
The Annals of Statistics
2001, Vol. 29, No. 1, 153–193

GENERALIZED LIKELIHOOD RATIO STATISTICS AND
WILKS PHENOMENON

By Jianqing Fan,1 Chunming Zhang and Jian Zhang2

Chinese University of Hong Kong and University of California at
Los Angeles, University of Wisconsin–Madison, EURANDOM and

Chinese Academy of Sciences

Likelihood ratio theory has had tremendous success in parametric
inference, due to the fundamental theory of Wilks. Yet, there is no general
applicable approach for nonparametric inferences based on function esti-
mation. Maximum likelihood ratio test statistics in general may not exist
in nonparametric function estimation setting. Even if they exist, they are
hard to find and can not be optimal as shown in this paper. We introduce
the generalized likelihood statistics to overcome the drawbacks of nonpara-
metric maximum likelihood ratio statistics. A new Wilks phenomenon is
unveiled. We demonstrate that a class of the generalized likelihood statis-
tics based on some appropriate nonparametric estimators are asymptoti-
cally distribution free and follow χ2-distributions under null hypotheses
for a number of useful hypotheses and a variety of useful models including
Gaussian white noise models, nonparametric regression models, varying
coefficient models and generalized varying coefficient models. We further
demonstrate that generalized likelihood ratio statistics are asymptotically
optimal in the sense that they achieve optimal rates of convergence given
by Ingster. They can even be adaptively optimal in the sense of Spokoiny
by using a simple choice of adaptive smoothing parameter. Our work indi-
cates that the generalized likelihood ratio statistics are indeed general and
powerful for nonparametric testing problems based on function estimation.

1. Introduction.

1.1. Background. One of the most celebrated methods in statistics is max-
imum likelihood ratio tests. They form a useful principle that is generally
applicable to most parametric hypothesis testing problems. An important fun-
damental property that contributes significantly to the success of themaximum
likelihood ratio tests is that their asymptotic null distributions are indepen-
dent of nuisance parameters. This property will be referred to as the “Wilks
phenomenon” throughout this paper. A few questions arise naturally about
how such a useful principle can be extended to infinite-dimensional problems,
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whether the Wilks type of results continue to hold and whether the resulting
procedures possess some optimal properties.
In an effort to extend the scope of the likelihood interference approach

Owen (1988) introduced empirical likelihood. The empirical likelihood is appli-
cable to a class of nonparametric functionals. These functionals are usually
so smooth that they can be estimated at root-n rate. See also Owen (1990),
Hall and Owen (1993), Chen and Qin (1993), Li, Hollander, McKeague and
Yang (1996) for applications of the empirical likelihood. A further extension
of the empirical likelihood, called the “random-sieve likelihood,” can be found
in Shen, Shi and Wong (1999). The random-sieve likelihood allows one to
deal with the situations where stochastic errors and observable variables are
not necessarily one-to-one. Nevertheless, it cannot be directly applied to a
nonparametric function estimation setting. Zhang and Gijbels (1999) incorpo-
rated the idea of local modeling into the framework of empirical likelihood and
proposed an approximate empirical likelihood, called the “sieve empirical like-
lihood.” The sieve empirical likelihood can efficiently handle the estimation of
nonparametric functions even with inhomogeneous error.
Nonparametric modeling techniques have developed rapidly due to the

availability of modern computing power that permits statisticians to explore
possible nonlinear relationships. This raises many important inference ques-
tions such as whether a parametric family adequately fits a given data set.
Take for instance additive models [Hastie and Tibshrani (1990)]:

Y =m1�X1� + · · · +mp�Xp� + ε(1.1)

or varying coefficient models [Cleveland, Grosse and Shyu (1992)]:

Y = a1�U�X1 + · · · + ap�U�Xp + ε
(1.2)

where U and X1
 � � � 
Xp are covariates. After fitting these models, one often
asks if certain parametric forms such as linear models fit the data adequately.
This amounts to testing if each additive component is linear in the additive
model (1.1) or if the coefficient functions in (1.2) are not varying. In both cases,
the null hypothesis is parametric while the alternative is nonparametric. The
empirical likelihood and random sieve likelihood methods cannot be applied
directly to such problems. It also arises naturally if certain variables are sig-
nificant in the models such as (1.1) and (1.2). This reduces to testing if certain
functions in (1.1) or (1.2) are zero or not. For these cases, both null and alter-
native hypotheses are nonparametric. While these problems arise naturally
in nonparametric modeling and appear often in model diagnostics, we do not
yet have a generally acceptable method that can tackle such problems.

1.2. Generalized likelihood ratios. An intuitive approach to handling the
aforementioned testing problems is based on discrepancy measures (such as
the L2 and L∞ distances) between the estimators under null and alterna-
tive models. This is a generalization of the Kolmogorov–Smirnov and the
Cramér–von Mises types of statistics. We contend that such a method is
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not as fundamental as likelihood ratio based tests. First, choices of mea-
sures and weights can be arbitrary. Take for example the problem of testing
H0�m1�·� =m2�·� = 0 in model (1.1). The test statistic based on a discrepancy
method is T = c1�m̂1� + c2�m̂2�. One has not only to choose the norm �·�
but also to decide the weights c1 and c2. Second, the null distribution of the
test statistic T is in general unknown and depends critically on the nuisance
functionsm3
 � � � 
mp. This hampers the applicability of the discrepancy based
methods.
To motivate the generalized likelihood ratio statistics, let us begin with a

simple nonparametric regression model. Suppose that we have n data

�Xi
Yi�� sampled from the nonparametric regression model

Yi =m�Xi� + εi
 i = 1
 � � � 
 n
(1.3)

where 
εi� are a sequence of i.i.d. random variables from N�0
 σ2� and Xi

has a density f with support �0
1. Suppose that the parameter space is

�k =
{
m ∈ L2�0
1 �

∫ 1
0
m�k��x�2 dx ≤ C

}

(1.4)

for a given C. Consider the testing problem

H0� m�x� = α0 + α1x ←→ H1� m�x��=α0 + α1x�(1.5)

Then, the conditional log-likelihood function is

�n�m� = −n log�
√
2πσ� − 1

2σ2

n∑
i=1
�Yi −m�Xi��2�

Let �α̂0, α̂1� be the maximum likelihood estimator (MLE) under H0, and
m̂MLE�·� be the MLE under the full model,

min
n∑
i=1
�Yi −m�Xi��2
 subject to

∫ 1
0
m�k��x�2dx ≤ C�

The resulting estimator m̂MLE is a smoothing spline. Define the residual sum
of squares RSS0 and RSS1 as follows:

RSS0 =
n∑
i=1
�Yi − α̂0 − α̂1Xi�2
 RSS1 =

n∑
i=1
�Yi − m̂MLE�Xi��2�(1.6)

Then it is easy to see that the logarithm of the conditional maximum likelihood
ratio statistic for problem (1.5) is given by

λn = �n�m̂MLE� − �n�H0� =
n

2
log

RSS0
RSS1

≈ n
2
RSS0 − RSS1

RSS1
�

Interestingly, the maximum likelihood ratio test is not optimal due to its
restrictive choice of smoothing parameters. See Section 2.2. It is not techni-
cally convenient to manipulate either. In general, MLEs (if they exist) under
nonparametric regression models are hard to obtain. To attenuate these dif-
ficulties, we replace the maximum likelihood estimator under the alternative
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nonparametric model by any reasonable nonparametric estimator, leading to
the generalized likelihood ratio

λn = �n�H1� − �n�H0�
(1.7)

where �n�H1� is the log-likelihood with unknown regression function replaced
by a reasonable nonparametric regression estimator. A similar idea appears
in Severini and Wong (1992) for construction of semi-parametric efficient esti-
mators. Note that we do not require that the nonparametric estimator belong
to�k�This relaxation extends the scope of applications and removes the imprac-
tical assumption that the constant C in (1.4) is known. Further, the smoothing
parameter can now be selected to optimize the performance of the likelihood
ratio test. For ease of presentation, we will call λn a “generalized likelihood
ratio statistic.”
The above generalized likelihood method can readily be applied to other sta-

tistical models such as additive models, varying-coefficient models, and any
nonparametric regression model with a parametric error distribution. One
needs to compute the likelihood function under null and alternative models,
using suitable nonparametric estimators. We would expect that the general-
ized likelihood ratio tests are powerful for many nonparametric problems with
proper choice of smoothing parameters. Yet we will only verify the claim based
on the local polynomial fitting and some sieve methods, due to their technical
tractability.

1.3. Wilks phenomenon. We will show in Section 3 that based on the local
linear estimators [Fan (1993)], the asymptotic null distribution of the gener-
alized likelihood ratio statistic is nearly χ2 with large degrees of freedom in
the sense that

rλn
a∼ χ2bn(1.8)

for a sequence bn → ∞ and a constant r, namely, �2bn�−1/2�rλn − bn� →�

N�0
1�. The constant r is shown to be near 2 for several cases. The distri-
bution N�bn
2bn� is nearly the same as the χ2 distribution with degrees of
freedom bn. This is an extension of the Wilks type of phenomenon, by which,
we mean that the asymptotic null distribution is independent of the nuisance
parameters α0, α1 and σ and the nuisance design density function f. With
this, the advantages of the classical likelihood ratio tests are fully inherited;
one makes a statistical decision by comparing likelihood under two compet-
ing classes of models and the critical value can easily be found based on the
known null distribution N�bn
2bn� or χ2bn . Another important consequence of
this result is that one does not have to derive theoretically the constants bn
and r in order to be able to use the generalized likelihood ratio test. As long as
the Wilks type of results holds, one can simply simulate the null distributions
and hence obtain the constants bn and r. This is in stark contrast with other
types of tests whose asymptotic null distributions depend on nuisance param-
eters. Another striking phenomenon is that the Wilks type of results holds
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in the nonparametric setting even though the estimators under alternative
models are not MLE. This is not true for parametric likelihood ratio tests.
The above Wilks phenomenon does not hold by coincidence. It is not monop-

olized by the nonparametric model (1.3). In the exponential family of mod-
els with a growing number of parameters, Portnoy (1988) showed that the
Wilks type of result continues to hold in the same sense as (1.8). Furthermore,
Murphy (1993) demonstrated a similar type of result for the Cox proportional
hazards model using a simple sieve method (piecewise constant approxima-
tion to a smooth function). We conjecture that it is valid for a large class
of nonparametric models, including additive models (1.1). To demonstrate its
versatility, we consider the varying-coefficient models (1.2) and the testing
problemH0� a1�·� = 0. Let â02�·�
 � � � 
 â0p�·� be nonparametric estimators based
on the local linear method under the null hypothesis and let �n�H0� be the
resulting likelihood. Analogously, the generalized likelihood under H1 can be
formed. If one wishes to test if X1 is significant, the generalized likelihood
ratio test statistic is simply given by (1.7). We will show in Section 3 that
the asymptotic null distribution is independent of the nuisance parameters
and nearly χ2-distributed. The result is striking because the null hypothesis
involves many nuisance functions a2�·�
 � � � 
 ap�·� and the density of U. This
lends further support of the generalized likelihood ratio method.
The above Wilks phenomenon holds also for testing homogeneity of the coef-

ficient functions in model (1.2), namely, for testing if the coefficient functions
are really varying. See Section 4.

1.4. Optimality. Apart from the nice Wilks phenomenon it inherits, the
generalized likelihood method based on some special estimator is asymptot-
ically optimal in the sense that it achieves optimal rates for nonparamet-
ric hypothesis testing according to the formulations of Ingster (1993) and
Spokoiny (1996). We first develop the theory under the Gaussian white noise
model in Section 2. This model admits a simpler structure and hence allows
one to develop a deeper theory. Nevertheless, this model is equivalent to the
nonparametric regression model shown by Brown and Low (1996) and to the
nonparametric density estimation model by Nussbaum (1996). Therefore, our
minimax results and their understanding can be translated to nonparamet-
ric regression and density estimation settings. We also develop an adaptive
version of the generalized likelihood ratio test, called the adaptive Neyman
test by Fan (1996) and show that the adaptive Neyman test achieves minimax
optimal rates adaptively. Thus, the generalized likelihood method is not only
intuitive to use, but also powerful to apply.
The above optimality results can be extended to nonparametric regression

and the varying coefficients models. The former is a specific case of the varying
coefficient models with p = 1 and X1 = 1. Thus, we develop the results under
the latter multivariate models in Section 3. We show that under the vary-
ing coefficient models, the generalized likelihood method achieves the optimal
minimax rate for hypothesis testing. This lends further support to the use of
the generalized likelihood method.
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1.5. Related literature. Recently, there have been many collective efforts
on hypothesis testing in nonparametric regression problems. Most of them
focus on one-dimensional nonparametric regression models. For an overview
and references, see the recent book by Hart (1997).
An early paper on nonparametric hypothesis testing is Bickel and

Rosenblatt (1973) where the asymptotic null distributions were derived.
Azzalini, Bowman and Härdle (1989) and Azzalini and Bowman (1993) intro-
duced the use of the F-type test statistic for testing parametric models. Bickel
and Ritov (1992) proposed a few new nonparametric testing techniques. Härdle
and Mammen (1993) studied nonparametric tests based on an L2-distance. In
the Cox’s hazard regression model, Murphy (1993) derived a Wilks type of
result for a generalized likelihood ratio statistic based on a simple sieve esti-
mator. Various recent testing procedures are motivated by the seminal work of
Neyman (1937). Most of them focus on selecting the smoothing parameters of
the Neyman test and studying the properties of the resulting procedures. See,
for example, Eubank and Hart (1992), Eubank and LaRiccia (1992), Inglot,
Kallenberg and Ledwina (1994), Kallenberg and Ledwina (1997), Kuchibhatla
and Hart (1996), among others. Fan (1996) proposed simple and powerful
methods for constructing tests based on Neyman’s truncation and wavelet
thresholding. It was shown in Spokoiny (1996) that wavelet thresholding tests
are nearly adaptively minimax. The asymptotic optimality of data-driven
Neyman’s tests was also studied by Inglot and Ledwina (1996).
Hypothesis testing for multivariate regression problems is difficult due to

the curse of dimensionality. In bivariate regression, Aerts, Claeskens and Hart
(1999) constructed tests based on orthogonal series. Fan and Huang (1998)
proposed various testing techniques based on the adaptive Neyman test for
various alternative models in a multiple regression setting. These problems
become conceptually simple by using our generalized likelihood method.

1.6. Outline of the paper. We first develop the generalized likelihood ratio
test theory under the Gaussian white noise model in Section 2. While this
model is equivalent to a nonparametric regression model, it is not very conve-
nient to translate the null distribution results and estimation procedures to
the nonparametric regression model. Thus, we develop in Section 3 the Wilks
type of results for the varying-coefficient model (1.2) and the nonparamet-
ric regression model (1.3). Local linear estimators are used to construct the
generalized likelihood ratio test. We demonstrate the Wilks type of results in
Section 4 for model diagnostics. In particular, we show that the Wilks type of
results hold for testing homogeneity and for testing significance of variables.
We also demonstrate that the generalized likelihood ratio tests are asymptot-
ically optimal in the sense that they achieve optimal rates for nonparametric
hypothesis testing. The results are also extended to generalized varying coef-
ficient models in Section 5. The merits of the generalized likelihood method
and its various applications are discussed in Section 6. Technical proofs are
outlined in Section 7.



GENERALIZED LIKELIHOOD RATIO STATISTICS 159

2. Maximum likelihood ratio tests in Gaussian white noise model.
Suppose that we have observed the process Y�t� from the following Gaussian
white noise model

dY�t� = φ�t�dt+ n−1/2 dW�t�
 t ∈ �0
1�
(2.1)

where φ is an unknown function and W�t� is the Wiener process. This ideal
model is equivalent to models in density estimation and nonparametric regres-
sion [Nussbaum (1996) and Brown and Low (1996)] with n being the sample
size. The minimax results under model (2.1) can be translated to these models
for bounded loss functions.
By using an orthonormal series (e.g., the Fourier series), model (2.1) is

equivalent to the following white noise model:

Yi = θi + n−1/2εi
 εi ∼i�i�d� N�0
1�
 i = 1
2
 � � �(2.2)

where Yi
 θi and εi are the ith Fourier coefficients of Y�t�
 φ�t� and W�t�,
respectively. For simplicity, we consider testing the simple hypothesis,

H0� θ1 = θ2 = · · · = 0
(2.3)

namely, testing H0� φ ≡ 0 under model (2.1).

2.1. Neyman test. Consider the class of functions that are so smooth that
the energy in high frequency components is zero, namely,

� = 
θ� θm+1 = θm+2 = · · · = 0�

for some given m. Then twice the log-likelihood ratio test statistic is

TN =
m∑
i=1
nY2

i �(2.4)

Under the null hypothesis, this test has a χ2 distribution with m degrees of
freedom. Hence, TN ∼ AN�m
2m�. The Wilks type of results holds trivially
for this simple problem even whenm tends to∞. See Portnoy (1988) where he
obtained a Wilks type of result for a simple hypothesis of some pn-dimensional
parameter in a regular exponential family with p3/2n /n→ 0�
By tuning the parameter m, the adaptive Neyman test can be regarded as

a generalized likelihood ratio test based on the sieve approximation. We will
study the power of this test in Section 2.4.

2.2. Maximum likelihood ratio tests for Sobolev classes. We now consider
the parameter space �k = 
θ�

∑∞
j=1 j

2kθ2j ≤ 1� where k > 1/2 is a positive
constant. By the Parseval identity, when k is a positive integer, this set in the
frequency domain is equivalent to the Sobolev class of functions 
φ� �φ�k�� ≤ c�
for some constant c. For this specific class of parameter spaces, we can derive
explicitly the asymptotic null distribution of the maximum likelihood ratio
statistic. The asymptotic distribution is not exactly χ2. Hence, the traditional
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Wilks theorem does not hold for infinite-dimensional problems. This is why
we need an enlarged view of the Wilks phenomenon.
It can easily be shown that the maximum likelihood estimator under the

parameter space �k is given by

θ̂j = �1+ ξ̂j2k�−1Yj


where ξ̂ is the Lagrange multiplier, satisfying the equation
∑∞
j=1 j

2kθ̂2j = 1.
The function F�ξ� = ∑∞j=1 j2k�1 + ξj2k�−2Y2

j is a decreasing function of ξ in
�0
∞�, satisfying F�0� = ∞ and F�∞� = 0, almost surely. Thus, the solution
F�ξ̂� = 1 exists and is unique almost surely. The asymptotic expression for ξ̂
depends on the unknown θ and is hard to obtain. However, for deriving the
asymptotic null distribution of the maximum likelihood ratio test, we need
only an explicit asymptotic expression of ξ̂ under the null hypothesis (2.3).

Lemma 2.1. Under the null hypothesis (2.3),

ξ̂ = n−2k/�2k+1�
{∫ ∞

0

y2k

�1+ y2k�2 dy
}2k/�2k+1�


1+ op�1���

The maximum likelihood ratio statistic for the problem (2.3) is given by

λ∗n =
n

2

∞∑
j=1

(
1− j4kξ̂2

�1+ j2kξ̂�2
)
Y2
j�(2.5)

In Section 7 we show the following result.

Theorem 1. Under the null hypothesis (2.3), the normalized maximum
likelihood ratio test statistic has an asymptotic χ2 distribution with degrees
of freedom an written as rkλ∗n ∼a χ2an , where

rk =
4k+ 2
2k− 1 
 an =

�2k+ 1�2
2k− 1

[
π

4k2 sin�π/�2k��
]2k/�2k+1�

n1/�2k+1��

It is clear from Theorem 1 that the classical Wilks type of results does not
hold for infinite-dimensional problems because rk �= 2. However, an extended
version holds: asymptotic null distributions are independent of nuisance
parameters and nearly χ2-distributed. Table 1 gives numerical values for
constant rk and the degrees of freedom an. Note that as the degree of smooth-
ness k tends to ∞
 rk→ 2�
Surprisingly, the maximum likelihood ratio test can not achieve the optimal

rate for hypothesis testing (see Theorem 2 below). This is because the smooth-
ing parameter ξ̂ determined by

∑∞
j=1 j

2kθ̂2j = 1 is too restrictive. This is why
we need generalized likelihood ratio tests which allow one the flexibility of
choosing smoothing parameters.
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Table 1
Constants rk (r′k in Theorem 3) and degrees of freedom in Theorem 1

k 1 2 3 4 5

rk 6.0000 3.3333 2.8000 2.5714 2.4444
an
 n = 50 28.2245 6.5381 3.8381 2.8800 2.4012
an
 n = 200 44.8036 8.6270 4.6787 3.3596 2.7237
an
 n = 800 71.1212 11.3834 5.7034 3.9190 3.0895
r′k 3.6923 2.5600 2.3351 2.2391 2.1858

Theorem 2. There exists a θ ∈ �k satisfying �θ� = n−�k+d�/�2k+1� with d >
1/8 such that the power function of the maximum likelihood ratio test at the
point θ is bounded by α
 namely,

lim supPθ
rkλ∗n > an + zα�2an�1/2� ≤ α


where zα is the upper α quantile of the standard normal distribution.

Thus, the maximum likelihood ratio test λ∗n can detect alternatives with a
rate no faster than n−�k+d�/�2k+1�. When k > 1/4, by taking d sufficiently close
to 1/8, the rate n−�k+d�/�2k+1� is slower than the optimal rate n−2k/�4k+1� given
in Ingster (1993).

2.3. Generalized likelihood ratio tests. As demonstrated in Section 2.2,
maximum likelihood ratio tests are not optimal due to restrictive choice of
smoothing parameters. Generalized likelihood tests remove this restrictive
requirement and allow one to tune the smoothing parameter. For the testing
problem (2.3), we take the generalized likelihood ratio test as

λn =
n

2

∞∑
j=1

(
1− j4kξ2n
�1+ j2kξn�2

)
Y2
j
(2.6)

with ξn = cn−4k/�4k+1� for some c > 0. This ameliorated procedure achieves the
optimal rate of convergence for hypothesis testing, which is stated as follows.

Theorem 3. Under the null hypothesis (2.3), r′kλn ∼a χ2a′n
 where

r′k =
2k+ 1
2k− 1

48k2

24k2 + 14k+ 1 


a′n =
�2k+ 1�2
2k− 1

24k2c−1/�2k�

24k2 + 14k+ 1
[

π

4k2 sin�π/�2k��
]
n2/�4k+1��
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Furthermore, for any sequence cn →∞
 the power function of the generalized
likelihood ratio test is asymptotically one


inf
θ∈�k� �θ�≥cnn−2k/�4k+1�

Pθ

{
r′kλn − a′n√

2a′n
> zα

}
→ 1�

2.4. Adaptive minimaxity. The maximum likelihood ratio statistic (2.5)
and the generalized likelihood statistic (2.6) depend critically on the value
of k. Can we construct an adaptive version that achieves adaptively the opti-
mal rates of convergence? The answer is affirmative and the construction is
simple.
Based on power considerations, Fan (1996) proposed the following adaptive

version of the generalized likelihood ratio statistic (2.4):

T∗AN = max
1≤m≤n

m∑
i=1
�nY2

i − 1�/
√
2m�(2.7)

He called the testing procedure the “adaptive Neyman test.” Note that the
adaptive Neyman test is simply the maximum of the normalized likelihood
ratio statistic (2.4). It does not depend on the degree of smoothness. Following
Fan (1996), we normalize the test statistic as

TAN =
√
2 log log nT∗AN − 
2 log log n+ 0�5 log log log n− 0�5 log�4π���

Then, under the null hypothesis (2.3), we have

P�TAN < x� → exp�− exp�−x�� as n→∞�
Thus, the critical region

TAN > − log
− log�1− α��
has asymptotic significance level α. The power of the adaptive Neyman test is
given as follows. [A similar version was presented in Fan and Huang (1998).]

Theorem 4. The adaptive Neyman test can detect adaptively the alterna-
tives with rates

δn = n−2k/�4k+1��log log n�k/�4k+1�

when the parameter space is �k with unknown k� More precisely
 for any
sequence cn→∞
 the power function

inf
θ∈�k� �θ�≥cnδn

Pθ�TAN > − log
− log�1− α�� → 1�

The rate given in Theorem 4 is adaptively optimal in the sense that no
testing procedure can detect adaptively the alternative with a rate faster
than δn, according to Spokoiny (1996). Hence, the generalized likelihood ratio
test achieves this adaptive optimality.
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Remark 2.1. By choosing the parameterm = O�n2/�4k+1��when the param-
eter space is �k, the Neyman test can also detect alternatives with the optimal
rate O�n−2k/�4k+1��. This follows from the proof of Theorem 4. By choosing m
to maximize (2.7), we obtain an adaptive version of the Neyman test, which
is independent of the degree of smoothness k. This test achieves the adaptive
optimal rate because the maximum of the partial sum process in (2.7) grows
very slowly. This is why we pay only a price of order (log log n) to achieve the
adaptive minimax rate.

3. Generalized likelihood ratio tests in varying coefficient models.
In this section we develop asymptotic theory for the generalized likelihood
ratio statistics which are based on the local polynomial estimators and derive
the optimal minimax rates of the corresponding tests under model (1.2). The
Wilks phenomenon is unveiled in this general setting.
Suppose 
�Yi
Xi
Ui��ni=1 is a random sample from the varying-coefficient

model (1.2). Namely,

Y = A�U�τX+ ε
 ε ∼N�0
 σ2�

with X = �X1
 � � � 
Xp�τ, U = �U1
 � � � 
Uq�τ and A�U� = �a1�U�
 � � � 
 ap�U��τ.
For simplicity, we consider only q = 1. Extensions to the multidimensional
case are similar. Consider the simple null hypothesis testing problem:

H0� A = A0 ←→ H1 � A �= A0�(3.1)

We use the local linear approach to construct a generalized likelihood ratio
statistic.
For each given u0, let β�u0� = �A�u0�τ
 hA′�u0�τ�τ� Let β = �A∗
 hBτ�τ,

where A∗ and B are vectors of p-dimensions. Then, the local log likelihood at
the given point u0 is given by

l�β� = −n log�
√
2πσ� − 1

2σ2

n∑
i=1
�Yi − βτZi�2Kh�Ui − u0�


where Zi = Zi�u0� = �Xτi 
 �Ui−u0�/hXτi �τ andKh�·� =K�·/h�/h withK being
a symmetric probability density function and h a bandwidth. Then, the local
maximum likelihood estimator, denoted by β̂�u0�, is defined as argmax l�β�.
The corresponding estimator of A�u0� is denoted by Â�u0�. Using this non-
parametric estimator, the likelihood under model (1.2) is

−n log�
√
2πσ� − RSS1/�2σ2�


where RSS1 =
∑n
k=1�Yk − Â�Uk�τXk�2. Maximizing over the parameter σ2

leads to the generalized likelihood under model (1.2),

�n�H1� = −�n/2� log�2π/n� − �n/2� log�RSS1� − n/2�
Similarly, the maximum likelihood under H0 can be expressed as

�n�H0� = −�n/2� log�2π/n� − �n/2� log�RSS0� − n/2
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where RSS0 =
∑n
k=1�Yk −A0�Uk�τXk�2. Now, the generalized likelihood ratio

statistic is

λn�A0� =
[
�n�H1� − �n�H0�

]
= n
2
log

RSS0
RSS1

≈ n
2
RSS0 − RSS1

RSS1
(3.2)

In general, the above approach can often be extended to the composite null
hypothesis testing problem,

H0� A ∈ �0 ←→ H1� A �∈ �0
(3.3)

where �0 is a set of functions. As before, we can use the local linear esti-
mator to construct the log-likelihood �n�H1� for H1. Assume that we can use
MLE or some local linear estimators to build the log-likelihood �n�H0�. Let
A′0 denote the true value of the parameter A. Then the generalized likelihood
ratio λn��0� for the testing problem (3.3) can be decomposed as

λn��0� = λn�A′0� − λ∗n�A′0�
(3.4)

where λn�A′0� = �n�H1� − �n�H′0� is the generalized likelihood ratio for the
hypothesis testing problem

H′0� A = A′0 ←→ H1� A �= A′0
and λ∗n�A′0� = �n�H0� − �n�H′0� is the likelihood ratio for another hypothesis
testing problem

H′0� A = A′0 ←→ H′1� A ∈ �0�

The above two hypothesis problems are fabricated because A′0 is unknown.
Therefore, the generalized likelihood ratio for the composite null hypothesis
can be decomposed into two generalized likelihood ratios for two fabricated
simple null hypothesis problems. As in the proof of Theorem 5, generally the
asymptotic representation of the generalized likelihood ratio for the composite
null hypothesis can be derived from those of the above fabricated simple null
hypothesis problems. Then the asymptotic theory for composite null hypoth-
esis can be easily obtained [see the proofs of Theorems 6 and 9, Remark 3.4
and the results in Fan and Zhang (1999)]. Thus we focus first on the simple
null hypothesis testing problem (3.2). In order to include the above fabricated
testing problems, we assume that A0 is unknown. We should point out that
for model (1.2), when A0 is known, the testing problem (3.2) is equivalent to
the problem H0� A = 0 by a simple transform.

3.1. Asymptotic null distribution. To derive the asymptotic distribution of
λn�A0� under H0, we need the following conditions.

Condition (A).

(A1) The marginal density f�u� of U is Lipschitz continuous and bounded
away from 0. U has a bounded support 7.

(A2) A�u� has a continuous second derivative.



GENERALIZED LIKELIHOOD RATIO STATISTICS 165

(A3) The function K�t� is symmetric and bounded. Further, the functions
t3K�t� and t3K′�t� are bounded and ∫ t4K�t�dt <∞.

(A4) E�ε�4 <∞.
(A5) X is bounded. The p × p matrix E�XXτ�U = u� is invertible for each

u ∈ 7. �E�XXτ�U = u��−1 and E�XXτσ2�X
U��U = u� are both Lipschitz
continuous.

These conditions are imposed to facilitate the technical arguments. They are
not the weakest possible. In particular, (A5) in Condition (A) can be relaxed
by using the method in Lemma 7.4 in Zhang and Gijbels (1999). For example,
we can replace the assumption that X is bounded in (A5) by the assumption
that E exp�c0��X��� < ∞ for some positive constant c0. The following results
continue to hold.
Note that in the above conditions, the normality of ε is not needed. Define

9�u� = E�XXτ�U = uf�u�
 w0 =
∫ ∫
t2�s+ t�2K�t�K�s+ t�dtds�

Let εi = Yi −A0�U�τXi. Set

Rn10 =
1√
n

n∑
i=1
εiA

′′
0�Ui�τXi

∫
t2K�t�dt�1+O�h� +O�n−1/2��


Rn20 =
1
2
1√
n

n∑
i=1
εiX

τ
i9�Ui�−1A′′0�Ui�τE�Xi�Ui�w0


Rn30 =
1
8
EA′′0�U�τXXτA′′0�U�w0�1+O�n−1/2��


µn =
p�7�
h
�K�0� − 1

2

∫
K2�t�dt�


σ2n =
2p�7�
h

∫
�K�t� − 1

2
K ∗K�t��2 dt


d1n = σ−2
nh4Rn30 − n1/2h2�Rn10 −Rn20�� = Op�nh4 + n1/2h2�

where K ∗K denotes the convolution of K. Note that both Rn10 and Rn20 are
asymptotically normal and hence are stochastically bounded.
We now describe our generalized Wilks type of theorem as follows.

Theorem 5. Suppose Condition (A) holds� Then
 under H0
 as h → 0

nh3/2→∞


σ−1n �λn�A0� − µn + d1n�
�−→N�0
1��

Furthermore
 if A0 is linear or nh9/2 → 0
 then as nh3/2 →∞
 rKλn�A0� ∼a
χ2rKµn
 where

rK =
K�0� − 1

2

∫
K2�t�dt∫ �K�t� − 1

2K ∗K�t��2dt
�
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Remark 3.1. As pointed out before, for model (1.2), when A0 is known, the
testing problem (3.2) is equivalent to the problem H0� A = 0←→ H1� A �= 0
by a simple transform. Hence, the condition in the second part of the theorem
always holds and so does the Wilks phenomenon. Further, when nh5→ 0, the
mean and variance of λn is free of nuisance parameters up to the first order
because d1n = o�µn�. In this relaxed sense, even if A0 is unknown, the Wilks
phenomenon is valid when the condition nh9/2→ 0 is relaxed as nh5→ 0.

Remark 3.2. The degree of freedom in the asymptotic distribution depends
on p�7�/h. This can intuitively be understood as follows. If one partitions the
support of U into intervals of length h and uses piecewise constant functions
to model the functions in A, then we have total number of parameters p�7�/h
under model (1.2). In this view, local linear fits can also be regarded as sieve
approximation to nonparametric functions with effective number of parame-
ters rKµn.

Remark 3.3. If local polynomial estimators of degree v instead of the local
linear estimators are used to construct the above generalized likelihood ratio,
then the result holds when K is replaced by its equivalent kernel induced by
the local polynomial fitting [Fan and Gijbels (1996)]. In this case, the second
part of Theorem 5 is replaced by the condition that either A0 is a polynomial
of degree v or nh�4v+5�/2→ 0.

Remark 3.4. Suppose Condition (A) holds and the second term in (3.4)
is op�h−1/2� [e.g., in testing a parametric model, under some regularity condi-
tions this term equals Op�1�� Then it follows directly from Theorem 5 that
under the null hypothesis (3.3) the result in Theorem 5 continues to hold.

We now consider the more challenging and more interesting case where null
hypotheses depend on many nuisance functions. Nevertheless, we will show
that asymptotic null distributions are independent of the nuisance functions.
Write

A0�u� =
(
A10�u�
A20�u�

)

 A�u� =

(
A1�u�
A2�u�

)

 Xk =

(
X�1�k
X�2�k

)

 Zk =

(
Z�1�k
Z�2�k

)



where A10�u�, A1�u�, X�1�k and Z�1�k are p1�< p�-dimensional. Consider the
testing problem,

H0u� A1 = A10 ←→ H1u� A1 �= A10(3.5)

with A2�·� completely unknown. (3.5) is allowed to be a fictitious testing prob-
lem in which the function A10 is unknown. Following the same derivations,
the logarithm of the generalized likelihood ratio statistic is given by

λnu�A10� = λn�A0� − λn2�A20�A10�
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with λn�A0� the full likelihood ratio defined in (3.2) and

λn2�A20�A10� =
n

2
log

RSS0
RSS2




where

RSS2 =
n∑
k=1

(
Yk −A10�Uk�τX�1�k − Ã2�Uk�τX�2�k

)2
�

Here Ã2�Uk�τ is the local linear estimator at Uk when A10 is given.
Recall that 9�u� = E�XXτ�U = uf�u�. Write

9 =
(
911 912
921 922

)
and 911
2 = 911 − 9129−122 921


where 911
 912
 921
 922 are p1 × p1, p1 × p2, p2 × p1 and p2 × p2 matrices
and p2 = p−p1. Define µnu and σnu the same as µn and σn except replacing p
by p1. Similarly, define d1nu by replacing X and 9, respectively, by X�1� −
912922X

�2� and 911
2 in the definition of d1n.

Theorem 6. Suppose Condition (A) holds� Then
 under H0u in �3�5�
 as
nh3/2→∞ and h→ 0
 we have

σ−1n �λnu�A0� − µnu + d1nu�
�−→N�0
1��

In addition
 if A0 is linear or nh9/2→ 0
 then

rKλnu�A0�
a∼ χ2rKµnu �

Theorem 6 provides convincing evidence that the Wilks type of phenomenon
holds for generalized likelihood ratio tests with composite hypotheses.

3.2. Power approximations and minimax rates. We now consider the power
of generalized likelihood ratio tests based on local linear fits. For simplicity
of discussion, we focus only on the simple null hypothesis (3.1). As noted in
Remark 3.1, one can assume without loss of generality that A0 = 0. But,
we do not take this option because we want to examine the impact of biases
on generalized likelihood ratio tests. This has implications for the case of a
composite hypothesis (3.5) because the biases inherited in that problem are
genuine.
When A0 is linear, the bias term in Theorem 5 will be zero. When A0 is

not linear, we will assume that hn = o�n−1/5� so that the second term in the
definition of d1n is of smaller order than σn. As will be seen in Theorem 8,
the optimal choice of h for the testing problem (3.1) is h = O�n−2/9�, which
satisfies the condition h = o�n−1/5�. Under these assumptions, if nh3/2 →∞,
by Theorem 5, an approximate level α test based on the generalized likelihood
ratio statistic is

φ ≡ φh = I
λn�A0� − µn + v̂n ≥ zασn�
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where with σ̂2 = RSS1/n and

v̂n = 1
8nh

4σ̂−2EA′′0�U�τXXτA′′0�U�
∫ ∫
t2�s+ t�2K�t�K�s+ t�dtds�

The power of the test under contiguous alternatives of form

H1n� A�u� = A0�u� +Gn�u�
can be approximated by using the following theorem, where Gn�u� =
�g1n�u�
 � � � 
 gpn�u��τ� is a vector-valued function.

Theorem 7. Suppose that Condition �A� holds and that A0 is linear or
nh5→ 0� If

nhEGτ
n�U�XXτGn�U� → C�G� and

E�Gτ
n�U�XXτGn�U�ε2�2 = O��nh�−3/2�


for some constant C�G�
 then under H1n


�λn�A0� − µn + v̂n + v2n − d2n�/σ∗n
�−→N�0
1�


where

d2n =
n

2
EGτ

n�U�XXτGn�U�


σ∗n =
√
σ2n + nσ−2EGτ

n�U�XXτGn�U�


v2n =
nh4

8σ2
EG′′n�U�τXXτG′′n�U�

∫ ∫
t2�s+ t�2K�t�K�s+ t�dtds�

Theorem 7 can be extended readily to generalized likelihood ratio tests
based on local polynomial estimators of degree v and to the case with nui-
sance parameter functions. It allows functions Gn of forms not only gn�u� =
�nh�−1/2g�u�, but also gn�u� = a−2n g�anu� with an = �nh�−1/5. The former
function has a second derivative tending to zero, which is restrictive in non-
parametric applications. The latter function has also a bounded second deriva-
tive, which does not always tend to zero, when g is twice differentiable. This is
still not the hardest alternative function to be tested. A harder alternative can
be constructed as follows. Let 
uj� be a grid of points with distance a−1n apart
and g be a twice differentiable function with support �0
1. Then, Theorem 7
also allows functions of form gn�u� = a−2n

∑
j g�an�u−uj�� with an = �nh�−1/4.

We now turn to studying the optimal property of the generalized likelihood
ratio test. We first consider the class of functions �n, satisfying the following
regularity conditions:

var�Gτ
n�U�XXτGn�U�� ≤M�EGτ

n�U�XXτGn�U��2

nEGτ

n�U�τXXτGn�U� >Mn→∞
(3.6)

EG′′n�U�τXXτG′′n�U� ≤M
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for some constantsM> 0 andMn→∞. For a given ρ > 0, let
�n�ρ� = 
Gn ∈ �n� EGτ

n�U�XXτGn�U� ≥ ρ2��
Then the maximum of the probabilities of type II errors is given by

β�α
 ρ� = sup
Gn∈�n�ρ�

β�α
Gn�


where β�α
Gn� = P�φ = 0�A = A0 +Gn� is the probability of a type II error
at the alternative A = A0 + Gn. The minimax rate of φ is defined as the
smallest ρn such that:

1. For every ρ > ρn, α > 0, and for any β > 0, there exists a constant c such
that β�α
 cρ� ≤ β+ o�1�.

2. for any sequence ρ∗n = o�ρn�, there exist α > 0, β > 0 such that for any
c > 0, P�φ = 1�A = A0� = α+ o�1� and lim infn β�α
 cρ∗n� > β.

It measures how close the alternatives are that can be detected by the gener-
alized likelihood ratio test φh. The rate depends on the bandwidth h. To stress
its dependence, we write it as ρn�h�.

Theorem 8. Under Condition (A), the generalized likelihood can detect
alternatives with rate ρn�h� = n−4/9 when h = c∗n−2/9 for some constant c∗�

Remark 3.5. Whenp = 1 andX ≡ 1, the varying-coefficient model becomes
an ordinary nonparametric regressionmodel. In this case, Lepski and Spokoiny
(1999) proved the optimal rate for testing H0 is n−4/9. Thus the generalized
likelihood ratio test is optimal in the sense that it achieves the optimal rate
of convergence. Similarly, we can show that the generalized likelihood ratio
test, constructed by using local polynomials of order v, can detect alternatives
with rate n−2�v+1�/�4v+5�, uniformly in the class of functions satisfying

E�G�v+1�n �U�τX2 <M

for some M < ∞. The corresponding optimal bandwidth is c∗n−2/�4v+5� for
some constant c∗.

Remark 3.6. In the proof of Theorem 8, we in fact show that the bandwidth
h = c∗n−2/9 is optimal, optimizing the rate of ρn�h�, subject to the following
constraints:

(a) h→ 0 and nh3/2→∞, if A0 is linear.
(b) nh → ∞ and nh5 → 0, if A0 is nonlinear with continuous second

derivatives.

4. Model diagnostics. In this section, we demonstrate how the gener-
alized likelihood ratio tests can be applied to check the goodness-of-fit for
a family of parametric models. These kinds of problems occur very often in
practice. Our results apply readily to these kinds of problems. We also note
that the Wilks phenomenon continues to hold under general heteroscedastic
regression models.
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Table 2
Values of rK and cK in (4.1)

Kernel Uniform Epanechnikov Biweight Triweight Gaussian

rK 1.2000 2.1153 2.3061 2.3797 2.5375
cK 0.2500 0.4500 0.5804 0.6858 0.7737

4.1. Testing linearity. Consider the nonparametric regression model (1.3)
and the testing problem

H0� m�x� = α0 + α1x ←→ H1� m�x� �= α0 + α1x

where α0 and α1 are unknown parameters. Following the same derivations as
in Section 3, generalized likelihood ratio tests based on local linear fits are
given by

λn = �n�H1� − �n�H0� =
n

2
log

RSS0
RSS1




where RSS0 =
∑n
i=1�Yi − α̂0 − α̂1Xi�2 and RSS1 =

∑n
i=1�Yi − m̂h�Xi��2. By

using Remark 3.4, one can easily see that the Wilks type of results holds under
the null hypothesis,

rKλn
a∼ χ2rKcK�7�/h
(4.1)

where 7 denotes the support of X and

cK =K�0� − 2−1�K�22�
Note that when K�0� = max

x
K�x�, we have K�0� ≥ �K�22, cK ≥ 2−1K�0� and

hence rK > 0.
To help one determine the degree of freedom in (4.1), the values of rK and cK

are tabulated in Table 2 for a few commonly used kernels. Among them, the
Epanechnikov kernel has the closest rK to 2.
Two interrelationships concerning the degrees of freedom will be exposed.

If we define a “smoothing matrix” H based on local linear estimates just as
a projection matrix P in the linear regression model, then under H0, RSS0 −
RSS1 = ετ�Hτ +H −HτH − P�ε. Denoting the bracketed matrix as A, we
have tr �A� ≈ 2cK�7�/h following the proof of Theorem 5. Thus, tr �A� is
approximately the degrees of freedom only when rK ≈ 2. Secondly, note that
K�0� ≥K∗K�0� = �K�22 implies approximately tr�HτH� ≤ tr�H� ≤ 2 tr�H�−
tr�HτH�, a property holding exactly forH based on smoothing splines in fixed
designs [Hastie and Tibshirani (1990), Section 3.5].
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Remark 4.1. Whenonewishes to testparametric families other than the lin-
ear model such as H0� m�x� =m�x
 θ�, then one can apply generalized likeli-
hood ratio tests to the residuals 
Yi−m�Xi
 θ̂��,wherem�Xi
 θ̂� is afittedvalue
under the null hypothesis. The Wilks type of result (4.1) continues to hold.

Remark 4.2. For the more general regression model (1.3), where we
assume only E�ε�X = x� = 0 and E�ε2�X = x� = σ2�x�, one can use the
weighted residual sum of squares,

RSS0 =
n∑
i=1
�Yi − α̂0 − α̂1Xi�2w�Xi�
 RSS1 =

n∑
i=1
�Yi − m̂h�Xi��2w�Xi��

If the weight function w�·� is continuous with a compact support contained in

x� f�x� > 0�, then we can show that under H0, a generalized version of (4.1)
holds:

r′Kλn
a∼ χ2a′n


where

r′K = rK�Eσ2�X�w�X�
∫
σ2�x�w�x�dx

[∫
σ4�x�w2�x�dx

]−1



a′n = rKcKh−1
[∫
σ2�x�w�x�dx

]2[∫
σ4�x�w2�x�dx

]−1
�

When σ2�x� = v�x�σ2 for a known function v�x�, the generalized likelihood
ratio test corresponds to using w�x� = v�x�−1. In this case, the Wilks type of
result (4.1) continues to hold.

4.2. Testing homogeneity. Consider the varying-coefficient model defined
in Section 3. A natural question arising in practice is if these coefficient func-
tions are really varying. This amounts to testing the following problem:

H0� a1�U� = θ1
 � � � 
 ap�U� = θp�
If the error distribution is homogeneous normal, then the generalized likeli-
hood test based on local linear fits is given by (3.2) with RSS0 =

∑n
i=1�Yi −

θ̂τXi�2 where θ̂ is the least-squares estimate under the null hypothesis.
To examine the property of the generalized likelihood ratio statistic (3.2)

under the general heteroscedastic model, we now only assume that

E�ε�X = x
U = u� = 0
 E�ε2�X = x
U = u� = σ2�x
 u�

for a continuous function σ2�x
 u�. Strictly speaking, the statistic (3.2) is no
longer a generalized likelihood ratio test under this heteroscedastic model. The
generalized likelihood ratio test in this heteroscedastic case should involve
weighted residual sum of squares when σ2�x
 u� = σ2v�x
 u� for a given v.
See Remark 4.2. Let

9∗�u� = E�XXτσ2�X
U��U = uf�u��
Then we have the following result.
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Theorem 9. Assume Condition (A). Then underH0
 as h→ 0
 nh3/2→∞

r′′Kλn

a∼ χ2a′′n

where

r′′K = rK�Eσ2�X
U�
∫
7
tr�9∗�u�9�u�−1�du

[∫
7
tr�9∗�u�9�u�−1�2 du

]−1



a′′n = rKcKh−1
[∫
7
tr�9∗�u�9�u�−1�du

]2[∫
7
tr�9∗�u�9�u�−1�2du

]−1
�

It is clear that when σ2�x
 u� = σ2, Theorem 9 reduces to Theorem 5
and (3.2) is a generalized likelihood statistic. Hence the Wilks type of result
continues to hold for testing homogeneity. It can also be shown that the
Wilks phenomenon is still valid for the generalized likelihood ratio in the
heteroscedastic model with σ2�x
 u� = σ2v�x
 u�, bearing in mind that gener-
alized likelihood ratio statistics are now based on the weighted residual sum
of squares.

5. Extensions. The Wilks type of results does not hold only for the vari-
ous problems that we have studied. They should be valid for nearly all regular
nonparametric testing problems. In this section, we mention various possible
extensions to indicate their versatility.

5.1. Generalized varying coefficient models. Inferences on generalized
varying coefficient models have been empirically studied by Hastie and
Tibshirani (1993) and Cai, Fan and Li (2000). The results in the previous
sections can be directly extended to this setting.
Consider a generalized varying-coefficient model with the following log-

likelihood function

l
g−1�η�x
u��
 y� = g0�g−1�η�x
u���y− b�g0�g−1�η�x
u����

where η�x
u� = g�m�x
u�� = A�u�τx, g is called a link function and g0 = b′ is
the canonical link. Poisson regression and logistic regression are two prototype
examples.
Define

l�g−1�s�
 y� = g0�g−1�s��y− b�g0�g−1�s���


q1�s
 y� =
∂l
g−1�s�
 y�

∂s
= g

′
0�s�
g′�s� �y− b

′�s��


q2�s
 y� =
∂2l
g−1�s�
 y�

∂s2
= �g′′0/g′ − g′0g′′/�g′2���y− g−1�s�� − g′0/�g′�2


q3�s
 y� =
∂3l
g−1�s�
 y�

∂s3
= �g′′′0 /g′ − g′′0g′′/g′2 − �g′′0g′′ + g′′′g′0�/g′2

+2g′0g′′2/g′3��y− g−1�s�� − 2g′′0/g′2 − g′0g′′/g′3�
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In particular, when g = g0 is the canonical link, we have
q2�s
 y� = −b′′�s�
 q3�s
 y� = −b′′′�s��

As in Section 3, we can define a local linear estimator Â for A. Lemma 7.5
yields the following asymptotic representation for Â �

Â�u0� −A�u0�

= r2n9̃�u0�−1
n∑
i=1
εiXiK��Ui − u0�/h��1+ op�1�� +Hn�u0��1+ op�1��


where

9̃�u0� = −E�q2�Aτ�u0�X
Y�XXτ�U = u0f�u0�
 εi = q1�A�Ui�τXi
Yi�


Hn�u0� = r2n9̃�u0�−1
n∑
i=1

[
q1�β�u0�τZi
Yi� − q1�A�Ui�τXi
Yi�

]
×XiK��Ui − u0�/h��

The generalized likelihood ratio for testing the null hypothesisH0� A = A0
is defined as

λng�A0� = −
n∑
i=1

[
l
g−1�Â�Ui�τXi�
Yi� − l
g−1�A0�Ui�τXi�
Yi�

]
�

Denote

qn∗ = qn∗�U
X
Y� = sup
u0
��α��≤c1rn

�q2�β�u0�τZ�u0� + ατZ�u0�
Y��K
(
U− u0
h

)
where rn = 1/

√
nh� For j = 1
2
3 and c1 > 0
 define

Hnj = Hnj�U
X
Y�

= sup
uo
��α��≤c1rn

�q2�β�u0�τZ�u0� + ατZ�u0�
Y��
∣∣∣∣U− u0h

∣∣∣∣j−1K(U− u0h

)
�

The following technical conditions are needed.

Condition (B).

(B1) E�q1�A�U�τX
Y��4 <∞.
(B2) E�q2�A�U�τX�XXτ�U = u is Lipschitz continuous.
(B3) The function q2�s
 y� < 0 for s ∈ R and y in the range of the response

variable. For some function q∗�y�, si ∈ C
 i = 1
2, �q2�s1
 y�−q2�s2
 y�� ≤
q∗�y��s1 − s2�� Further, for some constant ξ > 2,

E
Hnj�U
X
Y� ��XXτ���ξ = O�1�
 j = 1
2
3

Eqn∗�U
X
Y���X��2 = O�1�
 Eq∗�Y���X��3 <∞
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sup
u0
�α�≤c1rn

Eq22�β�u0�τZ�u0� + ατZ�u0�
Y�K2��U− u0�/h�/h�XXτ�2

= O�1�
 j = 1
2
3�
Set

Rn10g =
1√
n

n∑
i=1
εiA

′′
0�Ui�τXi

∫
t2K�t�dt�1+O�h� +O�n−1/2��


Rn20g = −
1
2
1√
n

n∑
i=1
εiX

τ
i 9̃�Ui�−1A′′0�Ui�τE�q2�Aτ

0�U�τX�X�Ui�w0


Rn30g = −
1
8
EA′′0�U�τq2�A0�U�τX
Y�XXτA′′0�U�w0�1+O�n−1/2��


where w0 =
∫∫
t2�s+t�2K�t�K�s+t�dtds. Note that bothRn10g andRn20g are

asymptotic normal and hence stochastically bounded. Let d1ng = nh4Rn30g −
n1/2h2�Rn10g −Rn20g�. Then, d1ng = nh4Rn30g�1+ op�1�� if n1/2h2 →∞. The
following theorem shows that the Wilks type of results continues to hold for
generalized varying coefficient models.

Theorem 10. Under Conditions (A1)–(A3) and (B1)–(B3), as h → 0

nh3/2→∞ and n�ξ−1�/ξh ≥ c0�log n�δ for some δ > �ξ−1�/�ξ−2�
 we have the
following asymptotic null distribution:

σ−1n �λng�A0� − µn + d1ng�
�−→N�0
1��

Furthermore
 if A is linear or nh9/2 → 0
 then as nh → ∞
 rKλng�A0�
a∼

χ2rKµn
 where µn and rK are given in Theorem 5�

Extensions of the other theorems and the remarks in Section 3 are simi-
lar. In particular the optimal minimax rate and the optimal bandwidth are
the same as those in Section 3. The generalized likelihood ratio tests can be
employed to check the inhomogeneity of the coefficient functions and signif-
icance of variables in the generalized varying-coefficient models. The related
theorems in Section 4 hold true after some mild modifications. The details are
omitted.

5.2. Empirical likelihoods. As pointed out in the introduction, neither
Owen’s empirical likelihood nor its extension, random sieve likelihood [Shen,
Shi and Wong (1999)] can be directly used to make inferences on a nonpara-
metric regression function. However, the idea of sieve empirical likelihood
[Zhang and Gijbels (1999)] can be effective in this situation. In an unpub-
lished manuscript, Fan and Zhang (1999) have developed the corresponding
theory. Advantages of sieve empirical likelihood ratios are that no parametric
models are needed for stochastic errors and that it adapts automatically for
inhomogeneous stochastic errors. The main disadvantage is that it requires
intensive computation.
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6. Discussion.

6.1. Other tests. There are many nonparametric tests designed for spe-
cific problems. Most of them are in the univariate nonparametric regression
setting. See Section 1.5 for an overview of the literature. While they can be
powerful for problems for which the tests were designed, extensions of these
tests to multivariate settings can pose some challenges. Further, these tests
are usually not distribution free, when null hypotheses involve nuisance func-
tions. This would hamper their applicability.
Nonparametric maximum likelihood ratio tests are a natural alternative.

Usually, they do not exist. If they do, they are hard to find. Further, as shown
in Section 2.2, they are not optimal. For this reason, they cannot be a generic
and powerful method.

6.2. Conclusions. The generalized likelihood method is widely applicable.
It applies not only to univariate settings, but also to multivariate nonparamet-
ric problems. It is ready to use because of the Wilks phenomenon. It is powerful
since it achieves optimal rates of convergence. It can also be adaptively min-
imax when tuning parameters are properly tuned (Section 2.4). The tuning
method for a local polynomial based generalized likelihood ratio test can be
surprisingly simple. Motivated by the adaptive Neyman test constructed in
Fan (1996), when the null hypothesis is linear, an adaptive construction of the
generalized likelihood would naturally be

T∗ASL = max
h∈�n−a
 n−b

rλn�h� − d�h�√
2d�h� for some a
 b > 0
(6.1)

where r is the normalizing constant, λn�h� is the generalized likelihood ratio
test and d�h� is the degrees of freedom. Therefore, the generalized likelihood
is a very useful principle for all nonparametric hypothesis testing problems.
While we have observed the Wilks phenomenon and demonstrated it for

a few useful cases, it is impossible for us to verify the phenomenon for all
nonparametric hypothesis testing problems. The Wilks phenomenon needs to
be checked for other problems that have not been covered in this paper. More
work is needed in this direction.

7. Proofs.

Proof of Lemma 2.1. For each given ξn
 c = cn−2k/�2k+1� �c > 0�, under the
null hypothesis (2.3), by using the mean-variance decomposition, we have

F�ξn
 c� = n−1
∑
j2k�1+ j2kξn
 c�2

+Op

[
n−1

{∑
j4k�1+ j2kξn
 c�−4

}1/2]
�

(7.1)

Note that gn�x� = x2k/�1+ x2kξn
 c�2 is increasing for 0 ≤ x ≤ ξ−1/�2k�n
 c and

decreasing for x ≥ ξ−1/�2k�n
 c . By using the unimodality of gn and approximating
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discrete sums by their corresponding integrals, one can show that

n−1
∑
j2k�1+ j2kξn
 c�2

= c−�2k+1�/�2k�
∫ ∞
0

y2k

�1+ y2k�2 dy+O�n
−1/�2k+1���

(7.2)

Using the same arguments as those used in obtaining (7.2), we have

n−1
{∑

j4k�1+ j2kξn
 c�−4
}1/2 = O�n−1/
2�2k+1���

This together with (7.1) and (7.2) yields

F�ξn
 c� = �c0/c��2k+1�/�2k� +Op�n−1/
2�2k+1���
(7.3)

where c0 = �
∫∞
0 y2k�1+ y2k�−2 dy�2k/�2k+1�.

For any ε > 0, since the function F�x� is strictly decreasing,

P��n2k/�2k+1��ξ̂ − ξn
 c0�� > ε�
= P�F�ξ̂� < F�ξn
 c0+ε�� +P�F�ξ̂� > F�ξn
 c0−ε�� = o�1�


which implies ξ̂ − ξn
 c0 = op�n−2k/�2k+1��. ✷

Proof of Theorem 1. Define the jth coefficients in F�ξ� and λ∗n as

F�j� ξ� = j2k

�1+ j2kξ�2 
 λ�j� ξ� = 1+ 2j2kξ
�1+ j2kξ�2 �

Then

F′�j� ξ� = − 2j4k

�1+ j2kξ�3 
 λ′�j� ξ� = − 2j4kξ
�1+ j2kξ�3 = ξF

′�j� ξ��(7.4)

Let c0 be defined the same as in Lemma 2.1. For any ηn
j between ξ̂
and ξn
 c0 , it can easily be shown that

sup
j≥1

∣∣∣∣F′�j�ηn
j� −F′�j� ξn
 c0�F′�j� ξn
c0�

∣∣∣∣ = op�1�(7.5)

and that for any ζn
j between ξ̂ and ξn
 c0 ,

sup
j≥1

∣∣∣∣λ′�j� ζn
j� − λ′�j� ξn
c0�λ′�j� ξn
c0�

∣∣∣∣ = op�1��(7.6)
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Let λn�ξ� = 1
2

∑∞
j=1�1 + 2j2kξ�/�1 + j2kξ�2ε2j. By using Taylor’s expansion

together with (7.4), (7.5) and (7.6), under the null hypothesis (2.3),

λ∗n =
1
2

∞∑
j=1

[
λ�j� ξn
 c0� + �ξ̂ − ξn
 c0�λ′�j� ζn
j�

]
ε2j

= λn�ξn
 c0� + �F�ξ̂� −F�ξn
 c0�
1
2

∑∞
j=1 λ

′�j� ξn
 c0�ε2j
1/n

∑∞
j=1F′�j� ξn
 c0�ε2j

�1+ op�1��

= λn�ξn
 c0� + �1−F�ξn
 c0�
n

2
ξn
 c0 + op�n1/�2�2k+1���

= 1
2

∞∑
j=1

1
�1+ j2kξn
c0�

ε2j +
1
2
c0n

1/�2k+1� + op�n1/�2�2k+1����

(7.7)

Define λn
1= 1
2

∑∞
j=1
1+j2kξn
c0�−1ε2j in (7.7) andVn= 1

2

∑n
j=1
1+j2kξn
 c0�−1×

ε2j, we have

max1≤j≤n
1+ j2kξn
c0�−1√∑n
j=1
1+ j2kξn
 c0�−2

≤
{ n∑
j=1
�1+ j2kξn
c0�−2

}−1/2
= O�ξ1/�4k�n
c0 � → 0


which implies that �Vn − E�Vn��/
√
var�Vn�

�−→ N�0
1� by Lemma 2.1 of
Huber (1973). Note that

var�λn
1 −Vn� ≤
1
2

∫ ∞
n

dx

�1+ x2kξn
 c0�2
≤ 1
2

∫ ∞
n

dx

x4kξ2n
 c0
= O�ξ−2n
c0n−�4k−1���

Hence

var�λn
1 −Vn�
var�λn
1�

= O�ξ−2n
 c0n−�4k−1�/ξ
−1/�2k�
n
 c0 � → 0�

This implies that

λn
1 −E�λn
1�√
var�λn
1�

�−→N�0
1�

[by Theorem 3.2.15 of Randle and Wolfe (1979)], where

E�λn
1� = 2−1ξ−1/�2k�n
 c0

∫ ∞
0

dy

�1+ y2k� +O�1�


var�λn
1� = 2−1ξ−1/�2k�n
 c0

∫ ∞
0

dy

�1+ y2k�2 +O�1��

This together with (7.7) yields

λ∗n − 2−1c−1/�2k�0 n1/�2k+1�
∫∞
0 �1+ 2y2k�/�1+ y2k�2 dy√

2−1c−1/�2k�0 n1/�2k+1�
∫∞
0 dy/�1+ y2k�2

�−→N�0
1��
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Namely, rkλ∗n ∼a χ2an
 where

rk = 2
∫ ∞
0

1+ 2y2k
�1+ y2k�2 dy

(∫ ∞
0

1
�1+ y2k�2 dy

)−1



an = 2−1rkc−1/�2k�0

∫ ∞
0

1+ 2y2k
�1+ y2k�2 dy n

1/�2k+1��

Finally, by using∫ ∞
0

dy

�1+ y2k� =
1

2k sin�π/�2k��π

∫ ∞
0

dy

�1+ y2k�2 =
�2k− 1�

4k2 sin�π/�2k��π
∫ ∞
0

dy

�1+ y2k�3 =
�2k− 1��4k− 1�
16k3 sin�π/�2k��π
∫ ∞

0

dy

�1+ y2k�4 =
�2k− 1��4k− 1��6k− 1�

96k4 sin�π/�2k�� π


we obtain

rk =
4k+ 2
2k− 1 
 an =

�2k+ 1�2
2k− 1

[
π

4k2 sin�π/�2k��
]2k/�2k+1�

n1/�2k+1�� ✷

Proof of Theorem 2. Take j−kn = n−�k+d�/�2k+1�. Let θ be a vector whose
jnth position is j−kn and the rest are zero. Then, θ ∈ �k and �θ� = n−�k+d�/�2k+1�.
For ξn
 c = cn−2k/�2k+1�, we have

j2kn ξn
 c = cn2d/�2k+1��
Under this specific alternative, by using model (2.2), we have, for d > 1/8,

F�ξn
c� = F�ξn
c�H0� +
j2kn

�1+ j2kn ξn
c�2
�2j−kn n−1/2εjn + j−2kn �

= F�ξn
c�H0� + op�n−1/
2�2k+1���


where F�ξn
 c�H0� = n−1
∑∞
j=1

j2k

�1+j2kξn
c�2 ε
2
j. By arguments such as those in the

proof of Lemma 2.1, one can see that

ξ̂ = ξn
 c0�1+ op�1��


where ξ̂ solves F�ξ̂� = 1.
Next, consider the likelihood ratio statistic λ∗n under the alternative hypoth-

esis. Let

λn
0 =
1
2

∑
j

(
1− j4kξ̂2

�1+ j2kξ̂�2
)
ε2j�
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Then for d > 1/8,

λ∗n = λn
0 +
n

2

(
1− j4kn ξ̂

2

�1+ j2kn ξ̂�2
)
�2j−kn n−1/2εjn + j−2kn �

= λn
0 + op�n1/
2�2k+1����

By a proof similar to that in Theorem 1, rkλn
0
a∼ χ2an , which entails that

Pθ
rkλ∗n > an + zα�2an�1/2� = α+ o�1�� ✷

Proof of Theorem 3. The first part of the result follows directly from
the central limit theory using similar arguments to those in the proof of The-
orem 1 for λn
1. We now establish the power of the test. Under the alternative
hypothesis,

Eθ�r′kλn� = a′n +O�1� + r′k
∞∑
j=1

(
1− j4kξ2n
�1+ j2kξn�2

)
nθ2j/2

and

varθ�r′kλn� = 2a′n + b′n +O�1�


where b′n = r′2k
∑∞
j=1�1−j4kξ2n/�1+ j2kξn�2�2nθ2j. Thus, it follows from Cheby-

shev’s inequality that

Pθ�r′kλn > a′n + zα�2a′n�1/2� = Pθ
{
r′kλn − r′kEθ�λn�
varθ�r′kλn�1/2

≥ �2a′n + b′n +O�1��−1/2

× 
a′n + zα�2a′n�1/2 − r′kEθ�λn��
}

≥ 1− d−2n 


if �2a′n + b′n +O�1��−1/2
a′n + zα�2a′n�1/2 − r′kEθ�λn�� ≤ −dn for some dn > 0.
Thus, Theorem 3 holds, if we show that

inf
θ∈�k� �θ�≥cnn−2k/�4k+1�

n−1/�4k+1�
∞∑
j=1

(
1− j4kξ2n
�1+ j2kξn�2

)
nθ2j→∞(7.8)

and

inf
θ∈�k� �θ�≥cnn−2k/�4k+1�

b′−1/2n

∞∑
j=1

(
1− j4kξ2n
�1+ j2kξn�2

)
nθ2j→∞�(7.9)
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Note that for each θ ∈ �k, �θ�ξcnn−2k/�4k+1�
∞∑
j=1

(
1− j4kξ2n
�1+ j2kξn�2

)
θ2j

≥ c2nn−4k/�4k+1� − ξnmax
x≥0

x

�1+ x�2
∞∑
j=1

j2kθ2j

≥ c2nn−4k/�4k+1�/2�

(7.10)

Hence, (7.8) holds.
To show (7.9), we note that �1 − j4kξ2n/�1+ j2kξn�2� ∈ �0
1�. It follows

from (7.10) that

b′−1/2n

∞∑
j=1

(
1− j4kξ2n
�1+ j2kξn�2

)
nθ2j ≥ r′−1k n1/2

( ∞∑
j=1

(
1− j4kξ2n
�1+ j2kξn�2

)
θ2j

)1/2
≥ r′−1k n1/2cnn

−2k/�4k+1�/2


which tends to ∞. ✷

Proof of Theorem 4. For any given m, when n is sufficiently large, we
have

Pθ�TAN > − log
− log�1− α��
≥ Pθ
T∗AN > 2�log log n�1/2�

≥ Pθ
{ m∑
j=1
�nY2

j − 1�/
√
2m ≥ 2�log log n�1/2

}
�

(7.11)

Note that the sequence of random variables{ m∑
j=1
�nY2

j − 1− nθ2j�
/(

2m+ 4n
m∑
j=1

θ2j

)1/2}
have mean zero and variance one. By normalizing the random variables
in (7.11), one can easily see that the power of the adaptive Neyman test is
at least

Pθ

{ m∑
j=1
�nY2

j − 1− nθ2j�
/(

2m+ 4n
m∑
j=1

θ2j

)1/2

≥
{
2
√
2m

√
log log n− n

m∑
j=1

θ2j

}/(
2m+ 4n

m∑
j=1

θ2j

)1/2}
�

Thus Theorem 4 holds via the Chebyshev inequality if we show that

inf
θ∈�k� �θ�≥cnδn

m−1/2
{
n

m∑
j=1

θ2j − 2
√
2m

√
log log n

}
→∞(7.12)
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and

inf
θ∈�k� �θ�≥cnδn

(
n

m∑
j=1

θ2j

)−1/2{
n

m∑
j=1

θ2j − 2
√
2m

√
log log n

}
→∞(7.13)

for some choice of m.
Note that for any θ ∈ �k,

∞∑
j=m+1

θ2j ≤m−2k
∞∑

j=m+1
j2kθ2j ≤m−2k�

Thus,

m−1/2
m∑
j=1

θ2j ≥m−1/2�cnδn�2 −m−2k−1/2�

Maximizing the above expression with respect to m leads to the choice of
m = O��cnδn�−1/k�; we have

m−1/2
m∑
j=1

θ2j ≥ O
c�4k+1�/�2k�n n−1�log log n�1/2�
(7.14)

and

n
m∑
j=1

θ2j ≥ n��cnδn�2 −m−2k� = O
nc2nn−4k/�4k+1��log log n�2k/�4k+1���(7.15)

Since cn→∞, the conclusion (7.12) holds from (7.14). And (7.13) follows from(
n

m∑
j=1

θ2j

)−1/2{
n

m∑
j=1

θ2j − 2
√
2m

√
log log n

}
=
(
n

m∑
j=1

θ2j

)1/2
�1+ o�1��

and (7.15). ✷

The following four lemmas are used in the proofs for the theorems in
Sections 3, 4 and 5.

Lemma 7.1. Suppose the matrix K = �ψij�ni
 j=1 is symmetric
 w1
 � � � 
wn
are independent random variables with moments E�wi� = 0
 E�w2

i � = u2�i�

E�w3

i � = u3�i�
 E�w4
i � = u4�i�� Let W = �w1
 � � � 
wn�τ� Then

E�WτKW�2 =
n∑
i=1
ψ2ii
[
u4�i� − 3u22�i�

]
+
[ n∑
i=1
ψiiu2�i�

]2
+ 2

n∑
i
j=1

ψ2iju2�i�u2�j��

Proof. This can be shown by modifying the proof of Theorem 1.8 in Seber
(1977), where only ul�i� ≡ ul (i = 1
 � � � 
 n; l = 1
2
3
4) were considered. ✷
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Let rn = 1/
√
nh. Denote by

αn�u0� = r2n9�u0�−1
n∑
i=1
εiXiK��Ui − u0�/h�
(7.16)

Rn�u0� = r2n
n∑
i=1
9�u0�−1�A�Ui�τXi − β�u0�τZi�XiK��Ui − u0�/h�
(7.17)

Rn1 =
n∑
k=1

εkRn�Uk�τXk


Rn2 =
n∑
k=1

αn�Uk�τXkXτkRn�Uk�


Rn3 = 1
2

n∑
k=1

Rn�Uk�τXkXτkRn�Uk��

Lemma 7.2. Under Condition (A), as h→ 0, nh→∞,
Rn1 = n1/2h2Rn10 +O�n−1/2h�

Rn2 = n1/2h2Rn20 +O�n−1/2h�

Rn3 = nh4Rn30 +O�h3��

Furthermore, for any δ > 0, there existsM> 0 such that

sup
Gn∈�n

P���n1/2h2�−1Rnj� >M� ≤ δ
 j = 1
2


sup
Gn∈�n

P���nh4�−1Rn3� >M� ≤ δ�

The proof follows from some direct but tedious calculations.
Using Lemma 7.5, we can easily show the following lemma.

Lemma 7.3. Let Â be the local linear estimator define in Section 3� Then,
under Condition (A), uniformly for u0 ∈ 7,

Â�u0� −A�u0� = �αn�u0� +Rn�u0���1+ op�1��
where αn�u0� and Rn�u0� are defined in (7.16) and (7.17).

Denote by

Tn = r2n
∑
k
i

εkεiX
τ
i9�Uk�−1XkK��Ui −Uk�/h�


Sn = r4n
∑
i
j

εiεjX
τ
i

{ n∑
k=1

9�Uk�−1XkXτk9�Uk�−1K��Ui −Uk�/h�

×K��Uj −Uk�/h�
}
Xj�
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Lemma 7.4. Under Condition (A), as h→ 0, nh3/2→∞,

Tn =
1
h
pK�0�σ2Ef�U�−1 + 1

n

∑
k �=i
εkεiX

τ
i9�Uk�−1XkKh�Uk −Ui� + op�h−1/2�


Sn =
1
h
pσ2Ef−1�U�

∫
K2�t�dt

+ 2
nh

∑
i<j

εiεjX
τ
i9
−1�Ui�K ∗K��Ui −Uj�/h�Xj + op�h−1/2�


with Kh�·� =K�·/h�/h.

Proof. The first equality is obvious. Here we focus on the second one. We
use the following decomposition: Sn = Sn1 +Sn2 with

Sn1 =
1
�nh�2

n∑
i=1
ε2iX

τ
i

{ n∑
k=1

9�Uk�−1XkXτk9�Uk�−1K2��Ui −Uk�/h�
}
Xi

Sn2 =
1
n2

∑
i�=j
εiεjX

τ
i

{ n∑
k=1

9�Uk�−1XkXτk9�Uk�−1Kh�Uk −Ui�Kh�Uk −Uj�
}
Xj�

It is easy to see that as h→ 0,

Sn1 = op�h−1/2� +Op�n−3/2h−2� +
1
2
Vn�1+ o�1�� +Op

(
1
nh2

)

(7.18)

where

Vn =
2

n�n− 1�
∑

1≤i<k≤n
σ2�Xτi9�Uk�−1XkXτk9�Uk�−1Xi

+ Xτk9�Ui�−1XiXτi9�Ui�−1Xk�K2
h�Uk −Ui��

Using Hoeffding’s decomposition for the variance of U-statistics [see, e.g.,
Koroljuk and Borovskich (1994)] we obtain

var�Vn� = O
(
1
n

)
σ2n

with

σ2n ≤ E
{
E��Xτ19�U2�−1X2Xτ29�U2�−1X1
+ Xτ29�U1�−1X1Xτ19�U1�−1X2� K2

h�U2 −U1���X1
U1��2
}2

= O�h−2��
Thus, Vn = EVn + op�h−1/2� as nh→∞ and h→ 0. Consequently,

Sn1 =
1
h
pσ2Ef−1�U�

∫
K2�t�dt+ op�h−1/2��(7.19)
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We now deal with the term Sn2. Decompose Sn2 = Sn21 +Sn22 with

Sn21 =
2
n

∑
1≤i<j≤n

εiεjX
τ
i

1
n

× ∑
k �=i
j

{
9�Uk�−1XkXτk9−1�Uk�Kh�Uk −Ui�Kh�Uk −Uj�

}
Xj


Sn22 =
K�0�
n2h

∑
i�=j
εiεj

{
Xτi9�Ui�−1XiXτi9�Ui�−1Xj

+ Xτi9�Uj�−1XjXτj9�Uj�−1Xj
}
Kh�Ui −Uj��

It can easily be shown that

var�Sn22� = O�1/�n2h3�� = o�1/h�
which implies

Sn22 = op�h−1/2��(7.20)

Let

Qijkh = 9−1�Uk�XkXτk9�Uk�−1Kh�Uk −Ui�Kh�Uk −Uj��
Note that

E

[
Xτi
1
n

∑
k �=i
j
�Qijkh −E�Qijkh��ui
 uj���Xj

]2

≤ trace
{
n−2

n∑
k �=1
2

E�Q12khX2X
τ
2Q12khX1X

τ
1�
}
= O�1/�nh2��


which leads to

Sn21 =
2�n− 2�
n2

∑
1≤i<j≤n

εiεjX
τ
iE�Qijkh��Ui
Uj��Xj + op�h−1/2��(7.21)

Combining (7.18)–(7.21), we complete the proof. ✷

Proof of Theorem 5. Note that

RSS1
n
= σ2�1+Op�n−1/2� +Op�h−1���

It then follows from the definition that

−λn�A0�σ2 = −r2n
n∑
k=1

εk

{ n∑
i=1
εiX

τ
i9�Uk�−1

}
XkK��Ui − u0�/h�

+ 1
2
r4n

n∑
k=1

n∑
i=1

n∑
j=1

εiεjX
τ
i9�Uk�−1XkXτkXj9�Uk�−1
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×K��Ui −Uk�/h�K��Uj −Uk�/h�

−Rn1 +Rn2 +Rn3 +Op

(
1
nh2

)
�

Applying Lemmas 7.2, 7.3 and 7.4, we get

−λn�A0� = −µn + d1n −W�n�h−1/2/2+ op�h−1/2�

where

W�n� =
√
h

nσ2
∑
j �=l
εjεl�2Kh�Uj −Ul� −Kh ∗Kh�Uj −Ul�Xτj9�Ul�−1Xl�

It remains to show that

W�n� �−→N�0
 v�
with v = 2��2K−K ∗K��22pEf−1�U�.
Define Wjl = �

√
h/n� bn�j
 l�εjεl/σ2 �j < l�, where bn�j
 l� is written in a

symmetric form

bn�j
 l� = a1�j
 l� + a2�j
 l� − a3�j
 l� − a4�j
 l�

with

a1�j
 l� = 2Kh�Uj −Ul�Xτj9�Ul�−1Xl
 a2�j
 l� = a1�l
 j�

a3�j
 l� =Kh ∗Kh�Uj −Ul�Xτj9�Ul�−1Xl
 a4�j
 l� = a3�l
 j��

Then W�n� = ∑j<l Wjl. To apply Proposition 3.2 in de Jong (1987), we need
to check:

(i) W�n� is clean [see de Jong (1987) for the definition];
(ii) var�W�n�� → v;
(iii) GI is of smaller order than var�W�n��;
(iv) GII is of smaller order than var�W�n��;
(v) GIV is of smaller order than var�W�n��;

where

GI =
∑

1≤i<j≤n
E�W4

ij�


GII =
∑

1≤i<j<k≤n

{
E�W2

ijW
2
ik� +E�W2

jiW
2
jk� +E�W2

kiW
2
kj�
}



GIV =
∑

1≤i<j<k<l≤n

E�WijWikWljWlk� +E�WijWilWkjWkl�

+E�WikWilWjkWjl���
We now check each of the following conditions. Condition (i) follows directly

from the definition.
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To prove (ii), we note that

var�W�n�� =∑
j<l

E�W2
jl��

Denote K�t
m� = K ∗ · · · ∗K�t� as the mth convolution of K�·� at t for m =
1
2
 � � � . Then it follows that

E�b2n�j
 l�ε2jε2l 

= σ
4

h
�16K�0
2� − 16K�0
3� + 4K�0
4�pEf−1�U��1+O�h��

which entails

v = 2
∫ [
2K�x� −K ∗K�x�]2dx pEf−1�U��

Condition (iii) is proved by noting that

E
[
a1�1
2�ε1ε2

]4 = O�h−3�
 E�a3�1
2�ε1ε24 = O�h−2�

which implies that E�W4

12� = �h2/n4�O�h−3� = O�n−4h−1�. Hence GI =
O�n−2h−1� = o�1�.
Condition (iv) is proved by the following calculation:

E�W2
12W

2
13� = O�EW4

12� = O�n−4h−1�

which implies that GII = O�1/�nh�� = o�1�.
To prove (v), it suffices to calculate the term E�W12W23W34W41�. By

straightforward calculations,

E
a1�1
2�a1�2
3�a1�3
4�a1�4
1�ε21ε22ε23ε24� = O�h−1�

E
a1�1
2�a1�2
3�a1�3
4�a3�4
1�ε21ε22ε23ε24� = O�h−1�

E
a1�1
2�a1�2
3�a3�3
4�a3�4
1�ε21ε22ε23ε24� = O�h−1�

E
a1�1
2�a3�2
3�a3�3
4�a3�4
1�ε21ε22ε23ε24� = O�h−1�

E
a3�1
2�a3�2
3�a3�3
4�a3�4
1�ε21ε22ε23ε24� = O�h−1�


and similarly for the other terms. So

E�W12W23W34W41� = n−4h2O�h−1� = O�n−4h�
which yields

GIV = O�h� = o�1�� ✷

Proof of Theorem 6. Analogously to the arguments for Â, we get

�Ã2�u0� −A2�u0�� = r2n9−122 �u0�
n∑
k=1

{
Yk −A1�Uk�τX�1�k − η2�u0
X

�2�
k 
Uk�

}
× X�2�k K��Uk − u0�/h��1+ op�1��
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where η2�u0
X�2�k 
Uk� = A2�u0�τX�2�k +A′2�u0�τX
�2�
k �Uk − u0�� Note that

λnu�A10� = λn�A0� − λn2�A20�A10��
Similarly to the proof of Theorem 5, under H0u, we have

λn2�A20�A10�σ2 = r2n
n∑
k=1

n∑
i=1
εiK��Ui −Uk�/h�X�2�i 9−122 �Uk�X�2�k εk

− 1
2r

4
n

n∑
k=1

[ n∑
i=1
εiK��Ui −Uk�/h�X�2�τi

]
× (

9−122 �Uk�X�2�k X
�2�τ
k 9−122 �Uk�

)
×
[ n∑
i=1
εiK��Ui − u0�/h�X�2�i

]
+ op�h−1/2� − d1n∗


where d1n∗ is defined by replacing X and 9 by X�2� and 922 in d1n.
Consequently,

−λnu�A10�σ2 = −r2n
∑
k
i

εkεi�X�1�i − 912�Uk�9−122 �Uk�X�2�i �τ9−111
2

× �Uk��X�1�k − 912�Uk�9−122 �Uk�X�2�k �K��Ui −Uk�/h�

+ r
4
n

2

∑
i
j

εiεj

n∑
k=1
�X�1�i − 912�Uk�9−122 �Uk�X�2�i �τ

× 9−111
2�Uk��X�1�k − 912�Uk�9−122 �Uk�X�2�k �

× �X�1�k − 912�Uk�9−122 �Uk�X�2�k �τ9−111
2�Uk�

× �X�1�j − 912�Uk�9−122 �Uk�X�2�j �
+Rn4 +Rn5 + op�h−1/2� + d1n − d1n∗


where

Rn4 =
r4n
2

n∑
i
j

εiεj

n∑
k=1
�X�1�i − 912�Uk�9−122 �Uk�X�2�i �τ9−111
2�Uk�

× �X�1�k − 912�Uk�9−122 �Uk�X�2�k �X
�2�τ
k 9−122 �Uk�X�2�j

×K��Ui −Uk�/h�K��Uj −Uk�/h�


Rn5 =
r4n
2

n∑
i
j

εiεj

n∑
k=1
�X�1�j − 912�Uk�9−122 �Uk�X�2�j �τ9−111
2�Uk�

× �X�1�k − 912�Uk�9−122 �Uk�X�2�k �X
�2�τ
k 9−122 �Uk�X�2�i

× K��Ui −Uk�/h�K��Uj −Uk�/h��
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A simple calculation shows that as nh3/2→∞,

ER2
n4 = O

(
1

n2h4

)
= o�h−1�


which yields Rn4 = op�h−1/2�. Similarly, we can show Rn5 = op�h−1/2�.
Therefore,

−λnu�A10�σ2 = −r2n
∑
k
i

εkεi�X�1�i − 912�Uk�9−122 �Uk�X�2�i �τ9−111
2�Uk�

×�X�1�k − 912�Uk�9−122 �Uk�X�2�k �K��Ui −Uk�/h� + op�h−1/2�

+r
4
n

2

∑
i
j

εiεj

n∑
k=1
�X�1�i − 912�Uk�9−122 �Uk�X�2�i �τ9−111
2�Uk�

× �X�1�k − 912�Uk�9−122 �Uk�X�2�k �
× �X�1�k − 912�Uk�9−122 �Uk�X�2�k �τ9−111
2�Uk�

× �X�1�j − 912�Uk�9−122 �Uk�X�2�j �
×K��Ui −Uk�/h�K��Uj −Uk�/h� + d1nu + op�h−1/2��

The remaining proof follows the same lines as those in the proof of
Theorem 5. ✷

Proof of Theorem 7. UnderHn1 and Condition (B), applying Theorem 5,
we have

−λn�A0� = −µn + vn + v2n − d2n

−
[
W�n�h−1/2/2+

n∑
k=1

cnG
τ
n�Uk�Xkεk/σ2

]
+ op�h−1/2�


where W�n� is defined in the proof of Theorem 5. The rest of the proof is
similar to the proof of Theorem 5. The details are omitted. ✷

Proof of Theorem 8. For brevity, we present only case I in Remark 3.5.
To begin with, we note that underH1n� A = A0+Gn and under Condition (C),
it follows from the Chebyshev inequality that uniformly for h→ 0, nh3/2→∞,

−λn�A0�σ2 = −µnσ2 − σ2W�n�h−1/2/2−
√
nEGτ

n�U�τXXτGn�U�Op�1�

−n
2
EGτ

n�U�τXXτGn�U��1+ op�1�� −Rn1 +Rn2 +Rn3


where µn,W�n�, Rni, i = 1
2
3 are defined in the proof of Theorem 5 and its
associated lemmas, and op�1� and Op�1� are uniform in Gn ∈ �n in a sense
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similar to that in Lemma 7.2. Thus,

β�α
Gn� = P
σ−1n �−λn�A0� + µn� ≥ c�α��

= P
{
σ−1n

[
−W�n�h−1/2/2−(
Rn1 −Rn2 −Rn3

+ n
2
EGτ

n�U�τ XXτGn�U��1+ op�1��
)
/σ2

]
≥ c�α�

}
= P1n +P2n

with

P1n = P
σ−1n �−W�n�h−1/2/2� + n1/2h5/2b1n + nh9/2b2n − nh1/2b3n ≥ c�α�

�b1n� ≤M
 �b2n� ≤M�


P2n = P
σ−1n �−W�n�h−1/2/2� + n1/2h5/2b1n + nh9/2b2n − nh1/2b3n ≥ c�α�

�b1n� >M
 �b2n� >M�

and

b1n = �n1/2h5/2σnσ2�−1�−Rn1 +Rn2�

b2n = �nh9/2σnσ2�−1Rn3


b3n = �h1/2σnσ2�−1 12EGτ
n�U�τXXτGn�U��1+ op�1���

When h ≤ c−1/20 n−1/4, we have

n1/2h5/2 ≥ c0nh9/2
 n1/2h5/2→ 0
 nh9/2→ 0�

Thus for h → 0 and nh → ∞, it follows from Lemma 7.2 that β�α
 ρ� → 0
only when nh1/2ρ2 → −∞. It implies that ρ2n = n−1h−1/2 and the possible
minimum value of ρn in this setting is n−7/16. When nh4→∞, for any δ > 0,
applying Lemma 7.2, we find a constantM> 0 such that P2n < δ/2 uniformly
in Gn ∈ �n. Then

β�α
 ρ� ≤ δ/2+P1n�

Note that sup�n�ρ�P1n→ 0 only when B�h� = nh9/2M−nh1/2ρ2→−∞. B�h�
attains the minimum value − 8

9�9M�−1/8nρ9/4 at h = �ρ2/�9M��1/4. Now it is
easily shown that in this setting the corresponding minimum value of ρn is
n−4/9 with h = c∗n−2/9 for some constant c∗. ✷

Proof of Theorem 9. Let c denote a generic constant. Then, under H0,

RSS0 − RSS1 = −D1 −D2
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where D1 = ετPXD
ε
 XD is the design matrix with the ith row Xτi �i =

1
 � � � 
 n�, PXD
is the projection matrix of XD and

D2 =
n∑
i=1
�A�Ui� − Â�Ui��τXiXτi �A�Ui� − Â�Ui��

+2
n∑
i=1
εi�A�Ui� − Â�Ui��τXi�

The proof will be completed by showing the following four steps.

(i) D1 = Op�1�,
(ii) −√hD2 = �D/

√
h� +W�n� + op�1�,

(iii) W�n� = �√h/n�∑j �=l εjεl�2Kh�Uj − Ul� − Kh ∗ Kh�Uj − Ul�
× Xτj9�Ul�−1Xl

�−→N�0
V�,
(iv) RSS1/n = Eσ2�X
U� +Op�1/

√
n� +Op�1/�nh��,

with

D = �2K�0� −K ∗K�0�
∫
7
tr�9∗�u�9�u�−1�du

− 1
nh
K2�0�E��Xτ9�U�−1X�2σ2�X
U�


V = 2
∫
�2K�x� −K ∗K�x�2dx

∫
7
tr�9∗�u�9�u�−1�2 du�

It follows from Lemma 7.1 that

E��ετPXD
ε�2��X1
U1�
 � � � 
 �Xn
Un� ≤ c tr�P2

XD

� + c[tr�PXD
�]2

= p�p+ 1�c

which implies (i). The proofs of (ii) and (iii) are the same as the proof of Theo-
rem 5. The details are omitted. The last step follows from RSS1 =

∑n
i=1 ε

2
i+D2.

Using the inequality x/�1+ x� ≤ log�1+ x� ≤ x for x > −1, we have

λn =
n

2

[
RSS0 − RSS1

RSS1
+Op�n−2h−2�

]
= n
2
RSS0 − RSS1

RSS1
+Op�n−1h−2�� ✷

Before proving Theorem 10, we introduce the following lemma.

Lemma 7.5. Under Condition (A1)–(A3) and (B1)–(B3), n�ξ−1�/ξh ≥ c0×
�log n�δ and δ > �ξ − 1�/�ξ − 2�
 we have

Â�u0� −A�u0� = r2n9̃�u0�−1
n∑
i=1
q1�A�Ui�τXi
Yi�XiK��Ui − u0�/h��1+ op�1��

+Hn�u0�
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where rn = 1/
√
nh


Hn�u0�

= r2n9̃�u0�−1
n∑
i=1
�q1�β�u0�τZi
Yi�

− q1�A�Ui�τXi
Yi�XiK��Ui − u0�/h��1+ op�1��
and op�1� is uniform with respect to u0�

Proof. It follows from some arguments similar to Carroll, Fan, Gijbels
and Wand (1997) and Zhang and Gijbels (1999). ✷

Proof of Theorem 10. Let εi = q1�A0�Ui�τXi
Yi�� Using the Taylor
expansion of λng�A0� and Lemma 7.5, we obtain

λng�A0� = −r2n
n∑
k=1

n∑
i=1
εkεiX

τ
i 9̃�uk�−1Xk −Rn1g

−r
4
n

2

n∑
k=1

∑
i
j

q2�A0�Uk�τXk
Yk�εiεj9̃�Uk�−1XiXkXτk9̃�Uk�−1

× XjK��Ui −Uk�/h�K��Uj −Uk�/h� +Rn2g +Rn3g


where

Rn1g = r2n
n∑
k=1

εkHn�Uk�Xk


Rn2g = −r2n
n∑
k=1

n∑
i=1
εiX

τ
i 9̃�Uk�−1XkXτkHn�Uk�


Rn3g = −
r4n
2

n∑
k=1

q2�A0�Uk�τXk
Yk�Hn�Uk�τXkXτkHn�Uk��

The remaining proof is almost the same as that of Theorem 5 if we invoke the
following equalities:

E�εi��Xi
Ui� = 0
 E�ε2i ��Xi
Ui� = −E�q2�A0�Ui�τXi�
Yi���Xi
Ui�� ✷
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