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Abstract 
The problem of maximi7,ing the expected total discounted reward in a completely 
observable Markovian environment, i.e., a Markov decision process (MDP), models a 
particular class of sequential decision problems. Algorithms have been developed for 
making optimal decisions in MDPs given either an MDP specification or the opportunity 
to interact with the MDP over time. Recently, other sequential decision-making prob­
lems have been studied prompting the development of new algorithms and analyses. 
We describe a new generalized model that subsumes MDPs as well as many of the recent 
variations. We prove some basic results concerning this model and develop general­
izations of value iteration, policy iteration, model-based reinforcement-learning, and 
Q-lcarning that can be used to make optimal dccisions in the generali7,ed model undcr 
various assumptions. Applications of the theory to particular models are described, in­
cluding risk-averse MDPs, exploration-sensitive MDPs, sarsa, Q-lcarning with spreading, 
two-player games, and approximate max picking via sampling. Central to the results 
are the contraction property of the value operator and a stochastic-approximation the­
orCIn that reduces asynchronous convergence to synchronous convergence. 
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1 INTRODUCTION 

One particularly well-studied sequential decision-making problem is that of a single agent 
maximi7.ing expected discounted total reward in a finite-state, completely observable envi­
ronment. A discount parameter 0 -<: r < 1 controls the degree to which future rewards are 
significant compared to immediate rewards. 

The theory of Markov decision processes can be used as a theoretical foundation for 
important results concerning this decision-making problem [2]. A (finite) Markov decision 
process (MDP) [31] is defined by the tuple (X, A, I', R), where X represents a finite set of 
states, A a finite set of actions, I' a transition function, and R a reward function. The 
optimal behavior for an agent depends on the optimality criterion; in an MDP with the 
infinite-horizon discounted criterion, the optimal behavior can be found by identifying the 
optimal value function, defined recursively by 

V'(x) = m�x (R(X, a) + r � P(x, a, y)V*(y)) , 

for all states x E X, where R(x, a) is the immediate reward for taking action a from state 
x, 0 -<: r < 1 is a discount factor, and P(x, a, y) is the probability that state y is reached 
frCHn state :r; when action a E A is chosen. These simultaneous equations, known as the 
Bellman equations , can be solved using a variety of techniques ranging from successive 
approximation [3] to linear programming [11] . 

In the absence of complete information regarding the transition and reward functions, 
reinforcement-learning methods can be used to find optimal value functions. Both model-free (direct) methods, such as Q-learning [59, 60], and model-based (indirect) methods, such as 
prioritized sweeping [29] and DYNA [46] , have been explored and many have been shown to 
converge to optimal value functions under the proper conditions [60, 53, 19, 13]. 

Not all sequential decision-making problems of interest can be modeled as MDPS; in one 
form of two-player game, for example, one or the other player chooses an action in each state 
with one player striving to maximize the total reward and the other trying to minimize it. 
A great deal of reinforcement-learning research has been directed to solving games of this 
kind [51, 52, 37, 7], Algorithms for solving MDPS and their convergence proofs do not apply 
directly to these problems. 

There are deep similarities between MDPS and games; for example, it is possible to define 
a set of Bellman equations for the optimal minimax value of a two-player zero-sum game, 

V'(x) = { maxaEA (R(X

.

, a) +rL.:yP(x,a,y)V*(y)) , 
minaEA (R(x, a) + -j L.:x P( x, a, y) V' (y)) , 

if maximizer moves in x 
if rninirnizer r110ves in x, 

where R(x,o) is the reward to the maximi7.ing player. When 0 -<: r < 1 ,  these equations 
have a unique solution and can be solved by successive-approximation methods [39]. In 
addition, we show in Section 4 .1  that the natural extension of several reinforcement-learning 
algorithms for solving MDPS converge to optimal value functions in two-player games. 

In this paper, we introduce a generali�ed Markov decision process model with applica­
tions to reinforcement learning, and list some of the important results concerning the model. 
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Generalized MDPS provide a foundation for decision making in MDPS and games, as well 
as in risk-sensitive models [15], exploration-sensitive models [20, 36], simultaneous-action 
games [39], and other models. The common feature of these decision problems is that the 
reward function is based on the total, discounted cost-this latter property enables us to 
apply arguments based on the properties of contraction mappings, which makes the analy­
sis tractable. Our main theorem addresses conditions on the convergence of asynchronous 
stochastic processes and shows how this problem can be reduced to determining the con­
vergence of a corresponding synchronous one; it can be used to prove the convergence of 
model-free and model-based reinforcement-learning algorithms in a variety of different se­
quential decision-making models. 

In the remainder of this section, we present the generalized MDP model and motivate it 
using two detailed examples; in Section 2, we present several algorithms for solving general­
ized MDPS that are extensions of classic algorithms for solving MDPS; in Section 3, we describe 
our main theorem and how it can be used for solving generalized MDPS in a reinforcement­
learning setting; and in Section 4 we show several applications of our framework to other 
sequential decision-making problems. Most of the proofs are deferred to the appendix to 
increase the readability. \Ve tried to make the appendix as self-contained as we could; how­
ever, at some places it is necessary to read the main body of the text before reading the 
appendix. 

1 . 1  MARKOV DECISION PROCESSES 

To provide a point of departure for our generalization of Markov decision processes, we begin 
by describing some results concerning MDPS. These results are well established; proofs of the 
unattributed claims can be found in Puterman's MDP book [31]. 

The ultimate target of a decision-making algorithm is to find an optimal policy. A 
policy is some function that tells the agent which actions should be chosen under which 
circumstances. Of course, since the agent that applies the policy is not clairvoyant, the 
action prescribed by a policy cannot depend on future states or actions, i.e., a policy maps 
the history of a process to an action. A policy 7r is optimal under the expected discounted 
total reward criterion if, with respect to the space of all possible policies, 7r maximizes the 
expected discounted total reward from all states. 

Maximizing over the space of all possible policies is practically infeasible. However, 
MDPS have an important property that makes it unnecessary to consider such a broad space 
of possibilities. We say a policy 7r is stationar·y and deter-ministic if it maps the actual state 
directly to an action, ignoring everything else from the history of the decision process, and 
we write 7r(x) as the action chosen by 7r when the current state is x. In expected discounted 
total reward MDP environments, there is always a stationary deterministic policy that is 
optimal; we will therefore use the word "policy" to mean stationary deterministic policy, 
unless otherwise stated. 

The value function for a policy 7r, VK, maps states to their expected discounted total 
reward under policy 7r. It can be defined by the simultaneous equations 

VK(.r) = R(.r, a) + A( L l'(x, a, y)VK(y). 
y 
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It is also possible to condition the immediate rewards on the state y as well; this is somewhat 
more general, but complicates the presentation. The optimal value function V' is the value 
function of an optimal policy; it is unique for 0 -<: 1 < 1 .  The myopic policy with respect to 
a value function V is the policy 1fv such that 

1fV(x) = arg�lax ( R(x, a) + 1 � P(x, a, y)V(y)) . 
Any myopic policy with respect to the optimal value function is optimal. 

The Bellman equat.ions can be operat.ionalized in t.he form of the dynamic-programming 
operator T, which maps value funct.ions to value functions: 

[TV] (x) = m.l'x ( R(x , a) + 1 � rex, a, Y)V(y)) . 
For 0 -<: 1 < 1 ,  successive applications of T to a value function bring it closer and closer 
to the optimal value function V', which is the unique fixed point of T: V' = TV' . The 
algorithm derived from successive applications of T is known as value iteration.  

In reinforcement-learning applications, Rand P are not known in advance. They can be 
learned from experience by keeping statistics on the expected reward for each state-action 
pair, and the proportion of transitions to each next state for each state-action pair. In 
model-based reinforcement learning, Rand P are estimated on-line, and the value function 
is updated according to the approximate dynamic-programming operator derived from these 
estimates; this algorithm converges to the optimal value function under a wide variety of 
choices of the order st.at.es are updat.ed [13]. 

The met.hod of Q-learning [59] uses experience t.o est.imate t.he opt.imal value function 
without ever explicitly approximating R and P. The algorithm estimates the optimal Q 
function 

Q' (x, a) = R(x , a) + O( L P(x, a, y)V'(y) , 
y 

from which the optimal value function can be computed via V'(:T) = maxa Q' (x, a) . Given 
an agent's experience at step t ( :Tt , at, Yt, Tt) and the current estimate Qt(:T , a) of the optimal 
Q function, Q-learning updates 

where 0 -<: at(x, a) -<: 1 is a learning rate that controls how quickly new estimates are blended 
into old estimates as a function of the state-action pair and the trial number. Q-learning 
converges to the optimal Q function under the proper conditions [60, 53, 19] . 

1 . 2  ALTERNATING MARKOV GAMES 

In alternating Markov games, two players take turns issuing actions to try to maximize their 
own expected discounted total reward. vVe now describe this model to show how closely it 
parallels MDPS. The model is defined by the tuple (Xl , X2, A, B, P, R), where Xl is the set of 
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states in which player 1 issues actions from the set A, X2 is the set of states in which player 
2 issues actions from the set B, P is the transition function, and R is the reward function for 
player 1 .  Note that it is not assumed that player l's actions always follow player 2's actions 
and vice versa. In the zero-sum games we consider, the rewards to player 2 (the minimizer) 
are simply the additive inverse of the rewards for player 1 (the maximizer) . Markov decision 
processes arc a special case of alternating Markov games in which X2 = 0; Condon [9] proves 
this and the other un attributed results in this section. 

A common optimality criterion for alternating Markov games is discounted minimax 
optimality. Under this criterion, the maximi7,er should choose actions so as to maximi7,e 
its reward in the event that the minimi7,er chooses the best possible counter-policy. An 
equivalent definition is for the minimi7,er to choose actions to minimize its reward against the 
maximizer with the best possible counter-policy. A pair of policies is said to be in equilibrium 
if neither player has any incentive to change policies if the other player's policy remains fixed. 
The value function for a pair of equilibrium policies is the optimal value function for the 
game; it is unique when a <::: 1 < 1, and can be found by successive approximation. For 
both players, there is always a deterministic stationary optimal policy. Any myopic policy 
with respect to the optimal value function is optimal, and any pair of optimal policies is in 
equilibrium. 

Dynamic-programming operators, Bellman equations, and solution algorithms can be 
defined for alternating Markov games by starting with the definitions used in MDPS and 
changing the maximum operators to either maximums or minimums conditioned on the state. 
In Section 4.1 ,  we show that the resulting algorithms share their convergence properties with 
the analogous algorithms for MDPS. A key difference between MDPS and alternating Markov 
games is that the former can be solved (i.e. , an optimal policy can be found) in polynomial 
time using linear programming; no such algorithm is known for solving alternating Markov 
games [10] ' .  

1 . 3  GENERALIZED MDPS 

In alternating Markov games and MDPS, optimal behavior can be identified by solving the 
Bellman equations; any myopic policy with respect to the optimal value function is opti­
mal. In this section, we generalize the Bellman equations to define optimal behavior for a 
broad class of reinforcement-learning models. The objective criterion used in these models 
is additive in that the value of a policy is some measure of the total reward received. 

1 An algorithm that solves MDPs is strongly polynomial if the number of arithmetical operations needed 
by the algorithm is polynomial in IXI and IAI. At this time, there is no known algorithm that solves 
l\'lDPs in strongly polynomial time. Using linear programming, however, :\1DPs can be solved in a number 
of operations polynomial in l XI, IAI and b, where b measures the number of bits needed to write down the 
transition, revvards, and discount factor. Value iteration converges in time bounded above by a polynomial 
in l XI, IAI, b, and 1/(1 - -y)-this algorithm is called pseudo-polynomial because of the appearance of the 
factor h = 1/(1- -y). Value iteration takes a number of iterations proportional to hlog(h) in the worst case. 
The worst-case time complexit�y of policy iteration is not known; although it requires no more iterations than 
value iteration. Value iteration and also policy iteration can be used to solve alternating 11arkov games in 
pseudo-polynomial time. For further information on these topics the interested reader is referred to the PhD 
Thesis of 'vIichael Littman [261. 
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As a first step towards a general model, we will express the Bellman equations for 
MDPS and alternating Markov games in a unified notation. For succinctness, we will use 
an operator-based notation in which addition and scalar multiplication are generalized in 
a natural way. For example, if V : X -+ iR is a value function and R : X x A -+ iR or 
R : X x A X X -+ iR (allowing reward to depend on the resulting state as well) is the reward 
function, we define (R + IV) : X x A x X -+ iR to be: 

(R + ,V) (x, a, y) = R(x, a, y) + IV(y), 
for x E X, a E A, and y E Y. 

If we define the operator EB : (X x A x X -+ iR) -+ (X x A -+ iR) to be an expectation 
operator according to the transition function P, 

(EJj(R + IV)) (X, a) = L. rex, a, y) (R(x, a, y) + °IV(y) ) ,  y 
and @ : (X x A -+ iR) -+ (X -+ iR) to maximize over A2, 

((8) EJj(R + IV)) (X) = max L. P(x, a, y) (R(x, a, y) + IV(y)) , a y 

then V' = @ EB(R + IV') is simply an alternate form of the Bellman equations for MDPS. 

Here, the big plus (EB) is intended to remind us that the operator is a weighted sum and the 
big x (@) reminds us that the operator is a type of maKimi�ation. 

The @ operator here takes a Q function (mapping states and actions to values) and 
returns the value of the best action in each state. Now, by changing the meaning of @ to be 

{ maxa Q(x. a) ((8)Q) (x) = minbQ(x, b), ' 
if x E X" 
if x E X2, 

V' = @ EB(R+-IV') is also a representation of the I3ellman equations for alternating Markov 
games. 

Our generalized MDP model is defined by the generalized I3ellman equations V' = 
@ EB(R + IV') , where different models are obtained using different definitions for the @ 
and EB operators. As we've seen, optimal value functions for MDPS and alternating Markov 
games can be expressed in this way; a variety of other examples are discussed in Section 4. 

The value functions defined by the generalihed MDP model can be interpreted as the 
total value of the rewards received by an agent selecting actions in a non-deterministic 
environment. The agent begins in state x, takes action a, and ends up in state y. The EB 
operator defines how the value of the next state should be used in assigning value to the 
current state. The @ operator defines how an optimal agent should choose actions. 

When () :::; I < 1 and @ and EB are non-expansions, the generalized I3ellman equations 
have a unique optimal solution, and therefore, the optimal value function is well defined (see 
Appendix A). Recall that an operator T which maps a normed space B, to another normed 
space B2 is a non-expansion if for all f, g E B, I ITf - Tgil :::; Ilf - gil , where 1 1·11 denotes 

2The definitions of EB and @ are ( EB  S)(x, a) = Ly P(x, a, y)S(x, a, y) and (@Q)(x) = maxa Q(x, a), 
where 5 : (X x A x Y) -+ !R and Q : (X x A) -+ !R. 
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model/example reference (@ J)(x) 
maxa f(x, a) 
L 7r(x, a)f(x, a) 
maxa or minbf(x, b) 
maxa f(x, a) 

(EB g)(x, a) 
�y P(x, a, y)g(x, a, y) 
�y P(x, a, y)g(x, a, y) 
�y P(x, a, y)g(x, a, y) 
miny,p(x,a,y»o g(x, a, y) 
�y P(x, a, y)g(x, a, y) 

disc. expo MDPS [60] 
expo return of 7r [45] 
alt. Markov games [7] 
risk-sensitive MDPS [15] 
expl.-sens. MDPS [20] 
Markov games [24] 

maxnEPo �a 7r(x, a)f (x , a) 
maxA minb �a A(a)f(x, (a, b)) �y J'(x, (a, b), y)g(x, (a, b), y) 

Table 1: Some models and their specification as generalized Markov decision processes. 

the norm on the appropriate spaces:l. In accordance with the above definition we say that 
the @ operator is a non-expansion if 

for all 1, 9 : X x "4 -+ lR, and oJ: EX, here I I  . I I  denotes the max norm over the appropriate 
function space. An analogous condition defines when EB is a non-expansion. 

Many natural operators are non-expansions, such as max, min, midpoint, median, mean, 
and fixed weighted averages of these operations (sec Appendix B) .  Mode and Boltzmann­
weighted averages are not non-expansions (sec Littman's thesis [26] for information on 
Boltzmann-weighted averages). Several previously described sequential decision-making 
models are special cases of this generalized MDP model-Table 1 gives a brief sampling. 
For more information about the specific models listed, see the associated references. 

As with MDPS, we can define a dynamic-programming operator 

TV = 0 EB(R + ,V) ( 1 )  

such that, for 0 -S , < 1 ,  t.he opt.imal value function V' is thc uniquc fixed point. of T. 
The operator T is a contraction mapping as long as , < 1.  Recall that an operator T is a 
contraction mapping if I ITV, - TV2 1 1  -S ,llVi - V2 1 1  where �� and V2 are arbitrary functions 
and 0 -S , < 1 is the index of contraction. Here, I I· II is the max norm. It is easy to see that 
T is a contraction mapping using the non-expansion properties of @ and EB. 

vVe can define a notion of stationary myopic policies with respect to a value function V; 
it is any (stochastic) policy 7r for which T"V = TV where 

[T"V](x) = I>(x, a) ( (EB(R + ,V)) (x, a)) . 
a 

3If B, = B2 are spaces of function over X, i.e., if B, = B2 = (X --+ R) then we say that T : B, --+ B2 is a 
pointwise non-expansion if for all x E X and I,g E B, there holds that I(Tf)(x) - (Tg)(x)I <: II(x) - g(x)l· 
Taking the maximum of both sides over )( \ve see that if T is a point\vise non-expansion then T is also a 
non-expansion for the max norm. It is ea.":ly to extend the notion of being a point\vise non-expansion to 
spaces when B, = (X x A --+ R) and B2 = (X --+ R). We say that the operator T : B, --+ B2 is a pointwise 
non-expansion over X if I(Tf)(x) - (Tg)(x)I <: 111(x,') - g(x, ')11 for all I,g E B, and x E X. Here, I(x, ') 
and g(x,·) are understood as functions from A --+ R, and II· II denotes a norm over A --+ R, usually the 
max norm. Usually it is much easier to check if an operator is a pointwise non-expansion. The operators we 
consider arc, indeed, pointwise non-expansions. Qur statements� however, do not exploit this feature. 
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Here, 1I(x, a) represents the probability that an agent following 11 would choose action a in 
state x.  For later use, it is convenient to introduce the operator 0� defined by (0� f) (:r) = La 1I(x, a)f(x, a). To be certain that every value function possesses a myopic policy, we 
require that the operator 0 satisfy the following property: for all functions f : X X A -+ !R 
and states x, 

min f (x, a) -S (QSi f) (.1:) -S maxf (x, a). a a (2) 
In an alternate formulation, Inequality (2) is replaced by the restriction that (0 f) ( .1:) = 

f (x, at) for all f, where at E A is an action that may depend on f. In other words, 0 must 
select an action. This has the price that st.ochastic act.ions must be explicit.ly introduced (the action set of the new model would be the set of probability distributions over A, lI( A)), 
but has the advantage that "deterministic" policies suffice (since each stochastic policies in 
the present model would have a corresponding deterministic action) . To put this another 
way, Inequality (2) is just an extension of the selection condition to stochastic actions. 

The value function with respect to a policy 11, vn is defined by the simultaneous equations 
vn = Tnv�; it is unique. 

We say a policy 11 is optimal if it is myopic with respect to its own value function. A 
better term for such policies might be "self-consistent" ; we use the optimization-oriented 
term "optimal" because the most common applications make use of a 0 operator that 
selects extremals. Even in non-optimization settings, it is reasonable to call these policies 
optimal since they share important properties of optimal policies of MDPS. The first such 
property is that the evaluation of optimal policies is a particular function: the fixed point 
of T. To see this, let 11' be an optimal policy. Then Vn' is the fixed point of T because 
V�' = Tn'V'" = TV"'. Thus, V�' = V* when I < 1, because T has a unique fixed point 
by the Banach fixed-point theorem [44] . All the statements of this section and some other 
basic facts about generali7,ed MDPS are proved in Appendices A through D. 

1.4 SOLVING GENERALIZED MDPS 

The previous subsect.ions have mot.ivat.ed and described our generalizat.ion of :VIarkov deci­
sion processes. vVe showed how MDPS and alt.ernat.ing Markov games, two popular models 
of sequential decision making, could be viewed as examples of the generalized model. In 
Section 4, we will examine other examples including games in which players make their ac­
tion choices simultaneously, MDPS with a risk-sensitive performance criterion, MDPS with an 
exploration-sensitive performance criterion, and the use of sampling to replace the compu­
tation of the maximum action in MDPS. 

Formulating a problem as an instance of a formal model is rarely an end unto itself, 
however. We address algorithms for solving generalized MDPS; that is, we would like to 
identify optimal policies for specific instances of the model. One class of algorithms assumes 
access to a complete description of the model instance. Examples of dynamic-programming 
algorithms in this class are described in Section 2. 

A second class of algorithms assumes that the only information available to the agent on 
the specific problem instance being solved is via "experience" : state-to-state transitions with 
their associated rewards. Problems couched this way are known as reinforcement-learning 
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p'f'Oblems and algorithms for solving them are called reinforcement-leaming algo7'dhm84, Sec­
tion 3 describes reinforcement-learning algorithms for generalized MDPS, 

Because of the asynchronous manner in which information arrives in a reinforcement­
learning problem, the contraction assumption (that is, that ; < 1 ) becomes critical for 
smoothing across pieces of information that arrive separately, vVe derive a powerful theorem 
concerning the convergence of asynchronous learning processes that depends on little other 
than the assumption of contraction; this makes it applicable to a wide variety of models, 
Full generality of the theorem is achieved by stating the results in terms of general norm cd 
spaces, The theorem will be presented and discussed in Section 3, L 

The next section extends the standard value-iteration and policy-iteration algorithms to 
the generalized modeL Section 3 describes a general theorem that can be used to prove the 
convergence of several reinforcement-learning algorithms in the generalized MDP framework. 

2 SOLVING GENERALIZED MDPS VIA A MODEL 

The most basic algorithms for solving MDPS are value iteration [3] and policy iteration [18]; 
both date back the late 1950s, This section describes how these algorithms can be applied 
to solve generalized Markov decision processes, 

2 . 1  VALUE ITERATION 

The method of value iteration, or successive approximations [3, 39], is a way of iteratively 
computing arbitrarily good approximations to the optimal value function V' , 

A single step of the process starts with an estimate vt-l of the optimal value function, 
and produces a better estimate vt = Tvt- l' We show that applying T repeatedly causes the 
value function to become as close as desired to optimaL Again, the notation I I  ' I I  refers to 
the IIlaxiIIluIIl nonn. 

Lemma 1 Let vt be the value function produced 'iT! the tth demtion of value demt'ton, After' 
t steps of value iteration on a generalized MDP, I lvt - V' I I  ::; ;II IVo - V' I I , 
Proof: We proceed by induction, The base case, I lVa - V' I I  ::; ;o l lVo - V' I I, is self evident. 
By the inductive hypothesis we see 

I lvt - V' I I  = I ITVt-1 - TV' I I  ::; °lllvt-l - V' I I  ::; nt- 1 1 1Vo - V' I I  = ;t l lVo - V' I I , 
Q,E.D, 

Since 0 ::; '( < 1, we have that vt ---+ V' at a geometric rate as t increases, In some 
circumstances, it is helpful to state this result without reference to the details of the initial 
value function Vo, Let lvl = sup,Tmaxa IR(x, a) 1 = I I RI I , If the agent received a reward of 1'vl 

"Traditionally, it waB the field of adaptive control that considered such "learning" problems [231, Adaptive­
control researchers, however, usually considered linear models only, i.e., when the evolution equation of 
the controlled object is linear. Nonetheless, the results and emerged problems of adaptive control can be 
instructive for reinforcement-learning researchers. 
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on every step, its total expected reward would be '£�o 'yi1'vI = 1'vI/(1 - 'f). Thus, the zero 
value function, Vo = 0 cannot differ from the optimal value function by more than 1'vI/(I- ;) 
at any state. This also implies that the value function for any policy cannot differ frorn the 
optimal value function by more than 21\1/(1 - ;) at any state. This allows us to restate 
Lemma 1 in a form that bounds the number of iterations needed to find an f-optimal value 
function. 

Theorem 1 Let Va be any value function such that IlVoll ::; kI/(1 - I)' and let 

, _11 + log(lvf) + log(�) + 10g(2:y ) l 
t - ( 1 ) . 

log -� 
Running value iteration for t' or more steps results in a value function V such that IIV -
V'II ::; f. 

Proof: This follows from simple algebraic manipulation of the bounds given in this section. 
Q.E.D. 

2 . 2  C OMPUTING NEAR-OPTIMAL P OLICIES 

Thus, we know that the value function estimates converge to the optimal value function. But 
when should we stop this iteration'? The following result shows that if 11V,+1 - V,II is small 
then IIV, - V*II is small, too. The next question is which policy to usc after we have stopped 
the iteration. The natural choice is the myopic policy with respect to the latest estimate 
of the value function. Below we show that the value of such a policy is also close to the 
optimum, i .e. ,  it can be bounded as a function of 11V[+1 - V[II = IITV[ - V[II. More generally, 
we will show that for an arbitrary function V, the distance between the value function for 
any myopic policy with respect to V and the optimal value function can be bounded as a 
function of the Bellman error magnitude of V, defined as IITV - VII. These results rely 
entirely on the contraction property of the involved generalized MDPS. :-Iote that one must 
be careful when applying these estimates in practice since the meaning of "small error" IS 

highly problem dependent5 . 
First, we establish a few basic results. 

Lemma 2 Let V be a value function, V1r be the value function for the myopic policy with 
respect to V, and V* be the optimal value function. Let f be the Bellman error magnitude 
for V, f = IIV - TVII. Then, IIV - PII ::; f/(I - ;) and IIV - V'II ::; f/(I - ;) .  

Proof: This result follows easily from the contraction property of T and the triangle in­
equality. 

First, IIV -V1r11 ::; IIV -TVII + IITV -V1r11 = IIV -TVII + IIT1CV _T1CV1C11 ::; E+,IIV -V1rII· 
Grouping like terms gives IIV - PII::; E/(I - 'f)· 

5lVlcDonald and Hingston [28] pointed out that optimal values can be exponentially small in the number 
of states for special classes of :\1DPs. 
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Similarly, I IV-V* I I  <:: I IV-TV I I+I ITV-V* I I  = I IV-TVI I + I ITV-TV* I I  <:: f+,I IV-V'I I · 
Grouping like terms gives I IV  - V' I I  <:: f/(1 - ,) .  Q . E.D.  

vVe next. bound t.he dist.ance bet.ween V" and V' in t.erms of f, t.he Bellman error magni­
tude (related arguments have been made before [6, 42, 62, 16]6) .  

Theorem 2 Let V be a value function, V" be the value function for the myopic policy with 
re8pect to V, and V' be the optimal value function. Let f be the Bellman error ma.gnitude 
for V, f = I IV - TVII· Then, I ITV - V"I I  <:: f,/ (1 - ,) ,  I ITV - V* I I  <:: q/(1 - 7),  a.nd 
I IV" - V'I I  <:: 2q/(I - ,) .  

Proof: The third statement follows from an application of the triangle inequality to the first 
two statements, which we prove now. First, 

Similarly, 

I ITV - V* I I  

completing the proof. 

I ITV - TV' I I  <:: 71 1V - V'I I  <:: E'f!(1 - 7) ,  

Q . E.D.  

This result is concerned with values and not immediat.e rewards, so the total reward 
earned by a myopic policy is not too far from optimal. The significance of the result is that a 
value-iteration algorithm that stops when the Bellman error magnitude is less than or equal 
to f 2'" 0 will produce a good policy with respect to f. 

This result can be refined further for a subclass of generalized MDPS. In generalized MDPS 

in which there is a finite set of policies such that every value function has a myopic policy 
in that set, any myopic policy with respect to V; is optimal for large enough t .  This is in 
no way related to the contraction property of the value iteration operator, i .e. , it holds for 
arbitrary monotone and continuous operators [48] . This means that value iteration can be 
used to find optimal value functions in finite time for generalized MDPS in this subclass. A 
further refinement, which relies on the contraction property of the dynamic-programming 
operator, puts a pseudo-polynomial bound on the number of iterations required to find an 
optimal policy [26]. This requires that " P and R are expressed with a polynomial number 
of bits. 

2 . 3  P OLICY ITERATION 

In this section, we define a generalized version of policy iteration. Applied to MDPS, it 
is equivalent to Howard's policy-iteration algorithm [18] and applied to alternating Markov 
games, it is equivalent to Hoffman and Karp's policy-iteration algorithm [17]. Policy iteration 
for MDPS proceeds as follows: Choose an initial policy 7fo and evaluate it. Let the next policy, 7fl, be the greedy policy with respect to the value function V"o. Continue in this way until 7ft+! = 7ft. The traditional proof of convergence relies on the following facts [18]: 

6The most general of these arguments is due to Bertsekas and Shreve [61 (Proposition 4.5) for extremization 
problems (although, the authors do not exploit this property). They also consider value iteration when the 
precision of computation is limited. Williams and Baird [621 have proved these bounds tight for MDPS, and 
this should hold for generalized MDl'S, as well. 
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(i) Vnt+l :;> V"t
, and the inequality is strict for at least one state if WI is not optimal, 

(ii) there are a finite number of policies (since X and A are finite) ,  and 

(iii) the fixed point of T is unique. 

Unlike value iteration, the convergence of policy iteration seems to require that value is 
maximi7.ed (or minimi7.ed in a cost-based setting) with respect to some set of possible actions 
(this is because we require Condition (i) in the above paragraph) .  To capture this, we will 
restrict our attention to generalized MDPS in which 0 can be written 

(3) 

where R is a compact set and 0P is a non-expansion operator mapping functions over X x A 
to functions over X for all p E R. '1ote that the conditions that R be compact and 0P be 
a non-expansion for all p ensure that the maximum in the above equation is well defined. 
Note that any operator 0 can be written this way by defining R = {Po} and 0pO = 0; 
the choice of parameterization ultimately determines the efficiency of the resulting policy­
iteration algorithm. A generalized MDP satisfying Equation (3) and satisfying a monotonicity 
property discussed in Appendix C is called a maximizing generalized MDP. 

As a concrete example, MDPS can be viewed as type of maximizing generalized MDP. Let 
R = A and [WQ](x) = Q(x, p) . Then, [0 Q] (x) = maxaEA Q(x , a) = maxpER Q(X , P) = 
maxpER [0PQ] (x) as required by Equation (3). Similarly, alternating Markov games can be 
viewed as maximizing generalized MDPS. Again, R = A and define 

[0" Q] (:r) = { Q(:r;, p) , mm; Q(x, b), 
if x E X" 
if x E x2• 

The maximization and minimization operators have been separated so that they can be 
treated independently. To understand the importance of this, note that the essence of policy 
iteration is that in every step the new policy is an improvement over the previous policy. 
For alternating Markov games this would mean that V1Ct+1 (X )  :;> V1rt (x) for x E Xl and 
V1rtH(X ) <::: V1Ct (X) for x E X2. However, as a careful analysis of an example by Condon [10] 
shows, the additive structure of rewards is incompatible with this condition. To be able to 
work with additive rewards, we need to separate the minimumization and maximumization 
operators. 

A more complex example is Markov games, in which R is not finite; it will be described 
in Section 4.2. 

The term p-myopic policy refers to a mapping w : X ---+ R such that 

[0W(X)Q](x) = max ([0PQ](x)) = [0 Q] (x) , pER 

for all x E X. Here w is myopic with respect to Q. If Q = EEl (R + IV) then the policy which 
is myopic for Q is called myopic for V as well. The value function for a p-myopic policy w ,  
VW , is defined as the optimal value function for the generalized MDP where 0w(x) is used as 
the summary operator in state x; it is well defined. 
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If the condition mina Q(:r, a) <:: [0P Q] (x) <:: maxa Q(:r, a) is satisfied for all Q : X x 
A --+ lR and :r E X (the last inequality is automatically satisfied) , then to every function 
w : X --+ R we could assign one (or more) policy 7fw : X --+ II(A) with the property 
that [0w(x) Q] (x) = 2::a 7fw (x, a)Q(x, a) . Then, every mapping w can be identified with an 
equivalent stochastic stationary policy. This definition is in harmony with the definitions of 
the value functions VW and vn, and the definition of greediness. 

vVe characterize policy iteration as follows. Start with a value function V and compute 
its p-myopic policy w and w's value function VW. If I IV - VW I I  <:: f, terminate with VW as an 
approximation of the optimal value function. Otherwise, start over, after assigning V := VW. 

Note that if R contains a single element, then this policy-iteration algorithm terminates 
after two steps since wPo = w and thus vwo = V* with wo (x) = Po for all x E X. This 
illustrates the tradeoff between determining the optimal value function of a given mapping w 
and determining the optimal value function. The following two examples are also instructive. 
We can apply the generali�ed policy-iteration algorithm to MDPS by taking R to be the set 
of actions and 0P to return Q(8, rho) . Because computing VW is equivalent to evaluating a 
fixed policy and can be solved by, e.g. , Gaussian elimination, the resulting policy-iteration 
algorithm (which is just standard policy iteration) is useful. In alternating Markov games, 
we take 0P to return Q(8, p) for states in which value is maximized, and to pick out the 
minimum value mina Q(3, a) otherwise. Computing VW is equivalent to solving an MDP, 

which is conceptually easier than finding V' directly. 
To show that policy iteration converges, we appeal to two important results. The first is 

that, for maximizing generalized MDPS, 

V' (.r) = max VW(x) , u):X-tR 

meaning that the optimal value function dominates or equals the value functions for all 
possible values of w. The second is a generalization of a result of Puterman [31] that shows 
that the iterates of policy iteration are bounded below by the iterates of value iteration. 
i.From these two facts, we can conclude that policy iteration converges to the optimal value 
function, and furthermore, that its convergence is at least as fast as the convergence of 
value iteration. This result can also be proved for continuous and monotone value-iteration 
operators of maximizing type without assuming the contraction property [48]. 

Theorem 3 Let 

and, JOT all w : X --+ R, 

where 0P and EB are non-expansions and monotonic and R is compact. Then, Jar all x E X, 

V* (x) = m.ax VW(x) . 
W:A -tR 
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Proof: This result is proven in Appendix D. Q . E.D.  

Lemma 3 Let Ut be the iterates of value iteration and V, be the iterates of policy iteration, 
staTting fmm the same initial value function, Uo = Vo · If Uo and VA aTe undeTestimates of 
the optimal value function, then fOT all t and x E X, Ut (x) -s:: v, (x) -s:: V* (x) . 
Proof: The proof is in Appendix D. Q . E.D.  

According to Lemma 3, policy iteration converges at least geometrically and a bound on 
convergence time can be given by 

t' = pog ( l lVo - V' I I/(f(l - r))) l 
I 10g(lh) 

or in terms of the Bellman error magnitude of Va: 

t* = pog ( 1 1Vo - TVo l l/(f(l - r)2) ) l 
I 10g(lh) . 

If t :::> t' then I IV, - V' I I  -s:: f (f :::> 0) .  
It is  worth noting that the implementation of policy evaluation in generali�ed MDPS 

depends on the definition of EB. vVhen the expected-reward objective is used, as it is in 
MDPS, policy evaluation can be implemented using a linear-equation solver. vVhen EB is 
rnaxirnization or rninirnizatioIl; as it is in SOIne gaInes or under a risk-sensitive criterion, 
policy evaluation is equivalent to solving an MDP and can be accomplished using linear 
programming (or policy iteration!) .  

vVith a little change, the above framework is also capable of expressing asynchronous 
policy-iteration algorithms. Most of the previous results on asynchronous policy iteration 
can be repeated since those proofs depend only on the monotonicity and the contraction 
properties of the involved operators [61 ,  40]. The work of I3ertsekas and Shreve [6] is also 
worth mentioning here: they have considered a version of policy iteration in which both 
myopic policies and the evaluation of these policies are determined with a precision geomet­
rically increasing in time. Such an approximate policy-iteration scheme is useful of the state 
or the action spaces are infinite (such as a compact subset of a Euclidean space) . 

3 REINFORCEMENT-LEARNING ALGORITHMS 

In this section, we describe methods for solving MDPS that make use of "experience" instead of 
direct access to the parameters of the model. We begin by introducing a powerful stochastic­
approximation theorem. 

3.1 C OMPUTING THE FIXED P OINT OF A CONTRACTION 

BY MEANS OF RANDOMIZED APPROXIMATIONS 

Iterative approaches to finding an optimal value function can be viewed in the following 
general way. At any moment in time, there is a set of values representing the current 
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approximation of the optimal value function. On each iteration, we apply some dynamic­
programming operator, perhaps modified by experience, to the current approximation to 
generate a new approximation. Over time, we would like the approximation to tend toward 
the optimal value function. 

In this process, there are two types of approximation going on simultaneously. The first 
is an approximation of the dynamic-programming operator for the underlying model, and 
the second is the usc of the approximate dynamic-programming operator to find the optimal 
value function. Both Q-learning and model-based reinforcement learning work in this way. 
This section presents a theorem that gives a set of conditions under which this type of 
simultaneous stochastic approximation converges to an optimal value function. 

First, we need to define the general stochastic process. Let the set X be the states of 
the model, and the set B(X) of bounded, real-valued functions over X be the set of value 
functions. Let T :  B(X) --+ B (X) be an arbitrary contraction mapping and V' be the fixed 
point of T. 

To apply the value-iteration algorithm, the contraction mapping T is applied directly 
to successively approximate V'. In other algorithms, especially reinforcement-learning al­
gorithms, T is not available and we must use our experience to construct approximations 
of T. Consider a sequence of random operators T{ : (B(X) x B(X)) --+ B(X) and define 
Ut+1 = Tt(Ut, V) where V and Uo E B(X) are arbitrary value functions. We say Tt approxi­
mates T at V with probability one uniformly over X, if Ut converges to TV uniformly over 
X 7 .  The basic idea is that Tt is a randomized version of T in some sense; it uses Ut as 
"memory" to help it approximate TV. Here, one may think of V as a "test function," as in 
physics8 

The following theorem shows that, under the proper conditions, we can use the sequence 
Tt to estimate the fixed point V' of T. 

THEOREM 3 . 1  Let T be an ar"bitrar"y mapping with fixed point V', and let Tt appr-oximate T 
at V' with pr-obability one unifomdy over" X .  Let Vo be an ar-bitr"ar-y value function, and define ��+1 = T{ (��, 1ft) . If ther'e exist function., 0 -c:: F{(:r;) -c:: 1 and 0 -c:: G, (;r;) -c:: 1 8ILtisfying the 
cond#ion8 below with pmbab'ility one, then Vt. converges to V' w#h pr-obab'ility one un'ifonnly 
over- X :  

1 .  for' all U1 ,  and U2 E B(X) and all x E X ,  

ITt (U, , v' ) (x) - Tt(U2 , v' ) (x) l -c:: Gt(x) I U, (x) - U2 (.r) I ;  

2. for- all U and V E B (X), and all x EX, 

IT{(U, V' ) (x) - T{ (U, V) (x) 1  -c:: F{ (x) sup 1 V' (x') - V(x') I :  
,7:1 

7 A sequence of random functions In converges to f* with probability one uniformly over X ifl for almost 
all events LV for which fn(w, x) --+ j"', the convergence is uniform in x. This should be contrasted to uniform 
almost sure (or probability one) convergence, when we consider a sequence of random functionR, fn l and \ve 
require that the speed of convergence of fn(w) - f(w) to zero should be independent of w. 

BIn physics, the effect of electric fields is determined using the concept of "test charges,'l \vhich are 
imagined unit-charge, no-mass particles subject to the field. The strength of the field (effect of the operator) 
is determined as the force acting on the test charge. The situation here is analogous since we have an 
imagined object subject to a transformation. 
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3. for· all k > 0, IIr�kGt(x) conveTge8 to zen) unifor·mly in x a8 n incTea8e8; and, 
4 .  there exists 0 ::; , < 1 such that for all x E X and large enough t, 

Ft(:r) ::; ,(I - Gt(.r) ) .  

Proof: To prove this, we will define a sequence of auxiliary functions, Ut, that is guaranteed 
to converge, and relate the convergence of V, to the convergence of Ut. Let Uo be an arbitrary 
value function and let Ut+1 = Tt (Ut, V*). Since Tt approximates T at V*, Ut converges to 
TV' = V' with probability one uniformly over X. We will show that I lUt - V, I I converges 
to 7,ero with probability one, which implies that V, converges to V'. Let 

o, (x) = IU, (x) - V/(:r) I 

and let 

\Ve know that L'>t (x) converges to 7,ero because Ut converges to V'. 
By the triangle inequality and the constraints on Tt, we have 

Ot+l (X) IUt+1 (x) - V,+l (x)1 
ITt(Ut , V') (.r) - Tt (V" V,) (x) I 

< ITt (Ui> V') (x) - Tt (V" V') (x) 1 + IT, (V" V' ) (x) - Tt(V/ , V,) (x)1 
< Gt(x) I Ut (x) - v, (x) I + Ft (x) l lV* - V, I I  
< Gt(x)6t (.r) + F,(.r) I IV' - V,I I  
< Gt(x)6t (.r) + Ft(.r) ( I IV' - Ut l l  + I IUt - V,I I )  
< Gt(x)6t(x) + Ft(x)( I IM + I IL'>t l l ) (4) 

If it were the case that I IL'>t l l  = 0 for all t, then 6t would converge to "ero as shown in 
Lemma 10 of Section E.1.  Using this, one may show that the perturbation caused by L'>t 
diminishes. The main difficulty of the proof is that an inequality similar to Inequality (4) 
does not hold for 1 1 6d l , i.e. , different components of 0, may converge at different speeds and, 
moreover, because of the disturbance term, I IL'>t l l , I I 0t i i  may even increase sometimes. Even 
more, we do not have an a priori estimate of the convergence rate of L'>t to zero, which would 
enable a traditional treatment. However, the idea of homogeneous perturbed processes [19] 
can be used to show that the effect of this perturbation can be neglected. 

To usc Inequality (4) to show that 6t (x) goes to zero with probability one, we usc some 
auxiliary results proven in Appendix E. Q . E.D.  

Note that from the conditions of the theorem and the additional condition that Tt ap­
proximates T at every function V E B(X) , it follows that T is a contraction operator at V' 
with index of contraction , (i.e. , I ITV - TV' I I  ::; 'I I IV - V' I  for all V)9 .  We next describe 
some of the intuition behind the statement of the theorem and its conditions. 

9The proof of this goes as follows. Let V, Uo , Vo E B(X) be arbitrary and let Ut+1 = Tt(Ut, V) and 
VI+1 = TI(�r" V*). Let 6,(x) = IU,(x) - VI(x) l .  Then, using Conditions (1) and (2) of Theorem 3.1 we 
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The iterative approximation of V' is performed by computing vt+1 = Tt(Vl., vt) ,  where 
T{ approximates T with the help of the "memory" present in V; . Because of Conditions (1 )  
and (2) ,  G, (x) is  the extent to which the estimated value function depends on its present 
value and Ft(x) "" 1 - Gt(x) is the extent to which the estimated value function is based 
on "new" information (this reasoning becomes clearer in the context of the applications in 
Section 4). 

In some applications, such as Q-lcarning, the contribution of new information needs to 
decay over time to insure that the process converges. In this case, Gt(x) needs to converge to 
one. Condition (3) allows Gt(x) to converge to 1 as long as the convergence is slow enough 
to incorporate sufficient information for the process to converge (this is discussed in some 
detail in Section 4.8). 

Condition (4) links the values of Gt(x) and Ft (x) through some quantity I < L If it were 
somehow possible to update the values synchronously over the entire state space, the process 
would converge to V' even when I = 1 provided that ni=l (Ft (x) + Gt (x)) -+ 0 uniformly 
in x as T increases. In the more interesting asynchronous case, when I = 1 ,  the long-term 
behavior of vt is not immediately clear; it may even be that \It converges to something other 
than V' or it may even diverge depending on how strict Inequality (4) and the inequality of 
Condition (4) are. If these were strict, then 1 1 6, 1 1  might not decrease at all. The requirement 
that I < 1 insures that the use of outdated information in the asynchronous updates does 
not cause a problem in convergence. 

One of the most noteworthy aspects of this theorem is that it shows how to reduce the 
problem of approximating V' to the problem of approximating T at a particular point V 
(in particular, it is enough that T can be approximated at V*); in many cases, the latter is 
much easier to achieve and also to prove. For example, the theorem makes the convergence 
of Q-learning a consequence of the classical Robbins-Monro theorem [34]. 

In many problems we do not have full access to the operator EEl or the immediate rewards 
R 10 .  Basically, there are two ways to deal with this: we can build an estimate of EEl and R, or 
we can estimate a function (without ever building a model of EEl and R) from which an optimal 
policy is easily be determined. In the next section, we discuss a particular generalized Q­
learning algorithm which provides an interesting insight into how Q-learning-like algorithms 
should be constructed. 

3.2 GENERALIZED Q-LEARNING 

A defining attribute of the generali�ed Q-learning algorithm is that we exchange the ordering 
of the EEl and Q9 operators in the update equation relative to the defining generali�ed Bellman 

get that 0t+l (X) ::; Gt(x)o,(x) + ,(1 - G,(xl l llV - V'II· By Condition (3), n�o Gt(x) = 0, and thus, 
lim sup,->= o,(x) ::; ,IIV - V'II (see, e.g., the proof of Lemma 10 of Section Kl). Since T, approximates T 
at V' and also at V, we have that U, -+ TV and Vi -+ TV' with probability one. Thus, Ot converges to 
IITV - TV'II with probability one and thus IITV - T V' II ::; ,IIV - V' II holds with probability one. Since any 
probability space must contain at least one element; the above inequality, \vhich contains only deterministic 
vaI'iablcs, is true. Note that if Condition (1) were not restricted to V',  this argument would imply that T is 
a contraction \'lith index i'. 

10It is reasonable to assume complete access to Q9, since this determines how the agent should optimize 
its choice of actions. In Section 4.7, we will discuss cases \\Then this assumption is relaxed. 
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equations. Remember that the fixed-point equation of V' is 

Now, if we let Q' = EB(R + ,V*) then we arrive at the fixed point equation 

i.e., Q' is the fixed point of the operator K : ( (X x A.) -+ �) -+ ((X x A.) -+ �) , with 
KQ = EB(R + , 0  Q). The reason for exchanging summary operators is that 

(i) we have access to 0, not EB, but 

(ii) we have a "consistent" method for estimating EB which we will apply to estimate Q*. 

Once we have a good estimate of Q', say Q, a near optimal policy is easily determined: one 
takes a policy 7r, which is myopic for Q, i.e. , 0" Q = 0 Q. Then, using the technique of 
Section 2 .2 ,  it can be shown that I IV" - V' I I  -<:: 2 1 1 Q  - Q' I I / (l - I) ' i.e. , we can bound the 
sub optimality of the resulting policy. 

Now, what do we mean by a "consistent" method? Let Bl, B2 be arbitrary normed 
spaces and let T : HI -+ H2 be a mapping. By a method which estimates T, we mean any 
procedure which to every f E X assigns a sequence mt(f) E H2 . The method is said to be 
consistent with T if, for any f, the sequence mt (f) converges to T f with probability one. 
Usually, we will consider iterative methods of the form M = (lVla , lVII , . . . , Alt, . . .  ) ,  where 
!'vlt : B2 X Bl -+ B2 and 

(5) 

rno (f) being arbitrary. The first argument of Aft can be viewed as the internal "memory" of 
the method. 

The most well-known example corresponds to the estimating of averages of functions. 
Let Bl = (X -+ �) for some finite X, B2 = �, and let T : (X -+ �) -+ � be given by 

Tf = L Pr(x)f (.r) ,  
xEX 

where Pr( x) is a probability distribution over X. If Xt is a sequence of identically distributed 
independent random variables with underlying probability distribution Pr( - ) ,  then the iter­
ative method with 

IVft(rn, f) = (1 - at)m + at!(xt ) ,  

where at ::> 0, Z=�o at = (Xl and Z=�o a; < (Xl i s  consistent with T. Indeed, since 

we see that this is the simplest Robbins-Monro process (iterated averaging) and mt(f) con­
verges to Tf with probability one. 

To present the following example, we need to refine the definition of consistent iterative 
methods. We say that an iterative method M is consistent with T for the initial set Yo (f) , 
if for each f E Bl and moU) E Yo(f) the process mt(f) defined by Equation (5) converges 
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to T f with probability one. The next example shows why we must restrict the set of initial 
values-also as a function of f. 

Let B, = (X -+ �) for some finite X, B2 = �, and let T : (X -+ �) -+ � be 
given by (T 1) = minYExU f(y). l\ow, if Xt is a sequence of random variables such that 
{Xl , X2 , . . .  , Xt, . . .  } = Xo with probability one, then the iterative method with 

lvft(rn, f) = min(m, f(Xt)) 
is consistent with T and the initial set Yo (J) = {y I y ;;. T f } .  

Consistency of a method with an n-dimensional operator follows from componentwise 
convergence of the estimates. That is, let T = (Ti , T'2, . . .  , T",) : B -+ B1 X B2 X . . .  x Bn 
and let mt(J) E B1 x B2 X . . . x Bn be a sequence generated by some method. Then it is 
clear that mt (J) converges to T f if and only if 'lnt (J)i converges to (T f), = T;J. From this 
it follows that if M, is an iterative method which is consistent with Ti, then the method 
M :  (B, X B2 x . . .  x Bn) x B -+ B, X B2 X . . .  x Bn defined by 

1vlt(m, 1); = Mt.i (mi , f) 
will be consistent with T. That is, consistent methods for a multidimensional operator 
T can be constructed by the composition of one-dimensional methods consistent with T" 
i = 1 , 2, . . .  , n. This is useful since the EEl operator is usually multidimensional. 

How a consistent method of estimating EEl results in a Q-leaming algorithm is discussed 
next. In general, if the iterative method M = (Ah, lVh, . . .  , lvft, . . .  ) with Mt : (X x A x Y -+ 
�) x (X x A -+ �) -+ (X x A -+ �) is consistent with EEl then the appropriate Q-leaming 
algorithm is given by 

Qt+! = lvlt(Qt , R +  , tg) Qt). 
Note that such an algorithm would need explicit knowledge of n. To avoid this we introduce 
a new operator Q which maps X -+ � to X x A -+ � and which is defined by (QV) = 
EEl(R+-(V). Now, if M, is consistent with the operator Q then the corresponding generalized 
Q-leaming rule takes the form 

All the Q-leaming algorithms which we will discuss are of this form. 
How is the convergence of such an algorithm ensured? Defining Tt (Q, Q') = Mt (Q, 0 Q') ,  

we arrive at an operator sequence Tt, which, in many cases, satisfies the conditions of The­
orem 3 .1 .  It is immediate that Tt approximates K at any Q' since Qt+! = Tt (Qt, Q') = 
Mt(Qt, 0 Q') converges to Q0Q' = R + , 0 Q' = KQ' by assumption. The other condi­
tions on Tt (Condition (1)-(4)) result in completely similar conditions on lvlt, which we do 
not list here since it will be equally convenient to check them directly for Tt. The aim of this 
discussion was to give an explanation of how Q-leaming algorithms are constructed. 

4 APPLICATIONS 

This section uses Theorem 3.1 to prove the convergence of various decision-making algo­
rithms. 
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4 . 1  GENERALIZED Q-LEARNING FOR EXPECTED VALUE 

MODELS 

In this section, we will consider a model-free algorithm for solving the family of .finite state 
and action generalized MDPS defined by the Bellman equations V* = Q9 EB(R + IV*) where 
EB is an expected value operator, (EB g) (x, a) = L.y P(x, a, y)g(x, a, y) , and the definition of 
Q9 does not depend on R or P. 

A Q-learning algorithm for this class of models can be defined as follows. Given experience 
(XL, at, Yt , T't) at time t and an estimate Qt (x, a) of the optimal Q function, let 

Qt+1 (Xt, at) : = (1 - at(xt, at))Qt(Xt, at) + at(xt, at) (Tt + 0((0 Qt) (Yt)) . (6) 
\Ve can derive the assumptions necessary for this learning algorithm to satisfy the con­

ditions of Theorem 3.1 and therefore converge to the optimal Q function. The randomized 
approximate dynamic-programming operator that gives rise to the Q-learning rule is 

7;( q', Q) (x, a) = { (('�' (-x,
a
a
t
)
(
,
x, a) )Q' (x, a) + [Vt(x, a) (T't + I( Q9 Q) (Yt)) , if x = Xt and a = at 

( otherwise. 

If 

• Yt is randomly select.ed according t.o t.he probabilit.y distribut.ion defined by P(Xt, at, .) ,  
• Q9 is a non-expansion, 

• T't has a finite variance and expected value given :r;L ,  at and Yt equal to R(xL, at, Yt) , 
• the learning rates are decayed so that L.�, X(Xt = x, at = a)at (x, a) = 00 and 

L.�, X(Xt = x, at = a)at(x, aJ2 < 00 uniformly with probability oneil , 

then a standard result from the theory of stochastic approximation [34] states that Tt approx­
imat.es K at. Q* wit.h probability one. That is, this method of using a decayed, exponent.ially 
weight.ed average correctly computes t.he average one-st.ep reward. 

Let. 

and 

G ( ) = { 1 - at (x, 0.) , t x, a 1 , if x = Xt and 0. = at; 
otherwise, 

F: ( ) _ { 'la, t (x, a), if x = Xt and 0. = at ; t .T , 0. - 0, otherwise. 
These funct.ions satisfy the conditions of Theorem 3.1 (Condit.ion (3) is implied by t.he 
restrictions placed on the sequence of learning rat.es at) .  

Theorem 3 .1  therefore implies that this generalized Q-learning algorithm converges to 
the optimal Q function with probability one uniformly over X x A. The convergence of 
Q-learning for discounted MDPS and alternating 'vIarkov games follows trivially from this. 
Ext.ensions of t.his result for a "spreading" learning rule [32] are given in Appendix 4.8. 

1 1  Here, X denotes the characteristic function. A common choice for learning rates is O:t(x,a) = 1/(1 + 
nt(x, a)), where nt(x,a) is the number of times (x,a) has been visited before t. For this learning-rate 
function, the condition on learning rates requires that every state-action pair is updated infinitely often. If 
a central decreasing learning rate, e.g. "t(x, a) = lit, is used, then the learning-rate condition additionally 
requires that the update rate of any given (x, a) pair should not decrease faster than the decrease of learning 
rates. More results on this can be found in Appendix F .  
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4.2 Q-LEARNING FOR MARKOV GAMES 

Markov games are a generalization of MDPS and alternating Markov games in which both 
players simultaneously choose actions at each step. The basic model was developed by Shap­
ley [39] and is defined by the tuple (X. A, B, r, R) and discount factor f. As in alternating 
Markov games, the optimality criterion is one of discounted minimax optimality, but because 
the players move simultaneously, the Bellman equations take on a more complex form: 

V* (:c) = max min L
. 
pea) (R(:l , (a, b)) + -( L P(:c, (a, b) , Y)V' (Y)) . (7) pEII(A) bE R aEA yEX 

In these equations, R(x, (a, b) ) is the immediate reward for the maximizer for taking action 
a in state x at the same time the minimizer takes action b, P(:c, (a, b) , y) is the probability 
that state Y is reached from state x when the maximizer takes action a and the minimizer 
takes action b, and n(A) represents the set of discrete probability distributions over the set 
A. The sets X, A, and B are finite. 

Once again, optimal policies are policies that are in equilibrium, and there is always a 
pair of opt.imal policies t.hat. are st.at.ionary. Unlike MDPS and alt.ernat.ing Markov games, t.he 
opt.imal policies are somet.imes st.ochast.ic; t.here are Markov games in which no determinist.ic 
policy is opt.imal. The stochast.ic nat.ure of opt.imal policies explains t.he need for t.he opt.i­
mization over probability distributions in the Bellman equations, and stems from the fact 
that players must avoid being "second guessed" during action selection. An equivalent set of 
equations can be written with a stochastic choice for the minimizer, and also with the roles 
of the maximizer and minimizer reversed. 

To clarify the connection between this model and the class of generalized MDPS, define 
Q :  (X x (A x B))  --+ lR to be an arbitrary Q function over pairs of simultaneous actions, 

and 

(® q) (x) = max min L p[a]q(x, (a, b) ) ,  pEII(A) bEll aElI 

(EB V) (x, (a, b) )  = L reX , (a, b) , y)V(y), 
yEX 

then Equation (7) can be expressed in the familiar form V* = @ E9(R+'(V* ) .  Note that both 
E9 and @ defined this way are non-expansions and monotonic (see Appendices B and C) .  

The Q-learning update rule for Markov games [24] given step t experience (:c[ ,  ai, bl, YL, T"L) 
has the form 

This is identical to Equation (6) , except that actions are taken to be simultaneous pairs 
for both players. The results of the previous section prove that this rule converges to the 
optimal Q function under the proper conditions. 

In general, it is necessary to solve a linear program to compute the update given above. 
We hypothesize that Theorem 3.1 can be combined with the results of Vrieze and Tijs [57] on 
solving Markov games by "fictitious play" to prove the convergence of a linear-programming­
free version of Q-learning for Markov games. 
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4.3 C ONVERGENCE UNDER ERGODIC SAMPLING 

In most of the sequential decision problems that arise in practice, the state space is huge. 
The most sensible way of dealing with this difficulty is to generate compact parametric 
representations that approximate the Q function. One form of compact representation, as 
described by Tsitsiklis and Van Roy [55], is based on the use of feature extraction to map 
the set of states into a much smaller set of feature vectors. By storing a value of the optimal 
Q-function for each possible feature vector, the number of values that need to be computed 
and stored can be drastically reduced and, if meaningful features are chosen, there is a chance 
of obtaining a good approximation of the optimal Q-function. This approach is extended by 
Singh et al. [43], where the authors consider learning Q-values for "softly aggregated" states, 
i.e., for any given aggregated state s there is a probability distribution over the states which 
determines to which extent a given state from X belongs to s (this can also be viewed as fuzzy 
sets over the state space and is also related to the spreading rule described in Section 4.8) . 
In this section, we describe a lemma which provides general conditions under which the raw 
generalization of Q-learning for such aggregate models converges. 

Assume that the sequence of experience tuples is an arbitrary stochastic process, �n =< 
Xn,  an, Yn, rn > ,  that satisfies the following criterion. For a given state x and action a let 
��(x, a) be the subprocess for which Xn = x and an = a. Assume that X and A are finite, 
r n <:: B for some fixed number B and 

1 N+K 
lim - L r�(;:r;, a) K-too K n=N 

1 N+K 
lim - L X (Y;, (:T, a) = y) K-+oo K ndV 

R(.T , a) (8) 

P(:T, a, y) (9) 

and both converge to their limit values with a speed that is independent of N. Here X(Y;, (x, a) = y) = 1 if y;, (x, a) = y and X(Y;, (x, a) = y) = 0,  otherwise. A real-valued 
function f that satisfies 1 ik+T 

lim - f (s)ds = F T-+oo T . k 
with a convergence speed independent of k is said to admit the "uniform averaging" property. 
Thus, we may say that a process �n can be averaged uniformly if the above conditions hold. 

Lemma 4 Q-lea.rning applied to a sequence �n that admits the uniform averag'ing property 
converges to the optimal Q-funct'ion of the MDP determined by rewards R and transit-ion 
probabilities P given by the averages in Equations (8) and (g). 
Proof: We immediately see that the conditions of Theorem 3 .1  are satisfied except that Tt 
approximates T, the value operator of the MDP given by (X, A,  R, J'). However, this follows 
from standard stochastic-approximation results. Q . E.D.  

The above lemma can be used to show that if the sampling of states and actions comes 
from a fixed distribution, then an aggregate model will converge. That is, if you have a Q 
function represented by an m-entry table E and a mapping G : X x A to T, and you update 
entry e of E (according to the Q-learning rule) whenever G(Xt, at) = e, and, you are sampling 
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XL and at according to some probabilistic laws, then the values in your table will converge. 
Section 4.8 discusses this in more detail. Lemma 4 is concerned with the case when the :r:t 
states are sampled asymptotically according to a distribution function poo defined over X 
(Pr(xt = x) converges to pOO(x)). 

4.4 RISK-SENSITIVE MODELS 

Heger [15] described an optimality criterion for MDPS in which only the worst possible value 
of the next state makes a contribution to the value of a state12. An optimal policy under 
this criterion is one that avoids states for which a bad outcome is possible, even if it is not 
probable; for this reason, the criterion has a risk-averse quality to it. This can be expressed 
by changing the expected value operator EEl used in MDPS to 

(EJjy)(x, a) = min y(x, a, y) . y:P(a,x,y» o 
The argument in Section 4.6 shows that model-based reinforcement learning can be used 

to find optimal policies in risk-sensitive models, as long as 181 does not depend on R or P, 
and P is estimated in a way that preserves its zero vs. non-zero nature in the limit. 

For the model in which (181 f) (x) = maxa f(.T, a) , Heger defined a Q-learning-like al­
gorithm that converges to optimal policies without estimating R and P online [15] . In 
essence, the learning algorithm uses an update rule analogous to the rule in Q-learning 
with the additional requirement that the initial Q function be set optimistically; that is, 
Qo(x, a) ::: Q*(x, a) for all x and a 13 . Like Q-learning, this learning algorithm is a general­
ization of Korf's [22] LRTA * algorithm for stochastic environments. The algorithm and its 
convergence proof can be found in Appendix G. 

4.5 EXPLORATION-SENSITIVE MODELS 

A major practical difficulty with Q-learning in MDPS is that the conditions needed to ensure 
convergence to the optimal Q function and optimal policy make it impossible for a learning 
agent to ever adopt the optimal policy. In particular, an agent following the optimal policy 
will not visit every state and take every action infinitely often, and this is necessary to assure 
that an optimal policy is learned. 

John [20, 21] devised an approach to this problem based on the idea that any learning 
agent must continue to explore forever. Such an agent should still seek out actions that result 
in high expected discounted total reward, but not to the exclusion of taking exploratory 
actions. He found that better learning performance can be achieved if the Q-learning rule 
is changed to incorporate the condition of persistent exploration. More precisely, in some 
domains, John's learning rule performs better than standard Q-learning when exploration is 

12Such a criterion was also analyzed by Bertsekas and Shreve [61. 
13The necessity of this condition is clear since in this Q-learning algorithm we need to estimate the 

operator miny:p(x,a,y» O from the observed transitions, and the underlying iterative method-as discussed 
in Section 3.2 is consistent only if the initial estimate is overestimating. Since we require only that Tt 
approximates T at Q', it is sufficient if the initial value of the process satisfies Qo 2: Q' . "lote that 
Qo = AI/(l- -i) satisfies this condition, where AI = max(x.a.y) R(x, a, y) . 
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retained, i.e., the discounted cumulated reward during learning was higher for his learning 
rule. However, this does not mean that his learning rule converges to a better estimate of 
the optimal Q-function: if exploration were stopped at sorne point late in the run, then it is 
likely that the myopic policy with respect to the Q-function learned by standard Q-Iearning 
would perform better than the myopic policy with respect to the Q-function learned by his 
rule. 

One concrete implementation of this idea is the following metapolicy. Given a Q function 
and a small value " > 0, when in state x, take the action argmaxa Q(x, a) with probability 
1 - e and a random action from A with probability e. Assuming that an agent will select 
actions according to this metapolicy (instead of, for example, the greedy metapolicy, which 
always selects the action with the highest Q value), which is a reasonable Q function to use? 

John shows empirically that the optimal Q function for the MDP is not always the best 
choice here. So instead of using the standard Q-Iearning update rule, he updates Q values 
by 

Q/.+l (:D/., at) := 

(1 - Gt(xt, ai ))Qi (Xi , at) + G/. (xt, at) (ri + I (e I�I � Qi (Y/., a) + (1  - e) mfx Qt(Yi, a)) ) . 
This update rule tries to learn the value of the exploring metapolicy instead of the value of 
the optimal MDP policy. 

It is not difficult to apply the arguments of Section 4 .1  to this variation of Q-Iearning to 
show that the learned Q function converges to Q' defined by 

Q' (X, a) = R(x, a) + -( � P (x, a, y) (e I�I � Q'(y, a) + (1 - e) m!x Q' (y , a)) . (10) 

(The operator of the corresponding generalized MDP are given as follows: 0 operator takes 
the bizarre form (0 Q)(x, a) = e(l/ IA I ) �a Q(y, a) + (1 - e) maxa q(y, a) which is a non­
expansion by the results of Appendix B, and EEl is the usual averaging operator underlying 
the transition probabilities Pl. In addition, we can show that using this Q' in the metapolicy 
results in the best possible behavior over the space of all policies generated by this metapolicy. 
The conclusion is that John's learning rule converges to the optimal Q function for this type 
of exploration-sensitive MDP. These results are discussed in a forthcoming technical note [25] . 

This update rule was also described by Rummery [35] in the context of variations of the 
TD(.\) rule. In addition, Rummery explored a related update rule: 

where bi is chosen as the action in state Yi stochastically according to the exploring meta pol­
icy. It can be viewed as an action-sampled version of Jolm's update rule. This rule has also 
been studied by .John [21] , and under the name "SARSA" by Sutton [47] and Singh and 
Sutton [41]. Once again, it is possible to apply Theorem 3.1 to show that Qt converges to 
Q' as defined in Equation (10) [25]. (In Section 4.7 we describe a related algorithm in which 
o is estimated by computing randomized maximums.) 
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4.6 MODEL-BASED LEARNING METHODS 

The defining assumption in reinforcement learning is that the reward and transition func­
tions, R and P, are not known in advance. Although Q-learning shows that optimal value 
functions can be estimated without ever explicitly learning R and P, learning R and P makes 
more efficient use of experience at the expense of additional storage and computation [29] .  
The parameters of R and P can be learned from experience by keeping statistics for each 
state-action pair on the expected reward and the proportion of transitions to each next 
state. In model-based reinforcement learning, R and P are estimated on-line, and the value 
function is updated according to the approximate dynamic-programming operator derived 
from these estimates. Theorem 3 .1 implies the convergence of a wide variety of model-based 
reinforcement-learning methods. 

The dynamic-programming operator defining the optimal value for generalized MDPS is 
given in Equation (1) .  Here we assume that EB may depend on P and/or R, but ® may not. 
It is possible to extend the following argument to allow ® to depend on P and R as well. In 
model-based reinforcement learning, R and P are estimated by the quantities Rt and Pto and 
EBI is an estimate of the EB operator defined using R., and Pt. As long as every state-action 
pair is visited infinitely often, there are a number of simple methods for computing Rt and 
Pt that converge to R and P. A bit more care is needed to insure that EB{ converges to 
EB, however. For example, in expected-reward models, (EB g) (x, a) = Ly P(x, a, y)g(x, a, y) 
and the convergence of Pt to P guarantees the convergence of EBt to EB. On the other 
hand, in a risk-sensitive model, (EB g) ( x, a) = miny,p(x,a,y» O g(x, a, y) and it is necessary to 
approximate P in a way that insures that the set of y such that p{ (x, a, y) > 0 converges 
to the set of y such that P(x, a, y) > O. This can be accomplished easily, for example, by 
set.ting Pt(:r, a., y) = 0 if no transit.ion from x to y under a. has been observed. 

Assuming P and R can be estimated in a way t.hat resuit.s in the convergence of EBt to EB 
and that ®t is a non-expansion (more precisely we need that the product of the "expansion 
index" of ®t and I is smaller than one) , the approximate dynamic-programming operator 
Tt defined by 

Tt(U, V) (x) = { ® EBt (Rt + IV) , 
U(x), 

if x E Tt 
othenvise, 

converges to T with probability one uniformly. Here, the set Tt C;; X represents the set of 
states whose values are updated on step t; one popular choice is to set Tt = {Xt } .  

The functions 

G{ (x) = { �: if x E Tt ; 
otherwise, 

and 
Ft (x) = { "  if x E Tt ; 

0, otherwise, 

satisfy the conditions of Theorem 3 . 1  as long as each x is in infinitely many Tt sets (Condi­
tion (3)) and the discount factor I is less than 1 (Condition (4)) .  

As a consequence of this argument and Theorem 3.1 , model-based methods can be used to 
find optimal policies in MDPS, alternating Ylarkov games, Ylarkov games, risk-sensitive MDPS, 

and exploration-sensitive MDPS. Also, if Rt = R and Pt = P for all t, this result implies that 
asynchronous dynamic programming converges to the optimal value function [2, 1] . 
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4.7 SAMPLED MAX 

The asynchronous dynamic-programming algorithm uses insights from the reinforcement­
learning literature to solve dynamic programming problems more efficiently. At time step 
t + 1 ,  the algorithm has an estimate V! of the optimal value function and is given a state Xt 
at which to improve its estimate. It executes the update rule 

V!+1 (:rt) = mal (R(.Tt , a) + il: P(:rt , a., y)V!(y)) . nE. y 
(11)  

The state Xt is typically selected by following a likely trajectory through the state space, 
which helps the algorithm focus its computation on parts of the space that are likely to be 
important. The convergence of asynchronous dynamic programming to the optimal value 
function (under the assumption that all states are visited infinitely often) follows from the 
work of Gullapalli and Barto [13] and the results in this paper. 

\Vhen the set of actions is extremely large, computing the value of the maximum action 
in Equation ( 1 1 )  becomes impractical. An alternative that has been suggested is to use the 
update rule 

where At is a random subset of A and at (x) is the learning rate at time t for state x. The idea 
behind this rule is that, if At is big enough, Equation (12) is just like Equation (11) except 
that estimates from multiple time steps are blended together. Making At small compared 
to A allows the update to made more efficiently, at the expense of being a poor substitute 
for the true updat.e. For t.he purposes of t.he analysis present.ed here, we assume each At is 
generat.ed independent.ly by some fixed process. \Ve assume t.he learning rat.es sat.isfy t.he 
standard properties (square summable but not directly summable). 

We can show that the update rule in Equation (12) converges and can express (indirectly) 
what it converges to. The basic approach is to notice that choosing the maximum action 
over a random choice of At corresponds to a particular probability distribution over ranks, 
that using this probability distribution directly would result in a convergent rule, and that 
estimating it indirectly converges as well. Once the proper definitions are made, the analysis 
mirrors that of Q-learning quite closely. The main difference is that Q-learning is a way to 
average over possible choices of next state whereas Equation (12) is a way of averaging over 
possible choices of action. 

The first. insight. we will use is as follows. Consider the effect of selecting a random set. 
At and t.hen comput.ing argmaxaEAt f(a) . It. is not hard t.o sec t.hat. f induces a probabilit.y 
distribution over the elements of A. Taking this a step further, note that this probability 
distribution is exactly the same if we replace f with any order-preserving transformation 
of f. In fact , the method for selecting At induces a fixed probability distribution on the 
rank positions of A: there is some probability (independent of f) that the selected a will 
result in the largest value of f(a.), some probability that it will result in the second largest 
value of f (a) , and so OIl. Let p( i) be the probability that the a with the ith largest value of 
f(a) is selected; this function can be derived (in principle) from the method for selecting At. 
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(l\ote that it is possible for ties to exist in the rank ordering. \Ve imagine these are broken 
arbitrarily. ) 

An a concrete example, we will quickly derive the p function for the case in which all 
a have probability p of being included in At. In this case, the maximum valued action 
will be included in At, and will therefore be selected as the maximum element in At, with 
probability p. This implies that p(l) = p. The action with the second largest value will be 
chosen as the max if and only if it is included in At while the maximum valued action is not: 
p(2) = (1 - p)p. Continuing in this way, we find that p(i) = (1 - p)i-1p in general. 

Using the concepts introduced in the previous paragraphs, we can see that Equation (12) 
is equivalent to 

where action a is selected as at with probability p(i) and i is the rank position of action a 
under one-step lookahead on VI. 

Let lei, V) be the action with the ith largest value as computed by one-step lookahead 
on V 11. Define 

IAI ( ) V*(x) = � p(i) R(x, I(i, V* )) + I � P(x, I(i , V* ) ,  y)V* (y) , (14) 

for all x.  Because V* is defined by taking a fixed probability-weighted average of a rank­
based selector function, it is a form of generali7,ed MDP (see Appendix 13). It follows from 
this that V* is well defined (for I < 1 ) .  

If p(l) = 1 ,  Equation (14) is precisely the Bellman equations defining the optimal value 
function for an MDP. In general, any (non-metric) sampling method for estimating the best 
action will result in a different rank-position probability function p. 

We next show that the update rule in Equation (12) results in the convergence of VI 
to V* as defined in Equation (14) (i.e., not the optimal value function, in general) .  To 
do this, we need to first define a dynamic-programming operator T that captures a value­
iteration method for finding V'. This is a straightforward translation of Equation (14) .  We 
next need a sequence of dynamic programming operators Tt that capture the update rule in 
Equation (12) . This is a simple translation of the equivalent Equation (13) .  

To apply our stochastic-approximation theorem, we next need to define functions Ft and 
Gt and show that they satisfy a set of conditions. As the necessary definitions are precisely 
the same as in our proof of the convergence of Q-learning (Section 4 . 1 ) ,  we will not repeat 
them here. 

The final step is to show that T, approximates T at V'. In other words, we need to show 
that 

VI+! (Xt) = (1 - (}:t(.rt))VI(xt) + (}:t (.rt) ( R(.rt, at) + I � P(.rt , at, Y)V' (Y)) (15) 

converges to V' if at is selected according to p( i) as described above and every state is visited 
infinitely often. Equation (15) is a variation of Equation (13) in which V* is used in place of 

14For those who have already read Appendix E, we note that I(i, V) = argord�(R(x, a)+'( Ly P(x, a, y)V). 
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�� for one-step lookahead. Proving the convergence of Vt. to V* under Equation (15) parallels 
the analogous result for Q-learning. 

The ease with which this final condition can be checked follows directly from the fact 
that we only require that the update rule emulate the true dynamic-programming operator 
at a fixed value function, namely V'.  

In conclusion, the sampled max update rule, as defined in Equation ( 12) ,  converges to 
the value function V' as defined in Equation (14) . Whether V* is a good approximation 
of the true value function depends on the sampling method used and the degree to which 
suboptimal action choices in the underlying MDP result in near optimal values. 

4.8 Q-LEARNING WITH SPREADING 

Ribeiro [33] argucd that thc use of availablc information in Q-lcarning is incfficicnt: in 
each step it is only the actual state and action whose Q-value is reestimated. The training 
process is local both in space and time. If some a prioT'i knowledge of the "smoothness" of the 
optimal Q-value is available then one can make the updates of Q-learning more efficient by 
introducing a so-called "spreading mechanism," which updates the Q-values of state-action 
pairs in the vicinity of the actual state-action pair, as well. 

The rule studied by Ribeiro is as follows: let Qo be arbitrary and 

Qt+1 (z, a) := ( l-at (z, a)s(z, a, xt))Qt(z, a) +at (z, a)s(z, a, xt) (rt + i m:x Qt(Yt , a)) , (16) 

where at (z, a) is the local learning rate of the state-action pair (z, a) which is 0 if a # at , 
s(z, a, x) is a fixed "similarity" function satisfying 0 :::; s(z, a, x), and (xt , at, Yt , rt) is the 
experience of the agent at time t. 

The difference between the above and the standard Q-learning rule is that here we may 
allow at(z, a) # 0 even if Xt # z, i.e., states different from the actual may be updated, too. 
The similarity function 8 (Z, a, :r) weighs the relative strength at which the updates occur. (One could also use a similarity which extends spreading over actions. For simplicity we do 
not consider this case here.) 

Our aim here is to show that under the appropriate conditions this learning rule converges 
and also we will be able to derive a bound on how far the converged values of this rule are 
from the optimal Q function of the underlying MDP. These results extend to generalized 
MDPS when maxa. is replaced by any non-expansion operator 181. 

Theorem 4 If 
1 .  X, A m'e finite, 
2. Pr(Yt = y lx = x"� a = at) = P(x, a, y) ,  
3. E[rt l :r = X I ,  a = at ,  Y = Yt] = R(:r, a, y) and Varlrt l :rl , at o  Ytl is bounded, 
4- Yt and rt are independent, 
5. the states, x"� are sampled from a probability distribution poo E II(X) ,  with poo(.r,) > 0, 
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6. 8 (Z, a, . ) :0- 0, 
7. G:t (z, a) = 0 if a f. at, 
8. G:t(z, a) is independent of Xt, Yt and rt, 
9. 0 <:: G:L(z, a), 2::�o c¥L(z, a)s (z, a, xL) = 00 and 2::�o G:; (z, a) s2 (z, a, xL) < 00, both hold 

uniformly with probability one. 
Then Ql as given by Equaf'ion (16) converges to the fixed point of the operator' T : ( (X x A) -+ W) -+ ((X x A) -+ W), 

(TQ)(z, a) = L 8(Z, a, x) L I'(x, a, y) (R(X, a, y) + , m:x Q(y, b)) , (17) 
xEX yEX 

' (  . )  s (z, a, x) s z a x = " 2::y 8(Z, a, y )poo(y) 
Proof: Note that by definition T is a contraction with index , since 2::, 8(Z, a, x) = 1 for all 
(z, a) . We use Theorem 3.1 .  Let 

It can be checked that T, approximates T at any fixed function Q. Moreover, Tt satis­
fies Conditions (1) through (3) of Theorem 3.1 with Gt (z, a) = 1 - G:t(z, o,)8(z, a, .Tt) and 
Ft(z, a) = ,IYt (z, o.)8(z, a, .Tt ) .  Q . E.D.  

It is interesting and important to ask how close Qo, the fixed point of T where T is 
defined by (17), is to the true optimal Q' . By Theorem 6.2 of Gordon [12] we have that 

where 

I IQo - Q' I I  <:: �, 1 - '( 

f = inf{ I IQ - Q' I I I FQ = Q }, 
where (FQ) (z, a) = 2::x 8(Z, a, x)Q(x, a) . This helps us to define the spreading coefficients 
s(z, a ,x) .  Namely, let n > 0 be fixed and let 

( ) _ { I ,. if iln <:: Q
. 
* (z, a) , Q' (:r, a) < Ci + 1 )ln for some 'i ; s z, a, x - 0 I . , , ot lenVlse, 

then we get immediately that f <:: lin. Of course, the problem with this is that we do not 
know in advance the optimal Q-values. However, the above example gives us a guideline, how 
to define a "good" spreading function: s (z, a, x) should be small (zero) for states z and x if 
Q'(z, a) and Q' (x, a) differ substantially, otherwise 8 (Z, a, x) should take on larger values. In 
other words, it is a good idea to define 8(Z, a, x) as the degree of expected difference between 
Q* (z, a) and Q* (x, a). 
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Note that the above learning process is closely related to learning on aggregated states 
(if X = UiXi is a partition of X let 8 (Z, a, x) = 1 if and only if Z, :C E Xi for some i ,  
otherwise 8(Z , a, :r;) = 0) and also to learning using interpolator function approximators. 
In order to understand this, let us reformulate the model suggested by Gordon [12]. Let 
us fix a subset of X, say Xo. This is the "sample space" , which should be much smaller 
t.han X. Let A : (Xo x A -+ W) -+ (X x A -+ W) be a "funct.ion approximat.or" . The 
motivat.ion behind t.his notion is that to each sample { (.Tl '  a, Vr ) , (.T2 ' b, V2), . . . , (xn ' c, Yn) } , 
where {Xl , .T2 , . . .  , .Tn} = Xo, and a, b, . . .  , c  E A, Yi E W, A assigns a funct.ion defined on X x A. \Ve assume that A is a non-expansion. Now, consider the process 

Ql+l (z, a) := (1 - (lL(Z, a)s(z, a, XL) )Q, (z, a) + (l1(Z, a) 8(Z, a, :r:I) (r, + , mJlx[APQtJ (YI, a)) , 
(18) 

where P projects (X x A -+ W) to (Xo x A -+ W), i .e. , [PQ] (x, a) = Q(x, a) for all 
(x, a) E Xo x A. As we noted above, Rule (16) works equally well if maxa is replaced 
by any non-expansion. In this particular case, this non-expansion is given by (@ Q) (x) = 
maxa[APQ] (x, a) (it is a non-expansion, since @ is a composition of non-expansions) .  Thus, 
under the conditions of Theorem 4, this rule converges to the fixed point of the operator 

(TQ) (z, a) = L s(z, a, x) L P(x, a, y) (R(x , a, y) + , Q9 Q(y, b)) . 
xEX VEX 

Note that in Equation (18) if z E Xo then the update of (z, a) depends only on the values 
of Qt(xo, a) , where Xo E Xo . This means that it is sufficient to store these values during the 
update process-all the other values can be reproduced using A. Also, operator T can be 
restricted to Xo x A. 

If 8(Z, a, x) = 0 for all z # x (in this case the "reduced Q-table" is updated only if 
Xt E Xo, which is somewhat wasteful15) ,  thcn thc abovc argumcnt shows that Q-lcarning 
combincd with a non-cxpansivc function approximator convcrgcs to thc fixcd point of thc 
undcrlying contraction, T : ((Xo x A) -+ W) -+ ((Xo x A) -+ W), whcrc 

(TQ) (x, a) = L P(x, a, y)  (R(X, a, y) + , mJlx [AQ] (Yt , a)) . 
'!lEX 

Using standard non-expansion and contraction arguments Gordon proves that I IAQoo-Q* 1 1  <:: 
2E/(I - ,) ,  where TQoo = Qoo and E = inf{ I IQ - Q* I I I AQ = Q }. We note that these results 
rely only on the non-expansion and contraction properties of the involved operators. 

The above convergence theorem can be extended to the case when the agent follows 
a given exploration "metapolicy" (e.g., by using the results from stochastic-approximation 
theory [4]) which ensures that every state-action pair is visited infinitely often and that there 
exists a limit probability distribution over the states X. For example, persistently exciting 
(exploring) policies satisfy these conditions. A stochastic policy 7r = 7r(x, a) is persistently 

'"Gordon also considered briefly the other case, when s(z, a, xl can be non-zero for z of x, and stated that 
this is equivalent to introducing hidden states into the derived I'v1Dl' and concluded, pessimistically, that \ve 
then run the risk of divergence. The above argument shows that, under appropriate conditions, this is not 
the ease. 
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exciting if the Markov chain with state set S = X x A and given by the transition probabilities 
p((:r;, a), (y, b) )  = P (x, a, y)1r(y, b) is strongly ergodic' 6 .  This means that if the agent uses 
1r then it will visit every state-action pair infinitely often; moreover, given any initial state 
there exists a limit distribution, pOO(x, a), of Pr(x = XI, a = ad which satisfies pOO(x, a) > 0 
for all (x, a). Since Pr(xt = x, at = a) = Pr(at = alxt = x)P(Xt = x) = 1r(x, a) Pr(xt = x) , 
under the above conditions the limiting distribution (let us denote it by ]Joo (.r)) of Pr(.rt = .r) 
exists as well, and satisfies 

pOO(x) = ]J""(.r, a)/1r (x, a), 

(a is arbitrary! )  and thus pOO(x) > 0 11. 

All this shows that, under a persistently exciting policy, there exists a probability distri­
bution poo over X such that Xl is sampled asymptotically according to poo . As a consequence, 
we have that the conclusion of Theorem 4 still holds in this case. 

Ribeiro and Szepesvari studied the above process when s(z, a, x) is replaced by a time 
dependent function which is also a function of the actual action, that is, the spreading 
coefficient of (z, a) at time t is given by St(z, a, Xt, at) [32]. By using Theorem 3 .1  they 
have shown that if St(z, a, Xl, at) - X(z = Xt, a = at) converges to zero no more slowly than 
does (tt (z, a), and the expected time between two successive visits of all state-action pairs is 
bounded, then Q(, as defined by the appropriately modified Equation ( 16) , converges to the 
true optimal Q function, Q'.  

This algorithm, therefore, can make more efficient use of experience than Q-learning does, 
and still converge to the same result. 

5 CONCLUSIONS 

We have presented a general model for analyzing dynamic-programming and reinforcement­
learning algorithms and have given examples that show the broad applicability of our results. 
This section provides some concluding thoughts. 

5 . 1  RELATED WORK 

The work presented here is closely related to several previous research efforts. Szepesvari [50, 
48] described a generalized reinforcement-learning model that is both more and less general 
than the present model. His model enables more general value propagation than EB(R + '!V) 
with -( < 1 but is restricted to maximization problems, i .e . ,  when Q9 = max. He proves that, 
under mild regularity conditions such as continuity and monotonicity of the value propaga­
tion operator, the Bellman optimality equation is satisfied and policy and value iteration are 
valid algorithms. He also treats non-Markovian policies. The main difficulty of this approach 
is that one has to prove fixed-point theorems without any contraction assumption and for 

1 6Some authors call a policy 'IT persistently exciting if the l\larkov chain over X \�lith transition probabilities 
p(x, y) = L.:a 7r(x, a)p(x, a, y) is strongly ergodic. These two definitions are equivalent only if 1f(x, a) > a for 
all (.r" a). 

17 Another way to arrive at these probabilities is to consider the rvlarkov chain vvith states X and transition 
probabilities p(x, y) = L.:a 1f(x, a)P(x, u, V) . 
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infinite state and action spaces. His model can be viewed as the continuation of the work 
of Bertsekas [.5] and Bertsekas and Shreve [6], who proved similar statements under different 
assumptions. 

Waldmann [58] developed a highly general model of dynamic-programming problems, 
with a focus on deriving approximation bounds. Heger [15, 16] extended many of the stan­
dard MDP results t.o cover t.he risk-sensit.ive model. Alt.hough his work derives many of t.he 
import.ant t.heorems, it docs not. present. these t.heorems in a generalized way to allow t.hem t.o 
be applied to any other models. Verdu and Poor [56] introduced a class of abst.ract dynamic­
programming models that is far more comprehensive than the model discussed here. Their 
goal, however, was different from ours: they wanted to show that the celebrated "Principle 
of Optimality" discovered by Bellman relies on the fact that the order of selection of optimal 
actions and the computation of cumulated rewards can be exchanged as desired: in addition 
to permitting non-additive operators and value functions with values from any set (not just 
the real numbers) , they showed how, in the context of finite-horiwn models, a weaker "com­
mutativity" condition is sufficient for the principle of optimality to hold. For infinite models 
they have derived some very general results18 that are too general to be useful in practice. 

Jaakkola, Jordan, and Singh [19] and Tsitsiklis [53] developed the connection between 
stochastic-approximation theory and reinforcement learning in MDPS. Our work is similar in 
spirit to that of .Jaakkola, et al. We believe the form of Theorem 3 . 1  makes it particularly 
convenient for proving the convergence of reinforcement-learning algorithms; our theorem 
reduces the proof of the convergence of an asynchronous process to a simpler proof of con­
vergence of a corresponding synchronized one. This idea enables us to prove the convergence 
of asynchronous stochastic processes whose underlying synchronous process is not of the 
Robbins-Monro type (e.g., risk-sensitive MDPS, model-based algorithms, etc.) in a unified 
way. 

5 . 2  FUTURE WORK 

There arc many areas of interest. in t.he theory of reinforcement learning that we would like t.o 
address in future work. The results in this paper primarily concern reinforcement-learning in 
contractive models (r < 1) ,  and there are important non-contractive reinforcement-learning 
scenarios, for example, reinforcement learning under an average-reward criterion [38, 27] . 
Extending Theorem 3.1 to all-policies-proper MDPS should not be too difficult. Actor-critic 
systems and asynchronous policy iteration would also worth the study. It would be interesting 
to develop a TD(>') algorithm [45] for generalized MDPS; this has already been done for 
MDPS [30] and exploration-sensitive MDPS [35]. Theorem 3.1 is not restricted to finite state 
spaces, and it might be valuable to prove the convergence of a finite reinforcement-learning 
algorithm for an infinite state-space model. A proof of convergence for modified policy 
iteration [31] in generalized MDPS should not be difficult. 

18Here is an example of their statements translated into our framework. They first show that from their 
commutativity condition it follows that Tny = V; , \vhere ,,�: is the n-step optimal value function, V is the 
terminal re\vard function. Now, the statement which concerns infinite-hori�mn models goes like this: if 1/� 
converges to V* (their Condition 3 [56]) then Tny converges to l·�*. The problem is that, in practice, it is 
usually clear that ,,�; = Tny, but it is much harder to show that V; converges to 17* [5, 48]. 
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Another possible direction for future research is to apply to modern ODE (ordinary dif­
ferential equation) theory of stochastic approximations. If one is given a definite exploration 
strategy then this theory may yield results about convergence, speed of convergence, finite 
sample size effects, optimal exploration, limiting distribution of Q-values, etc. 

5 .3 C ONCLUSION 

By identifying common elements among several sequential decision-making models, we cre­
ated a new class of models that generalizes existing models in an interesting way. In the 
generalized framework, we replicated the established convergence proofs for reinforcement 
learning in Markov decision processes, and proved new results concerning the convergence 
of reinforcement-learning algorithms in game environments, under a risk-sensitive assump­
tion, and under an exploration-sensitive assumption. At the heart of our results is a new 
stochastic-approximation theorem that is easy to apply to new situations. 

A OPTIMAL VALUE FUNCTION IS UNIQUE 

We consider a generalized MDP defined by (X, A, R, P, @, EEl), where @ and EEl are non­
expansions. \Ve use Q : X x A -+ lR to stand for Q functions and V : X -+ lR to stand for 
value functions. We define TV = @ EEl(R + IV) , Kq = EEl(R + I@ Q) , V' = TV" and 
Q' = KQ' . 

It is the non-expansion property of T and K that will be most convenient for proving 
results about them. Here is the first. 

Lemma 5 The T and K operators are contraction mappings if I < 1 .  In particular, if VI 
and V2 are value functions and (21 and (22 arc Q functions, I ITV1 -TV21 1  -S II IVI - V2 1 1 , and 
I IK(21 - K(22 1 1 -s 1 1 1(21 - Ch l l · 

Proof: We address the T operator first. By the definition of T, we have 

I ITV1 - TV2 1 1  I I  ® EB(R + -IV1) - ® EB(R + -tV2) I I  
< I I EB(R + IVr l - EB(R + IV2) 1 1  
< I I (R + -rVl) - (R + IV2) 1 1  
< I I IVI - V2 1 1 ·  

The definition of K give us 

I IKQ1 - KQ2 1 1  I I  ® EB(R + IQ1) - ® EB(R + IQ2) 1 1  
< I I  EB(R + IQ1) - EB(R + IQ2) 1 1  
< I I (R + IQ1 ) - (R + -tQ2) 1 1  = I I IQ1 - Q& 

Another way to prove this is the following: the composition of a contraction with a 
non-expansion (in arbitrary order) is a contraction with the same index. Since the mapping 
V -+ R + IV is a contraction with index I the desired result follows. Q . E.D.  
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Because the operator T is guaranteed to bring two value functions closer together, and the 
operator K is guaranteed to bring two Q functions closer together, they are called contmction 
mapp'tng.s . 

Because all the results in this chapter are stated in terms of norms, they apply to any up­
date rule as long as the dynamic-programming operator under consideration is a contraction 
mapping. (Sec recent work by Tsitsiklis and van Roy [54] for the usc of anot.her import.ant. 
and int.erest.ing norm for reinforcement. learning.) The fact. that t.he opt.imal value functions 
arc well defined docs not. imply t.hat. t.hey arc meaningful; t.hat. is, it. may be t.he case t.hat. 
the optimal value function is not the same as the value function for some appropriately de­
fined optimal policy. The results in this section apply to value functions defined by I3ellman 
equations; to relate the I3ellman equations to a notion of optimality, it is necessary to put 
forth arguments such as are given in Puterman's book [31]. 

Theorem 5 For any genemlized Markov decision process, if I < 1 then ther'e is a unique 
V' , called the optimal value function, such that V* = TV*; a unique Q* ,  called the optimal 
Q function, such that Q* = KQ*;  and an optimal (possibly stochastic) policy, 71"* , such that 
V' (x) = La 71"' (x, a)Q' (:c, a ) .  
Proof: i,From Lemma ,5, the T and K operators for the generalized MDP are contraction 
mappings with respect to the max norm. The existence and uniqueness of V' and Q' follow 
directly from the Banach fixed-point theorem [44] . 

vVe can define the optimal value function and the optimal Q function in terms of each 
other: 

V' = 0 Q', (19) 

and Q' = EB(R + IV'). These equations can be shown to be valid from the definitions of K 
and T and the uniqueness of Q' and V'. 

I3y Condition (2) of @ and Equation (19) ,  

min Q* (.T, a) :::; V* (.T) :::; max Q*(x, a). a a 
Therefore, it is possible to define a stochastic policy 71"' such that 

V' (x) = 2 >' (x, a)Q' (x, a ) .  
a 

Q . E.D.  

The use of the word optimal is somewhat strange since V' need not be the largest or 
smallest value function in any sense; it is simply the fixed point of the dynamic-programming 
operator T. This terminology comes from the Markov decision process model, where V' is 
the largest value function of all policies and is retained for consistency. 

B SOME NON-EXPANSION SUMMARY OPERA­

TORS 

In this section, we prove several properties associated with functions that summari�e sets 
of values. These summary operators are important for defining generali�ed Markov decision 
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processes, which involve summaries over the action set A and the set of next states (we need 
the results presented here when discussing simultaneous :Vlarkov games and exploration­
sensitive models) .  

Let I be a finite set and h : I -+ iR. We define a summary operator 0 over I to be a 
function that maps a real-valued function over I to a real number. The maximum opera­
tor maXiEI h(i) and the minimum operator miniEI h(i) arc important examples of summary 
operators. 

Let h be a real-valued function over I. \Ve say a summary operator 0 is a con�ervative 
non-expansion if it satisfies two properties: it is conservative 

min h(i) <:.: O h <:.: max h(i), 
zEI zEI (20) 

and it is a non-expansion 

(21) 

\Ve will show that the max and min summary operators arc both conservative non­
expansions, after proving a series of related results. 

Usually, in MDPS, we deal with multidimensional operators, i .e . ,  operators of the form 
T :  1 -+  iRn . Define Ti : (I -+ iR) -+ iR as Ti.r = (Tx)i ' i .e. , Tx = (T, x, . . .  , Tn.r) ;  the TiS are 
the coordinate-wise components of T. Non-expansion operators have the nice property that 
if they are non-expansions componentwise then they are non-expansions as well. The same 
is true for the conservativeness of operators. This is our first theorem. 

Theorem 6 Let T : (I -+ iR) -+ iRn be an arbitmry opemtor. If T, IS non-expansion/ 
conseTvative (i = 1 ,  2, . . .  , n) then T is non-expansion/ conser·vative. 
Proof: For brevity let 1 1 · 1 1  denote the max norm, I lh l l  = max; I h(i) l .  Let h, h' E (I -+ iR) 
be two functions. Then, since T, is a non-expansion, I (Th - Th') i l = I (Th)i - (Th')i l = 
ITih - Tih' l <:.: I l h  - h' l l ·  Then, 1 1Th - Th' l l  = maXi I (Th - Th'); 1 <:.: maXi I h  - h' l = I l h  - h' l l · 
That T is conservative follows immediately since h <:.: h' if and only if h( i) < h' (i) for all i E 1. Q . E.D.  

Note that if I .I I = n then the set .I -+ iR can be identified with }Rn. 
Let h and h' be real-valued functions over I. For i E I, let Oi be the summary operator 

Oi h = h(i) (0' is the projection operator). 

Theorem 7 The summary operator Oi is a conservative non-expansion. 
Proof: Condition (20) requires that Oi h = h (i) lie between mini'EI h (i') and max,'EI h (i') . 
This holds trivially. 

To see that Condition (21) holds, note that 1 0' h-Oi h' l = I h(i) -h'(i) 1 <:.: maxi'EI Ih (i')-
h' (i') I . Q . E.D.  

\Ve next examine a more complicated set of non-expansions. For real-valued function h 
over I, let ordnh be the nth largest value in {h(i ) l i  E I} (1  <:.: n <:.: II I ) .  According to this 
definition, ord1h = maXi h(i) and ord11 1 h = mini h (i) . We will show that the ordn summary 
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operator is a conservative non-expansion for ali I <:: n <:: I I I .  To do this, we show that pairing 
two sets of numbers in their sorted order minimizes the largest pairwise difference between 
the sets of numbers. 

Proof: Two bounds can be proven separately: 

and 

max(h1 - 91 , 91 - hI) 
< max(h2 - 91 , 92 - 17,1 ) 

< . max Ihi - gj l. 1,#J, 'l,]=1,2 

max(h2 - 92, 92 - 17,2) 
< max(h2 - 91 , 92 - hI) 

< max Ihi - 9j l. 'i#-j, -i,j=1,2 

Combining these two inequalities proves the lemma. 

\Ve use Lemma 6 to create a bound involving the ord" summary operator. 

Lemma 7 Let hI and h2 be r·eal-vaZ,ued functions over- I. Then 

Q . E.D.  

Proof: Both quantities in the inequality involve taking a maximum over differences between 
matched pairs of values. This lemma states that, of all possible matchings, pairing values 
with the same position in a sorted list of values gives the smallest maximum difference. 

To prove this, we argue that, from any matching that violates the sorted order we can 
produce a matching that is "more sorted" without increasing the maximum difference (and 
perhaps decreasing it.). The idea is t.hat. we can find a pair of pairs of values t.hat are matched 
out. of order, and swap the mat.ching for that pair. By Lemma 6, the resulting matching has 
a maximum difference no larger t.han t.he previous matching. After generat.ing pairings t.hat. 
are more and more sorted, we eventually reach the totally sorted matching. Since the initial 
matching was arbitrary, the lemma follows. Q . E.D.  

That ord" is a conservative non-expansion follows easily from Lemma 7. 

Theorem 8 The ord"" opemtoT is a conseTvative non-expansion faT ali I <:: n <:: II I . 
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Proof: Condition (20) is satisfied easily since it is always the case that ordnh = h(i) for 
sorne 'i E I. 

To verify Condition (21) , let h, and h2 be real-valued functions over I. It follows frorn 
Lemma 7 that 

< max lord7EIhl (i )  - ord�Elh2 (i) 1 
n 

< max I hl (i) - h2 ('i) I .  ,EI 
Since n was arbitrary, the theorem is proved. Q . E.D.  

Theorems 7 and 8 state that two very specific classes of summary operators are conserva­
tive non-expansions. The next theorem makes it possible to create more complex conservative 
non-expansions by blending conservative non-expansions together. 

Theorem 9 If 01 and 02 are conservative non-expansions, then for any 0 <:: v < 1,  the 
su��ary operator 

is a conservative non-expansion. 
Proof: Once again, Condition (20) is not difficult to verify since the operators are being 
combined using a convex weighted average. 

Condition (21 ) follows from 

10(1+2)'Vh _ 0(H2)'"h' l 
I VOlh + (1 - V)02h - (1IOlh' + (1 - V)02h,) I 
I II (Olh - 01h,) + (1 - v) (02h - 02h,) I 

< v I0' h - 0' h' I + (I - v) 10
2h - 0

2h' l  
< v max I h (i) - h'(i) I + (1 - v) max I h(i) - h'(i) 1 = max Ih (i) - h'(i) l . lET tET 1,E T  

The proof is easily extended to weighted averages of more than two operators. Q . E.D.  

The previous theorem demonstrated one way of making conservative non-expansions 
out of other conservative non-expansions by averaging. The next theorem shows a more 
sophisticated method for constructing conservative non-expansions. 

If 01 is a summary operator over 1" and 02 is a summary operator over 12, we define 
the co�position of 0' and 02 to be a summary operator over Ir x I" 

, 2 1 2 (0 0 0  )h = 0 0 h. 
Theorem 10 Let 0 = 01 0 02 for' con8eTvat'ive non-expan8ions 01 oveT 1, and 02 oveT 
12 , Then 0 over' I = 1, X 12 'i8 a con8eTvat'ive non-eJ;pILnsion. 
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Proof: Let h and h' be real-valued functions over I. For Condition (20), we see that 

The argument that 0 h 2> min(i1 ;i,)E r h( Cil , i2)) is similar. 
For Condition (21) ,  

This proves that 0 is a conservative non-expansion. Q . E.D.  

As a non-trivial application of the preceding theorems, we will show that the minimax 
summary operator, used in Markov games, is a conservative non-expansion. Let Al and A2 
be finite sets. The m.inim.ax summary operator over Al X A2 is defined as 

Let p E II(AI ) and let hI be a real-valued function over AI . Define 

by Theorem 9 and Theorem 7, OP is a conservative non-expansion. Let h be a real-valued 
function over Al x A2.  By Theorem 8, the minimum operator is a conservative non-expansion. 
Rewrite 

minimax is a conservative non-expansion by Theorem 10. The compactness of the set II(AI) 
of probability distributions over Al ensures that the above operator is well defined. 

The class of conservative non-expansions is quite broad. It is tempting to think that any 
operator that satisfies Condition (20) will be a non-expansion. Boltzmann averaging is an 
example where this is not the case [26]. It is also easy to construct summary operators that 
are non-expansions, but not conservative: 0 h = 1 + maXi h(i) . 
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C POLICY ITERATION AND MAXIMIZING MOD­

ELS 

Appendix B describes a collection of important non-expansion operators based on element 
selection, ordering, convex combinations, and composition. All of these operators obey an 
additional monotonicity property as well. 

Operator 0 is monoton·ic if, for all real-valued functions h and h' over a (finite) set I, 
h(i) 2:: h'(i) for all i E I implies 

O h 2:: O h'. 
Theorem 11 The following summary operators are monotonic: Oi for all i E I, ordn for' 
all 1 -<; n -<; IJ I , 0(1+2),v for all 0 -<; 1) -<; 1 if 01 and 02 are monotonic, and 01 0 02 if 
01 and 02 ar'e monotonic. An operator T : Rn --+ Roo is monotonic if and only if for' all 
i = 1 , 2, . . .  , Tn T;, is a non-expansion. Moreover, 'if T : Rn --+ Rm and S : Rm --+ Rk al'e 
monoton·ic then ST : Rn --+ Rk ·is monotonic, too. 
Proof: The monotonicity of 0\ 0(1+2).v , and 01 0 02 follow immediately from their defi­
nitions. The monotonicity of ordn can be proven by considering the effect of increasing h( i) 
to h' Ci) for each i E I, one at a time. A simple case analysis shows that each increase in 
h('i) cannot decrease the value of ordnh. The rest follows since comparisons are performed 
componentwise. Q . E.D.  

D POLICY-ITERATION CON VERGENCE PROOF 

In this section, we develop the necessary results to show that the generalized policy-iteration 
algorithm of Section 2.3 converges to the optimal value function. We will first prove several 
simple lemmas that illuminate the fundamental properties of value functions in maximizing 
generalized MDPS. 

First, for maximizing generalized MDPS, a single step of value iteration on a value function 
associated with a mapping w results in a value function that is no smaller. 

Lemma 8 For all w : X --+ R, TVw 2:: VW . 
Proof: "From Equation (1) , the constraints on 181, and the definition of VW, 

[TVW] (x) (® EB (R + '(VW) )  (x) 
max(®P EB (R + ,VW)) (x) pEn 

> (®W(X) EB (R + ,VW)) (x) = VW(x) . 

Let TW be the dynamic-programming operator associated with the mapping w 
Q . E.D.  

The next lemma says that the monotonicity properties of 181 and EB carry over to T and TW. 
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Lemma 9 The mappings T and TW are monotonic JOT' maJ:'imiz'ing general'ized MDP 8. 

Proof: For value functions V and V' , we want to show that if V ::> V', then TV ::> TV' and 
TWV ::> TWV'. This follows easily frmn the definitions and the monotonicity of the operators 
involved and because composition of operators preserves monotonicity. Q . E.D.  

Theorem 3 (of Section 2.3) states that the optimal value function dominates the value 
functions for all w .  We will now prove this using Lemmas 8 and 9. 

i.From Lemma 8, we have that VW s: TVw for all w .  Combining this with the result of 
Lemma 9, we have TVw s: T(TVW) .  By induction and transitivity, VW s: (T)kVw for all 
integers k ::> 0 where (T)k corresponds to the application of T repeated k times. Because 
limk-too(T)kVW = V', it follows that VW s: V', proving the first part of Theorem 3, i.e. , 
that V' ::> maxw VW. (This last inequality is easily proved if we assume that mina Q(x, a) s: 
[@P Q](x) s: maxa Q(x, a) holds for all Q and x E X.  Then, as it was noted in Section 8, to 
every p-policy w we may assign a stochastic policy 1': with @w = @K and t.hus with TK = TW. 
From this, the desired inequalit.y follows immediately.) That. V* = maxw VW, follows from 
Lemma 3, proved next.. 

The final result we need relates the convergence of policy iteration to that of value 
iteration. Let Ut be the iterates of value iteration and V; be the iterates of policy iteration, 
starting from the same initial value function. Let Wt : X -+ R be the sequence of mappings 
such that V; = VWt . 

Lemma 3 states that, for all t and x E X, Ut (x) s: V;(x) s: V' (x) . We proceed by 
induction. Clearly Uo(x) s: Vo(x), because they are defined to be equal. Now, assume that 
Ut(x) s: V;(x) s: V*(x). By Lemma 9, TUt (x) s: TV;(x). By definition, TUt (x) = Uf+l (X) , 
by Lemma 8, V; s: TV;, and by definition TV; = TWIV;. Now by an argument similar to the 
proof of Theorem 3, 

Therefore, Ut+1 (x) s: V;+1 (x) . By Theorem 3, V;+1 (x) = VWt+l s: V*(x), completing the 
proof of Lemma 3. 

Lemma 3 and Lemma 1 (which stated that value iteration converges) together imply the 
convergence of policy iteration. Lemma 3 also provides a bound on the convergence rate of 
the algorithm; it is no slower than value iteration, but perhaps faster. 

E REDUCTION OF SOME PARALLEL ITERATI VE 

PROCEDURES TO SIMPLER ONES 

Jaakkola et al. [19] proved (Lemma 2) that if 

(22) 

and Ft s: ,(1 - Gt) for some 0 s: , < 1 and limn-+oo n�=k Gt 0 with probability one 
uniformly over X for all k > 0 then the process of Equation (22) converges to "ero with 
probability one uniformly over X. To be precise, the conditions of their Lemma are not 
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exactly the same as the above conditions. Particularly, they assume that condition Ft <:: '(( 1 - Gt) holds only in the conditional mean with respect to the history of the process and 
make sorne additional assumptions concerning Gt. 

We may expect that, for $Deltat -+ 0, a 8t (x) which satisfies 

(see Equation (4)) still converges to zero since it is just a perturbed version of the process 
of Equation (22) where the perturbation converges to zero. Indeed, according to Lemma 12 
stated and proved below, this process converges to zero with probability one uniformly over 
x. 

Before proving Lemma 12  we prove some additional statements that are required for the 
proof. The proof of Lemma 12 follows along the same lines as the proof of Lemma 2 of 
Jaakkola et al. [19] . First, we prove a simplified version of Lemma 12 then a rather technical 
lemma follows. (It may be considered as an extension to Jaakkola et al. 's Lemma 1 [19] . )  
This lemma is about the convergence of homogeneous processes. \Ve will use this result to 
show that the perturbation caused by Llt can be neglected. Finally, the proof of Lemma 12 
follows. We would like to emphasize that the main result of this section is Lemma 10 since 
this is the very point in the proofs when we must take into account that d�fferent components 
of 8t(x) change independently of each other. 

E . 1  THE MAIN CONVERGENCE LEMMA 

Now, we prove our version of Jaakkola et al. 's [19] Lemma 2. l\ote that both our assumptions 
and our proof are slightly different from theirs. 

Lemma 10 Let Z be an arbitrary set and consider the sequence 

where z E Z and I I .r, II < C < 00 with probability one for .some C > o. AS8ume that for all 
k limn-+oo rr�=k gt( z) = 0 uniformly in z with probability one and ft (z) <:: '((1 - gt (z) )  with 
probability one. Then I IXt l 1  converges to 0 with probability one. 

Proof: We will prove that for each E, 8 > 0 there exist an index T = T( E, 8) < 00 (possibly 
random 19) such that 

Pr(sup I I :rt l l  < 8) > 1 - f. (24) 
t>T 

Fix arbitrary f, (j > 0 and a sequence of numbers PI , . . .  , Pn, . . .  satisfying 0 < Pn < 1 to be 
chosen later. 

191\0te that in probability textbooks usually T is not allowed to be random. However, the following short 
train of thoughts justifies that T can be random and almost sure convergence still holds. First, note that 
Pr (SUPk<t IXt l 2: 0) :S Pr((suPT<t IXt l 2: 0, (T > k)) or (T > k)) :S Pr(suPT<t IXtl 2: b) + Pr(T > k). Now, 
fix an arDitrary 0, 1} > 0 and let

-
To = T(O,1}/2), and let k = k(t, 1}) be a natural number, large enough so 

that Pr(To > k) < 11/2. Such a number exists since To < x . Then, Pr(suPk<t IXtl < 6) :S Pr(suP1o<I IXtl 2: 
6) + Pr(To > k) < 1} which Willi the desired result. 

- -
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We have that 

Xt+1 (Z) Yt(Z)Xt (Z) + ft(z) I IXt l l  
< gt(z) l lxt l l  + ft(z) l lxt l l  
< (gl (Z) + f, (z) ) I I :1:1 1 1  
< I lxt l l , 

since, by assumption, gl(z) + f, (z) <:: g,(z) + ,(1 - g, (z) ) <:: l .  Thus, we have that I IXL+, I I  <:: 
I lx L i I for all t and, particularly, I lxL i I <:: C, = I lx, l l  holds for all t .  Consequently, the process 

(25) 

with y, = x, estimates the process {Xt} from above: 0 <:: Xt <:: Yt holds for all t .  The process 
Yt converges to ,C, with probability one uniformly over Z and, thus, 

lim sup I lx, 1 1  <:: �jC, t-+oo 
with probability one. Thus, there exist an index, say NI" for which if t > NI, then I IXt l 1  <:: 
(1 +,)/2 C, with probability p, .  Assume that up to some index i ? 1 we have found numbers 
Nli such that when t > Ali then 

(26) 

holds with probability P,P2 . . .  Pi. Now let us restrict our attention to those events for which 
Inequality (26) holds. Then we see that the process 

YM, 
Yt+1 (z) 

bounds Xt from above from the index 1\1[i. Now, the above argument can be repeated to 
obtain an index 1'vll+' such that Inequality (26) hold for i +  1 with probability P,P2 · ·  . PiPi+1' 

Since (1 + ,)/2 < 1,  there exists an index Ii: for which ((1 + '()/2)kC, < f. Then we get 
that Equation (24) is satisfied when we choose p" . . .  , Pk in a way that P,P2 . . .  Pk ? 1 - f 
and we let T = Nlk (= Nh(p, ,P2, · · ·  , Pk)) . Q . E.D.  

When Equation (23) is subject to decaying perturbations, say tt , then the proof does not 
apply any more. The problem is that I I .Tt l l  <:: I lx, l l  (or I I .THt l l  <:: I I .TT I I , for large enough T) 
can no longer be ensured without additional assumptions. For .Tt+1 (z) <:: I IXt l 1  to  hold, we 
would need that ,ft <:: (1 - ,) I IXt l l , and if lim inft-too I IXt l 1  = 0 then we could not check this 
relation a priori. Thus we choose another way to prove Lemma 12. Notice first, that the 
key idea in the above proof is to bound Xt by Yt. This can be done if we assume that Xt is 
kept bounded artificially, e.g., by scaling. The next subsection shows that such a change of 
Xt does not effect the convergence properties. 
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E.2 SCALED HOMOGENEOUS PROCESSES 

The next lemma is about homogeneous processes, that is about processes of form 

(27) 

where Gn is a random function which is homogeneous, i .e. , 

(28) 

holds for all Ii > 0, .T and f. We arc int.erest.ed in the quest.ion whet.her .Tn converges t.o zero 
or not.. Not.e that 6, defined by Inequalit.y (4) , when t.he inequality is replaced by equalit.y, 
is a homogeneous process. The lemma below says that, under additional conditions, it is 
enough to prove t.he convergence of a modified process which i8 kept bounded by "ealing to 
zero, that is, for the process 

if I IGn (Yn, En) 1 1  ::; T; 
otherwise, 

(29) 

where T > 0 is an arbit.rary fixed number. 
Let us denote the solution of Equation (27) corresponding to the initial condition Xo = w 

and t.he sequence f = {fd by :r,, (w, f) . Similarly, let. us denote t.he solut.ion of Equat.ion (29) 
corresponding to the init.ial condit.ion Yo = 711 and t.he sequence f by y,, (w, f) . 

We say t.hat. t.he process .Tn is in8en.9itive to .finite perturbation8 of f if it. holds t.hat. if 
Xn (w, E) converges to "ero then so does Xn (w ,  E') ,  where E' is an arbitrary sequence that differs 
only in a finite number of terms from E. Further, we say that the process Xn is insensitive 
to scaling of E by number's smaller than 1, if for all 0 < C < 1 there holds that if xn (w, E) 
converges to zero then so does ern (w, Cf). 

Lemma 11 Let us .fix an arbitrary positive number T and an arbitrary Wo and sequence E­
Then, a homogeneous process Xn (Wo, E) converge" to zero with probability one, provided that 
Xn is insensitive to finite pertur'bations of f and also Xn is insensitive to the sealing of f by 
numbers smaller than one and y,,(wo, e) converyes to ze7"O. 

Proof: Let Ck be an arbitrary sequence of reals. For convenience, we will denote the product 
sequence {ckEd by CE. We state that 

(30) 

for some sequences {cn} and {dn} satisfying 0 < dn ::; 1 and Cn = (Cno, Cnl, . . .  , Cnk, . . . ) , with o < Cnk ::; 1 and Cnk = 1 for k ::> n. Kote that YnCw, E) , and also xnCw, E) depends only 
on EO , " " En-I' Thus, it is possible to prove Equation (30) by constructing the appropriate 
sequences Cn and dn· 

Set COi = 1 for all i = 0, 1 , 2, . . .  and let do = 1 .  Then, Equation (30) holds for n = O. Let 
us assume that Equation (30) holds for n. Let Sn be the "scaling coefficient" of Yn at step 
(71 + 1)  (Sn = 1 if there is no scaling, otherwise 0 < Sn < 1 with Sn = T/ I IGn(Yn, En ) I I ) : 

SnGn (Yn(w, E ) ,  En) 
Gn (SnYn (W ,  E) , Snen) 
Gn (S"x,, (dnw,  Cnf), Snfn) '  
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We claim that 

holds for all w, E and S > O.  
For n = 0, this obviously holds. Assume that it holds for n. Then 

Thus, 

SGn(Xn(W, E) ,  En) 
Gn(SXn(W, E), SEn) 
Gn(Xn(S"W, Sf) , SEn) 

:l:n+1 (Sw, SE). 

Yn+1 (W, E) = Gn(Xn(Sndnw, SnCnE), SnEn) 

(31) 

and we see that Equation (30) holds if we define en+!,. through Cn+!,i := SnCn" i = 0, . . . , n  
and we let Cn+1.i = 1 for i > n + 1 and dn+1 = Sndn. 

Thus, we find that with the sequences 

do = 1 ,  and 

Equation (30) is satisfied. 

. . _ { ITj�/ Sj, if i < n; 
Cn,t - 1 th ' , 0 ,  en:�nse, 

on 
dn+! = II Sj 

j=O 

Now, assume that we want to prove for a particular sequence f and initial value 111 that 

lim Xn(11I, E) = 0 n---+oo (32) 

holds with probability one. It is enough to prove that Equation (32) holds with probability 
1 - J when 15 > 0 is an arbitrary, small enough number. 

We know that Yn Cw, E) --+ 0 with probability one. We may assume that T > 15. Then, 
there exist an index 11:1 = 11:1(15) such that if n > M then 

Pr( I I YnCw, E) I I  < 15) > 1 - 15. 
Now, let us restrict our attention to those events for which I I Y,,(w, E) I I  < J for all n > AI. 
Since 15 < T, we get that there is no rescaling after step 11:1: Sn = 1 if n > 11:1. Thus, 
Cn,i = CM+!,i for all n ::: 11:1 + 1 and i, and specifically en,i = 1 if i, t ::: 11:1 + 1 .  Similarly, if 
n >  }vI then dn+! = m\clO Si = dM+!. By Equation (30) , we have that if n > 11:1 then 

Yn (11I, f) = Xn (d"1+l"W, CM+!f). 

Thus, we have that Xn(d"'f+111l, CM+!E) converges to zero and by Equation (31 ) , Xn (11I, CM+!E/dM+!) 
converges to zero. Since Xn is  insensitive to finite perturbations (in C1<1+l only a finite number 
of entries differs from 1) ,  xn (w, E/dM+l) also converges to zero, and further since dAHl < 1 ,  
Xn Cw, E) converges to zero, too (xn is insensitive to scaling of E by dl'Hl ) '  All these hold with 
probability at least 1 - J. Since J was arbitrary, the lemma follows. Q . E.D.  

Now, we are in the position to prove that Lemma 10 is immune against decaying pertur­
bations. 
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Lemma 12 A8sume that the conditions of Lemma 1 0  m'e wtisfied but Eq'Uat'ion (23) is 
replaced by 

(33) 

where Et ?': 0 and Et converges to zero with probability one. Then Xt (z) still converges to zero 
with probability 1 'Unzformly over Z. 

Proof: We follow the proof of Lemma 1 1 .  First, we show that the process of Equation (33) 
satisfies the assumptions of Lemma 1 1  and, thus, it is enough to consider the version of 
Equation (33) that is kept bounded by scaling. 

First, note that Xt is a homogeneous process. Let us prove that Xt is immune against 
finite perturbations of E. To this end, assume that E; differs only in a finite number of terms 
from Et, and let 

Take 

Then, 

For large enough t ,  

which is known to converge to "ero by Lemma 10. Thus, Xt and Yt both converge or not 
converge and if one converges then the other must converge to the same value. 

The other requirement that we must satisfy to be able to apply Lemma 1 1  is that Xn 
is insensitive to scaling of the perturbation by numbers smaller than one; let us choose a 
number 0 < e < 1 and assume that xn (w , E) converges to zero with probability one. Then, 
since x,, (w,  eE) ::; Xn (W ,  E) , Xn (W ,  eE) converges to zero with probability one, too. 

Now, let. us prove t.hat. t.he process t.hat. is obt.ained from Xt by keeping it. hounded 
converges t.o zero. The proof is t.he mere repetition of the proof of Lemma 10 except. a few 
point.s t.hat. we discuss now. Let us denote hy .Tt t.he process t.hat. is kept. hounded and let. 
the bound be C, . It is enough to prove that I I .Tt l l  converges to 7,ero with probability one. 
Now, Equation (25) is replaced by 

!it+1 (Z) = gt(z)!it (z) + i(l - gt(z)) (C1 + Et) . 

Now, !it still converges to iCI by Lemma 3.5 of Szepesvari [49] and also 0 ::; Xt ::; !it. Thus, 
the whole argument of Lemma 10 can be repeated for the process .Tt, and we get that I IXt l 1  
converges to zero with probability one and consequently so does 1 1 :);t i I - Q . E.D.  

F CENTRALIZED LEARNING RATES 

Note that the learning rate of the on-line Q-learning procedure is given by X(x = Xt, a = 
at)at(x, a) for a given state-action pair (x, a). Thus, in order to ensure that Qt converges 
to Q' uniformly we have to be certain that ��I X(x = Xt, a = at)at(x, a) is infinity. In 
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practice, instead of a separate learning rate for each state-action pair, often a single learning 
rate is used (this choice is especially reasonable if the spreading version of Q-learning or soft 
state aggregation is used). Bradtke conjectured that if this single "centralized" learning rate, 
nt, satisfies the criteria L�l nt = 00 and L�l n; < 00 then for each (x, a) L�l ntX(x = 
Xt, a = ad = 00 and L�l n;x(x = Xt, a = at) < 00 will still hold [8]. This second condition 
is satisfied since n;x(x = Xt, a = at) <:: n; for all t :;, 1 .  The following propositions give some 
conditions under which the first condition is still met. 

Lemma 13 If the state-action inter-arrival times in X (x = Xt, a = at) have a common 
'Upper bound then L�1 X(x = Xl, a = al)nl(x, a) = 00 holds wdh probabildy one provided 
that L�l nl(x, a) = 00 and al (x, a) is a decreasing sequence. 

Proof: It is enough to prove the statement for an arbitrary decreasing numerical sequence, 
nt. Note that L�l Xtat can be rewritten as L�l an, with an appropriate increasing random 
sequence nt. Assume that ntH - nt <:: d, i .e . , that the state-action inter-arrival times are 
bounded. Since an, :;, an,+i , i = 0, 1 ,  . . . , ntH - nt - 1 ,  

and 

n[+1-nt-1 
(nt+l - nt)ont � L Ctnt+i 

i=O 

1 nt+l-nt-1 
ant 2: d L ant+i 

i=O 
holds for all t with probability one. Summing this with respect to t, we get 

holds with probability one. 

An important extension of the above proposition is the following. 

Q . E.D.  

Lemma 14 Assume that an is a deer'easing seq'uenee and let dl be mndorn n'Umbers. Assume 
that there exists a sequence HI such that 

00 
L Pr(dt :;, Rt) < 00 
t�l 

and the HI thinn'ing of Ln nn (that 'is Lt amt , where rrtl 
converges to infinity, Then 

00 

L::Cl:nt = oc 
t=l 

with probability one, where nl = 1 and nH 1 = nt + dt · 
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Proof: It is enough to prove that there exists a fixed T such that d{ -<: R, holds for all t > T 
with probability one, since then Tn{ :0- TI{-T and, thus, (im, -<: (int_r for T = max{sITlr_s < 
mT}. Let At = {w ld, (w) :0- R{}. The required statement is equivalent to 

(34) 

According to the Borel-Cantelli Lemma, in order to prove Equation (34) it is enough to show 
that L, Pr(A{) < oc However, this holds by assumption. Q . E.D.  

The main result of this section is the following. 

Theorem 12 Let (in = l/TI and assume that the dts are exponentially distrib'uted w-ith corn­
man parameters, that is there exist numbers p and q such that Pr(dt :0- k) -<: qpk Then 

with probability one, where TIl = 1 and TltH = TIt + dt. 

Proof: We make use of Lemma 14. Let R, = (2/c) log t ,  where c = log(l/p) . Then, 
Pr(dt :0- Rt) = q/t2 and, thus, L�l Pr(dt :0- Rt) < 00. On the other hand, let Tnl = 1 and 
mtH = LTnt + RtJ = Lmt + (2/c) log t] . Then, Tnt -<: i(2/c)t log tl can be proved by induction, 
glVmg us 

� am, = � �t :O- I�l � Lt l�g tJ 
= 

oc 
and proving the theorem. Q . E.D.  

The implication of this result for Q-learning is this. If the policy followed by the learner is 
eventually strongly ergodic, then the distribution of the visits of a state becomes exponentiaL 
This means that it in Q-learning it is sufficient to consider a unique sequence of learning 
rates together with sufficient exploration to ensure convergence to the optimal Q-function. 

G CON VERGENCE OF Q-LEARNING FOR RISK­

SENSITIVE MODELS 

Assume that both X and A are finite. Heger studied the risk-sensitive criterion defined by 
(E!7 g ) (x, a) = miny,p(a.x.v» o g (x, a, y) and (@ f) (x) = lnaxa f(x, a). In this section, we will 
prove the following theorem (also proven by Heger [14] ) .  

Theorem 13 Let 

Q ( ) _ { min (Tt + ,[@ Qt] (Yt ) , Qt(x, a) ) ; if (.T, a) = (:Tt , at); H, x, a - Q (  ) . h 
. t x, a , at er1m.5e, 

(3,5) 

where (xt, at, Yt, rt) is the experience of the agent at time t, Yt is selected according to 
P(x, a, , ) ,  and rt is a random variable with lim inf(x,a,y)=(x" a" y,) rt = R(x, a, y) with prob­
ability one. Then, Qt converges to Q', the fixed point of oper'ator' K, KQ = E!7(R + , @ Q) 
pTovided that Qo :0- Q* and ever'Y state-action pair is updated infinitely often. 

47 



Proof: \Ve prove this theorem in two parts. First, we assume that Tt = R(xL , at ,  YL) , i .e . ,  Tt 
is non-random. \Ve want to use Theorem 3. 1 .  Let our random operator sequence be defined 
in the customary way: 

[T, (Q' Q)] (x a) = { min (Tt + ;[@ qt] (Yt) , cJ(x, a)) ; if (x, a) = (Xt, at) ; t , , Q'(x, a) ; otherwISe, 

It is immediate that Tt approximates T at Q' provided that Qo :;,. Q'. However, the definition 
of an appropriate function FL seems to be impossible since Ft .(x, a) -<: ; should hold if 
(x, a) = (xt, at) . But, if rt + ;[@ q] (Yt) :;,. q(x, a) , then Tt(q' , q') (x, a) - Tt(q' , Q) (x, a) = 
q' (x, a) - q(x, a) , and there is no guarantee that Iq' (x, a) - q(x, a) l -<:  Il lq - q' l l .  In the 
other case, when Tt + ;[@ Q] (Yt) < q(x, a) , Tt(q', q') (x,  a) - Tt (Q', q) (x, a) = q' (x, a) -
(R(xt , at, Yt) + 7[@ Q] (Yt)) ,  which seems much more promising since Q* (.7:, a) = R(.7:, a, y) + 
1[@ Q*] (y) for Y = argminzR(.7: , a, z) +7[@ Q*](Z). If Y = Yt (by chance) , then it follows that 
ITt(Q' , Q*) (x, a) - 71(Q', Q) (.7:, a) l -<: 7 1 IQ - Q' I I ·  Since the case when (.7:, 0,) f. (Xt, at) , i.e. , 
when there is no update, is pleasant (Gt(x, a) = 1 and Ft (x, a) = 0) ,  the idea is to restrict 
the updates to the other tractable case when Yt = y. 

Let the set of critical states for a given (x, a) pair be given by 

M(x, a) = {y E X I P(x, a, y) > 0, Q' (x, a) = R(x, a, y) + 1[0 Q'] (y)} .  

1'vf(x, a) is non-empty since X is finite. Let us consider the artificial operators 

T'(Q'. Q) (x a) = { I.nin (TL + 7[@ Q](Yt) , Q(x, a)) ; if (x, a) = (XL , at ) and Yt E lvf(x, a) ; t . , q'(x, a) ;  otherWise 

and the sequence q� = Qo and Q;+I = T:(Q;, Q;) .  Kow, the question is whether it is 
sufficient to consider the convergence of Q;. Fortunately, it is. Since there are no more 
updates (decreases of value) in the sequence defined by T[, we have that Q' -<: Qt -<: Q; and, 
thus, if Q; converges to Q* then necessarily so does Qt. It is again immediate that T[ still 
approximates T at Q' and also that 

Gt(x, a) = { o; if (:T, a� = (Xt , at) and Yt E 1\;f(.7: , a) , 
1 ;  otherWise. 

Let us show that we can also define a suitable Ft function for T; ' Assume first that 
(x, a) = (XL, at) and Yt E kf(x, a) . Note that we may assume that all the test functions are 
overestimating, in particular in the inequality below we may assume that Q' :;,. Q'. 

IT;( Q', Q) (x, a) T; (Q', Q') (x, a) I = min(Tt + 7[0 Q] (Yt) ,  Q(x, a)) - (rt + 1[0 Q'] (Yt)) 
< rL + 7[0 Q] (Yt) - (Tt + -([0 Q'] (YL) ) 
< -(( [0 q](Yt) - [0 q*] (Yt)) -<: I l lq - q' l l · 

In the other casc, when (x, a) f. (Xt, at) or Yt rt kI(x, a) thcn 

IT;(Q', Q) (x, a) - T;(Q', Q' ) (x, a) I = IQ'(x, a) - Q'(x, a) 1  = o.  
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Thus, 
Q ( ) _ { ,; if (x, a) = (Xl, at) and Y{ E M(x, a) , rt .T. a - I '  . 0; ot lenVlse, 

Condition (3) of Theorem 3.1  is satisfied if and only if the event { (x, a) = (Xt, at) ,  Yt E 
M(x, a) } occurs infinitely often. By assumption, { (x, a) = (xt, at)} occurs infinitely many 
times and, since if Y E iVl(x, a) then P(x, a, y) > 0 and since Yl is sampled according to 
P(x, a, . ) ,  (x, a) = (Xl, at) ,  Yt E iVl(x, a) occurs infinitely often, too. Finally, Condition (4) is 
satisfied since, for all t, F{(x) = ,(I - Gt (x)) holds. 

Now, we turn to the second part of the proof which is based on an idea very similar in 
spirit to the idea on which the proof of the first part was built. Assume that the rewards Tt 
are random and 

lim inf Tt = R(x, a, y) (x ,a,y )=(.Tt ,at ,Yt) ,t--+oo 
with probability one and, thus, for each triple (x, a, y) we may choose a subsequence tk such 
that (x, a, y) = (xtk , atk , Yt,) for all k and 

lim Ttk = R(:E, a, y). k--+oo 
Let T(x, a, y) be the set of numbers {tk} when (Xl, at, Yt) = (x, a, y). Further, let T(x, a) = 
UyEM(x,a)T(x, a, y) . The above proof can be repeated almost exactly, the only exception is 
that we must further restrict the updates. Now let 

T'(Q' Q) (x a) = { min (rt + ,[@Q](Yt), Q(x, a)) ; if t E r,(x, a) , t , , Q'(x, a); otherWIse. 

We still have that T! approximates T at Q' with probability one provided that Qo ::> Q*. As 
in the previous case, we get that 

G ( ) _ { O; if t E T(x, a); t x. a - . . 1 ;  otherWIse 

but the estimation of ITi(Q', Q) (x, a) - Ti(Q', Q') (x, 0,) 1 must be changed. Assume first that 
t E T(x, a) . Then, 

ITi (Q', Q) (x, a) - Ti(Q', Q') (x, 0,) 1 (36) 

min(Tt + ,[® Q](Yl ) ,  Q(x, a) ) - (R(x, a, Yt) + 'd® Q'] (Yt)) 
< rt + ,[® Q] (Yt) - (R(:E, a, Yt) + ,[® Q*] (Yt)) 
< ,I IQ - Q' I I  + I Tt - R(x, a, Yt) l ·  (37) 

Let (Jl (:r, a) = I Tl - R(:r, a, Yt) l . Note, that 

lim (J{(x, a) = 0 t--+XJ,tET(x,a) 
with probability one. In the other case ITi(Q', Q) (x, a) - T;(Q', Q*) (x, 0,) 1 = O. Because of 
the appearance of (Jt(x, a) in Inequality (37) instead of Condition 2 of Theorem 3.1 we have 
that 

IT/ (Q' , Q) (x, a) - T/(Q', Q') (x, 0,) 1 = Ft(x, a) ( I IQ - Q' I I  + At (X, a)) , 
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where 
if t E T (x , a) ,  
otherwise, 

and At(X, a) = (Jt(x, a)1! if t E T(x, a), At(X, a) = 0, otherwise. 
But, then the change in the proof of Theorem 3.1 is just superficial, namely, instead of 

Equation (4) we have that (in the notation of Theorem 3.1) 

(38) 

where At(X) converges to hero with probability one. However, this additional decaying pertur­
bation can be blended into Ll.t and, thus, we see that our method still applies and Q-learning 
converges to Q' in this ease, as well. Q . E.D.  
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