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Abstract

The look-ahead estimator is used to compute densities associated with Markov
processes via simulation. We study a framework that extends the look-ahead esti-
mator to a much broader range of applications. We provide a general asymptotic
theory for the estimator, where both L1 consistency and L2 asymptotic normality
are established. The L2 asymptotic normality implies

√
n convergence rates for L2

deviation.

1 Introduction

Simulation allows researchers to extract probabilities from otherwise intractable mod-
els. In some cases the random variables being simulated have distributions that can be
∗The authors gratefully acknowledge helpful comments from Manuel Arellano, Fumio Hayashi,

Hidehiko Ichimura, Albert Marcet, Enrique Sentana and Steve Stern.
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represented by densities, and the researcher seeks to construct, via simulation, approx-
imations to these densities. This problem arises frequently in operations research, eco-
nomics, finance and statistics. (See, for example, Henderson and Glynn (2001), Brandt
and Santa-Clara (2002), Danielsson (1994), or Gelfand and Smith (1990)).

In the process of computing densities via Monte Carlo, the two steps are (i) simulate
the relevant variables, and (ii) produce density estimates from the simulated observa-
tions. Our interest is in the second step. In this step, parametric estimation is problem-
atic, as the parametric classes of these densities are generally unknown or nonexistent.
Nonparametric density estimates are more robust, but converge at a slower rate and
degrade quickly as the dimension of the state space increases.

An alternative method of constructing densities from simulated observations is to use
conditional Monte Carlo. An important example is the look-ahead estimator of Hen-
derson and Glynn (2001), which has applications such as computing stationary densi-
ties of Markov processes. Similar ideas have appeared in other strands of the litera-
ture under different names. For example, Gelfand and Smith (1990) contains a related
method. Brandt and Santa-Clara (1995) and Pedersen (1995) independently proposed
a method of simulated maximum likelihood based on conditioning ideas. (All of these
methods are special cases of Henderson and Glynn’s look-ahead estimator.)

In this paper, we study a generalized look-ahead estimator that implements condi-
tional Monte Carlo density estimation with correlated samples. Our setting incorpo-
rates the look-ahead estimator and useful extensions. We prove global consistency and
a functional central limit theorem under minimal assumptions. From the functional
central limit theorem it follows that the L2 deviation between the true and computed
densities is OP(n−1/2), independent of the dimension of the state space.

To reiterate the contributions of this paper, we:

1. extend the look-ahead estimator to incorporate a significantly wider range of ap-
plications, and

2. provide a more complete asymptotic theory, with a focus on minimal assump-
tions and global (i.e., norm) deviation between the estimator and the target den-
sity.

In the process, we connect the concept of the look-ahead estimator to the more general
problem of conditional Monte Carlo density estimation.

One way to phrase the nature of the extension in point (i) is as follows: The basic look-
ahead estimator can be used to compute distributions of the state variable of a Markov
process. The generalization considered here can compute the distributions of random

2



or nonrandom functions of the state variable—in particular, any random variable that
can be related to the state variable of the Markov process via a conditional density. For
example, if volatility of returns to holding an asset is modeled as Markovian, then the
look-ahead estimator can be used to compute the stationary density of volatility. The
generalized look-ahead estimator we consider here can be used to compute not only
the distribution of volatility, but also that of other variables correlated with volatility,
such as returns themselves.1

2 Definitions

Let (Y, Y , µ) be a σ-finite measure space, and let (Ω, F , P) be a probability space. A
Y-valued random variable is a measurable map Y from (Ω, F ) into (Y, Y ). We use
the symbol L Y to denote the law (i.e., distribution) of Y. We say that Y has density g
if g : Y→ R is a measurable function with

L Y(B) := P{Y ∈ B} =
∫

B
g dµ for all B ∈ Y

In most applications, either Y ⊂ Rk, Y is the Borel sets, and µ is Lebesgue measure, or
Y is countable, Y is the set of all subsets, and µ is the counting measure. (In the latter
setting, g is a probability mass function on Y.)

For p ∈ [1, ∞] we let Lp(µ) := Lp(Y, Y , µ) be the Banach space of p-integrable real-
valued functions on Y.2 The norm on Lp(µ) is given by

‖g‖p :=
{∫

gpdµ

}1/p
(g ∈ Lp(µ))

with ‖g‖∞ being the essential supremum. If Y is countably generated,3 then Lp(µ) is
separable whenever p < ∞. If q ∈ (1, ∞] satisfies 1/p + 1/q = 1, then Lq(µ) can be
identified with the norm dual of Lp(µ). We define

〈g, h〉 :=
∫

gh dµ :=:
∫

g(x)h(x)µ(dx) (g ∈ Lp(µ), h ∈ Lq(µ))

1See sections 4 and 5 for more discussion of this example. Note also that Henderson and Glynn (2001)
consider generalizations of the basic look-ahead idea, but on a less systematic level than the treatment
here.

2As usual, functions equal µ-almost everywhere are identified.
3Y is called countably generated if there exists a countable family A of subsets of Y such that A

generates Y .
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In the sequel, we consider random variables taking values in Lp(µ), where p ∈ {1, 2}.
An Lp(µ)-valued random variable F is a measurable map from (Ω, F ) into Lp(µ).4

The expectation EF of F is defined as the unique element of Lp(µ) such that

E〈F, h〉 = 〈EF, h〉 for every h ∈ Lq(µ)

where E is the usual scalar expectation. If E‖F‖p is finite, then EF exists. EF is also
called the Bochner-Pettis integral of F.5 An Lp(µ)-valued random variable G is called
centered Gaussian if, for every h ∈ Lq(µ), the real-valued random variable 〈G, h〉 is
centered Gaussian on R.

A stochastic kernel (or Markov kernel) P on measurable space (X, X ) is a function P : X×
X → [0, 1] such that B 7→ P(x, B) is a probability measure on X for all x ∈ X, and
x 7→ P(x, B) is X -measurable for all B ∈ X . A discrete-time, X-valued stochastic
process (Xt)t≥0 is called P-Markov if P(x, ·) is the conditional distribution of Xt+1 given
Xt = x. The t step transitions are given by Pt, where

Pt(x, B) :=
∫

Pt−1(x, dx′)P(x′, B) and P1 := P

A probability measure φ on X is called stationary for P if

φ(B) =
∫

P(x, B)φ(dx) for all B ∈ X

Note that if φ is stationary, (Xt)t≥0 is P-Markov and L X0 = φ, then (Xt)t≥0 is itself
(strict sense) stationary.

P is called ergodic if it has a unique stationary distribution φ, and Pt(x, ·) converges to
φ in total variation norm for every x ∈ X. If this case, for every P-Markov process
(Xt)t≥0 and every measurable h : X→ R with

∫
|h|dφ < ∞, we have

1
n

n

∑
t=1

h(Xt)→
∫

h dφ P-almost surely as n→ ∞ (1)

P is called V-uniformly ergodic if, in addition, there exist a measurable function V : X 7→
[1, ∞) and nonnegative constants λ < 1 and L < ∞ satisfying

sup
|h|≤V

∣∣∣∣∫ h(x′)Pt(x, dx′)−
∫

h(x′)φ(dx′)
∣∣∣∣ ≤ λtLV(x) for all x ∈ X, t ∈N

4Measurability requires that F−1(B) ∈ F for every Borel subset B of Lp(µ). By the Pettis measur-
ability theorem, if Lp(µ) is separable, then a sufficient condition is Borel measurability of Ω 3 ω 7→
〈F(ω), h〉 ∈ R for every h in the dual space Lq(µ). This condition is easily verified in the applications
that follow, and hence further discussion of measurability issues is omitted.

5For more details, see, e.g., Bosq (2000).
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(If V can be chosen identically equal to 1, then the left-hand side becomes the total
variation distance between Pt(x, dx′) and φ, while the right hand side is independent
of x. This is the uniformly ergodic case.) Under the V-uniform ergodicity assumption,
the central limit theorem can be established for a broad class of functions. V-uniform
ergodicity has been shown to hold in a range of applications in operations research,
finance, economics and time series analysis.6

3 Methodology

Let ψ be a density on measure space (Y, Y , µ), where the σ-algebra Y is countably
generated and µ is σ-finite. Here ψ is the target density that we wish to compute. Let
(X, X ) be a measurable space, and φ be a distribution (i.e., probability measure) on
(X, X ). Let q = q(· | ·) be a measurable map from Y×X into R+ such that y 7→ q(y | x)
is a density on (Y, Y , µ) for each x ∈ X. Suppose further that ψ can be decomposed in
terms of q and φ, in the sense that

ψ(y) =
∫

q(y | x)φ(dx) for all y ∈ Y (2)

In order to simulate the target density ψ, we assume the existence of a decomposition
(2) such that

1. The conditional density q can be evaluated, at least numerically.
2. There exists a stochastic kernel P on (X, X ) such that φ is the unique stationary

distribution of P.
3. We can simulate P-Markov time series (Xt)n

t=1 given X0 = x0 ∈ X.

In this setting, we define the generalized look-ahead estimator (GLAE) of ψ as

ψn(y) =
1
n

n

∑
t=1

q(y |Xt) where (Xt)
n
t=1 is P-Markov (3)

Examples are presented below. The simplest case is where direct IID sampling from φ
is feasible. (This is obviously a special case, since IID draws are also Markov.) Letting
(Xt)n

t=1 be such a sample, we can form ψn as in (3). The estimator (3) is very natural in
this setting because we then have

Eq(y |Xt) =
∫

q(y | x)φ(dx) = ψ(y) for all t ∈ {1, . . . , n}

6See, e.g., Meyn and Tweedie (2009), Kamihigashi (2007), Kristensen (2008) or Nishimura and
Stachurski (2005).
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Assuming finite second moments, this tells us immediately that ψn(y) is unbiased and√
n-consistent for ψ(y).

To understand why incorporating Markov structure on the simulated process (Xt) is
important, suppose now that direct IID sampling from φ is infeasible. The Markov
chain Monte Carlo solution is to construct a kernel P such that φ is the stationary dis-
tribution of P, and then generate P-Markov time series. Inserting this series into (3)
gives an implementation of the GLAE.

3.1 Examples

The GLAE in (3) generalizes the stationary density look-ahead estimator of Hender-
son and Glynn (2001).7 To illustrate this point, consider a P-Markov process tak-
ing values in the measure space (Y, Y , µ), where P has the density representation
P(x, B) =

∫
B q(y | x)µ(dy) for some conditional density q : Y × Y → R+. Suppose

that a unique stationary distribution exists. In this setting, it is well-known that the
stationary distribution can be represented by a density ψ on Y, and, moreover, the
density ψ satisfies

ψ(y) =
∫

q(y | x)ψ(x)µ(dx) for all y ∈ Y (4)

Suppose that q is tractable but ψ is not, and one wishes to compute ψ. Although there
are several techniques for doing this, the stationary density look-ahead estimator of
Henderson and Glynn (2001) is perhaps the most attractive. The look-ahead estimator
of ψ is defined as ψn(y) = n−1 ∑n

t=1 q(y |Xt), where (Xt)n
t=1 is a simulated P-Markov

time series. This is a special case of (3). In particular, comparing (2) and (4), we see that
the GLAE reduces to the look-ahead estimator when φ = ψ.

Next we consider two examples that demonstrate how our setting extends the look-
ahead estimator to new applications. To begin, consider the following reduced-form
model from macroeconomic theory. Suppose that capital stock kt+1 can be expressed
as a function of lagged capital stock kt and an exogenous correlated productivity shock
zt. In particular, we assume that (kt, zt) obeys the reduced form model

kt+1 = h(kt) zt+1

zt+1 = g(zt) ξt+1

where (ξt) is an IID sequence with density f , and all variables are strictly positive. Note
that the pair (kt, zt) is jointly Markov, with Markov kernel

P((k, z), B) = P{(kt+1, zt+1) ∈ B | (kt, zt) = (k, z)} = P{(h(k)g(z)ξt+1, g(z)ξt+1) ∈ B}
7Properties of the stationary density look-ahead estimator were also investigated by Stachurski and

Martin (2008).
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Suppose that P is ergodic, and that we wish to compute the stationary density of capital
stock. The look-ahead estimator of Henderson and Glynn (2001) cannot be directly ap-
plied to this problem, because the univariate process (kt) is not Markovian. Moreover,
if we try to compute the joint distribution of (kt, zt), which is Markovian, we realize
that the conditional distribution P((k, z), ·) is not absolutely continuous as a probabil-
ity measure in R2, and as such it cannot be expressed as a (conditional) density. In
other words, a relationship of the form (4) does not exist. (The essence of the prob-
lem is that the two-dimensional process (kt, zt) is driven by a one-dimensional shock
(ξt). In this case, the set of possible outcomes for (kt+1, zt+1) given (kt, zt) = (k, z) is a
parametric curve in R2, which has zero Lebesgue measure.)

On the other hand, the GLAE can be applied to computation of the stationary density
of the capital stock. Letting ψ be this density, we observe that, from the law of motion
kt+1 = h(kt)g(zt)ξt+1, we have

ψ(k′) =
∫

q(k′ | k, z)dφ(k, z) (5)

where φ is the stationary density of P, and q(k′ | k, z) is the conditional density of kt+1 =
h(kt)g(zt)ξt+1 given (kt, zt) = (k, z). In particular, by standard manipulations, we have

q(k′ | k, z) = f
(

k′

h(k)g(z)

)
1

h(k)g(z)

Since (5) is a special case of (2), we can apply the GLAE, simulating (k1, z1), . . . , (kn, zn)
and then calculating

ψn(k′) =
1
n

n

∑
t=1

q(k′ | kt, zt)

As a second example of how the GLAE extends the look-ahead estimator, take a GARCH(1,1)
process of the form

rt = σtWt where (Wt)
IID∼ N(0, 1) and σ2

t+1 = α0 + βσ2
t + α1r2

t (6)

Suppose we wish to compute the stationary density ψ of the returns process (rt)t≥0.8

Let φ be the stationary distribution of Xt := σ2
t . (We assume that all parameters are

strictly positive and α1 + β < 1. This is enough to guarantee existence of a stationary
distribution and V-uniform ergodicity. See section 5 for details.) The look-ahead es-
timator cannot be applied to this problem, for reasons similar to the macroeconomic

8Researchers are interested in the stationary density of returns for a variety of reasons, including
density forecasting, value at risk, exact likelihood estimation and model assessment.
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model discussed above. However, we can use the GLAE as follows: Equation (6) im-
plies that rt =

√
XtWt, and hence the conditional density q(r | x) of rt given Xt = x is

centered Gaussian with variance x. For this q we have ψ(r) =
∫

q(r | x)φ(dx), which is
a version of (2). The process (Xt)t≥0 can be expressed as

Xt+1 = α0 + βXt + α1XtW2
t (7)

After simulating a time series (Xt)n
t=1 from this process, the conditional Monte Carlo

estimator of ψ can be formed as

ψn(r) =
1
n

n

∑
t=1

q(r |Xt) =
1
n

n

∑
t=1

(2πXt)
−1/2 exp

{
− r2

2Xt

}
(8)

4 Results

In this section we provide a general asymptotic theory of the GLAE. To begin, notice
that when ψn was defined in (3), the distribution of X0 was not specified. When it is
possible to draw X0 from φ, we have the following result:

Lemma 4.1. If L X0 = φ, then ψn is unbiased, in the sense that Eψn = ψ.9

In many applications, there is no obvious way to sample directly from φ, and lemma 4.1
cannot be applied. However, with sufficient ergodicity, ψn is asymptotically unbiased
for large t, and also consistent:

Theorem 4.1. If P is ergodic, then

1. ψn is strongly globally consistent, in the sense that ψn → ψ in L1(µ) as n → ∞ with
probability one; and

2. ψn is asymptotically unbiased, in the sense that Eψn → ψ in L1(µ) as n→ ∞.

Notice that theorem 4.1 requires nothing beyond ergodicity. (In particular, there are
no moment conditions, and no continuity or compactness conditions—X and Y do not
even need topologies.)

The L1(µ) norm used in theorem 4.1 is perhaps the most natural way to measure de-
viation between two densities. The deviation is finite and uniformly bounded across
the set of densities, and Scheffé’s identity and theorem 4.1 imply that if ψn → ψ in L1,

9Here E is the Bochner-Pettis expectation, as defined in section 2.
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then the maximum deviation in probabilities over all events converges to zero.10 On
the other hand, L1(µ) is not a Hilbert space, and, without the Hilbert space property,
asymptotic normality is problematic. To prove asymptotic normality, we now shift our
analysis into the Hilbert space L2(µ). To do so, we add a second moment condition, as
well as a stricter form of ergodicity.

For each x ∈ X, let T(x) represent the function y 7→ q(y | x) − ψ(y), and define the
linear operator C : L2(µ)→ L2(µ) by

〈g, Ch〉 = E〈g, T(X∗1)〉〈h, T(X∗1)〉+
∞

∑
t≥2

E〈g, T(X∗1)〉〈h, T(X∗t )〉+
∞

∑
t≥2

E〈h, T(X∗1)〉〈g, T(X∗t )〉

for arbitrary h, g ∈ L2(µ), where (X∗t )t≥0 is stationary and P-Markov.11 We can now
state the following result:

Theorem 4.2. If P is V-uniformly ergodic and the second moment condition∫
q(y | x)2µ(dy) ≤ V(x) for all x ∈ X (9)

holds, then
√

n(ψn − ψ) converges in distribution to a centered Gaussian G on L2(µ) with
covariance operator C.12

One immediate comment on theorem 4.2 is that since h 7→ ‖h‖2 is continuous on L2(µ),
theorem 4.2 and the continuous mapping theorem imply that ‖ψn − ψ‖2 = OP(n−1/2).
In other words, ψn is globally

√
n-consistent for ψ when viewed as a sequence of random

functions in L2(µ).

A second comment on our results is that in theorems 4.1 and 4.2, we do not assume that
the simulated process (Xt) is itself stationary. This is important, because simulating a
stationary process would require drawing L X0 = φ. In many settings the stationary
distribution φ is unknown, and generating such a draw is problematic. A more conve-
nient approach is to set X0 equal to an arbitrary element of the state space. Since we
do not assume stationarity of (Xt), our results are valid in this setting.

On the other hand, permitting X0 to be an arbitrary element of the state space com-
plicates the proofs slightly, since Banach space laws of large numbers and central limit

10For further discussion of the advantages of using L1 norm, see Devroye and Lugosi (2001).
11That is, (X∗t )t≥0 is P-Markov and X∗0 is drawn from the stationary distribution φ. That C is indeed a

well-defined operator from L2(µ) to itself follows from the proof of theorem 4.2.
12A centered Gaussian G has covariance operator C if E〈g, G〉〈h, G〉 = 〈Cg, h〉 for every g, h ∈ L2(µ).

Also, convergence in distribution is defined in the obvious way: Let C be the continuous, bounded,
real-valued functions on L2(µ), where continuity is with respect to the norm topology. Let (Gn)n≥0 be
L2(µ)-valued random variables. Then Gn → G0 in distribution if Eh(Gn)→ Eh(G) for every h ∈ C . For
more details and a related central limit theorem, see Chen and White (1998).
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theorems typically assume stationarity of the process. For this reason, we provide a
direct proof based on extending the asymptotic theory of V-uniformly ergodic Markov
processes to Lp-valued functions of the process.

As a final remark, note that where IID sampling from φ is possible, the conclusions of
theorem 4.1 hold without any conditions on q and φ, and theorem 4.2 holds whenever∫ ∫

q(y | x)2µ(dy)φ(dx) < ∞ and
{∫

q(y | x)2µ(dy) < ∞ ∀x ∈ X

}

5 Discussion

As an example of how the theory applies, consider again the estimator (8) presented in
section 3.1. Assume as before that α1 + β < 1. Using the sufficient conditions of Meyn
and Tweedie (2009), the process (Xt)t≥0 defined in (7) can be shown to be V-uniformly
ergodic on X := [α0/(1− β), ∞) for V(x) = x + c, where c is any constant in [1, ∞).13

Regarding the moment condition (9) in theorem 4.2, we have

∫
q(r | x)2dr =

∫
(2πx)−1 exp

{
−r2

x

}
dr = (4πx)−1/2 ≤

{
4πα0

1− β

}−1/2

Recall that V(x) = x + c, where c can be chosen arbitrarily large. For large enough c,
then, we have

∫
q(r | x)2dr ≤ c ≤ x + c = V(x), and (9) is satisfied. As a result, both

theorems 4.1 and 4.2 apply.

Before continuing, let us make a brief comparison of (3) with nonparametric kernel
density estimation. To define the latter, we must restrict attention to the case where
Y ⊂ Rk. Assume that one can generate IID samples Y1, . . . , Yn from ψ. The NPKDE fn
is then defined in terms of a kernel (i.e., density) K on Y and a “bandwidth” parameter
δn:

fn(y) :=
1

nδn

n

∑
i=1

K
(

y−Yi

δn

)
(10)

The estimate fn is known to be consistent, in the sense that E‖ fn − ψ‖1 → 0 whenever
δn → 0 and nδk

n → ∞ (Devroye and Lugosi, 2001). However, rates of convergence are
slower than the parametric rate OP(n−1/2). For example, if we fix y ∈ Y and take ψ to
be twice differentiable, then, for suitable choice of K, it can be shown that

| fn(y)− ψ(y)| = OP[(nδk
n)
−1/2] when nδk

n → ∞ and (nδk
n)

1/2δ2
n → 0

13Details are omitted, since the V-uniform ergodicity result is known. For example, Kristensen (2008)
establishes V-uniform ergodicity of a larger class of GARCH models.
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Thus, even with this smoothness assumption on ψ—which may or may not hold in
practice—the convergence rate OP[(nδk

n)
−1/2] of the NPKDE is slower than the rate

OP(n−1/2) obtained for ψn. Moreover, the rate of convergence slows as the dimension
k of Y increases.14

5.1 Simulation Results

Consider the GARCH application in section 3.1. For the exercise, we set α0 = α1 = 0.05
and β = 0.9, which are reasonable benchmarks for GARCH models of asset price data
such as stock indices. To investigate small sample properties, we set n = 500. The fast
convergence of the ψn implied by theorem 4.2 is illustrated in figure 1. The left panel
of the figure contains the true density ψ, drawn in bold, as well as 50 replications of a
NPKDE, drawn in grey. Each NPKDE replication uses a simulated time series (rt)n

t=1,
combined with standard default settings (a Gaussian kernel and bandwidth calculated
according to Silverman’s rule).15 The right panel of figure 1 repeats the exercise, but
this time using the GLAE in (8) rather than the NPKDE.

The estimator (8) exhibits better small sample properties than the NPKDE. The repli-
cations are more tightly clustered around the true distribution both at the center of
the distribution and at the tails. (This occurs despite the fact that, by construction,
the NPKDE foregoes unbiasedness in order to obtain lower variance.) To quantify the
results of figure 1, we looked at the L1-norm deviations from the true density ψ. We
computed average L1 deviations over 1000 replications. For n = 500, the ratio of the
GLAE L1 deviation to the NPKDE L1 deviation was 0.5854. In other words, average L1
error for the NPKDE was 41% larger than that of the GLAE.

This simulation exercise considered a one-dimensional problem. The stronger perfor-
mance of the GLAE relative to the NPKDE is likely to be significantly greater in higher-
dimensional problems, since the rate of converge of the NPKDE falls as the dimension
of the state space increases.

14Of course, the slower rate of convergence for the NPKDE is not surprising, as the NPKDE uses no
information beyond the sample and some smoothness inherited from the kernel, while the (3) makes
direct use of the model that generated the sample. The converse of this logic is that the NPKDE can be
applied in statistical settings, where the underlying model is unknown.

15The density marked as “true” in the figure is in fact an approximation, calculated by simulation
with n = 107. For such a large n there is no visible variation of the density over different realization, or
different methods of simulation.
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Figure 1: Relative performance, n = 500

6 Technical Appendix

This section contains the proofs. In what follows, ‖ · ‖ represents either the norm on
L1(µ) or the norm on L2(µ), depending on the context. (The proofs of lemma 4.1 and
theorem 4.1 are set in L1(µ), while that of theorem 4.2 is set in L2(µ).)

Also, to simplify the presentation, we will use the well-known operator notation

(νP)(B) :=
∫

P(x, B)ν(dx) and (Ph)(x) :=
∫

h(y)P(x, dy)

Here P is a stochastic kernel on X, ν is a probability measure on (X, X ) and h : X→ R

is a measurable function such that the integral is defined. We also use ν(h) to indicate
the integral

∫
hdν. Given these definitions, recall that (c.f., e.g., Meyn and Tweedie,

2009, chapter 3), for each k ∈N, we have

E[h(Xt+k) |Ft] = Pkh(Xt) (11)

where Pk denote the k-th iterate of the operator P, and Ft is the σ-algebra generated
by X1, . . . , Xt.

Consider the setting of section 3. We begin with the following lemma:
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Lemma 6.1. If L X = φ, then Eq(· |X) = ψ in both L1(µ) and L2(µ).

Proof. To begin with the case of L1(µ), let ‖ · ‖ be the L1(µ) norm and observe that, by
the definition of q, we have ‖q(· | x)‖ = 1 for all x ∈ X. As a result, E‖q(· |X)‖ =
1 < ∞, and the Bochner-Pettis expectation Eq(· |X) is well-defined. To show that
Eq(· |X) = ψ, we must prove in addition that E〈q(· |X), h〉 = 〈ψ, h〉 for all h ∈ L∞(µ).
Fixing h ∈ L∞(µ), Fubini’s theorem and (2) yield

E〈q(· |X), h〉 = E
∫

q(y |X)h(y)µ(dy) =
∫

Eq(y |X)h(y)µ(dy)

By (2) this equals
∫

ψhdµ = 〈ψ, h〉, as was to be shown.

For the proof of the L2(µ) case, let ‖ · ‖ be the L2(µ) norm. Since other parts of the proof
are almost identical to the L1(µ) case, we verify only that E‖q(· |X)‖ < ∞, which is
necessary to ensure that the expectation Eq(· |X) is well-defined in L2(µ). For this, it
suffices to show that

E‖q(· |X)‖2 = E
∫

q(y |X)2µ(dy)

is finite. In view of (9), this quantity is bounded above by EV(X). Finiteness of EV(X)
when L X = φ is implicit from the definition of V-uniform ergodicity.

Proof of lemma 4.1. Assume the conditions of the lemma. Since φ is stationary for P and
L X0 = φ, we have L Xt = φ for all t ≥ 0. From linearity of E and lemma 6.1, we
conclude that

Eψn = E
[

1
n

n

∑
t=1

q(· |Xt)

]
=

1
n

n

∑
t=1
Eq(· |Xt) = ψ

In other words, ψn is unbiased, as was to be shown.

6.1 Proof of theorem 4.1

In this section we provide the proof of theorem 4.1, and ‖ · ‖ always represents the
L1(µ) norm. The arguments are standard constructions from laws of large numbers in
Banach space. Our first observation is that part 2 of the theorem (asymptotic unbiased-
ness) follows from part 1 (strong consistency). Indeed, suppose that ψn → ψ almost
surely in L1(µ). Using standard properties of the Bochner-Pettis integral, we obtain

‖Eψn − ψ‖ = ‖Eψn − Eψ‖ ≤ E‖ψn − ψ‖

Since ‖ f − g‖ ≤ 2 for any pair of densities f and g, the right hand side converges to
zero by the dominated convergence theorem.
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Let us turn now to the claim that ψn → ψ almost surely in L1(µ). As in the statement of
the theorem, let P be an ergodic stochastic kernel on (X, X ) with stationary distribu-
tion φ. Let (Xt)t≥0 be P-Markov and let L X∗ = φ. Define T(x) := q(· | x)− ψ, which
is a measurable function from X to L1(µ) (see footnote 4). Note that ET(X∗) = 0 by
lemma 6.1.

We need to show that

lim
n→∞
‖ψn − ψ‖ = lim

n→∞

∥∥∥∥∥ 1
n

n

∑
t=1

T(Xt)

∥∥∥∥∥ = 0 (P-almost surely) (12)

Fix ε > 0. Since L1(µ) is separable, we can choose a partition {Bj}j∈N of L1(µ) such
that each Bj has diameter less than ε. For any L1(µ)-valued random variable U, we
let LJU := ∑J

j=1 bj1{U ∈ Bj}, where, for each j, bj is a fixed point in Bj. Thus, LJU is
a simple random variable that approximates U. In particular, we have the following
result, a proof of which can be found in Bosq (2000, pp. 27–28):

∃ J ∈N with E‖T(X∗)− LJT(X∗)‖ < 2ε (13)

Our first claim is that

lim
n→∞

∥∥∥∥∥ 1
n

n

∑
t=1

LJT(Xt)− ELJT(X∗)

∥∥∥∥∥ = 0 (P-almost surely) (14)

To establish (14), we can use the real ergodic law (1) to obtain

1
n

n

∑
t=1

LJT(Xt) =
J

∑
j=1

bj
1
n

n

∑
t=1

1{T(Xt) ∈ Bj} →
J

∑
j=1

bjP{T(X∗) ∈ Bj} = ELJT(X∗)

almost surely, where the last equality follows immediately from the definition of E .
Thus (14) is established.

Returning to (12), we have∥∥∥∥∥ 1
n

n

∑
t=1

T(Xt)

∥∥∥∥∥ ≤ 1
n

n

∑
t=1
‖T(Xt)− LJT(Xt)‖+

∥∥∥∥∥ 1
n

n

∑
t=1

LJT(Xt)− ELJT(X∗)

∥∥∥∥∥+ ‖ELJT(X∗)‖

Using real-valued ergodicity again, as well as (14), we get

lim sup
n→∞

∥∥∥∥∥ 1
n

n

∑
t=1

T(Xt)

∥∥∥∥∥ ≤ E‖T(X∗)− LJT(X∗)‖+ ‖ELJT(X∗)‖

14



But the fact that ET(X∗) = 0 now gives

‖ELJT(X∗)‖ = ‖ET(X∗)− ELJT(X∗)‖ ≤ E‖T(X∗)− LJT(X∗)‖

In view of (13) we then have

lim sup
n→∞

∥∥∥∥∥ 1
n

n

∑
t=1

T(Xt)

∥∥∥∥∥ ≤ 4ε (P-almost surely)

Since ε is arbitrary, the proof of (12) is now done.

6.2 Proof of theorem 4.2

In this section we provide the proof of theorem 4.2, and ‖ · ‖ always represents the
L2(µ) norm. Throughout the proof, for x ∈ X we let T0(x) be the function y 7→ q(y | x),
and T(x) be the function y 7→ q(y | x)− ψ(y). In this notation, theorem 4.2 amounts to
the claim that

L

[
n−1/2

n

∑
t=1

T(Xt)

]
→ N(0, C) (n→ ∞) (15)

where C is the operator defined in section 4.

Our first lemma shows that, given our ergodicity assumptions on P, we can restrict
attention to the case where L X1 = φ when proving (15).

Lemma 6.2. Let (Xt)t≥1 and (X′t)t≥1 be two P-Markov chains, where L X1 = φ and X′1 ≡
x ∈ X. For any Borel probability measure µ on L2(µ),

L

[
n−1/2

n

∑
t=1

T(Xt)

]
→ µ implies L

[
n−1/2

n

∑
t=1

T(X′t)

]
→ µ

Proof. As is well known (see, for example, Roberts and Rosenthal, 2004), one can con-
struct copies of (Xt)t≥1 and (X′t)t≥1 on a common probability space (Ω, F , P) such that
if Xt = X′t for some t, then Xk = X′k for all k ≥ t, and P{τ < ∞} = 1, where τ is the
stopping time (coupling time)

τ := inf{t ∈N : Xt = X′t}

Let Sn := ∑n
t=1 T(Xt) and S′n := ∑n

t=1 T(X′t), and assume as in the statement of the
lemma that n−1/2Sn → µ. To prove that n−1/2S′n → µ it suffices to show that the
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(norm) distance between n−1/2S′n and n−1/2Sn converges to zero in probability (cf.,
e.g., Dudley, 2002, lemma 11.9.4). Fixing ε > 0, we need to show that

P{‖n−1/2S′n − n−1/2Sn‖ > ε} → 0 (n→ ∞) (16)

Clearly

{‖n−1/2S′n − n−1/2Sn‖ > ε} ⊂
{

n

∑
t=1
‖T(X′t)− T(Xt)‖ > n1/2ε

}

Fix k ∈ N, and partition the last set over {τ ≤ k} and {τ > k} to obtain the disjoint
sets{

n

∑
t=1
‖T(X′t)− T(Xt)‖ > n1/2ε

}
∩ {τ ≤ k} ⊂

{
k

∑
t=1
‖T(X′t)− T(Xt)‖ > n1/2ε

}

and {
n

∑
t=1
‖T(X′t)− T(Xt)‖ > n1/2ε

}
∩ {τ ≤ k} ⊂ {τ ≤ k}

Together, these lead to the bound

{‖n−1/2S′n − n−1/2Sn‖ > ε} ⊂
{

k

∑
t=1
‖T(X′t)− T(Xt)‖ > n1/2ε

}
∪ {τ > k}

∴ P{‖n−1/2S′n − n−1/2Sn‖ > ε} ≤ P

{
k

∑
t=1
‖T(X′t)− T(Xt)‖ > n1/2ε

}
+ P{τ > k}

For any fixed k, we have

lim
n→∞

P

{
k

∑
t=1
‖T(X′t)− T(Xt)‖ > n1/2ε

}
= 0 (17)

Hence
lim sup

n→∞
{‖n−1/2S′n − n−1/2Sn‖ > ε} ≤ P{τ > k}, ∀k ∈N

Since P{τ < ∞} = 1 taking k→ ∞ yields (16).

In view of lemma 6.2, we can continue the proof of (15) while considering only the
case L X1 = φ. Another result we will find useful to establish (15) is given in the next
lemma, and is an easy corollary of Bosq (2000, Theorem 2.3). The proof is omitted.
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Lemma 6.3. Let (Yn)n≥1 and V be L2(µ) valued random variables. The following statements
are equivalent:

1. (L Yn)n≥1 is tight and L 〈e, Yn〉 → L 〈e, V〉 as n → ∞ for every e ∈ L2(µ) with
‖e‖ ≤ 1; and

2. L Yn → L V as n→ ∞.

Taking this result as given, and taking L X1 = φ, define Sn := T(X1) + · · · T(Xn),
and Yn := n−1/2Sn. The strategy of the proof is to establish (i) of Lemma 6.3 for V ∼
N(0, C). As a first step, let us consider tightness of the partial sums.

Lemma 6.4. Under the hypotheses of theorem 4.2, the sequence (L Yn)n≥1 is tight.

Proof. As a first step, observe that E‖T(X1)‖2 < ∞, because

E‖T(X1)‖2 = E‖q(· |X1)− ψ‖2 ≤ 2(E‖q(· |X1)‖2 + ‖ψ‖2)

and E‖q(· |X1)‖2 < ∞ as shown in lemma 6.1. Since E‖T(X1)‖2 is finite, the covariance
operator of T(X1) exists, and we denote it by D. The operator D admits a decomposi-
tion of the form

Dh = ∑
j≥1

λj〈vj, h〉vj (h ∈ L2(µ)) (18)

where (vj)j≥1 is an orthonormal basis for L2(µ), and (λj)j≥1 is a sequence satisfying
∑j≥1 λj = E‖T(X1)‖2 < ∞ (c.f., e.g., Bosq, 2000, Chapter 1).16 It follows from (18) that
E〈vj, T(X1)〉2 = λj for all j.

Pick any j ∈ N. Our first claim is that if for some constant γ independent of j and n
one has E〈vj, Yn〉2 ≤ γλj, then (Yn)n≥1 is tight. To see this, fix ε > 0 and consider the
real sequence (aN) definded by

aN := ∑
j≥N

E〈vj, Yn〉2 ≤ γ ∑
j≥N

λj

Since aN ↓ 0, we can choose an increasing sequence of integers (Nk)k≥1 and a positive
real sequence (bk)k≥1 with bk ↑ ∞ and ∑k≥1 bkaNk < ε. Let

Bk :=

{
h ∈ L2(µ) : ∑

j≥Nk

〈vj, h〉2 ≤ b−1
k

}
16As usual, an orthonormal basis of L2(µ) is an orthonormal set the span of which is dense in L2(µ).
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and let K be the compact set ∩k≥1Bk.17 Using the Chebychev Inequality now gives

P{Yn /∈ K} ≤ ∑
k≥1

P{Yn /∈ Bk} ≤ ∑
k≥1

bkaNk < ε, ∀n ≥ 1

It follows that (L Yn)n≥1 is tight.

It remains to prove that there exists a constant γ independent of j and n with E〈vj, Yn〉2 ≤
γλj. So fix j and n, and observe that

E〈vj, Yn〉2 =
1
n

n

∑
s=1

n

∑
t=1

E〈vj, T(Xs)〉〈vj, T(Xt)〉 ≤ E〈vj, T(X1)〉2 + 2
n

∑
t=2

E〈vj, T(X1)〉〈vj, T(Xt)〉

∴ E〈vj, Yn〉2 ≤ λj + 2
n

∑
t=2

E〈vj, T(X1)〉〈vj, T(Xt)〉 (19)

Let κ be defined by κ(x) = 〈vj, T(x)〉. Observe that Eκ(X1) = 0 and

|κ(x)| = |〈vj, T(x)〉| ≤ ‖vj‖ · ‖T(x)‖ ≤ V(x)1/2

By Meyn and Tweedie (1993, Theorem 15.2.9), the Markov chain (Xt)t≥1 is also V1/2-
uniformly ergodic, and since |κ| ≤ V1/2 we have

|Pnκ(x)| = |Pnκ(x)− φ(κ)| ≤ αtcV(x)1/2 (20)

for some constant c and some α < 1 (Meyn and Tweedie, 1993, Theorem 16.1.2).

Now consider the term

E〈vj, T(X1)〉〈vj, T(Xt)〉 = Eκ(X1)κ(Xt) = E{κ(X1)E[κ(Xt) |F1]}

In view of (11) we can write this as

E〈vj, T(X1)〉〈vj, T(Xt)〉 = E[κ(X1)Pt−1κ(X1)]

and the Cauchy-Schwartz inequality combined with (20) gives

E〈vj, T(X1)〉〈vj, T(Xt)〉 ≤ E[κ(X1)
2]E[(Pt−1κ(X1))

2] ≤ E[κ(X1)
2]E[(αt−1c)2V(X1)]

Since E[κ(X1)
2] = λj we have

E〈vj, T(X1)〉〈vj, T(Xt)〉 ≤ λj(α
t−1c)2φ(V)

17Let C be any subset of L2(µ), and let (ek)k≥1 be an orthonormal basis. It is known that C is compact
if ∑k≥n〈ek, h〉 → 0 as n→ ∞ uniformly over h ∈ C.
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Returning to (19), then,

E〈vj, Yn〉2 ≤ λj + 2
n

∑
t=2

λj(α
t−1c)2φ(V)

∴ E〈vj, Yn〉2 ≤ γλj, γ := 1 +
2c2φ(V)

1− α2

As this was the last claim to be proven, the tightness of (L Yn)n≥1 is established.

The next step in the proof of Theorem 4.2 is to verify the second part of (i) in Lemma 6.3.

Lemma 6.5. Let (Yn)n≥1 be as above, and let V be a Gaussian random variable on L2(µ) with
distribution N(0, C). Given any e ∈ L2(µ) with ‖e‖ ≤ 1, we have L 〈e, Yn〉 → L 〈e, V〉 as
n→ ∞.

Proof. Fix such an e, let κ0(x) := 〈e, T0(x)〉 and κ(x) := 〈e, T(x)〉. We have

〈e, Yn〉 = n−1/2
n

∑
t=1
〈e, T(Xt)〉 = n−1/2

n

∑
t=1

κ(Xt)

Observe that κ(x) = κ0(x)− φ(κ0), and κ0(x)2 ≤ ‖T0(x)‖2 ≤ V(x) for all x ∈ X. In
view of the scalar CLT for V-uniformly ergodic Markov chains (Meyn and Tweedie,
1993, Theorem 17.0.1) we have

L

[
n−1/2

n

∑
t=1

κ(Xt)

]
→ N(0, σ2)

where

σ2 := Eκ(X1)
2 + 2 ∑

t≥2
Eκ(X1)κ(Xt)

= E〈e, T(X1)〉2 + 2 ∑
t≥2

E〈e, T(X1)〉 〈e, T(Xt)〉 = 〈e, Ce〉

In other words, L 〈e, Yn〉 → L 〈e, V〉, where V ∼ N(0, C).

The result in Theorem 4.2 follows from lemmas 6.2, 6.3, 6.4 and 6.5.
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