
Generalized Linear Dynamic Factor Models - An Approach via

Singular Autoregressions

A. Filler, M. Deistler, B.D.O. Anderson, Ch. Zinner and W. Chen

Abstract— We consider generalized linear dynamic factor
models. These models have been developed recently and they are
used for high dimensional time series in order to overcome the
“curse of dimensionality”. We present a structure theory with
emphasis on the zeroless case, which is generic in the setting
considered. Accordingly the latent variables are modeled as a
possibly singular autoregressive process and (generalized) Yule
Walker equations are used for parameter estimation.

I. INTRODUCTION

Generalized linear dynamic factor models (GDFM’s) have
been introduced in [1], [2], and, in a slightly different
form, in [3], [4]. The idea is to generalize and combine
linear dynamic factor models with strictly idiosyncratic noise
as analyzed in [5] and [6] and generalized linear static
factor models, introduced in [7] and [8]. Factor models in
a time series setting may be used to compress information
contained in the data in both the cross-sectional dimension,
N say, and in the time dimension T . In this way it is
possible to overcome the “curse of dimensionality” plaguing
traditional multivariate time series modeling, where e.g. in
the (unrestricted) autoregressive case, the dimension of the
parameter space is proportional to N2, whereas the number
of data points for a fixed T is linear in N . The price to
be paid for overcoming this curse of dimensionality is to
require a certain kind of similarity or comovement between
the single time series.
The basic idea of GDFM’s is that the N -dimensional obser-
vation at time t, yN

t say, can be represented as

yN
t = ŷN

t + uN
t (1)

where (ŷN
t ) is the process of latent variables, which are

strongly dependent in the cross-sectional dimension, and
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where (uN
t ) is the wide sense idiosyncratic noise, i.e. (uN

t )
is weakly dependent in the cross-sectional dimension. The
precise meaning of the words weak and strong dependence
will be given below.

Throughout we assume

EŷN
t = EuN

t = 0 ∀t (2)

E[ŷN
t uN

s

′
] = 0 ∀s, t (3)

and that (ŷN
t ) and (uN

t ) are wide sense stationary with
absolutely summable covariances. Thus, using an obvious
notation for the spectral densities corresponding to (1), we
obtain

fN
y (λ) = fN

ŷ (λ) + fN
u (λ). (4)

The latent variables are obtained from factors, see below.
Throughout, z is used for a complex variable as well as

for the backward shift on Z. This is opposite to the most
common convention in control, but consistent with much
econometrics literature.
In addition we assume:

Assumption 1: There is an N0 such that for all N ≥
N0, f

N
ŷ is a rational spectral density with constant rank

q < N on [−π, π].
Since we are considering high dimensional time series, for
asymptotic analysis, not only sample size T , but also the
cross-sectional dimension N is tending to infinity; thus
we consider a doubly indexed stochastic process (yit | i ∈
N, t ∈ Z), where i is the cross-sectional index and t denotes
time. Therefore we consider a sequence of GDFM’s (1). We
assume:

Assumption 2: The double sequence (yit | i ∈ N, t ∈ Z)
corresponds to a nested sequence of models, in the sense that
ŷit and uit do not depend on N for i ≤ N .

Assumption 3: The rank q of fN
ŷ and its Mc Millan degree

2n say, are independent of N (N ≥ some N0).
Next, we define weak and strong dependence as in [2]. We

use e.g. ωN
u,r to denote the r-th largest eigenvalue of fN

u .
Assumption 4 (Weak dependence): ωN

u,1 is uniformly
bounded in λ and N .

Assumption 5 (Strong dependence): The first q (i.e. the
q largest) eigenvalues of fN

ŷ diverge to infinity for all
frequencies, as N →∞.

Contrary to the strict idiosyncratic case, the case con-
sidered in “ordinary” factor models, where fN

u is assumed
to be diagonal, generalized factor models are not gener-
ically identifiable for any fixed N , no matter how large.
Nevertheless, as has been shown in [2], the elements of
ŷN

t (and thus of uN
t ) are uniquely determined from (yN

t )
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for N → ∞. Moreover, consider the sequence of dynamic
principal component decompositions

fN
y (λ) = ON

1 (e−iλ)ΩN
1 (λ)ON

1 (e−iλ)∗ (5)

+ ON
2 (e−iλ)ΩN

2 (λ)ON
2 (e−iλ)∗

where ΩN
1 is the q × q diagonal matrix consisting of the q

largest eigenvalues of fN
y ordered as a descending sequence

on its diagonal and ON
1 is the matrix whose columns are

the corresponding eigenvectors; the second part on the right
hand side of the above equation is defined analogously for the
smallest eigenvalues. Here, e.g. ON

1 (z)∗ denotes ON
1 (z−1)′.

As has been shown in [2], such a sequence of PCA models
for N → ∞ converges to the corresponding GDFM’s in
the sense that e.g. the scalar components of the latent PCA
variables ŷN

PCA,t = O1(z)O∗
1(z)yt converge to the respective

scalar components of ŷN
t . From now on, for the sake of

simplicity of notation, we will omit the superscript N .
In general terms, this paper is concerned with identification
of GDFM’s, where the latent variables have a singular
rational spectral density, or to be more precise, with the
identification of the linear (state space or ARMA) system gen-
erating the latent variables, from the observations y1, ..., yT .
We neither impose additional structure on the noise, nor are
we interested in estimating the noise parameters.
The emphasis of this paper is on structure theory. It heavily
draws from previous work ([9],[10],[11]). In the structure
theory considered here an idealized setting is considered,
since we commence from the population second moments
of the latent variables, rather than from the sample second
moments of the observations in order to obtain the parame-
ters of the system generating the latent variables.
As in [10] our emphasis is on the zeroless case, which
in our setting is generic. We extend results given in this
previous paper. New contributions in this paper include the
characterization of the latent variable model as a singular
autoregression (where the driving white noise has a singular
variance matrix), the identification of a minimal static factor,
and the use of (generalised) Yule-Walker equations to obtain
a singular autoregression.
The paper is organized as follows: In section II, we consider
spectral factorization and realization of tall rational transfer
functions. The relation between the dimensions of (minimal)
states, of minimal static factors and of minimal dynamic
factors is described. Section III is concerned with zeroless
transfer functions and their realization by (possibly singular)
autoregressive systems. Section IV is concerned with solu-
tions of (generalized) Yule Walker equations, their continuity
and stability. Since the static factors can be obtained by
a linear static transformation from the latent variables and
the static factors have smaller dimension, we concentrate on
realizing the static factors by autoregressive systems.
GDFM’s are used, both for forecasting and for analysis of
high dimensional time series (see e.g. [12],[13],[14]). In
forecasting, the forecasts of the latent variables are used to
forecast the observed variables.

II. REALIZATION OF RATIONAL TALL TRANSFER
FUNCTIONS

As has been shown in [1],[15] the effect of the noise on the
observations can be removed for N →∞ (e.g. by PCA), and
the spectral density fŷ of the latent variables can be estimated
consistently for N, T → ∞. Therefor it is reasonable to
analyse an idealised setting were we commence from the
population spectral density fŷ of the latent variables (ŷt)
rather than from the spectral density fy of (yt).

A. Spectral factorization and Wold decomposition
We have the following result ([16], [17]).
Theorem 1: Every rational spectral density fŷ of constant

rank q for all λ ∈ [−π, π] can be factorized as

fŷ(λ) =
1
2π

w(e−iλ)w(e−iλ)∗ (6)

where w(z) is a N × q real rational matrix which has no
poles and no zeros for |z| ≤ 1.
In addition, it is easy to show that w(z) is unique up to
postmultiplication by constant orthogonal matrices.

The spectral factors

w(z) =
∞∑

j=0

wjz
j , wj ∈ R

N×q (7)

correspond to a causal linear finite dimensional system

ŷt =
∞∑

j=0

wjεt−j (8)

where the inputs (εt) are white noise with E[εtε
′
t] = 2πIq.

We will be concerned with the case where w is tall, i.e.
N > q holds.

The Smith-McMillan form of w(z) is given by

w = udv (9)

where u and v are unimodular (i.e. polynomial with constant
nonzero determinant) and d is an N×q rational matrix whose
top q×q block is diagonal with diagonal elements ni

di
where

di and ni are coprime, monic polynomials and di+1 divides
di and ni divides ni+1. All other elements of d are zero.
The matrix d is unique for given w and the zeros of w are
the zeros of the ni and the poles of w are the zeros of the
di. Note that w(z) has no poles and no zeros for |z| ≤ 1.

For N > q, w has no unique left inverse, not even a unique
causal left inverse. We define a particular left inverse by

w− = v−1(d′d)−1d′u−1 (10)

As is easily seen, w− has no poles and no zeros for |z| ≤ 1.
As is also easily seen, for given w, the input εt in (8) is
uniquely determined from ŷt, ŷt−1, . . . , independently of the
particular choice of the causal inverse

εt =
∞∑

j=0

w−
j ŷt−j (11)

Thus (8) corresponds to Wold decomposition (see, e.g. [18]).
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B. ARMA representation
Every rational causal transfer function can be realized by

an ARMA system, by a right MFD, or by a state space
system. Let us start with ARMA systems:

a(z)ŷt = b(z)εt. (12)

We assume that (a, b) are left coprime (see e.g. [18]), then
the set of all observationally equivalent left coprime ARMA
systems is obtained as (ua, ub) where u is an arbitrary
unimodular matrix.

The conditions on the poles and zeros of the transfer
function w = a−1b are, for left coprime a, b, equivalent to

det a(z) �= 0, |z| ≤ 1 (13)

and
b(z) has full rank q, |z| ≤ 1. (14)

A right MFD
w = dc−1 (15)

where d and c are polynomial matrices of appropriate di-
mension, corresponds to an AR process applied to a finite
impulse response and has been used in [2].

C. State Space realization
We can also consider state space realizations of w of the

form

xt+1 = Fxt + Gεt+1 (16)
ŷt = Hxt (17)

where xt is the n-dimensional state and F ∈ R
n×n, G ∈

R
n×q, H ∈ R

N×n. Note that the state space form (16)–(17)
is different from the form considered in [18]; we have chosen
this form because of its convenience for our purposes. We
assume that the system is minimal, stable, i.e.

|λmax(F )| < 1 (18)

(where λmax(F ) denotes an eigenvalue of maximum modu-
lus) and mini-phase, i.e. the right side of (20) has no zeros
for |z| ≤ 1. The transfer function for (16)–(17) is given by

w(z) = HG +
∞∑

j=1

HF jGzj . (19)

Note that rk HG = q implies rk G = q. If (F,G, H) is
minimal, then the transfer function w has a zero for some
z0 if and only if the matrix

M(z) =
(

I − Fz −G
H 0

)
(20)

has rank less than n+q at z0. Starting with the power series
expansion (7), the form (16)–(17) is obtained by the “Akaike-
Kalman procedure” [19] from the equation⎛

⎜⎜⎜⎝
ŷt

ŷt+1|t
ŷt+2|t

...

⎞
⎟⎟⎟⎠

︸ ︷︷ ︸
Ŷt

=

⎛
⎜⎜⎜⎝

w0 w1 · · ·
w1 w2 · · ·
w2 w3 · · ·
...

...
. . .

⎞
⎟⎟⎟⎠

︸ ︷︷ ︸
H

⎛
⎜⎝

εt

εt−1

...

⎞
⎟⎠ (21)

where ŷt+r|t denotes the (best linear least squares) predictor
of ŷt+r given the infinite past ŷt, ŷt−1, . . . . The matrix H
is called the (block) Hankel matrix of the transfer function.
As is well known, every basis for the (finite dimensional)
space spanned by the (one-dimensional) components of Ŷt

in the Hilbert space of all square integrable random variables,
defines a minimal state. Let S ∈ R

n×∞ denote the matrix
selecting the first basis in terms of the components of Ŷt

from Ŷt. Then the equations

xt = SŶt (22)

S

⎛
⎜⎝

w1 w2 · · ·
w2 w3 · · ·
...

...
. . .

⎞
⎟⎠ = FSH (23)

G = S (w′
0, w

′
1, . . . )

′ (24)
(w0, w1, . . . ) = HSH (25)

(compare [20]) define a (minimal) state space system (16)–
(17) in echelon form. From now on, we mainly consider
echelon forms; every other minimal state is obtained by
premultiplying the echelon state by a constant nonsingular
matrix.

D. Static Factors

A static factor of the latent variables (ŷt) is a process (zt)
of lesser vector dimension, with the property that for some
constant matrix L, there holds ŷt = Lzt for all t. A minimal
static factor is one for which zt has least dimension. It is
obvious that xt itself is a static factor, but our interest is in
studying minimal static factors.

We note the standard result:
Lemma 1: Let ŷt be a stationary vector process. Then the

dimension of a minimal static factor is the rank, call it r, of
the zero-lag variance matrix E[ŷtŷ

′
t].

Proof: Suppose zt is a static factor, with ŷt = Lzt.
Then E[ŷtŷ

′
t] = LE[ztz

′
t]L

′, and it follows that there can be
no static factor of dimension less than the rank of E[ŷtŷ

′
t]. To

show that there is indeed a static factor with this dimension,
let M be any matrix with least number of columns such
that E[ŷtŷ

′
t] = MM ′. Notice that M is unique up to right

multiplication by an orthogonal matrix. Make the definition

zt = (M ′M)−1M ′ŷt (26)

which means that zt has dimension equal to the rank of
E[ŷtŷ

′
t] and has variance I . It is trivial to verify also that

ŷt = Mzt (27)

Thus zt is indeed a minimal static factor.
Observe that a minimal static factor is not required to have

a unit variance matrix. For any nonsingular R, Rzt with zt as
just defined is a minimal static factor (and indeed all minimal
static factors are obtained this way). Also, there is an infinite
family of minimal static factors of unit variance, obtained by
multiplying zt by an arbitrary orthogonal matrix.

Knowing H and xt, we can also construct a minimal
static factor. Let T be any nonsingular matrix such that
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HT = [H1 0] where H1 has full column rank. Since xt

has a nonsingular covariance, the fact that rk E[ŷtŷ
′
t] = r

means that rk H1 = r. A particular minimal static factor is
then defined by

z̄t = [I 0]T−1xt (28)

for it is trivial to verify that ŷt = H1z̄t, and z̄t has dimension
r. Evidently, n ≥ r ≥ q and xt is a minimal static factor if
and only if rk H = n. Another way to obtain a minimal static
factor is to select the first linearly independent components
of ŷt, and n = r holds if and only if ŷt+1|t, ŷt+2|t, . . . do
not contain further linearly independent components. Thus
in general we may write

S =
(

S1

S2

)
, S1 ∈ R

r×∞, S2 ∈ R
(n−r)×∞ (29)

where
zt = S1Ŷt. (30)

and xt is a minimal static factor if and only if all Kronecker
indices of H (see [18], chapter 2) are equal to zero or one.
The Kronecker indices equal to one define a static factor.
A minimal static factor is obtainable by a simple static linear
transformation of the latent variables ŷt and vice versa. This
means that, using the minimal static factor zt above as an
example,

zt = (M ′M)−1M ′w(z)εt = k(z)εt (31)

for some k(z) transfer function corresponding to the static
factors. As with w(z), k(z) has no poles and zeros in |z| ≤ 1.
It is also easy to show that a minimal state space realization
for zt is obtainable as {F,G, C} where

C = (M ′M)−1M ′H (32)

Since zt has the same dynamics as ŷt and is of smaller
dimension, modeling of (zt) is more convenient. As (zt) is
an ARMA process, ARMA identification procedures, such as
the autoregression-regression approach ([21], [22]) may be
applied to this case, as has been done in [23]. Here, however,
we deal with an autoregressive approach, which is simpler
and can be applied in a generic situation.

III. ZEROLESS TRANSFER FUNCTIONS AND
AUTOREGRESSIVE SYSTEMS

Of particular interest for us are zeroless transfer func-
tions, because, as argued below, tall transfer functions are
generically zeroless. As we will show, in this case the latent
variables may be represented by an AR system. However,
these AR systems differ from the usual ones, since they
may be singular in the sense that their driving white noise
may have a singular variance matrix. In this case, also the
static factors may be represented by an autoregression, and
again the variance matrix of the driving white noise may
be singular. We propose to use an AR model for the static
factors in order to avoid “redundant” dimensions. Such an
AR model will be obtained by solving the Yule-Walker
equations. These equations commence from a finite number
of second moments of the static factors (and thus of the latent

variables), they are linear in the unknown parameters and
they give the correct spectral factors. However, as opposed
to the usual case, for singular AR systems, the solutions of
the Yule-Walker equations may not be unique.

Definition 1: An N × q transfer function w(z) is called
zeroless if the numerator polynomials of the diagonal matrix
in its Smith-McMillan form (9) are all equal to one.
For N = q, the zeroless case is nongeneric; in the tall case
however, the zeroless case is generic. We have ([10]):

Theorem 2: Consider an N×q rational transfer function w
with a minimal state space realization (F,G, H) with state
dimension n. If N > q holds, then for generic values of
(F,G, H), the transfer function w is zeroless.

This can be seen from the fact that the zeros of w are the
intersection of the sets of zeros of the determinants of all
q × q submatrices of w. A more precise proof is given in
[10].
As is easily seen from (31), k(z) is zeroless if and only
if w(z) is zeroless. In the zeroless case, the numerator
polynomials of the diagonal matrix in the Smith-McMillan
form (9) are all equal to one and thus k− coresponding to
(10) is polynomial. Then the input εt is determined from a
finite number of outputs zt, zt−1, . . . , zt−L, for some L.

Note that rk H = n implies that w and thus k are zeroless.
This is easily seen from (20) since always rk G = q holds.
However, for zeroless transfer functions w, rk H < n may
hold; in other words, assuming that w(z) is zeroless is more
general than assuming rk H = n.

Theorem 3: Let (ŷt) satisfy Assumptions 1-3; then the
following statements for (zt) are equivalent:
(i) The spectral factors k of the spectral density fz of (zt)

satisfying the properties listed in Theorem 1 are zeroless
(ii) There exists a polynomial left inverse k− for k and thus

the input εt in (31) is determined from a finite number
of output values

(iii) (zt) is a stable AR process, i.e.

zt = e1zt−1 + · · ·+ epzt−p + νt (33)

where

det (I − e1z − · · · − epz
p)︸ ︷︷ ︸

e(z)

�= 0, |z| ≤ 1

νt is a zero mean white noise process with rk Σν = q,
Σν = E[νtν

′
t].

Proof: (i) ⇒ (ii) follows from Definition1 above. In
order to show (i) ⇒ (iii), we commence from an ARMA
representation for zt

ẽ(z)zt = f(z)εt (34)

where ẽ, f are relatively left prime. Since k(z) = ẽ−1(z)f(z)
is zeroless, the same holds for f(z). Now, as easily can be
seen, every zeroless tall polynomial matrix can be completed
by a suitable choice of a polynomial matrix g to a unimodular
matrix u = (f, g). Then

ẽ(z)zt = u(z)
(

εt

0

)
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and

u−1(z)ẽ(z)zt =
(

εt

0

)
(35)

gives an autoregressive representation, and premultiplying
(35) by ẽ−1(0)u(0) gives the desired form (33).

That (ii) implies (i) is straightforward and that (iii) implies
(ii) can be seen as follows: Let P satisfy

Σν = PP ′, P ∈ R
r×q, rk P = q (36)

Then premultiplying (33) by (P ′P )−1P ′ yields a k− of the
desired form.

As is well known, in the regular case, i.e. when Σν is
nonsingular, the matrices

Γm =

⎛
⎜⎜⎜⎜⎝

γ0 · · · · · · γm−1

... γ0

...
...

. . .
...

γ′
m−1 · · · · · · γ0

⎞
⎟⎟⎟⎟⎠ , (37)

(where γj = E[zt+jz
′
t]) are nonsingular for all m ∈ N and

e(z) is uniquely determined from the (population) second
moments of (zt) [18]. For singular AR systems, things are
more subtle.

Consider the following Yule-Walker equations (see [17]
pages 326-327):

(e1, . . . , ep)Γp = (γ1, . . . , γp) (38)
Σν = γ0 − (e1, . . . , ep)(γ1, . . . , γp)′ (39)

Formula (38) may be used to determine (e1, . . . , ep). Note
that in the case q < r, as opposed to the regular case
r = q, the matrix Γp+1 will be singular and the matrix
Γp may be singular, i.e. the components of the vectors
(z′t−1, . . . , z

′
t−p−1)

′ and (z′t−1, . . . , z
′
t−p)

′ will, or may be,
respectively, linearly dependent and thus the solution for
(e1, . . . , ep) may not be unique. However, by the projection
theorem, every solution determines the same zt|t−1 and νt.

The possible nonuniqueness of the solutions of the (gener-
alized) Yule-Walker equations can be seen from a description
of the class of observationally equivalent systems. The idea
is to relate the singular AR case to the ARMA case (see
[18]). We obtain the following result (in which we denote
by δ(e(z)) the degree of the polynomial matrix e(z)):

Theorem 4: (i) Every singular AR system with rk Σν =
q can be written as

e(z)zt = fεt, f ∈ R
r×q (40)

where (εt) is white noise with E[εtε
′
t] = Iq and where

e(z) and f are relatively left prime.
(ii) Let (e(z), f) be relatively left prime; then the class

of all observationally equivalent (ē(z), f̄) satisfying the
degree restrictions δ(ē(z)) ≤ p and δ(f̄) = 0, is given
by (

ē(z), f̄
)

= u(z)(e(z), f) (41)

where the polynomial matrix u(z) satisfies

det u(z) �= 0, |z| ≤ 1 (42)
u(0) = I (43)

δ(u(z)e(z)) ≤ p (44)
δ(u(z)f) = 0 (45)

In addition, (ē(z), f̄) is relatively left prime if and only
if u(z) is unimodular.

(iii) Let (e(z), f) be relatively left prime; then e(z) is unique
if and only if rk(ep, f) = r holds.
Proof: For (i) it only remains to show that (e(z), f) can

be chosen as relatively left prime. Assume that (e(z), f) are
not relatively left prime, then we can always find a relatively
left prime observationally equivalent system (ē(z), f̄(z)),
where the degree of f̄(z) is not necessarily zero. By Theorem
3, f̄(z) must be zeroless and thus can be extended to
a unimodular matrix. Premultiplying (ē(z), f̄(z)) by the
inverse of this unimodular matrix yields the desired result.
(ii) and (iii) are straightforward.

IV. THE YULE WALKER EQUATIONS

In this section we analyse the (generalized) Yule Walker
equations from the point of view of estimation of AR
systems. We propose in Theorem 5 a solution procedure
for the case where the population second moments (37) are
singular and show in Theorem 6 stability of the estimated
AR systems. Let ẑt be a consistent estimator of zt (for
N, T → ∞). Let γ̂j =

∑T
t=1 ẑt+j ẑ

′
t and let Γ̂p be defined

analogously. Finally define Γ̂s
p = OsΛsO

′
s where Λs consists

of the s largest eigenvalues, Os ∈ R
pr×s, Λs ∈ R

s×s.
Theorem 5: If rk Γp = s < pr holds, then the Yule

Walker estimator for the solution of (38) defined by

(ê1, ...êp) = (γ̂1, ..., γ̂p)OsΛ−1
s O′

s (46)

is a continuous function of γ̂0, ..., γ̂p if all eigenvalues of Γ̂p

are distinct.
Proof: As the eigenvalues and the corresponding suit-

able normalized eigenvectors of a symmetric matrix are
continuous functions of the entries of the matrix, the right
side of (46) is obviously a continuous function of the entries
of Γ̂p. The condition that all eigenvalues of Γ̂p are distinct
is imposed for convenience and can be generalized.

Remark 1: Even if Γp is singular, “typically” the corre-
sponding sample second moment, Γ̂p say, will not be singu-
lar. Nevertheless a truncation, setting the “small” eigenvalues
of Γ̂p equal to zero will give a numerically more reliable
procedure.

Theorem 6: (i) If rk Γp = pr holds, then the Yule
Walker estimator corresponding to (38) (i.e. when the γj

in (38) are replaced by γ̂j) yields a stable autoregression
(ii) For rk Γp = s < pr, the solution (46) corresponds to a

stable autoregression
Proof: (i) As we need to show det ê(z) �= 0, |z| ≤ 1 we

proceed as follows: Through row and column interchanges of
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Γp we rewrite (38) as Γ̃p(ep, . . . , e1)′ = (γp, . . . , γ1)′ with

Γ̃p =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

γ0 · · · · · · γ′p−1
.
.
. γ0

.

.

.

.

.

.
. . .

.

.

.
γp−1 · · · · · · γ0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

As can be easily seen, det ê(z) �= 0, |z| ≤ 1 is equivalent to
λmax(Ê) < 1 with

Ê =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 · · · · · · 0 ê′p
Ir 0 · · · 0 ê′p−1

0
. . .

. . .
.
.
.

.

.

.

.

.

. · · · Ir 0 ê′2
0 · · · 0 Ir ê′1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

or equivalent to postulate that the roots of

det(Ê − zIrp) (47)

are within the unit circle. Define Z

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 · · · 0 0
0 · · · 0 ẑ′1
.
.
. . . .

ẑ′2

ẑ′1
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
ẑ′T−p+1 · · · ẑ′T−1 ẑ′T

.

.

. . . .
0

ẑ′T 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and Y =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 · · · 0 ẑ′1
.
.
. . . .

ẑ′2

ẑ′1
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
ẑ′T−p+1 · · · ẑ′T−1 ẑ′T

.

.

. . . .
0

ẑ′T 0 · · · 0
0 · · · 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Considering the “thin” singular

value decompositions of Z = U1Σ1V
′
1 and Y = U2Σ2V

′
2

note that Σ1 = Σ2 =: Σ and V1 = V2 =: V can
be choosen because of Z ′Z = Y ′Y . Furthermore
U1 = (0, U ′)′ and U2 = (U ′, 0)′ can be choosen
because of the form of Z and Y. It is straightforward
to show that Ê = (Z ′Z)−1Z ′Y = V Σ−1U ′

1U2ΣV ′

holds. The roots of (47) are the same as the roots of
det[ΣV ′(Ê − zIrp)V Σ−1] = det(U ′

1U2 − zIrp). Since
one can show that a q with ‖q‖ = 1 exists which
fulfills |λmax(U ′

1U2)| = |q∗U ′
1U2q|, finally the proof

is completed by using the following straightforward
inequality |λmax(U ′

1U2)| ≤ max‖x‖=1|x∗U ′
1U2x| <

max‖x‖=1|x∗U ′
1U1x| = 1.

(ii) Defining Y and Z the same way as in (i) we set the
smallest singular values of Y and Z, which are “typically” not
zero (although rk Γp = s < rp) to zero. So we get the “very
thin” singular value decompositions of Z̃ = U1sΣ1sV

′
1s and

Ỹ = U2sΣ2sV
′
2s. As Y ′Y = Z ′Z still holds we once again

can choose Σ1s = Σ2s =: Σs, V1s = V2s =: Vs, U1s =
(0, U ′

s)
′ and U2s = (U ′

s, 0)′. As can be easily seen V V ′
−r =

(0, Irp), where V ′
−r is V ′ without its first r rows. Further-

more ê′ = (ê′p, . . . , ê
′
1)

′ = VsΣ−1
s U ′

1sU2sΣsV
′
s,−r(p−1) with

V ′
s,−r(p−1) defined the same way as V ′

−r. Finally, from the

eigenvalues of Σ̃V ′ÊV Σ̃−1, where Σ̃ =
(

Σs 0
0 Irp−s

)
and Ê = (V V ′

−r, ê), it can be seen that λmax(Ê) < 1 holds.

A related theorem dealing with population as opposed to
sample statistics will be included in an extended version of
this paper.

REFERENCES

[1] M. Forni, M. Hallin, M. Lippi, and L. Reichlin, “The generalized
dynamic factor model: identification and estimation,” The Review of
Economic Studies, vol. 65, pp. 453–473, 2000.

[2] M. Forni and M. Lippi, “The generalized dynamic factor model:
representation theory,” Econometric Theory, vol. 17, pp. 1113–1141,
2001.

[3] J. H. Stock and M. W. Watson, “Forecasting using principal compo-
nents from a large number of predictors,” Journal of the Americal
Statistical Association, vol. 97, pp. 1167–79, 2002.

[4] ——, “Macroeconomic forecasting using diffusion indexes,” Journal
of Business and Economic Statistics, vol. 20, pp. 147–62, 2002.

[5] T. J. Sargent and C. A. Sims, Business cycle modelling without
pretending to have too much a priori economic theory. Minneapolis:
Federal Reserve Bank of Minneapolis, 1977.

[6] W. Scherrer and M. Deistler, “A structure theory for linear dynamic
errors-in-variables models,” SIAM, J. on Control Optim., vol. 36(6),
pp. 2148–2175, 1998.

[7] G. Chamberlain, “Funds, factors and diversification in arbitrage pricing
models,” Econometrica, vol. 51(5), pp. 1305–1324, 1983.

[8] G. Chamberlain and M. Rothschild, “Arbitrage, factor structure and
meanvariance analysis on large asset markets,” Econometrica, vol.
51(5), pp. 1281–1304, 1983.

[9] B. D. O. Anderson and M. Deistler, “Properties of zero-free transfer
function matrices,” SICE, 2008.

[10] ——, “Generalized linear dynamic factor models a structure theory,”
CDC, 2008.

[11] ——, “Properties of zero-free spectral matrices,” forthcoming in IEEE
Tr.AC, 2009.

[12] D. Giannone, L. Reichlin, and L. Sala, “Monetary policy in real time,”
NBER Macroeconomic Annual 2004, 2004.

[13] J. H. Stock and M. W. Watson, “An empirical comparison of methods
for forecasting using many predictors,” Mimeo, Princeton University,
2004.

[14] M. Forni, D. Giannone, M. Lippi, and L. Reichlin, “Opening the
black box: structural factor models versus structural vars,” Manuscript,
Universite Libre de Bruxelles, 2005.

[15] M. Forni, M. Hallin, M. Lippi, and L. Reichlin, “The generalized dy-
namic factor model: consistency and rates,” Journal of Econometrics,
vol. 119, pp. 231–255, 2004.

[16] Y. A. Rozanov, Stationary Random Processes. San Francisco: Holden-
Day, 1967.

[17] E. J. Hannan, Multiple Time Series. Wiley, 1970.
[18] E. J. Hannan and M. Deistler, The Statistical Theory of Linear Systems.

New York: Wiley, 1988.
[19] H. Akaike, “Stochastic theory of minimal realization,” IEEE Transac-

tions on Automatic Control, vol. 19(6), pp. 667–674, 1974.
[20] M. Deistler, “Linear dynamic multiinput/multioutput systems,” in A

Course in Time Series Analysis, D. Pena, G. Tiao, and R. Tsay, Eds.
Wiley, 2001.

[21] D. Q. Mayne, K. J. Astrom, and J. M. C. Clark, “A new algorithm for
recursive estimation of parameters in controlled ARMA processes,”
Automatica, vol. 20(6), p. 751760, 1984.

[22] D. Poskitt, “Identification of echelon canonical forms for vector linear
processes using least squares,” The Annals of Statistics, vol. 20, pp.
195–215, 1992.

[23] C. Zinner, “Modeling of high-dimensional time series by generalized
dynamic factor models,” Ph.D. dissertation, Vienna University of
Technology, 2008.

A. Filler et al.: Generalized Linear Dynamic Factor Models - An Approach via Singular Autoregressions MoC1.4

1208


