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Abstract

The look-ahead estimator is used to compute densities associated with Markov
processes via simulation. We study a framework that extends the look-ahead esti-
mator to a much broader range of applications. We provide a general asymptotic
theory for the estimator, where both L; consistency and L, asymptotic normality
are established. The L, asymptotic normality implies y/n convergence rates for L,
deviation.

1 Introduction

Simulation allows researchers to extract probabilities from otherwise intractable mod-
els. In some cases the random variables being simulated have distributions that can be

*The authors gratefully acknowledge helpful comments from Manuel Arellano, Fumio Hayashi,
Hidehiko Ichimura, Albert Marcet, Enrique Sentana and Steve Stern.
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represented by densities, and the researcher seeks to construct, via simulation, approx-
imations to these densities. This problem arises frequently in operations research, eco-
nomics, finance and statistics. (See, for example, Henderson and Glynn (2001), Brandt
and Santa-Clara (2002), Danielsson (1994), or Gelfand and Smith (1990)).

In the process of computing densities via Monte Carlo, the two steps are (i) simulate
the relevant variables, and (ii) produce density estimates from the simulated observa-
tions. Our interest is in the second step. In this step, parametric estimation is problem-
atic, as the parametric classes of these densities are generally unknown or nonexistent.
Nonparametric density estimates are more robust, but converge at a slower rate and
degrade quickly as the dimension of the state space increases.

An alternative method of constructing densities from simulated observations is to use
conditional Monte Carlo. An important example is the look-ahead estimator of Hen-
derson and Glynn (2001), which has applications such as computing stationary densi-
ties of Markov processes. Similar ideas have appeared in other strands of the litera-
ture under different names. For example, Gelfand and Smith (1990) contains a related
method. Brandt and Santa-Clara (1995) and Pedersen (1995) independently proposed
a method of simulated maximum likelihood based on conditioning ideas. (All of these
methods are special cases of Henderson and Glynn’s look-ahead estimator.)

In this paper, we study a generalized look-ahead estimator that implements condi-
tional Monte Carlo density estimation with correlated samples. Our setting incorpo-
rates the look-ahead estimator and useful extensions. We prove global consistency and
a functional central limit theorem under minimal assumptions. From the functional
central limit theorem it follows that the L, deviation between the true and computed
densities is Op(n~1/2), independent of the dimension of the state space.

To reiterate the contributions of this paper, we:

1. extend the look-ahead estimator to incorporate a significantly wider range of ap-
plications, and

2. provide a more complete asymptotic theory, with a focus on minimal assump-
tions and global (i.e., norm) deviation between the estimator and the target den-
sity.

In the process, we connect the concept of the look-ahead estimator to the more general
problem of conditional Monte Carlo density estimation.

One way to phrase the nature of the extension in point (i) is as follows: The basic look-
ahead estimator can be used to compute distributions of the state variable of a Markov
process. The generalization considered here can compute the distributions of random



or nonrandom functions of the state variable—in particular, any random variable that
can be related to the state variable of the Markov process via a conditional density. For
example, if volatility of returns to holding an asset is modeled as Markovian, then the
look-ahead estimator can be used to compute the stationary density of volatility. The
generalized look-ahead estimator we consider here can be used to compute not only
the distribution of volatility, but also that of other variables correlated with volatility,
such as returns themselves.!

2 Definitions

Let (Y, %, i) be a o-finite measure space, and let ((),.%, P) be a probability space. A
Y-valued random variable is a measurable map Y from (Q),.%) into (Y, % ). We use
the symbol .£Y to denote the law (i.e., distribution) of Y. We say that Y has density g
if g: Y — R is a measurable function with

ZY(B):=P{Y € B} = / gdu forall Be &
B

In most applications, either Y C R*, # is the Borel sets, and u is Lebesgue measure, or
Y is countable, % is the set of all subsets, and y is the counting measure. (In the latter
setting, ¢ is a probability mass function on Y.)

For p € [1,00] we let L,(u) := L,(Y,%,u) be the Banach space of p-integrable real-
valued functions on Y.? The norm on L, () is given by

sty = { [} g e 00

with ||g||« being the essential supremum. If %’ is countably generated,® then L, () is
separable whenever p < co. If g € (1,00] satisfies 1/p +1/q = 1, then L,(p) can be
identified with the norm dual of L, (u). We define

(1) = [ghdpi=: [g0h(xu(dx) (g€ Ly, he Ly(w)

1See sections 4 and 5 for more discussion of this example. Note also that Henderson and Glynn (2001)
consider generalizations of the basic look-ahead idea, but on a less systematic level than the treatment
here.

2As usual, functions equal p-almost everywhere are identified.

3% is called countably generated if there exists a countable family 7 of subsets of Y such that ./
generates &/



In the sequel, we consider random variables taking values in L,(u), where p € {1,2}.

An L,(p)-valued random variable F is a measurable map from (Q),.%) into L,(u).*
The expectation EF of F is defined as the unique element of L, (u) such that

E(F,h) = (EF,h) forevery h € Ly(u)

where E is the usual scalar expectation. If E|[F||, is finite, then £F exists. £F is also
called the Bochner-Pettis integral of F.> An L, (p)-valued random variable G is called
centered Gaussian if, for every h € Lg(u), the real-valued random variable (G, k) is
centered Gaussian on IR.

A stochastic kernel (or Markov kernel) P on measurable space (X, 2) is a function P: X x
Z — [0,1] such that B — P(x, B) is a probability measure on .2 for all x € X, and
x — P(x,B) is 2 -measurable for all B € 2. A discrete-time, X-valued stochastic
process (X¢)¢>o is called P-Markov if P(x, -) is the conditional distribution of X; 1 given
X; = x. The t step transitions are given by P!, where

P(x,B) = /Pf—l(x, dx')P(x',B) and P':=P
A probability measure ¢ on 2" is called stationary for P if
¢(B) = /P(x, B)¢(dx)  forall Be 2

Note that if ¢ is stationary, (X¢);>o is P-Markov and .¥Xy = ¢, then (X;);>0 is itself
(strict sense) stationary.

P is called ergodic if it has a unique stationary distribution ¢, and P!(x,-) converges to
¢ in total variation norm for every x € X. If this case, for every P-Markov process
(Xt)t>0 and every measurable ii: X — R with [ |h|d¢ < oo, we have
1 n
. Y h(X¢) — /hdqb P-almost surely as n — oo (1)
t=1

P is called V-uniformly ergodic if, in addition, there exist a measurable function V': X
[1,00) and nonnegative constants A < 1 and L < oo satisfying
/ h(x') P! (x,dx’) — / h(x')p(dx')

sup <AMLV(x) forallx € X, t €N

lh|<v

*Measurability requires that F~1(B) € Z for every Borel subset B of L,(i). By the Pettis measur-
ability theorem, if L,(y) is separable, then a sufficient condition is Borel measurability of Q > w
(F(w),h) € R for every h in the dual space Ly (). This condition is easily verified in the applications
that follow, and hence further discussion of measurability issues is omitted.

5For more details, see, e.g., Bosq (2000).



(If V can be chosen identically equal to 1, then the left-hand side becomes the total
variation distance between P!(x,dx") and ¢, while the right hand side is independent
of x. This is the uniformly ergodic case.) Under the V-uniform ergodicity assumption,
the central limit theorem can be established for a broad class of functions. V-uniform
ergodicity has been shown to hold in a range of applications in operations research,
finance, economics and time series analysis.®

3 Methodology

Let ¢ be a density on measure space (Y, %, ), where the o-algebra # is countably
generated and yu is o-finite. Here ¢ is the target density that we wish to compute. Let
(X, Z") be a measurable space, and ¢ be a distribution (i.e., probability measure) on
(X, Z). Letq = g(- | -) be a measurable map from Y x X into R such thaty — g(y | x)
is a density on (Y, %, i) for each x € X. Suppose further that ¢ can be decomposed in
terms of g and ¢, in the sense that

p() = [ay|0p(dx) forall y ey @

In order to simulate the target density i, we assume the existence of a decomposition
(2) such that

1. The conditional density g can be evaluated, at least numerically.

2. There exists a stochastic kernel P on (X, Z") such that ¢ is the unique stationary
distribution of P.

3. We can simulate P-Markov time series (X;)}'_; given Xy = xg € X.

In this setting, we define the generalized look-ahead estimator (GLAE) of ¢ as

n

1 .
Pu(y) = . Z q(y | X:) where (X;)i; is P-Markov (3)
t=1

Examples are presented below. The simplest case is where direct 11D sampling from ¢
is feasible. (This is obviously a special case, since IID draws are also Markov.) Letting
(X¢)}_, be such a sample, we can form ¢, as in (3). The estimator (3) is very natural in
this setting because we then have

Egly| X)) = [ aly|x)g(dx) = y(y) forall te{L,...n}

6See, e.g., Meyn and Tweedie (2009), Kamihigashi (2007), Kristensen (2008) or Nishimura and
Stachurski (2005).




Assuming finite second moments, this tells us immediately that ¢, () is unbiased and
V/n-consistent for ¢ (y).

To understand why incorporating Markov structure on the simulated process (X;) is
important, suppose now that direct 11D sampling from ¢ is infeasible. The Markov
chain Monte Carlo solution is to construct a kernel P such that ¢ is the stationary dis-
tribution of P, and then generate P-Markov time series. Inserting this series into (3)
gives an implementation of the GLAE.

3.1 Examples

The GLAE in (3) generalizes the stationary density look-ahead estimator of Hender-
son and Glynn (2001).” To illustrate this point, consider a P-Markov process tak-
ing values in the measure space (Y, %, ), where P has the density representation
P(x,B) = [zq(y|x)u(dy) for some conditional density 4: ¥ x Y — R;. Suppose
that a unique stationary distribution exists. In this setting, it is well-known that the
stationary distribution can be represented by a density ¢ on Y, and, moreover, the
density 1p satisfies

$() = [ay|x)9(x)u(dx) forally € Y @

Suppose that g is tractable but ¥ is not, and one wishes to compute . Although there
are several techniques for doing this, the stationary density look-ahead estimator of
Henderson and Glynn (2001) is perhaps the most attractive. The look-ahead estimator
of ¢ is defined as ¥, (y) = n~ 1Y}, q(y | X;), where (X;)""_, is a simulated P-Markov
time series. This is a special case of (3). In particular, comparing (2) and (4), we see that
the GLAE reduces to the look-ahead estimator when ¢ = .

Next we consider two examples that demonstrate how our setting extends the look-
ahead estimator to new applications. To begin, consider the following reduced-form
model from macroeconomic theory. Suppose that capital stock k;;1 can be expressed
as a function of lagged capital stock k; and an exogenous correlated productivity shock
z¢. In particular, we assume that (k, z;) obeys the reduced form model

ki1 = h(ki) zea
zpp1 = 8(2t) Gri1

where (G;) is an IID sequence with density f, and all variables are strictly positive. Note
that the pair (k¢, z¢) is jointly Markov, with Markov kernel

P((k,z),B) = P{(ki+1,2141) € B| (kt,zt) = (k,2)} = P{(h(k)g(2)¢r+1, §(2)8111) € B}

"Properties of the stationary density look-ahead estimator were also investigated by Stachurski and
Martin (2008).




Suppose that P is ergodic, and that we wish to compute the stationary density of capital
stock. The look-ahead estimator of Henderson and Glynn (2001) cannot be directly ap-
plied to this problem, because the univariate process (k;) is not Markovian. Moreover,
if we try to compute the joint distribution of (ki z¢), which is Markovian, we realize
that the conditional distribution P((k, z), -) is not absolutely continuous as a probabil-
ity measure in IR?, and as such it cannot be expressed as a (conditional) density. In
other words, a relationship of the form (4) does not exist. (The essence of the prob-
lem is that the two-dimensional process (k¢, z¢) is driven by a one-dimensional shock
(¢¢). In this case, the set of possible outcomes for (k;11,z41) given (k¢ z¢) = (k,z) isa
parametric curve in IR?, which has zero Lebesgue measure.)

On the other hand, the GLAE can be applied to computation of the stationary density
of the capital stock. Letting ¢ be this density, we observe that, from the law of motion

ki1 = h(ke)g(z¢)Cr 1, we have
W) = [ (K |k,2)dg(k,2) ®

where ¢ is the stationary density of P, and q(k’ | k, z) is the conditional density of k; 1 =
h(ke)g(z¢)Cri1 given (k¢ z¢) = (k, z). In particular, by standard manipulations, we have

/ k, 1
9k [k z) = f <h(k)g(z)> h(k)g(z)

Since (5) is a special case of (2), we can apply the GLAE, simulating (kq,z1), ..., (kn, zn)
and then calculating

/ ]‘ & /
Pu(K) =~ q(k [kt ze)

t=1

As a second example of how the GLAE extends the look-ahead estimator, take a GARCH(1,1)
process of the form

11D

re = 0;W; where (W;) ~ N(0,1) and o7, = ag + fof + arr? (6)

Suppose we wish to compute the stationary density i of the returns process (7¢);>0.2
Let ¢ be the stationary distribution of X; := 0?. (We assume that all parameters are
strictly positive and a1 4+ B < 1. This is enough to guarantee existence of a stationary
distribution and V-uniform ergodicity. See section 5 for details.) The look-ahead es-
timator cannot be applied to this problem, for reasons similar to the macroeconomic

8Researchers are interested in the stationary density of returns for a variety of reasons, including
density forecasting, value at risk, exact likelihood estimation and model assessment.



model discussed above. However, we can use the GLAE as follows: Equation (6) im-
plies that s = +/X;W;, and hence the conditional density g(r | x) of r; given X; = x is
centered Gaussian with variance x. For this g we have (r) = [ q(r | x)¢(dx), which is
a version of (2). The process (X;)¢>o can be expressed as

X1 = ap + BX¢ + ay X, W7 (7)

After simulating a time series (X;)/_; from this process, the conditional Monte Carlo
estimator of 1 can be formed as

12 n 2
walr) = 3 Y01 %) = 5 Y Vexp - ®)

ni= =1

4 Results

In this section we provide a general asymptotic theory of the GLAE. To begin, notice
that when ¢, was defined in (3), the distribution of Xy was not specified. When it is
possible to draw Xy from ¢, we have the following result:

Lemma 4.1. If £Xo = ¢, then ¢y, is unbiased, in the sense that Ep, = .°

In many applications, there is no obvious way to sample directly from ¢, and lemma 4.1
cannot be applied. However, with sufficient ergodicity, ¢, is asymptotically unbiased
for large t, and also consistent:

Theorem 4.1. If P is ergodic, then

1. o, is strongly globally consistent, in the sense that ¢, — ¢ in L1(p) as n — oo with
probability one; and
2. 1y is asymptotically unbiased, in the sense that E, — ¢ in L1(p) as n — oo.

Notice that theorem 4.1 requires nothing beyond ergodicity. (In particular, there are
no moment conditions, and no continuity or compactness conditions—X and Y do not
even need topologies.)

The L1 (p) norm used in theorem 4.1 is perhaps the most natural way to measure de-
viation between two densities. The deviation is finite and uniformly bounded across
the set of densities, and Scheffé’s identity and theorem 4.1 imply that if ¢, — ¥ in Ly,

9Here € is the Bochner-Pettis expectation, as defined in section 2.



then the maximum deviation in probabilities over all events converges to zero.! On
the other hand, Li(u) is not a Hilbert space, and, without the Hilbert space property,
asymptotic normality is problematic. To prove asymptotic normality, we now shift our
analysis into the Hilbert space L, (). To do so, we add a second moment condition, as
well as a stricter form of ergodicity.

For each x € X, let T(x) represent the function y — g(y|x) — ¢(y), and define the
linear operator C: Ly(u) — Lp(u) by

(§,Ch) = E(g, T(X7))(h, T(X7)) + i E(g, T(X7)){h, T(X{)) + i E(h, T(X7)) (g, T(X}))

t>2 t>2

for arbitrary h,¢ € Ly(u), where (X} );>0 is stationary and P-Markov.!! We can now
state the following result:

Theorem 4.2. If P is V-uniformly ergodic and the second moment condition

[at|xutdy) < V(x)  forall xeX ©)

holds, then \/n(y, — ) converges in distribution to a centered Gaussian G on Ly(p) with
covariance operator C.12

One immediate comment on theorem 4.2 is that since /1 — ||}1]|, is continuous on Ly (),
theorem 4.2 and the continuous mapping theorem imply that ||y, — ¢|» = Op(n~1/2).
In other words, ¢, is globally \/n-consistent for  when viewed as a sequence of random
functions in Ly (u).

A second comment on our results is that in theorems 4.1 and 4.2, we do not assume that
the simulated process (X;) is itself stationary. This is important, because simulating a
stationary process would require drawing Xy = ¢. In many settings the stationary
distribution ¢ is unknown, and generating such a draw is problematic. A more conve-
nient approach is to set Xy equal to an arbitrary element of the state space. Since we
do not assume stationarity of (X;), our results are valid in this setting.

On the other hand, permitting Xy to be an arbitrary element of the state space com-
plicates the proofs slightly, since Banach space laws of large numbers and central limit

19For further discussion of the advantages of using L; norm, see Devroye and Lugosi (2001).

UThat s, (X} )s>0 is P-Markov and X} is drawn from the stationary distribution ¢. That C is indeed a
well-defined operator from Ly (p) to itself follows from the proof of theorem 4.2.

12A centered Gaussian G has covariance operator C if E(g, G)(h, G) = (Cg, h) for every g,h € Ly(p).
Also, convergence in distribution is defined in the obvious way: Let ¢ be the continuous, bounded,
real-valued functions on Ly (), where continuity is with respect to the norm topology. Let (G,,),>0 be
Ly (p)-valued random variables. Then G, — Gy in distribution if Eh(G,,) — Eh(G) for every h € €. For
more details and a related central limit theorem, see Chen and White (1998).
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theorems typically assume stationarity of the process. For this reason, we provide a
direct proof based on extending the asymptotic theory of V-uniformly ergodic Markov
processes to Ly-valued functions of the process.

As a final remark, note that where IID sampling from ¢ is possible, the conclusions of
theorem 4.1 hold without any conditions on g and ¢, and theorem 4.2 holds whenever

[ [ ot <o and { [atvl0Puy) < vxe x|

5 Discussion

As an example of how the theory applies, consider again the estimator (8) presented in
section 3.1. Assume as before that a; + B < 1. Using the sufficient conditions of Meyn
and Tweedie (2009), the process (X¢);>o defined in (7) can be shown to be V-uniformly
ergodic on X := [ag/ (1 — B), ) for V(x) = x + ¢, where c is any constant in [1,0).13
Regarding the moment condition (9) in theorem 4.2, we have

/‘7(7|x)2dr=/(an)—lexp{_é}dr: ()12 < {fiﬂ}l/z

Recall that V(x) = x + ¢, where ¢ can be chosen arbitrarily large. For large enough c,
then, we have [g(r|x)%dr < ¢ < x+c = V(x), and (9) is satisfied. As a result, both
theorems 4.1 and 4.2 apply.

Before continuing, let us make a brief comparison of (3) with nonparametric kernel
density estimation. To define the latter, we must restrict attention to the case where
Y C R¥. Assume that one can generate 11D samples Y1, ..., Y, from 1. The NPKDE f,
is then defined in terms of a kernel (i.e., density) K on Y and a “bandwidth” parameter
On:

nd, !

1 & =Y
faly) = — YK (y(S ) (10)
=1 n
The estimate f,, is known to be consistent, in the sense that E|| f,, — ¢/||; — 0 whenever
6y — 0and nék — co (Devroye and Lugosi, 2001). However, rates of convergence are
slower than the parametric rate Op(n~1/2). For example, if we fix y € Y and take ¢ to

be twice differentiable, then, for suitable choice of K, it can be shown that

fu(y) = ()| = Op[(ndy)""/?] when né; — co and (néy)'/?6; — 0

13Details are omitted, since the V-uniform ergodicity result is known. For example, Kristensen (2008)
establishes V-uniform ergodicity of a larger class of GARCH models.
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Thus, even with this smoothness assumption on p—which may or may not hold in
practice—the convergence rate Op[(16%)~1/2] of the NPKDE is slower than the rate
Op(n~1/2) obtained for ¢,,. Moreover, the rate of convergence slows as the dimension
k of Y increases.!*

5.1 Simulation Results

Consider the GARCH application in section 3.1. For the exercise, we set xp = a1 = 0.05
and 8 = 0.9, which are reasonable benchmarks for GARCH models of asset price data
such as stock indices. To investigate small sample properties, we set n = 500. The fast
convergence of the i, implied by theorem 4.2 is illustrated in figure 1. The left panel
of the figure contains the true density i, drawn in bold, as well as 50 replications of a
NPKDE, drawn in grey. Each NPKDE replication uses a simulated time series (7;)},,
combined with standard default settings (a Gaussian kernel and bandwidth calculated
according to Silverman’s rule).!> The right panel of figure 1 repeats the exercise, but

this time using the GLAE in (8) rather than the NPKDE.

The estimator (8) exhibits better small sample properties than the NPKDE. The repli-
cations are more tightly clustered around the true distribution both at the center of
the distribution and at the tails. (This occurs despite the fact that, by construction,
the NPKDE foregoes unbiasedness in order to obtain lower variance.) To quantify the
results of figure 1, we looked at the L;-norm deviations from the true density . We
computed average L; deviations over 1000 replications. For n = 500, the ratio of the
GLAE L, deviation to the NPKDE L; deviation was 0.5854. In other words, average L;
error for the NPKDE was 41% larger than that of the GLAE.

This simulation exercise considered a one-dimensional problem. The stronger perfor-
mance of the GLAE relative to the NPKDE is likely to be significantly greater in higher-
dimensional problems, since the rate of converge of the NPKDE falls as the dimension
of the state space increases.

140f course, the slower rate of convergence for the NPKDE is not surprising, as the NPKDE uses no
information beyond the sample and some smoothness inherited from the kernel, while the (3) makes
direct use of the model that generated the sample. The converse of this logic is that the NPKDE can be
applied in statistical settings, where the underlying model is unknown.

I5The density marked as “true” in the figure is in fact an approximation, calculated by simulation
with n = 107. For such a large 7 there is no visible variation of the density over different realization, or
different methods of simulation.
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NPKDE GLAE

0.41 1 0.4f
0.2 1 0.2f
0.0 =3 0 3 0.0 =3 0 3

Figure 1: Relative performance, n = 500

6 Technical Appendix

This section contains the proofs. In what follows, || - || represents either the norm on
L1(p) or the norm on Ly(y), depending on the context. (The proofs of lemma 4.1 and
theorem 4.1 are set in L1 (), while that of theorem 4.2 is setin L (y).)

Also, to simplify the presentation, we will use the well-known operator notation
(vP)(B / P(x,B)v(dx) and (Ph)( /h (x,dy)

Here P is a stochastic kernel on X, v is a probability measure on (X, 2") and h: X — R
is a measurable function such that the integral is defined. We also use v(h) to indicate
the integral f hdv. Given these definitions, recall that (c.f., e.g., Meyn and Tweedie,
2009, chapter 3), for each k € IN, we have

E(h(Xiik) | F] = PR(Xy) (11)

where P¥ denote the k-th iterate of the operator P, and .%; is the c-algebra generated
bel,. . .,Xt.

Consider the setting of section 3. We begin with the following lemma:

12



Lemma 6.1. If £X = ¢, then Eq(- | X) = ¢ in both L1(p) and Ly(p).

Proof. To begin with the case of L1 (), let || - || be the L1 () norm and observe that, by
the definition of g, we have ||q(- |x)|| = 1 for all x € X. As a result, E||q(- | X)| =
1 < oo, and the Bochner-Pettis expectation £q(- | X) is well-defined. To show that
Eq(-| X) = ¢, we must prove in addition that E(q(- | X),h) = (¢, h) forall h € Leo(p).
Fixing h € Lo (), Fubini’s theorem and (2) yield

E(q(-|X),h) = E [ q(y| X)h(y)u(dy) = [ Eq(y| X)h(y)u(dy)

By (2) this equals [ phdyu = (¢, h), as was to be shown.

For the proof of the L, () case, let || - || be the L,(¢#) norm. Since other parts of the proof
are almost identical to the L () case, we verify only that E||g(- | X)|| < oo, which is
necessary to ensure that the expectation £4q(- | X) is well-defined in Ly(). For this, it
suffices to show that

Elg(- | X)|> = E [ (v | X)u(dy)

is finite. In view of (9), this quantity is bounded above by EV(X). Finiteness of EV(X)
when .ZX = ¢ is implicit from the definition of V-uniform ergodicity. O

Proof of lemma 4.1. Assume the conditions of the lemma. Since ¢ is stationary for P and
ZLXy = ¢, we have £X; = ¢ for all t > 0. From linearity of £ and lemma 6.1, we
conclude that

1 n
= Y &l X =y
t=1

1 n
Epy =& [E Y a(-1Xy)
t=1

In other words, 1, is unbiased, as was to be shown. O

6.1 Proof of theorem 4.1

In this section we provide the proof of theorem 4.1, and || - || always represents the
L1(p) norm. The arguments are standard constructions from laws of large numbers in
Banach space. Our first observation is that part 2 of the theorem (asymptotic unbiased-
ness) follows from part 1 (strong consistency). Indeed, suppose that ¢, — 1 almost
surely in L1 (y). Using standard properties of the Bochner-Pettis integral, we obtain

1€¢n =l = |E¥n — EYI| < El¢n — 9|

Since ||f — g|| < 2 for any pair of densities f and g, the right hand side converges to
zero by the dominated convergence theorem.

13



Let us turn now to the claim that ¢, — ¢ almost surely in L1 (). As in the statement of
the theorem, let P be an ergodic stochastic kernel on (X, 2") with stationary distribu-
tion ¢. Let (X¢)¢>0 be P-Markov and let £X* = ¢. Define T(x) := g(- | x) — ¢, which
is a measurable function from X to Li(u) (see footnote 4). Note that £T(X*) = 0 by
lemma 6.1.

We need to show that

Tim [y, — || = lim

n—oo

ZTX,;

. = (P-almost surely) (12)

Fix € > 0. Since L;(y) is separable, we can choose a partition {B;};cn of Li(p) such
that each B; has diameter less than e. For any L;(y)-valued random variable U, we
let LjU := 2}21 b]-IL{U S B]-}, where, for each j, b]- is a fixed point in B;. Thus, L;U is
a simple random variable that approximates U. In particular, we have the following
result, a proof of which can be found in Bosq (2000, pp. 27-28):

3] € N with B||T(X*) — L;T(X*)|| < 2¢ (13)

Our first claim is that

lim
n—oo

ZL]T X¢) — ELT(XY)
=1

: =0  (P-almost surely) (14)

To establish (14), we can use the real ergodic law (1) to obtain
1 n
- Y LiT(X;) = Zb — Z 1{T(X;) € B;} — Zb P{T(X*) € B;} = EL;T(X")
t=1 t=1 j=1

almost surely, where the last equality follows immediately from the definition of &.
Thus (14) is established.

Returning to (12), we have

n

1
EZT&

t=1

+HIELT(XT)]]

1 n
< Y IT(Xe) = LyT(X)| +
=1

1 .
- t—zl LiT(X;) — EL;T(X¥)
Using real-valued ergodicity again, as well as (14), we get

. 1¢ * * *
lim sup HE Z T(X;)| < E|T(X*) — LyT(X*)|| + [|EL;T(X*)]]

n—oo t=1
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But the fact that ET(X*) = 0 now gives
[EL;T(X) = [ET(XT) = EL;T(XT)|| < ET(X™) — L;T(X")||
In view of (13) we then have

n

Ly rixy)

lim sup
==

n—o0o

< 4e (P-almost surely)

Since € is arbitrary, the proof of (12) is now done.

6.2 Proof of theorem 4.2

In this section we provide the proof of theorem 4.2, and || - || always represents the
L, () norm. Throughout the proof, for x € X we let Ty(x) be the function y — g(y | x),
and T(x) be the function y — g(v | x) — ¥(y). In this notation, theorem 4.2 amounts to
the claim that

— N(0,C) (n — o0) (15)
=1

& [nl/z i T(X;)

where C is the operator defined in section 4.

Our first lemma shows that, given our ergodicity assumptions on P, we can restrict
attention to the case where .ZX; = ¢ when proving (15).

Lemma 6.2. Let (X;);>1 and (X})¢>1 be two P-Markov chains, where £X1 = ¢ and X =
x € X. For any Borel probability measure y on Ly(u),

n
— u implies & [nl/z Y T(X})
=1

n
Z [nl/z Y T(Xy) — U
=1

Proof. As is well known (see, for example, Roberts and Rosenthal, 2004), one can con-
struct copies of (X;);>1 and (X});>1 on a common probability space (Q, .#, P) such that
if X; = X for some t, then X = X; for allk > t, and P{7 < oo} = 1, where 7 is the
stopping time (coupling time)

T:=inf{t € N: X; = X}}

Let Sp, := Y} 1 T(X:) and S, := Y} ; T(X}), and assume as in the statement of the
lemma that n=1/2S, — u. To prove that n=1/2S!, — yu it suffices to show that the
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(norm) distance between n~1/2S! and n~1/2S, converges to zero in probability (cf.,
e.g., Dudley, 2002, lemma 11.9.4). Fixing € > 0, we need to show that

P{||n_1/25,'1 — n_1/25n|| >e} =0 (n— o) (16)

Clearly

n
{lln1/28}, —n=1/25,| > €} C {Z IT(Xp) = T(Xp)|| > nme}

t=1

Fix k € IN, and partition the last set over {t < k} and {t > k} to obtain the disjoint
sets

{ZHT X}) = T(Xp)| > n'/? }ﬂ{TSk}c{ZHT X)) — T(Xp)|| > n'/? }

and

{ZHTXt T(Xp)|| > nt/ e}ﬂ{'tgk}c{’rgk}

Together, these lead to the bound

{In=128!, —n= 125, > €} C {ZHT X)) — T(X)|| > n/ }U{T>k}

k
P{||n"128 —n"125,|| > €} <P {Z IT(X}) — T(Xp)]| > nl/ze} +P{tT >k}
=1

For any fixed k, we have

lim P {Z IT(X]) — T(Xy)|| > nl/ze} = (17)

n—oo =

Hence
limsup{||n 1728, —n"12S,|| > e} <P{T >k}, VkeN
n—o0
Since P{7 < oo} =1 taking k — oo yields (16). O

In view of lemma 6.2, we can continue the proof of (15) while considering only the
case Z X1 = ¢. Another result we will find useful to establish (15) is given in the next
lemma, and is an easy corollary of Bosq (2000, Theorem 2.3). The proof is omitted.
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Lemma 6.3. Let (Yy),>1 and V be Ly (p) valued random variables. The following statements
are equivalent:

1. (LYn)u>1 is tight and L (e, Yn) — L(e,V) asn — oo for every e € Ly(u) with
llel]| <1, and

2. LY, — £Vasn — oo,

Taking this result as given, and taking £X; = ¢, define S, := T(X1) + --- T(Xy),
and Y, := n~1/2S,. The strategy of the proof is to establish (i) of Lemma 6.3 for V ~
N(0,C). As a first step, let us consider tightness of the partial sums.

Lemma 6.4. Under the hypotheses of theorem 4.2, the sequence (LY} )y>1 is tight.

Proof. As a first step, observe that E||T(X1)||?> < o, because
E||T(X1)|1* = Ellqg(- [ X1) — 9[1* < 2(Ellq(- | X1 + 1¢]%)

and E||g(- | X1)||* < o as shown in lemma 6.1. Since E| T(X;)||? is finite, the covariance
operator of T(X7) exists, and we denote it by D. The operator D admits a decomposi-
tion of the form

Dh =3, Aj{vj,hyoj (b€ La(p)) (18)
j=1
where (v;);>1 is an orthonormal basis for Ly(y), and (A;);>1 is a sequence satisfying
Y17 = E||T(Xy) |?> < o (c.f., e.g., Bosq, 2000, Chapter 1).1¢ It follows from (18) that
E(vj, T(X1))? = A; for all j.
Pick any j € IN. Our first claim is that if for some constant -y independent of j and n

one has E(vj, Y,)? < YA}, then (Yy)n>1 is tight. To see this, fix € > 0 and consider the
real sequence (ay) definded by

ay = Z E(v]-,Yn>2 <7 Z Aj
j=N j=N

Since ay | 0, we can choose an increasing sequence of integers (Nj),>1 and a positive
real sequence (by)r>1 with by T co and } > bran, < €. Let

By := {h € Ly(p) : Y (vj,h)? < bk—l}

j= N

16 As usual, an orthonormal basis of L, () is an orthonormal set the span of which is dense in Ly ().
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and let K be the compact set Ny>1By.!” Using the Chebychev Inequality now gives

P{Y, ¢ K} <) P{Y, & B} <) bran, <€, Vn>1
k>1 k>1

It follows that (£Y},),,>1 is tight.

It remains to prove that there exists a constant y independent of j and 1 with E(v, Y,)? <
YAj. So fix j and 1, and observe that

E(0), Yy %;; (05, T(X)) (07, T(Xy)) < E(vj,T(X1)>2+2§E<vj,T(X1))<vj,T(Xt)>
E(0), Y,)2 < A;+2 Y E{oj, T(X1)) (o, T(X0)) (19)
t=2

Let x be defined by x(x) = (vj, T(x)). Observe that Ex(X;) = 0 and

(@) = 140 TED] < gl - [T < V()2

By Meyn and Tweedie (1993, Theorem 15.2.9), the Markov chain (X;);>1 is also v1/2.
uniformly ergodic, and since |x| < V1/2 we have

[P (x)| = [P"x(x) — p(x)| < a'cV/(x)!/2 (20)

for some constant ¢ and some & < 1 (Meyn and Tweedie, 1993, Theorem 16.1.2).

Now consider the term
E(vj, T(X1)) (v}, T(Xy)) = Ex(X1)x(Xy) = E{x(X1)E[x(X;) | 7]}
In view of (11) we can write this as
E(v;, T(X1)) (v}, T(Xp)) = E[x(X1)P" 'k (Xq)]
and the Cauchy-Schwartz inequality combined with (20) gives
E(vj, T(X1))(vj, T(X¢)) < E[x(X1)*JE[(P""'x(X1))*] < E[x(X1)?]E[(a’'¢)*V(X1)]
Since E[x(X1)?] = A; we have

E(vj, T(X1)) {0}, T(X1)) < Aj(a'~c)*p(V)

7Let C be any subset of L(u), and let (e;)x>1 be an orthonormal basis. It is known that C is compact
if Y 4>, (ex, 1) — 0as n — oo uniformly over 1 € C.
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Returning to (19), then,

E(0;, Ya)2 < Aj+2 i Ai(a'1e)2p(V)
t=2

2ccp(V
E(v, Ya)? <A, 7vi=1+ = & 2)

As this was the last claim to be proven, the tightness of (.£Y;),>1 is established. [

The next step in the proof of Theorem 4.2 is to verify the second part of (i) in Lemma 6.3.

Lemma 6.5. Let (Yy,),>1 be as above, and let V be a Gaussian random variable on Ly(u) with
distribution N(0,C). Given any e € Ly(p) with |le|| < 1, we have £ (e, Yn) — £ (e, V) as
n — oo,

Proof. Fix such ane, let ko(x) := (e, To(x)) and x(x) := (e, T(x)). We have

(e, Yn) =n /2 Z e, T(X)) =n"1/2 ZK (Xy)
t=1

Observe that x(x) = xo(x) — ¢(xo), and xo(x)? < || To(x)[|*> < V(x) for all x € X. In
view of the scalar CLT for V-uniformly ergodic Markov chains (Meyn and Tweedie,
1993, Theorem 17.0.1) we have

[ 1/221( (X¢)| — N(0,07)
where
o = Ex(X1)? +2 Y Ex(Xq)x(Xy)
t>2
= E{e, T(X;))? +2t;E<e,T(X1)) (e, T(Xy)) = (e, Ce)
In other words, Z (e, Y;,) — Z{e, V), where V ~ N(0,C). O

The result in Theorem 4.2 follows from lemmas 6.2, 6.3, 6.4 and 6.5.
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