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GENERALIZED LINEAR MIXED MODELS - AN OVERVIEW 

by W.W. Stroup and S.D. Kachman 

Department of Biometry, University of Nebraska-Lincoln 68583-0712 

Abstract: Generalized linear models provide a methodology for doing regression and ANOV A-type 

analysis with data whose errors are not necessarily normally-distributed. Common applications in 

agriculture include categorical data, survival analysis, bioassay, etc. Most of the literature and most of 

the available computing software for generalized linear models applies to cases in which all model effects 

are fixed. However, many agricultural research applications lead to mixed or random effects models: 

split-plot experiments, animal- and plant-breeding studies, multi-location studies, etc. Recently, through 

a variety of efforts in a number of contexts, a general framework for generalized linear models with 

random effects, the "generalized linear mixed model," has been developed. 

The purpose of this presentation is to present an overview of the methodology for generalized 

mixed linear models. Relevant background, estimating equations, and general approaches to interval 

estimation and hypothesis testing will be presented. Methods will be illustrated via a small data set 

involving binary data. 

Key Words: Generalized Linear Model, Mixed Model 

1. INTRODUCTION 

It is often of interest to agricultural researchers to conduct experiments involving random model 

effects and response variables whose distributions are not normal. For example, consider an experiment 

to compare 2 different treatments, conducted at several randomly selected locations. At each location, 

subjects are assigned at random to treatment 1 or treatment 2. Subjects are subsequently evaluated to 

determine whether their response to the treatment is favorable or unfavorable. Letting nij be the number 

of subjects assigned to the ith treatment at the jth location and Yij be the number of subjects having 

favorable outcomes for the ith treatment at the jth location, the response variable of interest would be Pij 

= Yij I nij' the proportion of favorable outcomes. A model for this experiment is 

P·· = II + T· + L + TL· IJ r I J IJ' 

where J1. is the intercept, Ti is the ith treatment effect, Lj is the jth location effect, and TLij is the treatment

location interaction. The location and location-by-treatment effects are random, because locations are 

randomly sampled. 

If the response variable in the above model were normally distributed, the experiment could be 

analyzed using the following analysis of variance. 

Source 

TRT 

LOC 

TRT*LOC 

error 

EMS 

a2 + k]aTL
2 + (h 

a2 + k20"TL2 + k30"L2 

a2 + k]O"TL2 

a2 

The constants k1' k2' and k3 are determined by the nij . One could test for treatment effect using F = 
MS(fRT)/MS(LOC*TRT). 
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On the other hand, if treatment and locations were both fixed effects and the response variable was 

Pij' as defined above, then the experiment could be analyzed using standard linear model methods for 

categorical - in this case binomial - data (see, for example, Agresti, 1990). Linear models for categorical 

data are special cases of generalized linear models. These models allow ;(- statistics for TRT and 

TRT*LOC to be computed, but do not allow TRT*LOC variation to be used in the construction of a test 

for TRT if locations are random. The test for TRT in the standard categorical linear model corresponds 

to using the F-ratio MS(trt)/MS(error) in the above ANOVA - and is equally inappropriate. 

The model given above illustrates a problem agricultural researchers often face. That is, the 

experiment is most naturally described by a mixed model, whose variance structure must be taken into 

account in order to obtain appropriate test statistics and standard errors, but the response variable is not 

normal, meaning that standard mixed model methods are not applicable. Other examples in which mixed 

models and non-normal response variables occur are animal- and plant-breeding experiments with random 

sire, dam, or entry effects and response variables such as calving difficulty or disease-resistance ratings, 

split-plot experiments with response variables such as insect count or botanical composition, etc. 

Neider and Wedderburn (1972) introduced the generalized linear model as a generalization of 

standard linear models. They showed that regression and analysis of variance methods could be applied 

to any response variable whose distribution belongs to the exponential family. Comprehensive 

presentations of the generalized linear model are given'in such texts as McCullagh and Neider (1989), 

Dobson (1990), and Aitkin, et. al. (1989). Despite its versatility, the usefulness of the generalized linear 

model as presented in these texts is limited by the fact that it is strictly a fixed-effects model. 

A number of articles presenting methods for specific mixed models, mostly with binary data, 

appeared in the 1980's - Harville and Mee (1984), Gilmour (1985), Beitler and Landis (1985). Zeger, 

et. al. (1988), Breslow and Clayton (1993), and Vonesh and Carter (1993) presented more comprehensive 

approaches to extending the generalized linear model to the random effects case. However, these articles 

are oriented toward biomedical applications, limiting their applicability to specific issues of interest to 

agricultural researchers. The purpose of this paper is to provide an overview of the generalized linear 

model with random effects in a framework that addresses statisticians who work with agricultural 

problems. 

This paper will be organized in five sections, the first being the introduction. The second section 

will contain a brief introduction to the generalized linear model. The third section will contain a brief 

review of the mixed model with normal errors. The fourth section will present the "marriage," that is, 

the basic elements of the generalized linear mixed model, the estimation procedure, and the primary tools 

for statistical inference. The tifth section will contain an example using the two-way model with binary 

data described above. The data used in this example appear in Beitler and Landis (1985). 

2. THE GENERALIZED LINEAR MODEL 

At the risk of creating confusion, we will use the acronym "GLM" to refer to the generalized linear 

model. GLM is also used as an acronym for the more restrictive, normal errors "general linear model," 

and as the name of a well-known statistical computing procedure. However, we agree with an anonymous 

comment to the effect that it is time to begin to refer to the normal errors model as the "specific linear 

model." GLM is the standard jargon among people who work with generalized linear models. 

The central idea of the generalized linear model (GLM) can be understood by first considering the 

traditional "general linear model." This model is 
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84 Kansas State University 

y = X{j + e, 

where y is the vector of observations, X is a matrix of known constants, (j is the parameter vector, and 

e is the error vector, distributed N(O,Iu2). The main role of the linear model is to characterize E(y) by 

the linear combination of parameters X{j. 

The GLM also characterizes E(y) by X{j. However, because of the probability distribution of the 

errors, it often is more reasonable to model a function of E(y). Letting Jl. = E(y), the function 11 = g(p.) 

is modeled by X{j in the GLM. Following Neider and Wedderburn's (1972) terminology, g(p.) is called 

the link junction - it "links" Jl. to the linear model X{3. 

Generalized linear models can be applied to any data whose error distribution belongs to the 

exponential family. The basic form of the log-likelihood function for members of the exponential family 

is 

L(a,~y) y 'a - b ( a) + c~ ,4> ) 
a (4)) 

Where ex is the canonical, or natural, parameter, 1J is a scale parameter, and a(-), b(-), and c(-) are 

specific functions whose form depends on the particular distribution. 

Common examples include the normal, poisson, and binomial distributions, whose log-likelihoods, 

expressed in the above form, are given with their expected value and variance in Table 1. 

Because it is linear with respect to the observation vector, ex is often a desirable link function, i.e. an 

appropriate function of E(y) to model by X{3. While the natural parameter is not the only useful form of 

the link function, it does suggest a starting point. We will discuss this point further in the example in 

section 5. 

For members of the exponential family, the GLM is thus 

TJ = X{3, 

where TJ = g(p.) is the link function and Jl. = E(y). The function h(TJ) = Jl. ,where hO = g-l(-), is called 

the inverse link. In many applications, induding the generalized linear mixed model, it is more useful, 

and often necessary, to define the GLM in terms of the inverse link rather than the link function. 

The parameter vector, (3, can be estimated using maximum likelihood. Neider and Wedderburn 

(1972) showed that the maximum likelihood estimate can be obtained by solving the generalized least 

squares equations 

where R = Var(y) , 
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H. diag (oh (r,) ) 
ar, 

and 

1 . y- J..L. Hr, 

Inference for the GLM uses three basic tools. 

85 

1. For linear combinations of k' /3, where k' is a vector, k'S is distributed approximately N (k' /3, 

k'(XH'R1HX)-lk). This is used to obtain confidence intervals for k' tJ and to test hypotheses of the 

form flo: k'tJ = k'tJo' Typical k'tJ of interest are treatment means, specific regression parameters, 

treatment differences, and contrasts. 

2. The Wald statistic, (K'fi)' [K'(XH'R-1HXY1K]"1 (K'fi), where K' is not necessarily a vector, is 

distributed approximately X2rank(K)' This result is used to test hypotheses of the form Ho: K'l} = O. 

Typical K'tJ of interest are the hypothesis of no overall treatment effect, no overall main effect or 

interaction, where a treatment or factor has more than one degree of freedom. 

3. The deviance, 2{ln[L(amax,y)] - In[L(aXJl,Y)]}, is a generalization of the MS(error) in standard 

ANOV A and the likelihood ratio lack of fit statistic in a contingency table. It is distributed 

approximately ;C (N-rank(X))' It is used to evaluate the lack of fit of the generalized linear model. The 

difference between deviances for various models may be used to construct likelihood ratio tests. 

This method is often used as an alternative to the Wald statistic. 

Methods for evaluating model fit, influence, adequacy of assumptions, appropriateness of link 

function, etc., for GLM's are discussed in detail in texts such as McCullagh and Neider (1989), Dobson 

(1990), and Aitkin, et. al. (1989). These texts discuss a variety of applications, including normal errors 

models - i.e. standard regression and ANOV A - log-linear, logistic, and probit models for categorical 

data, proportional hazards models for survival analysis, etc. Recent developments include quasi-likelihood 

and pseudo-likelihood methods, discussed in McCullagh and Neider (1989), which permit working with 

certain distributions that are not members of the exponential family. The generalized linear mixed model 

draws on some of these methods. 

3. THE MIXED MODEL 

The mixed model is well-known in statistics. Eisenhart (1947) identified three types of linear 

models: the fixed effects, random effects, and mixed model. Most standard statistical texts, e.g. Snedecor 

and Cochran (1990) and Steel and Torrie (1980), introduce aspects of the mixed model. Henderson 

developed much of what is now commonly considered mixed model methodology, most importantly the 

mixed model equations and their properties and the method of "best linear unbiased prediction," or 

"BLUP." Although much of the work was done in the 1940's and 1950's, the most complete reference 

is Henderson (1984a). A number of researchers, most notably Harville (1976, 1977) and Miller (1977), 

have provided theoretical support for mixed model methods. Recent mixed model articles include 

McLean, Sanders and Stroup (1991), and Robinson (1991). Also of interest is the Southern Regional 

cooperative Series Bulletin, Mixed Models in Agriculture and Related Disciplines (1989), which provides 

several examples of applications in agriculture. 
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We will present only a brief introduction to the mixed model, focusing on details relevant to 

understanding the generalized linear mixed model. 

The general form of the mixed model is 

y = XiS + Zu + e, 

where y is the vector of observations, 

X is a matrix of known constants associated with the fixed effects, 

is is a vector of fixed effects, 

Z is a matrix of known constants associated with the random effects, 

u is a vector of random model effects, and 

e is a vector of random errors. 

The joint distribution of the random models effects and errors is 

Thus E(y) = Xfi and Var(y) = ZGZ' + R. For the purposes of connecting the mixed model and the 

generalized linear model, it is useful to note that the conditional expectation of y, E(ylu) = Xfi + Zu, 

and the conditional variance is Var(y I u) = R. 

The model effects are estimated by solving the mixed model equations 

When G and R are known, the resulting solution for is is BLUE and the resulting solution for u is BLUP. 

In typical applications, the components of G and R must be estimated. There are many methods to 

estimate variance and covariance components. See Henderson (1984b) or Searle, et. a!. (1992) for a 

detailed treatment of this subject. Most mixed model statistical software permits estimating the 

components of G and R by method of moments or, more commonly, restricted maximum likelihood 

(REML). 

Inference for the mixed model is based on estimable junctions, i.e. functions of the form K' {S' such 

that estimability criteria (see Searle, 1971) are satisfied, or predictable junctions, i. e. functions of the 

form K'{S' + M'u, such that K'{S' is estimable. Examples of estimable functions include treatment means, 

differences and contrasts. Examples of predictable functions, or "best linear unbiased predictors," include 

animal breeding values, predicted patient outcomes in clinical trials, and predicted performance at a 

specific location in multi-location trials. The basic tools for inference are analogous to those for 

generalized linear models. Let L' = [K' M'], and e = [{S', u]. Then 

1. When L is a vector, L'(eA 

- 8) is approximately distributed N(L'8, L'CL). This result in useful for 

confidence intervals and simple tests of hypotheses. 
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2. When L is a matrix and G and R are known, the Wald statistic, 

A A 

(L' 8)' (L 'CL)"I (L' 8) 

may be used to test Ho: L'8 = O. The Wald statistic is distributed approximately x: rank(L)' 

3. For estimated G and R, the F statistic 

A A 

(L'8)'(L'CL)"I(L'8) / rank:(L) 

has an approximate F distribution and is used to test Ho: L'8 = O. In many mixed model 

applications, the random effects lead to expected mean squares which imply appropriate ratios of 

mean squares (or linear combinations of mean squares) for testing various hypotheses. The split

plot ANOYA is a common example. For balanced data and tests defined on K'/J only (Le. M=O), 

the above F-statistic is identical to the ratio determined from the expected mean squares. The 

numerator degrees of freedom correspond to rank(L) and the denominator degrees of freedom equal 

the degrees of freedom of the corresponding denominator mean square or can be obtained using 

Satterthwaite's approximation. Jeske and Harville (1988) discuss this topic in detail. McLean and 

Sanders (1988) examined the small sample properties of the Satterthwaite approximation. 

The mixed model may be used in a variety of applications. Split-plot models, models for multi

location experiments, quantitative genetics models, etc., are common application of mixed models. Since 

G and R are general, models with correlated errors, e.g. auto regression models and models with spatial 

variability, are special cases of the mixed model. The main limitation of the mixed model is the 

requirement of normally distributed errors. We turn our attention now to the generalized linear mixed 

model, which drops this requirement. 

4. THE GENERALIZED LINEAR MIXED MODEL 

The generalized linear mixed model (GLMM) involves tixed effects and normally distributed 

random model effects as in the "traditional" mixed model, but the error distribution is more general. 

Errors may have any distribution belonging to the exponential family. 

To describe the basic features of the generalized mixed linear model, let 

p. = E(yiu), 

R = Yar(y i u), 

u - N(O,G), and 

11 = g(p.), 

where g(p.) is the link function. Then the generalized linear mixed model has the form 

11 = XB + Zu, 

where X, 13, Z, and u are defined as before. As shown in Breslow and Clayton (1993), the model effects 

13 and u can be estimated by solving a generalized form of the mixed model equations: 
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[
X'H'Ro!ix XH'R°IHZ J[Pj 
Z'H'R°'tIX Z'H 'R~HZ • G 1 U 

where 

Kansas State University 

[X'H Ry 'J 
Z'HRy' 

The generalized mixed model equation is obtained from solving the joint quasi-likelihood function of the 

observations and random model effects ° From Breslow and Clayton (1993), the quasi-likelihood has the 

form 

L ( y , u ) • -.!..- [In I G I • u 'G lU ] t Y 'e - b (e - 'L In (2 1& ) 

2 4~ 2 

The reader is referred to Breslow and Clayton for more detail ° For a more general treatment of the 

method of quasi-likelihood, see McCullagh and NeIder (1989). 

It is worth noting that the generalized mixed model equations provide an overall framework for linear 

models. That is, solutions for other linear models are special cases of the generalized mixed model 

equations. For example, if the identity link, 1] = JL, is used, then H = I, yielding the "traditional" mixed 

model equations given in section 3. If 1] is general, but the model has only fixed effects, then we have 

the weighted least squares solution equations for the GLM given in section 2. The identity link and the 

fixed effects model yields the solution equations for generalized least squares, (X'R01X)iJ = X'R"ly. 

Finally, the identity link, fixed effects model with R=Iu2 yields the normal equations for ordinary least 

squares, X'XiJ = X'y. 

The components of G and R are usually unknown in practical applications. The components of R 

are often functions of JL, as in the binomial and Poisson cases. The components of G and components of 

R that are not functions of JL may be estimated using REML-like procedures, that is, using the same 

computing formula that would be used in REML estimation of variance components for normal errors 

mixed models. Thus the procedure for obtaining estimates of 13 and u is iterative, beginning with starting 

values for G and R, estimating 13 and u, using these to estimate the components of G and R, etc. 

One way to conceptualize the GLMM is to imagine a set of fixed parameters, iJ, and random 

variables, u which are NID(O,G). These yield a linear predictor, 1] = XiJ + ZU. The expected value of 

the observations, JL = E(y I u), is related to the linear predictor by the inverse link, h(1]) = JL. The 

observations actually obtained are the sum of the conditional expectation and noise, i.e. y = JL + noise. 

The noise has some distribution belonging to the exponential family, and has variance V(y I u) = Ro 

Because the inverse link, h(1]) is not necessarily linear, it makes more sense to fit a linear model to 1] than 

to fit a model directly to y. Once the model is fit to 1], predictions can be made about y through the 
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inverse link, or model effects can be tested or compared. 

Inference on the GLMM uses the same basic ideas as the traditional mixed model. That is, 

inference is based on estimable functions, K' {J, or predictable functions, K'3 + M'u. The rationale for 

specific estimable or predictable functions is identical to that used in section 3 for the mixed model. Basic 

results are given as follows. As in section 3, let L' = [K' M'], and e' = [3' u']. 

1. When L is a vector, L'O is distributed approximately N(L'e, L'CL), where C is the generalized 

inverse of the right hand side of the generalized mixed model equations. 

2. The Wald statistic for Ho:L'e = 0 is 

Its distribution is approximately x2 rank(L)' 

While considerable further work needs to be done to evaluate the small-sample properties of these 

approximations, the same general guidelines as presented in section 3 for the normal errors mixed model 

appear to apply. That is, they are reasonable when M=O, but less so otherwise. We now present an 

example of the GLMM. 

5. AN EXAMPLE 

This example uses data which appear in Beitler and Landis (1985). This was an early article on 

mixed models for binary data. The method they present can be thought of as a precursor to the 

generalized linear mixed model. 

The data, given in Table 2, involved two treatments and eight randomly selected clinics. At each 

clinic, patients were assigned to receive either treatment 1 or treatment 2. Patients were classified as 

having favorable or unfavorable response to the treatment they received. Thus the response variable was 

Pij, as described in section 1. Beitler and Landis used the model 

as described in section 1. Thus, we have a mixed model with a non-normal response variable. In 

generalized linear model terms, Beitler-Landis model used the identity link, since they predict the 

conditional expectation of Pij given the random effects Lj and TLij directly. This point will be discussed 

in more detail below. 

To fit a generalized linear mixed model to these data, the following items must be identified: 

• The error distribution 

• The link function, or inverse link 

• The form of G 

The error covariance matrix, R, is a consequence of specifying the error distribution. The link function 

determines the form of the H matrix and y* vector used in the generalized mixed model equations. 
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For this example, the response variable is the sample proportion, Pij = fij / nij' the number of 

favorable outcomes divided by the number of subjects for the ijth treatment-clinic combination. Thus the 

error distribution is binomial divided by nu. The conditional expectation of Pij given the random effects 

is the probability of a success for treatment i and clinic j. Denote the conditional expectation as 7rij = 
P{success I trt i, clinic j} = E(Pij I u). The variance-covariance matrix R = Var(Pij I u) is thus diagonal 

and its elements are 7r··(l-7r .. )/n .. 1J U .'U. 

The link function may be chosen from a number of alternatives. Typical alternatives include 

1. The identity link, 71ij = 7rij 

The advantage of using the identity link is its simplicity. Agricultural researchers often find the 

identity link attractive because it appears to be easier to understand. However, there is no guarantee 

that the estimated 7rij will be between 0 and 1, making interpretation problematic. Also, because 

the binomial distribution is not linear with respect to Pij' the identity link typically yields a poorer 

fitting model than the alternatives. 

This is the canonical link for the binomial distribution. That is, the link function is the natural 

parameter of the binomial distribution; hence, the binomial is linear with respect to the log it. 

Estimated 7rij are bounded between 0 and 1. The main disadvantage of the logit link results from 

the conventions for journal article reporting preferred by most agricultural researchers. They wish 

to report results in terms of treatment means or differences among 7rij' This requires converting 

model estimates and their standard errors using .the inverse link. Because the inverse link is not 

linear, estimable or predictable functions defining differences and other contrasts cannot be 

converted directly. 

3. The probit link, 71ij = cp'I(7ri), or 7rij = cp(l1i) , where cp(.) is the normal c.d.f. 

This model assumes there is some underlying, unobservable, quantitative, normally distributed 

process 71ij' When this process is below some threshold value (see Figure 1), the outward, 

observable response is a "failure," or an unfavorable outcome. When l1ij is above the threshold the 

observed response is a "success" or favorable outcome. Like the logit link, the resulting estimated 

7rij are bounded between 0 and I. Also, reporting results in terms of estimated 7rij requires 

considerations analogous to the logit link. The concept of an underlying normal process gives the 

probit link an advantage in certain applications. For example, in animal breeding, much of the 

theory in quantitative genetics is based on the normal distribution. Using the probit link, this theory 

can be applied to binary data without modification. 

The form of the G matrix follows from the assumption that clinic effects, the cj are i.i.d. normal 

with variance uc2 and treatment-by-clinic effects are i.i.d. normal with variance U TC
2 • The G is as given 

in Table 3. 

Table 2 gives the best linear unbiased predictors (BLUP's) of all treatment-clinic combinations 

using the logit link function. These are computed using the predictable function l1ij = m + Ti + cj + TCij' 

Estimated 71ij are computed using the solution to the generalized mixed model equation and the REML-like 

variance component estimator described above. The estimated 7rij are then computed using the inverse link 

exp(71ij)/[1 + exp(1']ij)]' The main advantage of the BLUP is that it utilizes information about clinic and 
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Table 2 gives the best linear unbiased predictors (BLUP's) of all treatment-clinic combinations 

using the logit link function. These are computed using the predictable function l1ij = m + Ti + cj + TCij' 

Estimated 71ij are computed using the solution to the generalized mixed model equation and the REML-like 

variance component estimator described above. The estimated 7rij are then computed using the inverse link 

exp(71ij)/[1 + exp(1']ij)]' The main advantage of the BLUP is that it utilizes information about clinic and 
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treatment-clinic variance to obtained more refined predictions of the likelihood of favorable outcomes than 

would be obtained from naive point estimates. For example, for clinic 5, treatment 2, 0 favorable 

outcomes are observed out of 10 subjects. However, because of the relatively low number of subjects, 

o is not a reasonable ijj; the BLUP of 0.14, however, is reasonable. 

Table 4 gives the estimated variance components, the estimated 1rj. (the likelihood of a favorable 

outcome for the ilb treatment over the entire population of clinics) and the Wald statistic to test the 

equality of 1ri. for the 2 treatments. These were computed for the identity as well as the probit link 

functions. The results obtained by Beitler and Landis (1985) are given as well for comparison purposes. 

Their results are based on modelling 1rjj directly, i.e. 1rij = m + Tj + cj + TCij, and is equivalent to the 

GLMM with an identity link. However, they used a method of moments estimate of the variance 

components and make somewhat different assumptions about the error variance. In essence, they assume 

that error variance is constant across treatment, whereas the GLMM assumes that the conditional error 

variance is unique for each treatment-clinic combination. The results are similar except that the Wald 

statistic for the GLMM is much higher. A more systematic investigation would be needed to see if this 

pattern holds or is just an isolated occurrence. The GLMM with the logit link provides a much lower 

Wald statistic and different estimates of the 1l"i.' Model diagnostics as described by McCullagh and Neider 

indicate that the logit link is a better model than the identity link and the results are thus more believable. 

6. SUMMARY AND CONCLUSIONS 

The generalized linear mixed model provides a unifying framework for linear models. Depending 

on one's perspective, it allows the extension of generalized linear models to accommodate random effects, 

or it allows the extension of mixed model methods to accommodate non-normal errors. The generalized 

linear model, the mixed model, and the traditional "general" linear model are all special cases of the 

GLMM. 

Inference on the GLMM involves straightforward extension of methods used for generalized and 

mixed linear models. These methods can be used for models with correlated errors, non-scaler link 

functions, and, in principle, can be extended to more general distributions for random model effects. 

However, the inference methods used depend on asymptotic properties whose small sample 

behavior is poorly understood at this time. This is especially true of inference involving predictable 

functions; the behavior of estimable functions is better understood. Much more study in this area is 

needed. 

Finally, although the GLMM clearly extends the applicability of linear model methods far beyond 

traditional statistical practice, little work exists studying the implications for the design of experiments. 

Optimal theory of design is based almost exclusively on fixed effects, i.i.d. normal errors models. While 

it may be that many standard designs will prove to be optimal - or nearly so - for experiments for which 

the GLMM is appropriate, there is obviously no guarantee. This is clearly an area in need of a great deal 

more investigation. 
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Figure 1. Probit Unk Function 
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TABLE 1. Examples of common probability distributions from the exponential family 

DISTRIBUTION LOG - LIKELIHOOD E(y) 

Normal 
I I l 

II , I' - I' fl + !! [ In (21tcr ) ] _ ll... 
u" 2 2a1 

Poisson 
yl [ In(l.) ] - Iy - I' [ In (y!) ] l. 

Binomial 

,,[ in (1 ~ p) ] + ,.' [ In (1 - p) ] + I' [ In ~) ] p 

--- ---------------_ ..... _-

Var(y) a 

1til II 

diag 
In(l.) 

(1) 

diag[p(l - p)] In(l~P) 

~ 
"5 ..... 
~ 
~ 
\::l .... 
~. .... 
~. 

S· 
::t.. 

00 
'"'I 

~. 

~ 
~ 

~ 

TABLE 1. Examples of common probability distributions from the exponential family 

DISTRIBUTION LOG - LIKELIHOOD E(y) Var(y) ex 

Normal 
,Y 'f' - f"Ji n II 

'" 
10'1. 

'" + - [ In (21tgl ) ] -
~ 2 2~ 

Poisson 
yl [ 10(1) ] - ly - I' [ In (y!) ] l. 

diag 
In(A) 

(1) 

Binomial 

, I [ In C ~ p) ] + ,,, [ ln (1 - p) ] + l' [ In ~) ] 
diag[p(l - p)] In(l~P) P zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Conference on Applied Statistics in Agriculture

Kansas State University

New Prairie Press

https://newprairiepress.org/agstatconference/1994/proceedings/7



96 Kansas State University 

Table 2. Data and BLUP's using GLMM with probit link for Beitler & Landis example 

Clinic Treatment N Y (# fay) GLMM - BLUP II 

1 1 36 11 .35 

2 37 10 .23 

2 1 20 16 .80 

2 32 22 .66 

3 1 19 14 .65 

2 19 7 .43 

4 1 16 2 .15 

2 17 1 .08 

5 1 17 6 .28 

2 12 0 .14 

6 1 11 1 .12 

2 10 0 .06 

7 1 5 1 .24 

2 9 1 .13 

8 1 6 4 .77 

2 7 6 .64 
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Table 3. Element of the generalized linear mixed model for Beitler & Landis data, logit link 

Distribution: Binomial 

Link logi/ • In (_1t_) 
1 - 1t 

InveTseLink: h(ri) • exp(T]) 

1 • exp(T] ) 

Model 

. [1t 0. - 1t) 1 R.diag 
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H· diag [aha,(~ ]. diag [1t ( 1- ~ 1 
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Table 4. 

Kansas State University 

Estimates and test results for Beitler & Landis example 

I I 
Beitler & Landis GLMM Identity Link: GLMM 

Method 

BLUE - 7r1 0.42 0.41 

BLUE - 7r2 0.29 0.28 

Wald X2 5.35 7.06 

(Ho: 7r1 = 7(2) 

(Jc2 0.07001 0.07452 

(JTC2 0.0019 1 0.00042 

2 

Identity link:, method of moments estimate 

Identity link, REML-like estimate 

3 Logit link, REML-Iike estimate 

Logit Link: 

0.40 

0.24 

5.14 

1.99323 

0.049P 
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