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Abstract. The problem of computing low rank approximations of matrices is considered. The novel aspect of our
approach is that the low rank approximations are on a collection of matrices. We formulate this as an optimization
problem, which aims to minimize the reconstruction (approximation) error. To the best of our knowledge, the
optimization problem proposed in this paper does not admit a closed form solution. We thus derive an iterative
algorithm, namely GLRAM, which stands for the Generalized Low Rank Approximations of Matrices. GLRAM
reduces the reconstruction error sequentially, and the resulting approximation is thus improved during successive
iterations. Experimental results show that the algorithm converges rapidly.

We have conducted extensive experiments on image data to evaluate the effectiveness of the proposed algorithm
and compare the computed low rank approximations with those obtained from traditional Singular Value Decom-
position (SVD) based methods. The comparison is based on the reconstruction error, misclassification error rate,
and computation time. Results show that GLRAM is competitive with SVD for classification, while it has a much
lower computation cost. However, GLRAM results in a larger reconstruction error than SVD. To further reduce
the reconstruction error, we study the combination of GLRAM and SVD, namely GLRAM + SVD, where SVD is
preceded by GLRAM. Results show that when using the same number of reduced dimensions, GLRAM + SVD
achieves significant reduction of the reconstruction error as compared to GLRAM, while keeping the computation
cost low.
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1. Introduction

The problem of dimensionality reduction has recently received broad attention in areas such
as machine learning, computer vision, and information retrieval (Berry, Dumais, & O’Brie,
1995; Castelli, Thomasian, & Li, 2003; Deerwester et al., 1990; Dhillon & Modha, 2001;
Kleinberg & Tomkins, 1999; Srebro & Jaakkola, 2003). The goal of dimensionality reduc-
tion is to obtain more compact representations of the data with limited loss of information.
Traditional algorithms for dimensionality reduction are based on the so-called vector space
model. Under this model, each datum is modeled as a vector and the collection of data is
modeled as a single data matrix, where each column of the data matrix corresponds to a
data point and each row corresponds to a feature dimension. The representation of data by
vectors in Euclidean space allows one to compute the similarity between data points, based
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on the Euclidean distance or some other similarity metric. The similarity metrics on data
points naturally lead to similarity-based indexing by representing queries as vectors and
searching for their nearest neighbors (Aggarwal, 2001; Castelli, Thomasian, & Li, 2003).

A well-known technique for dimensionality reduction is the low rank approximation
by the Singular Value Decomposition (SVD), also called Latent Semantic Indexing (LSI)
in information retrieval (Berry, Dumais, & O’Brie, 1995). An appealing property of this
low rank approximation is that it achieves the smallest reconstruction error among all
approximations with the same rank. Details can be found in Section 2. Some theoretical
justification of the empirical success of LSI can be found in Papadimitriou et al. (1998),
where it is shown that LSI works in the context of a simple probabilistic “Corpus-generating”
model. However, applications of this technique to high-dimensional data, such as images and
videos, quickly run up against practical computational limits, mainly due to the expensive
SVD computation in both time and space for large matrices (Golub & Van Loan, 1996).

Several incremental algorithms have been proposed in the past (Brand, 2002; Gu &
Eisenstat, 1993; Kanth et al., 1998) to deal with the high space complexity of SVD, where
the data points are inserted incrementally to update the SVD. To the best of our knowledge,
such algorithms come with no guarantees on the quality of the approximation produced.
Random sampling can be applied to speed up the SVD computation. More details can be
found in Achlioptas and McSherry (2001), Drineas et al. (1999) and Frieze, Kannan, &
Vempala (1998).

1.1. Contributions

In this paper, we present a novel approach to alleviate the expensive SVD computation.
The novelty lies in a new data representation model. Under this model, each datum is
represented as a matrix, instead of a vector, and the collection of data is represented as a
collection of matrices, instead of a single data matrix. We formulate the problem of low
rank approximations as a new optimization problem, which approximates a collection of
matrices with matrices of lower rank. To the best of our knowledge, there is no closed
form solution for the new optimization problem. We thus derive an iterative algorithm,
namely GLRAM. Detailed mathematical justification for this iterative procedure is given
in Section 3.

Both GLRAM and SVD aim to minimize the reconstruction error. The essential difference
is that GLRAM applies a bilinear transformation on the data. Such a bilinear transformation
is particularly appropriate for data in matrix form, and often leads to lower computation cost
in comparison to SVD. We apply GLRAM on image compression and retrieval, where each
image is represented in its native matrix form. To evaluate the proposed algorithm, we have
conducted extensive experiments on five well-known image datasets: PIX, ORL, AR, PIE,
and USPS, where USPS consists of images of handwritten digits and the other four are face
image datasets. GLRAM is compared with SVD, as well as 2DPCA, a recently proposed
algorithm for dimension reduction. (Details on 2DPCA can be found in Section 4.)

Results show that when using the same number of reduced dimensions, GLRAM is
competitive with SVD for classification, while it has a much lower computation cost.
However, GLRAM results in a larger reconstruction error than SVD. The underlying
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reason may be that GLRAM is able to utilize the locality property (e.g., smoothness in an
image) intrinsic in the data, which leads to good classification performance. In terms of
compression ratio1, GLRAM outperforms SVD, especially when the number of data points
is relatively small compared to the number of dimensions. For large and high-dimensional
datasets, the lack of available space becomes a critical issue. In this case, compression ratio
is an important factor in evaluating different dimensionality reduction algorithms.

To further reduce the reconstruction error of GLRAM, we study the combination of
GLRAM and SVD, namely GLRAM + SVD, which applies SVD after the intermediate
dimensionality reduction stage using GLRAM. The essence of this composite algorithm
is a further dimensionality reduction stage by SVD following GLRAM. Since SVD is
applied to a low-dimensional space transformed by GLRAM, the second stage by SVD
can be implemented efficiently. We apply this algorithm to image datasets and compare
it with GLRAM and SVD. Results show that when using the same number of reduced
dimensions, GLRAM + SVD achieves a significant reduction of the reconstruction error as
compared to GLRAM, while keeping the computation cost small. The reconstruction error
of GLRAM + SVD is close to that of SVD, especially when the intermediate dimension
in the GLRAM stage is large, while it has a smaller computation cost than SVD.

In summary, GLRAM can be applied as a pre-processing step for SVD. The pre-
processing by GLRAM reduces significantly the computation cost of the SVD computation,
while keeping the reconstruction error small (see Section 5.6).

1.2. Organization of the paper

The rest of this paper is organized as follows. We give a brief overview of low rank approx-
imations of matrices in Section 2. The problem of generalized low rank approximations of
matrices is studied in Section 3. Some related work is presented in Section 4. A performance
study is provided in Section 5. Conclusions and directions for future work can be found in
Section 6.

A preliminary version of this paper appears in the Proceedings of the Twenty-First
International Conference on Machine Learning, Alberta, Canada, pp. 887–894, 2004. This
submission is substantially extended and contains: (1) additional datasets in Section 5.1,
such as RAND and USPS; (2) new experiments in Sections 5.2–5.4; and (3) inclusion of
GLRAM + SVD in Section 5.6.

The major notations used throughout the rest of this paper are listed in Table 1.

2. Low rank approximations of matrices

Traditional methods in information retrieval and machine learning deal with data in vector-
ized representation. A collection of data is then stored in a single matrix A ∈ R

N×n, where
each column of A corresponds to a vector in the N-dimensional space. A major benefit of
this vector space model is that the algebraic structure of the vector space can be exploited
(Berry, Dumais, & O’Brie, 1995).

For high-dimensional data, one would like to simplify the data, so that traditional machine
learning and statistical techniques can be applied. However, crucial information intrinsic
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Table 1. Notations.

Notations Descriptions

Ai The i-th data point in matrix form

r Number of rows in Ai

c Number of columns in Ai

L Transformation on the left side

R Transformation on the right side

Mi Reduced representation of Ai

�1 Number of rows in Mi

�2 Number of columns in Mi

d Common value for �1 and �2

k Number of reduced dimensions by SVD

A Data matrix of size N by n

n Number of training data points

N Dimension of training data (N = rc)

in the data should not be removed under this simplification. A widely used method for
this purpose is to approximate the single data matrix, A, with a matrix of lower rank.
Mathematically, the optimal rank-k approximation of a matrix A, under the Frobenius norm
can be formulated as follows:

Find a matrix B ∈ R
N×nwith rank(B) = k, such that

B = arg min
rank(B)=k

‖A − B‖F ,

where the Frobenius norm, ‖M‖F , of a matrix M = (Mi j ) is given by ‖M‖F =
√∑

i, j M2
i j .

The matrix B can be readily obtained by computing the Singular Value Decomposition
(SVD) of A, as stated in the following theorem (Golub & Van Loan, 1996).

Theorem 2.1. Let the Singular Value Decomposition of A ∈ R
N×n be A = U DV T ,

where U and V are orthogonal, D = diag(σ1, . . . , σr , 0, . . . , 0), σ1 ≥ · · · ≥ σr > 0 and r
= rank(A). Then for 1 ≤ k ≤ r,

∑r
i=k+1 σ 2

i = min{‖A − B‖2
F |rank(B) = k}. The minimum

is achieved with B = bestk(A), where bestk(A) = Uk diag(σ1, . . . , σk)V T
k , and Uk and Vk

are the matrices formed by the first k columns of U and V respectively.

For any approximation M of A, we call ‖A − M‖F the reconstruction error of the ap-
proximation. By Theorem 2.1, B = Ukdiag(σ1, . . . , σk)V T

k has the smallest reconstruction
error among all the rank-k approximations of A.

Under this approximation, each column, ai ∈ R
N , of A can be approximated as ai ≈ UkaL

i ,
for some ai

L ∈ R
k. Since Uk has orthonormal columns, ||Uk ai

L − Uk aj
L|| = ||ai

L − aj
L||, i.e.,

the Euclidean distance between two vectors are preserved under the orthogonal projection.
It follows that ||ai−aj|| ≈ ||Uk ai

L − Uk aj
L|| = ||ai

L − aj
L||. Hence the proximity of ai and aj,
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in the original high-dimensional space, can be approximated by computing the proximity
of their reduced representations ai

L and aj
L. The speed-up on a single distance computation

using the reduced representations is N/k. This forms the basis for Latent Semantic Indexing
(Berry, Dumais, & O’Brie, 1995; Deerwester et al., 1990), used widely in informational
retrieval.

Another potential application of the above rank-k approximation is for data compression.
Since each ai is approximated by Uk ai

L, where Uk is common for every ai, we need to keep
Uk and {ai

L}n
i=1 only for all the approximations. Since Uk ∈ R

N×k and ai
L ∈ R

k, for i =
1, . . . , n, it requires nk + Nk = (n + N)k scalars to store the reduced representations. The
storage saved, or compression ratio, using the rank-k approximation is thus nN/(n + N)k,
since the original data matrix A is of size N by n.

3. Generalized low rank approximations of matrices

In this section, we study the problem of generalized low rank approximations of matrices,
which aims to approximate a collection of matrices with lower rank. A key difference
between this generalized problem and the low rank approximation problem discussed in
the last section, is the data representation model applied.

Recall that the vector space model is applied for the traditional low rank approximations.
The vector space model leads to a simple and closed form solution for low rank approxima-
tions by computing the SVD of the data matrix. However, the SVD computation restricts
its applicability to matrices of small size. Instead, we apply a different data representation
model, under which each datum is represented as a matrix and the collection of data is
represented as a collection of matrices.

3.1. Problem formulation

Let Ai ∈ R
r×c, for i = 1, . . . , n, be the n data points in the training set, where r and

c denote the number of rows and columns respectively for each Ai. We aim to compute
two matrices L ∈ R

r×�1 and R ∈ R
c×�2 with orthonormal columns, and n matrices Mi ∈

R
�1×�2 , for i = 1, . . . , n, such that LMi RT approximates Ai, for all i. Here, �1 and �2 are

two pre-specified parameters that are best set to the same value, based on the experimental
results in Section 5. Mathematically, we can formulate this as the following minimization
problem: Computing optimal L, R and {Mi}n

i=1, which solve

min
L∈R

r×�1 : LT L=I�1
R∈R

c×�2 : RT R=I�2
Mi ∈R

�1×�2 : i=1,...,n

n∑
i=1

||Ai − L Mi RT ||2F . (1)

The matrices L and R in the above approximations act as the two-sided linear trans-
formations on the data in matrix form. Recall that in the case of traditional low rank
approximations, one-sided transformation is applied, which is Uk in our previous discus-
sions. Note that the Mi’s are not required to be diagonal.
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The generalized low rank approximations above naturally lead to two basic applications.

– Data compression: The matrices L, R, and {Mi}n
i=1 can be used to recover the original n

matrices {Ai}n
i=1, assuming LMi RT approximates Ai, for each i. It requires r �1 + c �2 + n

�1 �2 scalars to store L, R, and {Mi}n
i=1. Hence, the storage saved, or the compression

ratio using the approximations is nrc/(r�1 + c�2 + n�1�2).
– Distance computation: A common similarity metric on matrices is the Frobenius norm.

The distance between Ai and Aj is ||Ai−Aj ||F. Using the approximations, we have
||Ai−Aj ||F ≈ ||LMi RT − LMj RT ||F = ||Mi − Mj ||F, since both L and R have or-
thonormal columns. The computation cost of computing ||Ai−Aj ||F (resp. ||Mi − Mj ||F)
is O(rc) (resp. O(�1 �2)). Hence, the speed-up on a single distance computation using the
approximations is rc/(�1�2).

Note that as �1 and �2 decrease, the speed-up on the distance computation and the com-
pression ratio increase. However, small values of �1 and �2 may lead to loss of information
intrinsic in the original data. We discuss this trade-off in Section 5.

The formulation in Eq. (1) is general, in the sense that �1 and �2 can be different, i.e., Mi

can have an arbitrary shape. We will study the effect of the shape of Mi on the performance
of the approximations in Section 5.2.

3.2. The main algorithm

In this section, we show how to solve the minimization problem in Eq. (1). The following
theorem shows that the Mi’s are determined by the transformation matrices L and R, which
significantly simplifies the minimization problem in Eq. (1).

Theorem 3.1. Let L, R and {Mi}n
i=1 be the optimal solution to the minimization problem

in Eq. (1). Then Mi = LT Ai R, for every i.

Proof: By the property of the trace of matrices,

n∑
i=1

||Ai − L Mi RT ||2F =
n∑

i=1

trace((Ai − L Mi RT )(Ai − L Mi RT )T )

=
n∑

i=1

trace
(

Ai AT
i

) +
n∑

i=1

trace
(
Mi MT

i

)

− 2
n∑

i=1

trace
(
L Mi RT AT

i

)
, (2)

where the second term
∑n

i=1 trace(Mi Mi
T ) results from the fact that both L and R have

orthonormal columns, and trace(AB) = trace(BA), for any two matrices.
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Since the first term on the right hand side of Eq. (2) is a constant, the minimization in
Eq. (1) is equivalent to minimizing

n∑
i=1

trace
(
Mi MT

i

) − 2
n∑

i=1

trace
(
L Mi RT AT

i

)
. (3)

It is easy to check that the minimum of (3) is achieved, only if Mi = LT Ai R, for every i.
This completes the proof of the theorem. �

Theorem 3.1 implies that Mi is uniquely determined by L and R with Mi = LT Ai R, for
all i. Hence the key step for the minimization in Eq. (1) is the computation of the common
transformations L and R. A key property of the optimal transformations L and R is stated
in the following theorem:

Theorem 3.2. Let L, R and {Mi}n
i=1 be the optimal solution to the minimization problem

in Eq. (1). Then L and R solve the following optimization problem:

max
L∈R

r×�1 : LT L=I�1
R∈R

c×�2 : RT R=I�2

n∑
i=1

||LT Ai R||2F . (4)

Proof: From Theorem 3.1, Mi = LT Ai R, for every i. Substituting this into
∑n

i=1 ||Ai −
LMi RT ||F2, we obtain

n∑
i=1

||Ai − L Mi RT ||2F =
n∑

i=1

||Ai ||2F −
n∑

i=1

||LT Ai R||2F . (5)

Hence the minimization in Eq. (1) is equivalent to the maximization of

n∑
i=1

||LT Ai R||2F ,

which completes the proof of the theorem. �

To the best of our knowledge, there is no closed form solution for the maximization prob-
lem in Eq. (4). A key observation, which leads to an iterative algorithm for the computation
of L and R, is stated in the following theorem:

Theorem 3.3. Let L, R and {Mi}n
i=1 be the optimal solution to the minimization problem

in Eq. (1). Then
(1) For a given R, L consists of the �1 eigenvectors of the matrix

ML =
n∑

i=1

Ai R RT AT
i
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corresponding to the largest �1 eigenvalues.
(2) For a given L, R consists of the �2 eigenvectors of the matrix

MR =
n∑

i=1

AT
i L LT Ai

corresponding to the largest �2 eigenvalues.

Proof: By Theorem 3.2, L and R maximize

n∑
i=1

||LT Ai R||2F ,

which can be rewritten as

n∑
i=1

trace
(
LT Ai R RT AT

i L
) = trace

(
LT

n∑
i=1

(
Ai R RT AT

i

)
L

)

= trace(LT ML L), (6)

where ML = ∑n
i=1 Ai RRT Ai

T . Hence, for a given R, the maximum of

n∑
i=1

||LT Ai R||2F = trace
(
LT ML L

)

is achieved, only if L ∈ R
r× �1 consists of the �1 eigenvectors of the matrix ML corresponding

to the largest �1 eigenvalues. The maximization of trace(LT ML L) can be considered as a
special case of the more general optimization problem in Edelman, Arias and Smith (1998).

Similarly, by the property of the trace of matrices,

n∑
i=1

||LT Ai R||2F

can also be rewritten as

n∑
i=1

trace
(
RT AT

i L LT Ai R
) = trace

(
RT

n∑
i=1

(
AT

i L LT Ai
)
R

)

= trace(RT MR R), (7)

where MR = ∑n
i=1 Ai

T LLT Ai . Hence, for a given L, the maximum of

n∑
i=1

||LT Ai R||2F = trace(RT MR R)
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is achieved, only if R ∈ R
c×�2 consists of the �2 eigenvectors of the matrix MR corresponding

to the largest �2 eigenvalues. This completes the proof of the theorem. �

Theorem 3.3 results in an iterative procedure for computing L and R as follows: for a given
L, we can compute R by computing the eigenvectors of the matrix MR; with the computed
R, we can then update L by computing the eigenvectors of the matrix ML. The procedure
can be repeated until convergence. The pseudo-code of the above iterative procedure is
given in Algorithm GLRAM below.

Theoretically, the solution to GLRAM is only locally optimal. The solution depends on
the choice of the initial L0 for L. We did extensive experiments (see Section 5.3) using
different choices of the initial L0 and found out that, for image datasets, GLRAM always
converges to the same solution, regardless of the choice of the initial L0.

Theorem 3.3 implies that the matrix updates in Lines 5 and 8 of GLRAM do not decrease
the value of

∑n
i=1 ||LT Ai R ||F2, since the computed R and L are locally optimal. Hence by

Theorem 3.2, the value of
∑n

i=1 ||Ai − LMi RT ||F2, or

RMSRE ≡
√√√√1

n

n∑
i=1

||Ai − L Mi RT ||2F (8)
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does not increase. Here RMSRE stands for the Root Mean Square Reconstruction Error.
The convergence of GLRAM follows, since RMSRE is bounded from below by 0, as stated
in the following Theorem:

Theorem 3.4. The GLRAM Algorithm monotonically non-increases the RMSRE value as
defined in Eq. (8), hence it converges in the limit.

Thus we use the relative reduction of the RMSRE value to check the convergence.
Specifically, let RMSRE(i) be the RMSRE value at the i-th iteration of the GLRAM
algorithm, then the convergence of the algorithm is determined by checking whether the
following inequality holds:

RMSRE(i − 1) − RMSRE(i)

RMSRE(i − 1)
< η,

for some small threshold η > 0. In our experiments, we choose η = 10−6. Results in
Section 5 show that the algorithm converges within two to three iterations.

Note that the transformation matrices L and R in GLRAM may not converge, even when
the RMSRE value converges. To see why this is the case, consider two pairs of solutions
(L, R) and (LP, RQ), for some orthogonal matrices P ∈ R

�1×�1 and Q ∈ R
�2×�2 . Since

RMSRE ≡
√√√√1

n

n∑
i=1

||Ai − L Mi RT ||2F =
√√√√1

n

n∑
i=1

||Ai − L LT Ai R RT ||2F ,

it is easy to verify that both (L, R) and (LP, RQ) result in the same RMSRE value.
Thus, the solution to GLRAM is invariant under arbitrary orthogonal transformations. Two
transformations L and L̂ can be compared by computing the largest principal angle ((Bjork
& Golub, 1973; Golub & Van Loan, 1996) between the column spaces of L and L̂ . If the
angle is zero, L is essentially equivalent to L̂ up to an orthogonal transformation.

3.3. Time and space complexities

The most expensive steps in GLRAM are the formation of the matrices MR and ML in Lines
3 and 6, and the formation of Mj in Lines 13–15.

It takes O(�1 c (r + c) n) time for computing MR and O(�2 r (r + c) n) time for computing
ML. The computation time of Mj = (LT (Aj R)) using the given order is O(rc�2 + r�2�1) =
O(r�2 (c + �1)). Assume the number of iterations in the while loop (from Line 2 to Line
10) is I. The total time complexity of GLRAM is O(I(r + c)2 max (�1, �2) n).

It is easy to verify that the space complexity of GLRAM is O(rc) = O(N). The key to the
low space complexity is that the formation of the matrices MR and ML can be proceeded by
reading the matrices {Ai}n

i=1 incrementally.
Note that GLRAM involves eigenvalue problems of size r2 or c2, as compared to size

rcn (= Nn) in SVD. This is the key reason why GLRAM has much lower costs in time and
space than SVD.
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4. Related work

Wavelet transform is a commonly used scheme for image compression (Averbuch, Lazar,
& Israeli, 1996). Similar to the GLRAM algorithm in this paper, wavelets can be applied
to images in matrix representation. A subtle but important difference between wavelet
compression and GLRAM compression is that the former mainly aims to compress and
reconstruct a single image with small cost of basis representations, which is extremely
important for image transmission in computer networks, whereas GLRAM compression
aims to compress a set of images by making use of the correlation information between
images.

A collection of images can also be considered as a 3rd-order tensor, or three-dimensional
array. Decomposition of higher-order tensors has been studied in Kolda (2001), Shashua
and Levin (2001), Vasilescu and Terzopoulos (2002), and Zhang and Golub (2001). Our
approach differs in that we keep explicit the 2D nature of images.

The work that is most closely related to the current one is the two-dimensional Principal
Component Analysis (2DPCA) algorithm recently proposed in Yang et al. (2004). Like
GLRAM, 2DPCA works with data in matrix form. The key difference is that 2DPCA
applies linear transformation on the right side of the data, while GLRAM applies two-sided
linear transformation. 2DPCA can be formulated as a trace optimization problem, from
which a closed form solution is obtained. However, a disadvantage of 2DPCA, as also
mentioned in Yang et al. (2004), is that the number of reduced dimensions of 2DPCA can
be quite large. More details are given below.

2DPCA computes a linear transformation X ∈ R
c×� with � < c, such that each image Ai

∈ R
r×c is transformed (projected) to Yi = Ai X ∈ R

r×�. The variance of the n projections
{Yi}n

i=1 can be computed as

1

n − 1

n∑
i=1

||Yi − Ȳ ||2F = 1

n − 1

n∑
i=1

X T (Ai − Ā)T (Ai − Ā)X,

where Ȳ = 1
n

∑n
i=1 Yi = ĀX is the mean and Ā = 1

n

∑n
i=1 Ai .

The optimal transformation X in 2DPCA is computed such that the variance of the n data
points in the transformed space is maximized. Specifically, the optimal transformation X
can be computed by solving the following maximization problem:

X = arg max
X T X=I�

(
1

n − 1

n∑
i=1

X T (Ai − Ā)T (Ai − Ā)X

)
. (9)

The optimal X can be obtained by computing the � eigenvectors of the matrix 1
n−1

∑n
i=1(Ai −

Ā)T (Ai − Ā) corresponding to the largest � eigenvalues.
It requires c� + nr� scalars to store X ∈ R

c×� and {Yi}n
i=1 ∈ R

r×�. Hence, the compression
ratio by 2DPCA is nrc/(c� + nr�) ≈ c/�.

Table 2 lists the time and space complexities of SVD, 2DPCA, and GLRAM. It is clear
that GLRAM and 2DPCA have much smaller costs in time and space than SVD.
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Table 2. Comparison of SVD, 2DPCA, and GLRAM: n is the number of data points in the training dataset and
N = r × c is the dimension of the data.

Methods Time Space

SVD O(nN min (n, N)) O(nN)

2DPCA O(nc2r) O(N)

GLRAM O(I(r+c)2 max (�1, �2) n) O(N)

5. Experimental evaluations

In this section, we experimentally evaluate the GLRAM algorithm. All of our ex-
periments are performed on a P4 2.785 GHz Linux machine with 1GB memory.
A MATLAB version of the GLRAM algorithm can be accessed at http://www-
users.cs.umn.edu/∼jieping/GLRAM/}.

We present in Section 5.1 one synthetic dataset and five real-world image datasets
used for our evaluation. The effect of the ratio of �1 to �2 on reconstruction error is
discussed in Section 5.2. Results show that, for the datasets considered in the paper,
choosing �1/�2 ≈ 1 achieves good performance. We thus set both �1 and �2 equal to a
common value d in the following experiments. The sensitivity of GLRAM to the choice of
the initial L0 for L is studied in Section 5.3. In Sections 5.4–5.5, a detailed comparative study
between the proposed algorithm and SVD is provided, where the comparison is made on
the reconstruction error (measured by RMSRE), classification, and quality of compressed
images. The results with 2DPCA (Yang et al., 2004) are also included. The effectiveness
of SVD critically depends on the reduced dimension k. For all the experiments, k is chosen
so that both SVD and GLRAM have the same number of reduced dimensions. Finally, we
study the GLRAM + SVD algorithm in Section 5.6.

For all the experiments, we use the K-Nearest-Neighbors (K-NN) method with K = 1
based on the Euclidean distance for classification (Duda, Hart, & Stork, 2000; Fukunaga,
1990). We use 10-fold cross-validation for estimating the misclassification error rate. In
10-fold cross-validation, we divide the data into ten subsets of approximately equal size.
Then we do the training and testing ten times, each time leaving out one of the subsets
for training, and using only the omitted subset for testing. The misclassification error rate
reported is the average from the ten runs.

5.1. Datasets

We use the following six datasets (one synthetic dataset and five real-world image datasets)
in our experiments:

– RAND is a synthetic dataset, consisting of 500 data points of size 100 × 100. All the
entries are randomly generated between 0 and 255 (the same range as the four face image
datasets).

– PIX2 contains 300 face images of 30 persons. The size of PIX images is 512 × 512. We
subsample the images down to a size of 100 × 100 = 10000.
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– ORL3 is a well-known dataset for face recognition (Samaria & Harter, 1994). It contains
the face images of 40 persons, for a total of 400 images. The image size is 92 × 112.
The face images are perfectly centred. The major challenge posed by this dataset is the
variation of the face pose. We use the whole image as an instance (i.e., the dimension of
an instance is 92 × 112 = 10304).

– AR4 is a large face image dataset (Martinez & Benavente, 1998). The instance of each
face may contain large areas of occlusion, due to the presence of sun glasses and scarves.
The existence of occlusion dramatically increases the within-class variances of AR face
image data. We use a subset of AR. This subset contains 1638 face images of 126 persons.
Its image size is 768 × 576. We first crop the image from row 100 to 500, and column
200 to 550, and then subsample the cropped images down to a size of 101 × 88 = 8888.

– PIE5 is a subset of the CMU–PIE face image dataset (Sim et al., 2004). PIE contains 6615
face instances of 63 persons. More specifically, each person has 21× 5 = 105 instances
taken under 21 different lighting conditions and 5 different poses. The image size of PIE
is 640 × 480. We pre-process each image using a similar technique as above. The final
dimension of each instance is 32 × 24 = 768.

– USPS6 is an image dataset consisting of 9298 handwritten digits of “0” through “9”. We
use a subset of USPS. This subset contains 300 images for each digit, for a total of 3000
images. The image size is 16 × 16 = 256.

The statistics of all datasets are summarized in Table 3.

5.2. Effect of the ratio of �1 to �2 on reconstruction error

In this experiment, we study the effect of the ratio of �1 to �2 on reconstruction error,
where �1 and �2 are the row and column dimensions of the reduced representation Mi in
GLRAM. To this end, we run GLRAM with different combinations of �1 and �2 with a
constant product �1 · �2 = 400. The results on PIX, ORL, and AR are shown in Table 4. It
is clear from the table that the RMSRE value is small, when �1/�2 ≈ 1, and the minimum
is achieved when �1/�2 = 1 in all cases.

To examine whether this is related to the fact that for images, the number of rows (r)
and the number of columns (c) are comparable, we subsample the images in PIX down to a
size of 50 × 100 = 5000. The result on this dataset is included in Table 4. Interestingly, we
observe the same trend in this dataset. That is, the RMSRE value is small, when �1/�2 ≈
Table 3. Statistics of our test datasets.

Dataset Size (n) Dimension (r × c) Number of classes

RAND 500 100 × 100 = 10000 –

PIX 300 100 × 100 = 10000 30

ORL 400 92 × 112 = 10304 40

AR 1638 101 × 88 = 8888 126

PIE 6615 32 × 24 = 768 63

USPS 3000 16 × 16 = 256 10
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1. We have conducted similar experiments on other datasets and observed the same trend.
This may be related to the effect of balancing between the left and right transformations
involved in GLRAM.

Finally, we examine the effect of the ratio using the synthetic dataset. The result on
RAND is included in the last column of Table 4. We observe the same trend as other
datasets. That is, the RMSRE value is small, when �1/�2 ≈ 1.

The above experiment on both the synthetic and real-world datasets suggests that choos-
ing �1/�2 ≈ 1 may be a good strategy in practice. In all the following experiments, we set
both �1 and �2 equal to a common value d.

5.3. Sensitivity of GLRAM to the choice of the initial L0

In this experiment, we examine the sensitivity of GLRAM to the choice of the initial L0 for
L (see Line 1 of the GLRAM algorithm). To this end, we run GLRAM with 10 different
initial L0’s. The first one is L0 = (Id, 0)T , while the next nine being randomly generated.

First, we study the sensitivity of GLRAM using the image datasets. The result on ORL
is shown in figure 1 (left), where the horizontal axis is the number of iterations and the
vertical axis is the RMSRE value (on a log scale). d is set to be 10.

We can observe from the figure that GLRAM converges rapidly for all ten initial choices
of L. It converges within two to three iterations with the specified threshold (η = 10−6). For
all ten different initial L0’s, GLRAM converges to the same RMSRE value. To check whether
GLRAM converges to the same solution, we compare the resulting left transformations L
from the ten different runs. Two transformations can be compared by computing the largest
principal angle between the column spaces of these two transformations, as discussed in
Section 3. The angle between the left transformation resulting from the first run and the
ones from other nine runs are computed (results omitted). For all cases, the angles are
around 10−10 to 10−7. This implies that GLRAM essentially converges to the same solution
(subject to an orthogonal transformation) for the ten different runs. We observe the same

Table 4. Effect of the ratio of �1 to �2 on reconstruction error: Row shown in bold has minimum RMSRE
(where �1 = �2).

Parameters Datasets

�1 �2 PIX ORL AR PIX (50 × 100) RAND

5 80 569.06 2128.8 3605.4 384.67 7189.9

8 50 441.72 1737.2 2822.0 290.97 7177.5

10 40 387.47 1580.1 2457.4 250.55 7174.1

16 25 294.90 1376.9 1978.3 180.88 7170.9

20 20 278.01 1367.3 1902.8 169.28 7170.6

25 16 279.81 1423.9 1965.4 172.43 7171.1

40 10 349.12 1697.6 2379.1 226.90 7174.2

50 8 406.06 1864.6 2629.4 269.79 7177.2

80 5 529.26 2366.1 3426.3 – 7190.0
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trend in other four image datasets (PIX, AR, PIE, and USPS) as well as different values of
d and the results are omitted.

Next, we examine the sensitivity of GLRAM using RAND, the synthetic dataset. The
result is shown in figure 1 (right). It is clear from the figure that GLRAM converges much
slower on RAND than on image datasets. We run GLRAM with the threshold η = 10−6,
and it does not converge until 78 iterations. Furthermore, GLRAM does not converge to
the same solution (measured by the angle between two subspaces). Further experiments
also show that the final RMSRE value may be different for different initial L0’s, even
though the difference always seems small. This is likely due to the fact that there are some
similarities among the images in the same image datasets, while the data in RAND is
randomly generated.

The experiment above implies that for datasets with some hidden structures, such as
faces and handwritten digits, GLRAM may converge to the global solution, regardless of
the choice of the initial L0. However, it is not true in general, as shown in the RAND dataset.

5.4. Comparison of reconstruction error and classification

In this experiment, we evaluate the effectiveness of the proposed algorithm in terms of the
reconstruction error measured by RMSRE and classification measured by misclassification
error rate, and compare it with 2DPCA and SVD. For SVD, the reduced dimension (k) is
chosen so that both SVD and GLRAM have the same number of reduced dimensions, that
is, k = d2, where d is the common value for both �1 and �2.

Figures 2–6 show the results on the five image datasets: PIX, ORL, AR, PIE, and USPS
respectively. The horizontal axis denotes the value of d, and the vertical axis denotes
the RMSRE value (left graph) and misclassification rate (right graph). Figure 7 shows
the compression ratios of all algorithms on AR (left graph) and PIE (right graph), two
representatives of all image datasets in Table 3.

The main observations include:
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Figure 1. Sensitivity of GLRAM to the choice of the initial L0 on ORL (left) and RAND (right). The ten curves
correspond to the ten runs with different initial L0’s. The horizontal axis is the number of iterations and the vertical
axis is the RMSRE value (on a log scale).
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– As d increases, the reconstruction error by GLRAM decreases monotonically for all cases,
while the misclassification rate decreases monotonically in most cases. The same trend
can be observed from other algorithms. Thus choosing a large d in general improves the
performance of GLRAM in reconstruction and classification. However, the computation
cost of GLRAM also increases as d increases, as shown in Table 2 (Note that d = �1

= �2). There is a tradeoff between the performance and the computation cost, when
choosing the best d in GLRAM.

– SVD has the smallest RMSRE value in all cases, while 2DPCA has the largest RMSRE
value in most cases. The large reconstruction error of 2DPCA is due to its poor compres-
sion performance, when using only one-sided transformation, as compared to two-sided
transformation in GLRAM.

– For datasets with a relatively large number of dimensions compared to the number of
data points, such as the AR datasets, the compression ratio of SVD is much smaller than
others as shown in figure 7 (left graph). As the number of data points gets as large as in
the PIE dataset, the compression ratio of SVD becomes close to GLRAM, as shown in
figure 7 (right graph).
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Figure 2. Comparison of reconstruction error (left) and misclassification rate (right) on PIX.
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Figure 3. Comparison of reconstruction error (left) and misclassification rate (right) on ORL.



GENERALIZED LOW RANK APPROXIMATIONS OF MATRICES 183

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 2  4  6  8  10  12  14  16  18  20

R
oo

t M
ea

n 
S

qu
ar

e 
R

ec
on

st
ru

ct
io

n 
E

rr
or

 (
R

M
S

R
E

)

d

GLRAM
SVD

2DPCA

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 2  4  6  8  10  12  14  16  18  20

M
is

cl
as

si
fic

at
io

n 
ra

te

d

GLRAM
SVD

2DPCA

Figure 4. Comparison of reconstruction error (left) and misclassification rate (right) on AR.
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Figure 5. Comparison of reconstruction error (left) and misclassification rate (right) on PIE.

– GLRAM is competitive with SVD for classification in most cases, even though GLRAM
has larger RMSRE values. This may be related to the fact that GLRAM is able to utilize
the locality information (e.g. smoothness in an image) intrinsic in the image, which leads
to good classification performance. We apply GLRAM to datasets without any locality
property, such as text documents and gene expression data, by reshaping each vector as a
matrix. GLRAM performs quite poorly in both the reconstruction error and classification
as compared to SVD.

– The reconstruction error and misclassification rate on AR are much higher than those of
other image datasets. This may be related to the large within-class variances on AR, due
to the presence of sun glasses and scarves, as mentioned in Section 5.1.

5.5. Compression effectiveness

In this experiment, we examine the quality of the images compressed by the proposed algo-
rithm and compare it with SVD and 2DPCA. Image compression is commonly applied as a
pre-processing step for storage and transmission of large image data. There exists a tradeoff
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Figure 6. Comparison of reconstruction error (left) and misclassification rate (right) on USPS.
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Figure 7. Comparison of compression ratio (on a log scale) on AR (left) and PIE (right). The horizontal axis
denotes the value of d, and the vertical axis denotes the compression ratio (on a log scale).

between quality of compressed images and compression ratio, as a high compression ratio
usually leads to poor quality of compressed images.

Figure 8 shows images of 10 different persons from the ORL dataset. The 10 images
in the first row are the original images from the dataset. The 10 images in the second
row are the ones compressed by the GLRAM algorithm with d = 10. The compression
ratio is about 98.0. The images compressed by SVD and 2DPCA with approximately the
same number of reduced dimensions as GLRAM are shown in the third and fourth rows of
figure 8 respectively. It is clear that the images compressed by our proposed algorithm have
slightly better visual quality than those compressed by 2DPCA, while the ones compressed
by SVD have the best visual quality. However, the compression ratio of SVD (3.85) is much
smaller than that of GLRAM (98.0).

Figure 9 shows images of 10 different digits from the USPS dataset. d = 5 is used in
GLRAM. The compression ratio is about 10. GLRAM and SVD perform slightly better
than 2DPCA. Furthermore, the compression ratio of SVD (9.4) is close to that of GLRAM
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(10.2). The different behavior between ORL and USPS is related to the fact that USPS has
a relatively large number of data points compared to its dimension, i.e., n 	 rc.

5.6. GLRAM + SVD

In this experiment, we study the combination of GLRAM and SVD, namely
GLRAM + SVD, where the dimension is further reduced by SVD. More specifically,
in the first stage, each data point Ai ∈ R

r×c is reduced to Mi ∈ R
d×d by GLRAM, with

Figure 8. First row: raw images from ORL dataset. Second row: images compressed by GLRAM. Third row:
images compressed by SVD. Fourth row: images compressed by 2DPCA. Note that the compression ratio of SVD
(3.85) is much smaller than that of GLRAM (98.0).

Figure 9. First row: raw images from USPS dataset. Second row: images compressed by GLRAM. Third row:
images compressed by SVD. Fourth row: images compressed by 2DPCA.
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d < min (r, c). In the second stage, each Mi is first transformed to a vector vi ∈ R
d2

by
matrix-to-vector alignment, where a matrix is transformed to a vector by concatenating all
its rows together consecutively. Then vi is further reduced to vi

L ∈ R
k by SVD with k < d2.

The flowchart of the GLRAM + SVD algorithm is shown in figure 10 graphically.
The complexity of the first (GLRAM) stage is O(I(r + c)2 dn), where the number of

iterations I is usually small. The second stage applies SVD to a n by d2 matrix, hence
takes O(nd2 min (n,d2)). Therefore, the total time complexity of GLRAM + SVD is O(nd
((r + c)2 + min (nd, d3))). Assuming r ≈ c ≈ √

N , the time complexity is simplified to

Figure 10. Flowchart of the GLRAM + SVD algorithm (solid lines). It has two stages: In the first stage, each
data point Ai ∈ R

r×c is transformed to Mi ∈ R
d×d ; In the second stage, Mi is first transformed to a vector vi ∈

R
d2

by matrix-to-vector alignment, which is further reduced to a vector vi
L ∈ R

k by SVD. Note that d < min (r,
c) and k < d2. For traditional SVD (dashed lines), Ai ∈ R

r×c is first transformed to a vector ai ∈ R
rc , which is

then reduced to vi
L ∈ R

k by SVD directly.
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Figure 11. Comparison of reconstruction error (left) and computation time (right) on PIX.
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Figure 12. Comparison of reconstruction error (left) and computation time (right) on ORL.
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Figure 13. Comparison of reconstruction error (left) and computation time (right) on AR.

O(nd (N + min (nd, d3))). Note that both the GLRAM and SVD stages in GLRAM + SVD
have much smaller computation costs than SVD, especially when d is small. (Note that the
cost of SVD on an n × N matrix is O(nNmin (n, N)).)

We apply GLRAM + SVD to the image datasets and compare it with SVD and GLRAM
in terms of reconstruction error and computation time, when using the same number of
reduced dimensions. For simplicity, we use k = 100 in SVD for PIX, ORL and AR and k =
25 for PIE and USPS. Hence, the reduced dimension of GLRAM and GLRAM + SVD is
100 (or 25). The value of d determines the intermediate dimension of the GLRAM stage in
GLRAM + SVD. We examine the effect of d on the performance of GLRAM + SVD, and
the results are summarized in figures 11–15, where the horizontal axis denotes the value
of d (between 15 and 40 for PIX, ORL and AR, between 6 and 16 for PIE, and between 6
and 12 for USPS) and the vertical axis denotes the reconstruction error, measured by the
RMSRE value (left graph) and the computation time, measured in seconds (right graph). It
is worthwhile to note that the reduced dimension of GLRAM is fixed in the comparison,
while the reduced dimension of the intermediate (GLRAM) stage in GLRAM + SVD
varies.

The main observations include:
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Figure 14. Comparison of reconstruction error (left) and computation time (right) on PIE.
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Figure 15. Comparison of reconstruction error (left) and computation time (right) on USPS.

– As d increases, the RMSRE value of GLRAM + SVD decreases. By combining GLRAM
and SVD, GLRAM + SVD achieves a dramatic reduction of the RMSRE value as
compared to GLRAM.

– The computation time of GLRAM + SVD increases, as d increases. There is a tradeoff
between the reconstruction error and the computation time, when choosing the best d.

The above experiment shows that it may be beneficial to combine GLRAM with SVD,
since it has much lower reconstruction error than GLRAM, while keeping the computation
cost low. The performance of GLRAM + SVD critically depends on the value of d. To
choose the optimal d, one needs to consider the tradeoff between the computation cost and
the reconstruction error, as a larger value of d usually leads to higher computation cost and
smaller reconstruction error.

6. Conclusions and future work

A novel algorithm, named GLRAM, for low rank approximations of a collection of ma-
trices is presented. The algorithm works in an iterative and interleaved fashion and the
approximation is improved during successive iterations. Experimental results show that



GENERALIZED LOW RANK APPROXIMATIONS OF MATRICES 189

the algorithm converges rapidly. Detailed analysis shows that GLRAM has asymptotically
minimum space requirement and lower time complexity than SVD, which is desirable for
large and high-dimensional datasets. Specifically, GLRAM involves eigenvalue problems
of size r2 or c2, as compared to size rcn (= Nn) in SVD.

A natural application for GLRAM is in image compression and retrieval, where each
image is represented in its native matrix form. We evaluate the proposed algorithm in terms
of the reconstruction error and classification, and compare it with 2DPCA and SVD. Results
show that when using the same number of reduced dimensions, the proposed algorithm
is competitive with 2DPCA and SVD for classification, while GLRAM results in a larger
reconstruction error than SVD. In terms of compression ratio, GLRAM outperforms SVD,
especially when the number of dimensions is relatively large compared to the number of
data points. However, our experiments show that GLRAM can fail both in reconstruction
error and classification when the data do not have locality property (e.g. smoothness in
an image), such as text documents and gene expression data. Further study is needed to
show how a native data vector can be rearranged into a matrix so that related variables are
spatially close.

To further reduce the reconstruction error of GLRAM, we study the GLRAM + SVD
algorithm, where SVD is preceded by GLRAM. In this composite algorithm, GLRAM can
be considered as a pre-processing step for SVD. Extensive experiments show that, when
using the same number of reduced dimensions, GLRAM + SVD achieves a significant
reduction of the reconstruction error as compared to GLRAM, while keeping the compu-
tation cost small. The reconstruction error of GLRAM + SVD is close to that of SVD,
especially when the intermediate reduced dimension in the GLRAM stage is large, while
it has a smaller computation cost than SVD. One of our future research directions is to
understand why GLRAM has larger reconstruction error than SVD, when using the same
number of reduced dimensions.

There are several other crucial questions that still remain to be answered:

– In Section 5.2, we study the effect of the ratio of �1 to �2 on reconstruction error.
Experimental results show that choosing �1/�2 ≈ 1 works well in practice, even when
the original row (r) and column (c) dimensions are quite different. It may be related to
the effect of balancing between the left and right transformations involved in GLRAM.
However, a rigorous theoretical justification behind this is still not available.

– In Section 5.3, we study the convergence property of GLRAM and the sensitivity of
GLRAM to the choice of the initial L0. Extensive experiments show that for image
datasets, GLRAM may converge to the global solution, regardless of the choice of the
initial L0. However, it is not true in general, as shown in the RAND dataset. The remaining
question is whether there exist certain conditions on the Ai’s, under which GLRAM has
the global convergence property.
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Notes

1. Here the compression ratio means the percentage of space saved by the low rank approximations to store the
data. Details can be found in Sections 2 and 3.

2. http://peipa.essex.ac.uk/ipa/pix/faces/manchester/test-hard/
3. http://www.uk.research.att.com/facedatabase.html
4. http://rvl1.ecn.purdue.edu/∼aleix/aleix face DB.html
5. http://www.ri.cmu.edu/projects/project 418.html
6. http://www-stat-class.stanford.edu/∼tibs/ElemStatLearn/data.html
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