
Generalized Linear Quadratic Control

The MIT Faculty has made this article openly available. Please share 
how this access benefits you. Your story matters.

Citation Gattami, A. “Generalized Linear Quadratic Control.” IEEE
Transactions on Automatic Control 55.1 (2010): 131–136. Web. ©
2010 IEEE.

As Published http://dx.doi.org/10.1109/tac.2009.2033736

Publisher Institute of Electrical and Electronics Engineers

Version Final published version

Citable link http://hdl.handle.net/1721.1/70982

Terms of Use Article is made available in accordance with the publisher's
policy and may be subject to US copyright law. Please refer to the
publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/70982


IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 55, NO. 1, JANUARY 2010 131

Fig. 3. FEC code rate adaptation: throughput for different NACK thresholds.

that the system does not unnecessarily switch to low-rate code, and it
operates with the (220,200) one. The curve corresponding to � � ����,
� � � yields the closest approximation to the envelope. We observe
that ACK thresholds are much larger than NACK thresholds. Small
NACK thresholds (a few NACKs) imply that, in case of link quality
deterioration the system must respond fast and decrease rate so that
no throughput loss is incurred. The order of ACK thresholds (few to
several hundreds) implies a conservative policy when link conditions
improve, since rate increase is decided after a large number of ACKs.

IV. CONCLUSION

We studied the problem of optimal transmission rate control in a
two-state model of a wireless link with two control actions, in which
link state information is partially available to the controller. For time-
invariant, yet unknown link state, we showed that the optimal policy, in
the sense of maximizing link throughput has a threshold structure. We
discussed how the analysis can provide valuable insights and guide-
lines for designing practical threshold based rate adaptation policies
under general link conditions. There exist several directions for fu-
ture study. Different variants of the problem require different assump-
tions. For instance, adoption of a Poisson packet arrival assumption
necessitates the introduction of a random, exponential distributed slot
duration. A discounted version of the problem would give more em-
phasis to the tradeoff between probing the state and reaping the ben-
efits of transmission. For the corresponding problem with more states
and control actions, the threshold structure for the optimal policy does
not hold. The analogy with the multisequential probability ratio test
[13] could be investigated so as to derive close-to-optimal policies. Fi-
nally, the problem with time-varying link state, an instance of a restless
multi-armed bandit, warrants further investigation.
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Generalized Linear Quadratic Control

Ather Gattami

Abstract—We consider the problem of stochastic finite- and infi-
nite-horizon linear quadratic control under power constraints. The calcu-
lations of the optimal control law can be done off-line as in the classical
linear quadratic Gaussian control theory using dynamic programming,
which turns out to be a special case of the new theory developed in this
technical note. A numerical example is solved using the new methods.

Index Terms—Linear quadratic control.

I. INTRODUCTION

In this technical note we consider the problem of linear quadratic
control with power constraints. Power constraints are very common in
control problems. For instance, we often have some limitations on the
control signal, which we can express as ���� � �. Also, Gaussian
channel capacity limitation can be modeled through power constraints
([7]). There has been much work on control with power constraints,
see [2], [4], [6], [10]. Rantzer [5] showed how to use power constraints
for distributed state feedback control. What is common to previously
published papers is that they solve the stationary state-feedback infi-
nite-horizon case using convex optimization. Output-feedback is only
discussed in [6], where the quadratic (power) constraints are restricted
to be positive semi-definite. In [1], [9], a suboptimal solution to linear
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quadratic control problems with linear constraints on the control signal
and state. The piecewise linear controller is obtained by solving a se-
quence of finite-horizon problems, where each problem is posed as a
static quadratic program. The aim of this technical note is to give a com-
plete optimal solution to the non-stationary and finite-horizon problem
of linear systems, including time-varying, with power constraints. The
solution is obtained using dynamic programming. A solution of the
stationary infinite-horizon linear quadratic control problem is derived
from the finite-horizon results. Also, the output-feedback problem with
non-convex quadratic constraints is solved.

The outline of the technical note is as follows. We first start with
notation used in this technical note. In Section III, we introduce a
novel approach for solving the state-feedback linear quadratic control
problem. Relations to the classical approach are discussed in Sec-
tion IV. The new approach is then used in Section V to give the main
result of the technical note, the finite horizon state-feedback linear
quadratic control with power constraints. We show how a solution
to the constrained infinite-horizon control problem can be derived
in Section VI. The constrained output-feedback control problem is
solved in Section VII. A numerical example is given in Section VIII.

NOTATION

We write � � � �� � �� to denote that � is positive definite
(semi-definite).� � � �� � � � means that��� � � ���� � ��.
�� � denotes the trace of the square matrix �. � denotes the set of
� � � symmetric matrices.

II. OPTIMAL STATE FEEDBACK LINEAR QUADRATIC

CONTROL THROUGH DUALITY

In this section we will derive a state-feedback solution to the clas-
sical linear quadratic control problem using duality. This method will
be used to solve the problem of linear quadratic optimal control with
power constraints. Consider the linear quadratic stochastic control
problem

���
�

��
� ����������

�

���

���

�
����

����

�

�
����

����

�	
��� �� ��� � �� � ����� �	���� � 
���

�
����� ��� � �� � � � �

�
���
� ��� � �����

���� � �������� � � � � ����� (1)
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Let � � � � � �, where the blocks of � are dimensioned such that
����� � � ����� . The system dynamics implicate the following
recursive equation for the covariance matrices  ���
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The initial condition ����� � ������� ��� � � can be written as
� ����� � � . We conclude:

Proposition 1: The linear quadratic problem (1) is equivalent to the
covariance selection problem
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In particular, it is convex in  ���� � � � �  ���.
The dual problem of (2) is given by
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and����� � � � � ���� � � are the Lagrange multipliers. Thus, the dual
problem can be written as
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for � � �� � � � � ���. Here,	��� plays the role of the Hamiltonian of
the system. The duality gap between (2) and (3) is zero, since Slater’s
condition is satisfied for the primal (and dual) problem (see [3] for a
reference on Slater’s condition). Now for the optimal selection of the
dual variables ����, we must have 
�� � ���� � �, and
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�
����� � � (6)

because otherwise, the value of the cost function in (3) becomes infi-
nite.

To maximize the cost in (3), ���� is chosen equal to
��, ���� �

��, and ���� is chosen to maximize������ subject to the constraint
(6).

Now

�
�
����� �

�

�
���� � � � � �

���� �

� �
�


�


� �� � �� ��� � �� �� � �

�
����� � ����
�� ����� � ��� �
�	

����� � ����
�
�	 ����� � ��� �
		

�

Now the matrix

���� � �
�
��� � ����
�� ���� (7)

with

��� � ����� �
�
��� � ��� �
		 ���� (8)

and ���� such that
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fulfills (6) or equivalently fulfills the inequality
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and any other matrix � with ��� � ������ violates the inequality
in (10). Hence, the choice of ���� given by (7) is optimal.

Theorem 1: The dual problem of (1) and (2) is given by
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The problem (11) can be solved dynamically by sequentially solving
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for � � �� � � � � � , with ��� � �� � �.
With this optimal choice of the multipliers����� � � � � ����, the dual
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and ��� is given by (8). The matrix ���� is of the form
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In general, for any given matrix ��� � �, we can choose � as
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and the optimal cost is given by �

���������. Now we have found
the covariances, it is easy to see that the optimal control law
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where ���� is, as before, given by (9).
Theorem 2: The optimal solution of the covariance selection

problem (2) is given by the equations in (13). The corresponding
optimal control law is given by (14).

Remark 1: We could have assigned covariance matrices other than
the identity matrix for the initial value of the state ���� and the dis-
turbances ����, and the solution would be similar to the case treated.
We could also have treated a time-varying system with time-varying
quadratic cost functions. The only change is that we replace � with
����, � with ����, etc.

III. RELATIONS TO CLASSICAL LINEAR QUADRATIC CONTROL

The covariance selection method developed in the previous section
is very closely related to the classical way of calculating the optimal
state-feedback control law. Consider the dual variable ����. At each
time-step �, ���� was chosen to be
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��. This value of ���� is exactly the quadratic matrix for the cost to

go function from time-step � to	 , given by �� ����������� (see e.g.,
[8]).

Now we will take a closer look at the optimal cost. In the pre-
vious section, we obtained the cost �
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that the cost becomes

������
����� �

�

���

������
������

For������� ��� � � and������� ��� � � , we get the cost obtained
in the previous section. Since
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We see that the cost ��� ����������� is due to the initial value ����,
and ���

��� ��
� ������������� is the cost caused by the disturbance

������������ .
Having realized that the cost can be expressed as a quadratic func-

tion of the uncertainty represented by ���� and ������������ , the dual
(maximin) problem can be seen as a game between the controller and
nature’s choice of uncertainty.

IV. OPTIMAL STATE FEEDBACK CONTROL WITH POWER CONSTRAINTS

In this section we consider a linear quadratic problem given by (1),
with additional constraints of the form
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for � � �� � � � � 	 � �, � � �� � � � �� . Note that we do not make any
other assumptions about �� except that it is symmetric, �� �

��	.
Note also that the covariance constraints in (15) are linear in the ele-
ments of the covariance matrices 
 ���, and hence convex.

The dual problem, including the covariance constraints above, be-
comes
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where ����� � � and����, the Hamiltonian of the system, is given by
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The dual problem (16) is finite if and only if
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The duality gap is zero, since Slater’s condition is satisfied for the
dual problem (16) (see [3]). Just like in the previous section, for every
time-step � and for fixed values of �����, we solve
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��� �������. Now for any fixed values of �����,
������ is maximized for
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and any other matrix � with ��� � ������ violates the inequality
in (18). Hence, the choice of ���� given by (19) is the optimal that is
obtained through the eigenvalue problem (18). With the optimal values
of ���� and �����, the dual problem (16) becomes
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where the matrix ���� is given by
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with� � ���������������� and� � ����������������.
The optimal covariances � ��� are obtained just like in the previous
section, by taking
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where 
��� is the solution of (21). The problem above can be
solved efficiently using primal-dual interior point methods (see [3,
pp. 609]), where iteration is made with respect to the dual variables
����� 	 	 	 ��� � ��, � � �� 	 	 	 �� .

V. INFINITE-HORIZON LINEAR QUADRATIC CONTROL

PROBLEM WITH POWER CONSTRAINTS

Consider the infinite-horizon linear quadratic control problem
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The solution to this problem is easily obtained using the results for
the finite-horizon problem in the previous section. We have seen that
the optimal choice of ���� is given by (19). When the control system
is stationary, we have �
��� ���� � �. Thus, when � � �, the
convex optimization problem of the cost in (18) becomes
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The optimal control law is then given by ���� � �
����, where 
 is
the solution to ���� ���� 
 � ���� ���

��.
Theorem 3: The dual of the infinite-horizon control problem (23) is

given by (24). The optimal value of (24) is equal to the optimal value of
the primal problem (23). The optimal control law is given by ���� �
�
����, where 
 solves ���� ���� 
 � �������

��.
Remark 2: The result above is very similar to previous results ob-

tained for the continuous-time infinite-horizon control problem with
power constraints (see [2]).

VI. OPTIMAL OUTPUT FEEDBACK CONTROL

The problem of optimal output feedback control will be treated in
this section. The solution will be observer-based using the optimal
Kalman filter.

The optimization problem to be considered is given by
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We make the following assumptions:
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Consider the standard Kalman filter (see [8])
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� ��� is the covariance matrix of the error ����� � ����� �����. Now
define the innovations
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The covariance matrix of the innovations is given by
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Define
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Then
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Since ����� is the error obtained from the Kalman filter, we have that
�������� ��� � � for � � � and ���� � ������� 	 	 	 � ����� implies
that �������� ��� � �. Hence
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Therefore, minimization of  ��� �� is the same as minimizing
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since nothing can be done about the sum
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which is a constant. We also have the inequality
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Since the value of������� ��� is known, we can define the new con-
stant ������ � ������������ ��� to obtain the equivalent inequality
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Thus, our output feedback problem is equivalent to the following
problem:
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We see that we have transformed the output feedback problem to a state
feedback problem, which can be solved as in the previous sections. We
have obtained

Theorem 4: The optimal output feedback problem (25) is equiv-
alent to the static feedback problem (34), where ����� is the optimal
estimate of ���� obtained from the Kalman filter given by (26) with
� ��� as the covariance matrix of the estimation error ���� � �����.
The covariance matrix �������� is calculated according to (30)–(32),
and ������ � ������������ ���.

VII. EXAMPLE

Consider the following scalar stochastic linear quadratic control
problem:
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Note first that
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Also, ���� � ��������� can be written as
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We have now the weighting matrices �, �����, and �����. The
optimal control law of the optimization (35) can be calculated ef-
ficiently using the methods presented in Section V. It is given by
�� � ��������� and �� � ������. The minimal cost is 4.3013,
compared to the cost of the unconstrained problem (i. e. without the
third constraint in (35)) which is 4.1. We can also check that the
quadratic constraints are satisfied; ���� � ���������� � ������, and
���� � ���������. Now consider the stationary problem
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The solution to the problem above is obtained easily by posing it as a
set of LMI’s, as in equation (24). The minimal cost is 1.6666, which is
obtained using �� � �����.

VIII. CONCLUSION

We have considered the problem of stochastic linear quadratic con-
trol under power constraints. The calculations of the optimal control
law can be done off-line as in the classical linear quadratic Gaussian
control theory using dynamic programming.
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