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Abstract 
The general factorization of a linear-phase parauni- 

tary filter bank (LPPUFB) is revisited and we introduce 
a class of lapped orthogonal transforms with extended 
overlap (GenLOT). In this formulation, the discrete co- 
sine transform (DCT) is the order-l GenLOT, the lapped 
orthogonal transform is the order-:! GenLOT, and so on, 
for any filter length which is an integer multiple of the 
block size. All GenLOTs are based on the DCT and have 
fast implementation algorithms. The degrees of freedom 
in the design of GenLOTs are described and design exam- 
ples are presented along with some practical applications. 

I Introduction 
The discrete cosine transform (DCT) [l] is used in most 
of the international standards for image compression 
and for several signal processing tasks. However, the 
DCT sometimes leads to discontinuities across the block 
boundaries after the processed signal is inversed trans- 
formed [l]. Recently the lapped orthogonal transform 
(LOT) [2] was developed as a competitive alternative be- 
cause of its extended basis functions which overlap across 
traditional block boundaries, thus eliminating the block- 
ing effect. Also, the LOT has good performance and 
possesses a fast implementation algorithm based on the 
DCT for which several algorithms, VLSI chips, and com- 
puter programs have been developed [l]. It is well known 
that the DCT and the LOT are particular choices of FIR 
linear-phase paraunitary filter banks (LPPUFB) [3, 61. 
Linear-phase filter banks have been studied extensively 
and several design approaches can be found in the liter- 
ature (see, for example, [3-51). However, fast implemen- 
tation algorithms were usually ignored. Very recently, 
a minimal structure to implement all LPPUFB (where 
the filters' lengths are the same) was developed [7, 81. 
We will introduce a particular simplification leading to 
a class of LPPUFB which we call the generalized linear- 
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phase lapped orthogonal transforms (GenLOTs). The 
GenLOTs have a fast implementation algorithm based 
on the DCT, and both DCT and LOT can be regarded 
as special cases. 

In terms of notation, the following conventions are 
adopted: I,, : n x n identity matrix. J, : n x n counter- 
identity or reversing matrix. 0, : n x n null matrix. ( ) R  
: column and row reversal of a matrix. For example, if 
A is a n x n matrix, then AR = JnAJn. 

I1 LOT 
The DCT is implemented by segmenting the input signal 
into blocks of M samples and transforming each one in- 
dependently. The LOT allows overlap of the basis func- 
tions. As an example for M = 8 ,  the implementation 
algorithm for the LOT is shown in Fig. 1. It is well- 
known [6] that the LOT is a M-channel uniform FIR fil- 
ter bank, where the filters have length L = 2 M  and their 
coefficients are formed by the coefficients of the basis 
functions. Hence, as the basis functions are symmetric, 
the LOT can be regarded as a linear-phase filter bank. 
It is also easy to  show that the corresponding filter bank 
is also paraunitary, so that the LOT is a particular LP- 
PUFB [6]. 

I11 Generalized LOT 
Consider a uniform maximally-decimated M-channel 
FIR filter bank for which we impose some restrictions. 
First, we assume that M ,  the number of channels, is even 
and that the filters have linear-phase. Second, we assume 
the filters have length L which is an integer multiple of 
M as L = N M .  Third, the filter bank is assumed to  be 
paraunitary. Hence [3, 61, we have gi(n)  = fi(L - 1 - n), 
for 0 5 i 5 M - 1 and 0 5 n 5 L - 1 .  Also, from [7, 81, 
we know that M / 2  filters (in analysis or synthesis) have 
symmetric impulse responses and the other M / 2  filters 
have anti-symmetric impulse responses. 
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Alternatively, we can develop the filter bank by segment- 
ing the signal into blocks of M samples. Let the input 
signal z (n)  be expressed by its M polyphase components 
zi(m) [3], as zi(m) = z(mM + i) where 0 5 i 5 M - 1 .  
For a given instant m the M polyphase samples form the 
m-th block of M samples. The subband signals yk(m) 
are directly related to  the polyphase components by a 
multi-input multi-output (MIMO) discrete transfer ma- 
trix with FIR filter entries [3] known as the polyphase 
transfer matrix (PTM). In a PR-LPPUFB, for analysis 
and synthesis, the MIMO PTM is given by E(z) and 
E(z) = ~ - ( ~ - ' ) E ~ ( z - l ) ,  respectively. Under the as- 
sumptions on L ,  M ,  and on the filter symmetry, we know 
that [7, 81 E(%) for the LPPUFB of degree N - 1 can be 
decomposed as a product of orthogonal factors and de- 
lays as 

E(%) = SQTN-~A(Z)TN-~A(Z). . *A(t.)ToQ ( 2 )  

(3) 

(4) 

S o  and S1 can be any M / 2  x M / 2  orthogonal matrices, 
and Ti are M x M orthogonal matrices described as 

Ai Bi 
Ti = [ Bi Ai 1 .  

We will abbreviate the notation for ( 2 )  as 

Let 

where U, and Vi can be any M / 2  x M / 2  orthogonal 
matrices. Note that Ti can be expressed as [7, 81 

Ti = WQiW (9) 

for Ai = (U; +Vi)/2 and Bi = (Vi - V i ) / 2 .  

to 
Then, it is easy to see that SQTN-~ can be simplified 

As UN-1 and SO are generic orthogonal matrices, and 
the product SoUN-1 is also a generic orthogonal matrix, 
we can discard the term SO without any loss of generality. 
The same is valid for SI with regard to V N - ~ .  Therefore, 
we get SQTN-~ = Q N - ~ W  and (7) reduces to  

where Eo = @oWQ is a general M x M orthogonal ma- 
trix with symmetric basis functions, i.e., the PTM of 
order 0 of a LPPUFB. Since an order-n PTM leads to 
filters of length ( n  + 1 ) M ,  a LPPUFB with filter length 
nM + M can be obtained from one with filter length n M  
by adding a stage to the PTM of the latter. If En(z) 
denotes an order-n PTM, then we can state that 

En ( z )  = Kn (%)En- I ( z )  (12 )  

K ~ ( z )  = O;Wh(z)W. (13) 
where 

Therefore, for any N > 1 ,  any PTM of a LPPUFB can 
be expressed as 

E(z) = KN-~(Z)KN-~(Z) *..Kl(z)Eo (14) 

As a remark, it can be shown that the stage Ki(z) can 
be expressed as 

K ~ ( z )  = QiWiA(z)W2 (15) 

where W1 and W2 can be either W or WR, indepen- 
dently. 

The GenLOT is defined as a LPPUFB obeying (14), 
where Eo is chosen to  be the DCT matrix [l], which we 
denote as D. The output of the DCT is, then, separated 
into groups of even and odd coefficients. The GenLOT 
with N - 1 stages after the DCT has basis functions 
(filters) with length L = N M  and has its PTM defined 
as 

E(z) = KN-~(%)KN-~(%)...K~(~)D. (16) 

The implementation flow-graphs for the analysis and syn- 
thesis sections are shown in Fig. 2.  In this figure, each 
branch carries M / 2  samples. 

The class of GenLOTs, defined in this way, allows us 
to view the DCT and LOT as special cases, respectively 
for N = 1 and N = 2. The degrees of freedom reside 
on the matrices Ui and Vi which are only restricted to 
be real M / 2  x M / 2  orthogonal matrices. Thus, each one 
can be parameterized into a set of M ( M  - 2 ) / 8  plane 
rotations, (or less, for constrained solutions). 



279 

IV Design Example 
The LOT can be obtained from the DCT, by direct de- 
termination of @ I  [6]. In this case, U1 and V1 are deter- 
mined in a general form, without obeying any particular 
structure. Optimization, in this case, is carried solely to 
determine an approximation to the matrices U1 and Vi , 
in order to find a faster implementation algorithm [SI. 
However, for N > 2, there are no techniques available 
to find all matrices directly. The design of a Gen- 
LOT is the determination of the free parameters which 
are the angles for the plane rotations. The solution space 
is searched through optimization routines, in such a way 
as to minimize a particular cost function. However, due 
to the highly non-linear relationships among the angles 
and the cost functions, there is no guarantee to obtain a 
global minimum. All GenLOT examples presented here 
were obtained using unconstrained non-linear optimiza- 
tion and simplex search, using the routines provided by 
MATLAB version 4.0 . 

Features that can be exploited in the design of Gen- 
LOT are the transform coding gain (GTc) [9], the atten- 
uation in the stopband region of each filter, or a combi- 
nation of both. Other features can be considered as well. 
Thus, the cost function can be selected as the inverse of 
any of these functions. In our example we will use ex- 
amples designed for maximum GTC, assuming the input 
signal as a zero mean AR( 1) signal with adjacent sam- 
ple correlation coefficient 0.95 (i.e., its autocorrelation 
function is rz (n)  = 0.951”l). 

The basis functions of a GenLOT for M = 8, opti- 
mized for maximum GTC are shown in Fig. 3, for N = 4 
( L  = 32) and N = 5 ( L  = 40). We tested the per- 
formance of the GenLOT using the maximum GTC de- 
sign and AR(1) signal model in image coding. The 
coder algorithm used is the JPEG baseline system [lo], 
merely replacing the 8 x 8 DCT by a 8 x 8 GenLOT 
( N  > 1), obtained through separable implementation of 
the one-dimensional transform, as is the case for the two- 
dimensional DCT. For the 8 bit/pel 256 x 256-pels image 
“Lena” we tested the JPEG coder comparing the Gen- 
LOTS with N = 1 (DCT), N = 2 (optimal LOT[2, s]), 
N = 4, and N = 5, for bit-rates rangingfrom 0.3 through 
1.0 bit/pel. The difference in signal-to-noise ratio (in dB) 
among the GenLOTs and the DCT is shown in Fig. 4. 

V Conclusions 
The general factorization of LPPllFBs is revisited lead- 
ing to a new perspective from which the GenLOTs 
emerged as a trivial particularization. One of the most 
interesting properties is that the procedure to increase 
the overlap (filter length) is identical for any order n ,  by 
applying a post-processing stage K, ( z ) .  The elegance 
of the factorization and the fact that it is a linear-phase 

filter bank with a fast algorithm based on the DCT are 
important attributes for GenLOTs. 

The large number of degrees of freedom forced us to 
use non-linear optimization procedures in the design of 
GenLOTs. This is not very desirable because we can- 
not guarantee a global minimum of the cost function, 
but only a local one. However, for most of our tests, 
several different initializations led to  the same resulting 
angles, even when very distant starting points were used. 
This leads us to believe that the optimized solutions are 
reasonably stable. Further research will concentrate on 
design issues aimed a t  specific applications. 
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Figure 1. Flow-graph for implementation of the LOT, with 
blocks of M = 8 samples. 

. .  .-’ 

Figure 2. Flow-graph for implementation of GenLOTs. Each 
branch carries M I 2  samples and E and 0 stand for the 
even and odd transform coefficents, respectively, of output 
(analysis) and input (synthesis) for both DCT and GenLOT. 
Even and odd coefficients also correspond to symmetric and 
anti-symmetric basis functions (which are the filters’ impulse 
responses), respectively. p is a scaling factor incorporating 
all scaling factors present in W, so that p = 2-(N-1). From 
top to bottom, we have the diagrams for analysis, synthesis, 
analysis stage K: (for M = 8), and synthesis stage K,” (for 
M = 8). 
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Figure 3. Basis functions fk(n) (filters’ impulse responses) 
of a GENLOT with M = 8 designed for maximum GTC. 
Examples for L = 40 (left) and L = 32 (right) are shown. 
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Figure 4. SNR (in dB) difference among GenLOTs and the 
DCT for several bit-rates using test image “Lena”. 


