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Latent variables

Latent variables are important in modern science, even everyday life, but
cannot be measured directly. Usually we assess them via a linear
combination of observable variables.

What? How to measure?

quality of life physical and mental health,
wealth, employment, education ...

physical health cholesterol & hemoglobin rates,
BMI, chronic disease, eyesight, hearing ...

wealth expenditures for food, clothes, leisure,
owner of car, dishwasher, real estate ...

solvency of a customer age, permanent employment, revenue,
prosecution for debts, color of the car ...
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Generalized Linear Latent Variable Models

How to construct an optimal linear combination explaining the most of the
data?
Generalized Linear Latent Variable Model (GLLVM):

h(f) is the multivariate density of q latent variables, f = (f1, . . . , fq)
T ;

g(xj |µ + Γf), j = 1, . . . , p is the conditional density of j-th manifest
variable given the latent ones q < p, a p × 1 vector µ and a p × q

matrix Γ are parameters of interest;

Assume that latent variables f explain all the systematic variability of
data i.e. xj |µ + Γf, j = 1, . . . , p are mutually independent. Then the
density of random vector x is

g(x) =

∫

Rq





p
∏

j=1

g(xij |µ + Γf)



 h(f)df

and we can use Maximum likelihood method to estimate parameters.
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Generalized Linear Latent Variable Models

Example 1: Manifest given latent and latent are normally distributed

h(f) =
1

(2π)
q
2

exp
{

−1
2 f

T f
}

, i.e. Nq(0, I)

g(x|f) =
1

√

|2πΨ|
exp

{

−1
2(x − µ − Γf)TΨ−1(x − µ − Γf)

}

,

i.e. Np(µ + Γf,Ψ)

Result: factor analysis model i.e.

x = µ + Γf + u, where f ∼ Nq(0, I), u ∼ Np(0,Ψ),

f and u are independent.
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Generalized Linear Latent Variable Models

Example 2:

x ∈ R, f ∼ N(0, 1), x | f ∼ Bernoulli(θ)

so x | f takes values 0, 1. A possible link function between the expectation
of x (which is θ) and µ+ γf is logit:

θ(f ) =
exp {µ+ γf }

1 + exp {µ+ γf }

and the probability mass function of x given f is

g(x |f ) = θ(f )x (1 − θ(f ))1−x .

Finally the marginal density of x is

g(x) =

∫

R

g(x |f )h(f )df = 1√
2π

∫

R

exp {xµ+ xγf − f 2/2}

1 + exp {µ+ γf }
df

The integral does not exist in closed form.
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Semi-Nonparametric distribution

Latent variables were traditionally supposed to be normally distributed due
mostly to the Central Limit Theorem. It is not always appropriate.
In our work we propose an approach based on a family of
”Semi-NonParametric” (SNP) distributions :

h(f) = P2
K (f − τ )φ(f | τ , σ2Iq), with f, τ ∈ R

q,

PK (f) =
∑

0≤i1+...+iq≤K

ai1...iq f
i1
1 . . . f

iq
q ,

ai1...iq are such that h(f) is a valid density function,

φq(f | τ , σ2Iq) is the density of Nq(τ , σ2Iq).

This densities can approximate any smooth enough density arbitrarily close
(Gallant and Nychka (1987)). This approach was already used by Chen,
Zhang, and Davidian (2002) for random effects in Generalized Linear
Mixed Models.
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Semi-Nonparametric distribution
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Figure: Some particular cases for K = 1 (SNP1) and 2 (SNP2) of univariate
densities of the form h(f ) = P2

K (f )φ(f ).
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SNP GLLVM

If
h(f) = P2

K (f)φ(f | 0, I),

and
g(x|f) = φ(x | µ + Γf,Ψ)

then g(x;µ,Γ,Ψ) has closed form for any K !
We implemented the estimation by

SNP1 ML, i.e. assuming that latent density is (a0 + a1f )2φ(f )

SNP2 ML, i.e. assuming that latent density is (a0 + a1f + a2f
2)2φ(f ).

Analytical gradient and hessian are used to boost the optimization which is
very sensitive to the initial values.
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Simulations

We explore the properties of proposed estimators on 200 simulated

samples of size 200 from the model:





x1

x2

x3



 =





γ1

γ2

γ3



 f +





u1

u2

u3



 where

ui ∼ N(0, ψi ), ψ1 = ψ2 = ψ3 = 1,

γ1 = 1.4, γ2 = 1.8, γ3 = −1,

and we generate f from 3 different distributions:

standard normal distribution N(0, 1);

mixture of normals with distribution 0.7N(2, 1) + 0.3N(−2, 0.25)

SNP2 distribution with density
(

− 1√
2

cos 0.7 + f sin 0.7 + f 2 1√
2
cos 0.7

)2
φ(f )
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Simulations

Standard normal latent variable
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Simulations

Mixture of normals latent variable

Latent variable is generated from the mixture of normals
0.7N(2, 1) + 0.3N(−2, 0.25)
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Simulations

SNP2 latent variable

Latent variable is generated from the SNP2 density with distribution
(

− 1√
2
cos 0.7 + f sin 0.7 + f 2 1√

2
cos 0.7

)2
φ(f )
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Simulations

Surprisingly, the FA MLE of loadings and uniquenesses are not sensitive at
all to the wrong specification of the latent variable distribution. But our
approach allows to visualize the latent variable distribution.
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Simulations

Estimated densities 1

Estimated latent densities when the true is normal and mixture of normals.
(a), (b) Solid line is the average of estimated densities for fits preferred by
HQ, shaded area is the point wise estimated confidence envelope, dashed
red line is the true density.
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Simulations

Estimated densities 2

Simulations results based on 200 data sets with SNP2 latent: (a)
Densities estimated by SNP2. (b) Solid curve is the average of SNP2
estimated densities, dashed red curve is the true density.
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Discussion

Discussion

Remarkable ”robustness“ of FA to the wrong specification of the latent
variable distribution. Similar studies in mixed linear models confirm
this result.

This ”robustness“ does not hold in cases when distribution of manifest
given the latent is discontinuous (Bernoulli for example). We are
investigating this case.

Our approach offer a deeper insight on the behavior of latent
variables. Indeed the non-normality of the estimated latent density
can indicate presence of outliers, non-linearity, heterogeneity of
population or just inconvenience of normally distributed latent.

Different fits (Nor, SNP1, SNP2) can be compared using information
criterions such as AIC, BIC or HQ.
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Discussion
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