T , Us(1) magnetic charge should be invariant

under T . Thus, M f is identified as monopole which carries unit magnetic charge, while Mb±
are dyons carrying both electric and magnetic charge. We then conclude the “pure” monopole

M f is a fermion.

For later use, let us also discuss the surface state for this bosonic SPT phase. It has been

shown that there exists a gapped symmetric surface state with toric code topological order for

this phase, which is named as eCmC [56, 78]. As suggested by the name, e and m both carry

half-charge of Us(1). We can treat e (m) to be a two component operator, with e = (e1, e2)
t

and m= (m1, m2)
t. Under global symmetry, e and m transforms as

Us(1) : e→ exp

�
i
σz

2
θ

�
· e , m→ exp

�
i
σz

2
θ

�
·m ;

T : e→ σx · e , m→ σx ·m , i →−i . (199)

In a purely 2+1D bosonic system, eCmC state can never preserve time reversal symmetry: it

must supports nonzero Hall conductance in 2+1D. In this sense, the surface symmetric eCmC

topological order is anomalous.

D.4.4 SPT phase with eT mT surface state

Now, let us turn to the third root SPT phase of the cohomology group H4[Us(1)× ZT
2 , U(1)].

Unlike the previous two cases, this phase cannot be captured by bulk Witten effect: the external

Us(1) monopole has the same properties as that in the trivial SPT phase. In fact, this root SPT

phase is only protected by T : even if one explicitly breaks Us(1) symmetry, we still obtain a

non-trivial SPT phase.

It is argued that the surface state of this SPT phase can support an anomalous symme-

try enriched toric code phase, where e and m are both Kramers doublet under time reversal

symmetry [56,57].
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Can we still obtain this SPT phase by monopole condensation of some Ug(1) quantum spin

liquid? The answer is yes, and we will describe the condensation process in the following.

We could safely break Us(1) symmetry, and focus on T symmetry, as Us(1) symmetry plays

little role in the SPT discussed here. Let us start from a Ug(1) gauge theory, with T action

defined as

T : bg → σ y bg , Mg → M†
g , i →−i . (200)

Here, under T action, bg = (bg↑, bg↓)
t transforms as a Kramers doublet, while Mg is mapped

to its anti-particle.

As before, one can view bg as partons for the physical spin ~S, with ~S ∼ 1
2 b†

g · ~σ · bg . Then,

physical time reversal symmetry is defined as

T : ~S→−~S , i →−i . (201)

We claim that by condensing the bound state of Mg and S+, the final phase would be this

non-trivial SPT phase characterized by its anomalous surface state, e.g. eT mT .

To see this, let us start from the whole symmetry group Us(1)× ZT
2 , and study Ug(1) QSL

with symmetry transformation rules for charge bg and monopole Mg defined in Eq. (186) and

Eq. (188). Let us define a new time reversal symmetry operator eT as

eT ≡ Us(π)T . (202)

According to Eq. (188) and Eq. (202), under eT action, the physical spin operator ~S trans-

forms the same as that in Eq. (201). Furthermore, from Eq. (186) and Eq. (184), we are able

to read out eT action on bg and Mg . It turns out that , eT acts the same on bg and Mg as T in

Eq. (200). In particular, bg is a Kramers singlet under the original T symmetry, but becomes

a Kramers doublet under eT action.

As in the last part, let us condense the bound state of Mg and S+. We notice that under

eT , MgS+→−M†
gS−. Here, this minus sign is physical and cannot be tuned away by magnetic

fUg(1) gauge transformation. We call this composite object as the eT -odd monopole. In the

following, we will prove that this condensation pattern would give the non-trivial SPT phase

with eT mT anomalous surface state.

As shown in the last part, the condensed phase is a non-trivial SPT phase protected by

symmetry Us(1) × ZT
2 , with fermionic Us(1) monopole. Moreover, there exists a symmetric

gapped surface state, dubbed “eCmC”, where symmetry transformation rules are defined in

Eq. (199). Then, under eT = Us(π)T action, e and m transform as

eT : e→ σ y · e , m→ σ y ·m , i →−i , (203)

e and m are both Kramers doublet under eT action, and the surface state is named as eC eT mC eT
[57].

Now, let us break Us(1) and T symmetry by hand but preserve the combination eT , and

perform the above condensation procedure again. We then start with a Ug(1) QSL with bg

being Kramers doublet under eT . By condensing the eT -odd monopole MgS+, we expect to get

a eT SPT phase, which is characterized by the e eT meT surface topological order.

Lastly, we comment that there is actually additional Z2 root SPT phase beyond cohomology

classification, which has symmetric e f mf surface topological order. For the purpose of our

paper, we will not discuss the possible monopole condensation mechanism for this phase here.
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E Examples of LSM systems

In this appendix, we discuss some non-trivial LSM systems. While gauge charge condensation

is a powerful tool to construct SPT-LSM system from the parent LSM system, one should be

very careful about this construction. In this part, we show one example where this construction

fails.

Let us consider a square lattice system with internal Z
g

2 ×Zh
2 symmetry as well as magnetic

translation symmetry satisfying Tx Ty = gTy Tx . Each site supports a qubit, with symmetry

action identified as g =
∏

j σ
x
j

and h =
∏

j σ
z
j
. Namely, Z

g

2 × Zh
2 forms a projective represen-

tation on each site, characterized by the anti-commutator σxσz = −σzσx .

Naively, this system seems to be an SPT-LSM system following the anyon condensation

argument. However, as discussed in Ref. [25], it actually holds conventional LSM anomaly.

One way to see this LSM anomaly is to follow spectral sequence calculation discussed in Ap-

pendix C: by exhausting all kinds of SPT decoration on 1-cells and 2-cells, we find that none

of these decorations lead to projective representation on 0-cells. Here, we will examine the

anyon condensation mechanism more carefully, and pointing out why the argument does not

work in this case.

The classification of Z
g

2 × Zh
2 SPT phases is obtained by cohomological calculation as

H3[Z
g

2 × Zh
2 , U(1)] = H3[Z

g

2 , U(1)]× H3[Zh
2 , U(1)]× H2[Z

g

2 , H1[Zh
2 , U(1)]]

= Z3
2 , (204)

where the first two Z2 root phases are Levin-Gu SPT protected Z
g

2 or Zh
2 respectively, and the

last root phase comes from the interplay between Z
g

2 and Zh
2 .

We start from a Z2 spin liquid with e transforming projective representation under Z
g

2 ×Zh
2 :

gh ◦ e = −hg ◦ e. Then, by condensing bound state of m and g-charge, we obtain the third

root SPT phase.

Now, let us add magnetic translation symmetry. Due to the background e charge at each

site, encircling m around one site picks up −1 Berry phase. Notice that g-charge travelling

around a unit cell is acted by g symmetry due to the magnetic translation, which also picks

−1 phase. So, bound state of m and g-charge transform trivially under magnetic translation.

Naively, by condensing this bound state, we obtain the SPT phase without breaking lattice

symmetry.

However, the anyon condensation argument above has a fatal flaw: in fact, magnetic trans-

lation is incompatible with this particular symmetry fractionalization of e, and such Z2 spin

liquid can never be realized. To see this, we consider the following PSG equations

Tx Ty ◦ e = ηx y gTy Tx ◦ e ,

hTx Ty ◦ e = ηh,x y Tx Tyh ◦ e , (205)

where ηx y ,ηh,x y belong to Z2 IGG, and take value ±1 when acting on e. Then, we have

hTx Ty ◦ e =ηx yhgTy Tx ◦ e

=−ηx yηh,x y gTy Txh ◦ e

=−ηh,x y Tx Tyh ◦ e , (206)

where we use gh ◦ e = −hg ◦ e to obtain the second line. We get inconsistency from the last

lines in the above two equations. Thus, we conclude that e carrying projective representation

of Z
g

2 × Zh
2 is incompatible with magnetic translation group.

Actually, we can use anyon condensation to show this SPT phase is realized in systems

with linear representation per site. Let us start with Z2 gauge theory, where e carries half g-

charge, which can be realized in system with linear representation. Unlike the previous case,
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this symmetry fractionalization pattern is compatible with magnetic translation group. We

then condensing bound state of m and h-charge, which leads to the desired SPT phase without

breaking lattice symmetry. Similarly, we can also construct other Z
g

2 × Zh
2 SPT phases on

systems with linear representations. In other words, none of SPT decorations can be supported

in systems with projective representation and magnetic translation group. So, the system

considered here must have LSM anomaly.
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