
Generalized Markov Decision Processes:
Dynamic-programming and Reinforcement-learning

Algorithms

Csaba Szepesvari

Bolyai Institute of Mathematics

"Jozsef Attila" University of Szeged

Szeged 6720 / Aradi vrt tere l.
HUNGARY

szepes@math.u-szeged.hu

Michael L. Littman

Department of Computer Science

Brown University

Providence, RI 02912-1910
USA

mlittman@cs.brown.edu

November 25, 1997

Abstract
The problem of maximi7,ing the expected total discounted reward in a completely
observable Markovian environment, i.e., a Markov decision process (MDP), models a
particular class of sequential decision problems. Algorithms have been developed for
making optimal decisions in MDPs given either an MDP specification or the opportunity
to interact with the MDP over time. Recently, other sequential decision-making prob­
lems have been studied prompting the development of new algorithms and analyses.
We describe a new generalized model that subsumes MDPs as well as many of the recent
variations. We prove some basic results concerning this model and develop general­
izations of value iteration, policy iteration, model-based reinforcement-learning, and
Q-lcarning that can be used to make optimal dccisions in the generali7,ed model undcr
various assumptions. Applications of the theory to particular models are described, in­
cluding risk-averse MDPs, exploration-sensitive MDPs, sarsa, Q-lcarning with spreading,
two-player games, and approximate max picking via sampling. Central to the results
are the contraction property of the value operator and a stochastic-approximation the­
orCIn that reduces asynchronous convergence to synchronous convergence.

1

1 INTRODUCTION

One particularly well-studied sequential decision-making problem is that of a single agent
maximi7.ing expected discounted total reward in a finite-state, completely observable envi­
ronment. A discount parameter 0 -<: r < 1 controls the degree to which future rewards are
significant compared to immediate rewards.

The theory of Markov decision processes can be used as a theoretical foundation for
important results concerning this decision-making problem [2]. A (finite) Markov decision
process (MDP) [31] is defined by the tuple (X, A, I', R), where X represents a finite set of
states, A a finite set of actions, I' a transition function, and R a reward function. The
optimal behavior for an agent depends on the optimality criterion; in an MDP with the
infinite-horizon discounted criterion, the optimal behavior can be found by identifying the
optimal value function, defined recursively by

V'(x) = m�x (R(X, a) + r � P(x, a, y)V*(y)) ,

for all states x E X, where R(x, a) is the immediate reward for taking action a from state
x, 0 -<: r < 1 is a discount factor, and P(x, a, y) is the probability that state y is reached
frCHn state :r; when action a E A is chosen. These simultaneous equations, known as the
Bellman equations , can be solved using a variety of techniques ranging from successive
approximation [3] to linear programming [11] .

In the absence of complete information regarding the transition and reward functions,
reinforcement-learning methods can be used to find optimal value functions. Both model-free (direct) methods, such as Q-learning [59, 60], and model-based (indirect) methods, such as
prioritized sweeping [29] and DYNA [46] , have been explored and many have been shown to
converge to optimal value functions under the proper conditions [60, 53, 19, 13].

Not all sequential decision-making problems of interest can be modeled as MDPS; in one
form of two-player game, for example, one or the other player chooses an action in each state
with one player striving to maximize the total reward and the other trying to minimize it.
A great deal of reinforcement-learning research has been directed to solving games of this
kind [51, 52, 37, 7], Algorithms for solving MDPS and their convergence proofs do not apply
directly to these problems.

There are deep similarities between MDPS and games; for example, it is possible to define
a set of Bellman equations for the optimal minimax value of a two-player zero-sum game,

V'(x) = { maxaEA (R(X

.

, a) +rL.:yP(x,a,y)V*(y)) ,
minaEA (R(x, a) + -j L.:x P(x, a, y) V' (y)) ,

if maximizer moves in x
if rninirnizer r110ves in x,

where R(x,o) is the reward to the maximi7.ing player. When 0 -<: r < 1 , these equations
have a unique solution and can be solved by successive-approximation methods [39]. In
addition, we show in Section 4 .1 that the natural extension of several reinforcement-learning
algorithms for solving MDPS converge to optimal value functions in two-player games.

In this paper, we introduce a generali�ed Markov decision process model with applica­
tions to reinforcement learning, and list some of the important results concerning the model.

2

Generalized MDPS provide a foundation for decision making in MDPS and games, as well
as in risk-sensitive models [15], exploration-sensitive models [20, 36], simultaneous-action
games [39], and other models. The common feature of these decision problems is that the
reward function is based on the total, discounted cost-this latter property enables us to
apply arguments based on the properties of contraction mappings, which makes the analy­
sis tractable. Our main theorem addresses conditions on the convergence of asynchronous
stochastic processes and shows how this problem can be reduced to determining the con­
vergence of a corresponding synchronous one; it can be used to prove the convergence of
model-free and model-based reinforcement-learning algorithms in a variety of different se­
quential decision-making models.

In the remainder of this section, we present the generalized MDP model and motivate it
using two detailed examples; in Section 2, we present several algorithms for solving general­
ized MDPS that are extensions of classic algorithms for solving MDPS; in Section 3, we describe
our main theorem and how it can be used for solving generalized MDPS in a reinforcement­
learning setting; and in Section 4 we show several applications of our framework to other
sequential decision-making problems. Most of the proofs are deferred to the appendix to
increase the readability. \Ve tried to make the appendix as self-contained as we could; how­
ever, at some places it is necessary to read the main body of the text before reading the
appendix.

1 . 1 MARKOV DECISION PROCESSES

To provide a point of departure for our generalization of Markov decision processes, we begin
by describing some results concerning MDPS. These results are well established; proofs of the
unattributed claims can be found in Puterman's MDP book [31].

The ultimate target of a decision-making algorithm is to find an optimal policy. A
policy is some function that tells the agent which actions should be chosen under which
circumstances. Of course, since the agent that applies the policy is not clairvoyant, the
action prescribed by a policy cannot depend on future states or actions, i.e., a policy maps
the history of a process to an action. A policy 7r is optimal under the expected discounted
total reward criterion if, with respect to the space of all possible policies, 7r maximizes the
expected discounted total reward from all states.

Maximizing over the space of all possible policies is practically infeasible. However,
MDPS have an important property that makes it unnecessary to consider such a broad space
of possibilities. We say a policy 7r is stationar·y and deter-ministic if it maps the actual state
directly to an action, ignoring everything else from the history of the decision process, and
we write 7r(x) as the action chosen by 7r when the current state is x. In expected discounted
total reward MDP environments, there is always a stationary deterministic policy that is
optimal; we will therefore use the word "policy" to mean stationary deterministic policy,
unless otherwise stated.

The value function for a policy 7r, VK, maps states to their expected discounted total
reward under policy 7r. It can be defined by the simultaneous equations

VK(.r) = R(.r, a) + A(L l'(x, a, y)VK(y).
y

3

It is also possible to condition the immediate rewards on the state y as well; this is somewhat
more general, but complicates the presentation. The optimal value function V' is the value
function of an optimal policy; it is unique for 0 -<: 1 < 1 . The myopic policy with respect to
a value function V is the policy 1fv such that

1fV(x) = arg�lax (R(x, a) + 1 � P(x, a, y)V(y)) .
Any myopic policy with respect to the optimal value function is optimal.

The Bellman equat.ions can be operat.ionalized in t.he form of the dynamic-programming
operator T, which maps value funct.ions to value functions:

[TV] (x) = m.l'x (R(x , a) + 1 � rex, a, Y)V(y)) .
For 0 -<: 1 < 1 , successive applications of T to a value function bring it closer and closer
to the optimal value function V', which is the unique fixed point of T: V' = TV' . The
algorithm derived from successive applications of T is known as value iteration.

In reinforcement-learning applications, Rand P are not known in advance. They can be
learned from experience by keeping statistics on the expected reward for each state-action
pair, and the proportion of transitions to each next state for each state-action pair. In
model-based reinforcement learning, Rand P are estimated on-line, and the value function
is updated according to the approximate dynamic-programming operator derived from these
estimates; this algorithm converges to the optimal value function under a wide variety of
choices of the order st.at.es are updat.ed [13].

The met.hod of Q-learning [59] uses experience t.o est.imate t.he opt.imal value function
without ever explicitly approximating R and P. The algorithm estimates the optimal Q
function

Q' (x, a) = R(x , a) + O(L P(x, a, y)V'(y) ,
y

from which the optimal value function can be computed via V'(:T) = maxa Q' (x, a) . Given
an agent's experience at step t (:Tt , at, Yt, Tt) and the current estimate Qt(:T , a) of the optimal
Q function, Q-learning updates

where 0 -<: at(x, a) -<: 1 is a learning rate that controls how quickly new estimates are blended
into old estimates as a function of the state-action pair and the trial number. Q-learning
converges to the optimal Q function under the proper conditions [60, 53, 19] .

1 . 2 ALTERNATING MARKOV GAMES

In alternating Markov games, two players take turns issuing actions to try to maximize their
own expected discounted total reward. vVe now describe this model to show how closely it
parallels MDPS. The model is defined by the tuple (Xl , X2, A, B, P, R), where Xl is the set of

4

states in which player 1 issues actions from the set A, X2 is the set of states in which player
2 issues actions from the set B, P is the transition function, and R is the reward function for
player 1 . Note that it is not assumed that player l's actions always follow player 2's actions
and vice versa. In the zero-sum games we consider, the rewards to player 2 (the minimizer)
are simply the additive inverse of the rewards for player 1 (the maximizer) . Markov decision
processes arc a special case of alternating Markov games in which X2 = 0; Condon [9] proves
this and the other un attributed results in this section.

A common optimality criterion for alternating Markov games is discounted minimax
optimality. Under this criterion, the maximi7,er should choose actions so as to maximi7,e
its reward in the event that the minimi7,er chooses the best possible counter-policy. An
equivalent definition is for the minimi7,er to choose actions to minimize its reward against the
maximizer with the best possible counter-policy. A pair of policies is said to be in equilibrium
if neither player has any incentive to change policies if the other player's policy remains fixed.
The value function for a pair of equilibrium policies is the optimal value function for the
game; it is unique when a <::: 1 < 1, and can be found by successive approximation. For
both players, there is always a deterministic stationary optimal policy. Any myopic policy
with respect to the optimal value function is optimal, and any pair of optimal policies is in
equilibrium.

Dynamic-programming operators, Bellman equations, and solution algorithms can be
defined for alternating Markov games by starting with the definitions used in MDPS and
changing the maximum operators to either maximums or minimums conditioned on the state.
In Section 4.1 , we show that the resulting algorithms share their convergence properties with
the analogous algorithms for MDPS. A key difference between MDPS and alternating Markov
games is that the former can be solved (i.e. , an optimal policy can be found) in polynomial
time using linear programming; no such algorithm is known for solving alternating Markov
games [10] ' .

1 . 3 GENERALIZED MDPS

In alternating Markov games and MDPS, optimal behavior can be identified by solving the
Bellman equations; any myopic policy with respect to the optimal value function is opti­
mal. In this section, we generalize the Bellman equations to define optimal behavior for a
broad class of reinforcement-learning models. The objective criterion used in these models
is additive in that the value of a policy is some measure of the total reward received.

1 An algorithm that solves MDPs is strongly polynomial if the number of arithmetical operations needed
by the algorithm is polynomial in IXI and IAI. At this time, there is no known algorithm that solves
l\'lDPs in strongly polynomial time. Using linear programming, however, :\1DPs can be solved in a number
of operations polynomial in l XI, IAI and b, where b measures the number of bits needed to write down the
transition, revvards, and discount factor. Value iteration converges in time bounded above by a polynomial
in l XI, IAI, b, and 1/(1 - -y)-this algorithm is called pseudo-polynomial because of the appearance of the
factor h = 1/(1- -y). Value iteration takes a number of iterations proportional to hlog(h) in the worst case.
The worst-case time complexit�y of policy iteration is not known; although it requires no more iterations than
value iteration. Value iteration and also policy iteration can be used to solve alternating 11arkov games in
pseudo-polynomial time. For further information on these topics the interested reader is referred to the PhD
Thesis of 'vIichael Littman [261.

5

As a first step towards a general model, we will express the Bellman equations for
MDPS and alternating Markov games in a unified notation. For succinctness, we will use
an operator-based notation in which addition and scalar multiplication are generalized in
a natural way. For example, if V : X -+ iR is a value function and R : X x A -+ iR or
R : X x A X X -+ iR (allowing reward to depend on the resulting state as well) is the reward
function, we define (R + IV) : X x A x X -+ iR to be:

(R + ,V) (x, a, y) = R(x, a, y) + IV(y),
for x E X, a E A, and y E Y.

If we define the operator EB : (X x A x X -+ iR) -+ (X x A -+ iR) to be an expectation
operator according to the transition function P,

(EJj(R + IV)) (X, a) = L. rex, a, y) (R(x, a, y) + °IV(y)) , y
and @ : (X x A -+ iR) -+ (X -+ iR) to maximize over A2,

((8) EJj(R + IV)) (X) = max L. P(x, a, y) (R(x, a, y) + IV(y)) , a y

then V' = @ EB(R + IV') is simply an alternate form of the Bellman equations for MDPS.

Here, the big plus (EB) is intended to remind us that the operator is a weighted sum and the
big x (@) reminds us that the operator is a type of maKimi�ation.

The @ operator here takes a Q function (mapping states and actions to values) and
returns the value of the best action in each state. Now, by changing the meaning of @ to be

{ maxa Q(x. a) ((8)Q) (x) = minbQ(x, b), '
if x E X"
if x E X2,

V' = @ EB(R+-IV') is also a representation of the I3ellman equations for alternating Markov
games.

Our generalized MDP model is defined by the generalized I3ellman equations V' =
@ EB(R + IV') , where different models are obtained using different definitions for the @
and EB operators. As we've seen, optimal value functions for MDPS and alternating Markov
games can be expressed in this way; a variety of other examples are discussed in Section 4.

The value functions defined by the generalihed MDP model can be interpreted as the
total value of the rewards received by an agent selecting actions in a non-deterministic
environment. The agent begins in state x, takes action a, and ends up in state y. The EB
operator defines how the value of the next state should be used in assigning value to the
current state. The @ operator defines how an optimal agent should choose actions.

When () :::; I < 1 and @ and EB are non-expansions, the generalized I3ellman equations
have a unique optimal solution, and therefore, the optimal value function is well defined (see
Appendix A). Recall that an operator T which maps a normed space B, to another normed
space B2 is a non-expansion if for all f, g E B, I ITf - Tgil :::; Ilf - gil , where 1 1·11 denotes

2The definitions of EB and @ are (EB S)(x, a) = Ly P(x, a, y)S(x, a, y) and (@Q)(x) = maxa Q(x, a),
where 5 : (X x A x Y) -+ !R and Q : (X x A) -+ !R.

6

model/example reference (@ J)(x)
maxa f(x, a)
L 7r(x, a)f(x, a)
maxa or minbf(x, b)
maxa f(x, a)

(EB g)(x, a)
�y P(x, a, y)g(x, a, y)
�y P(x, a, y)g(x, a, y)
�y P(x, a, y)g(x, a, y)
miny,p(x,a,y»o g(x, a, y)
�y P(x, a, y)g(x, a, y)

disc. expo MDPS [60]
expo return of 7r [45]
alt. Markov games [7]
risk-sensitive MDPS [15]
expl.-sens. MDPS [20]
Markov games [24]

maxnEPo �a 7r(x, a)f (x , a)
maxA minb �a A(a)f(x, (a, b)) �y J'(x, (a, b), y)g(x, (a, b), y)

Table 1: Some models and their specification as generalized Markov decision processes.

the norm on the appropriate spaces:l. In accordance with the above definition we say that
the @ operator is a non-expansion if

for all 1, 9 : X x "4 -+ lR, and oJ: EX, here I I . I I denotes the max norm over the appropriate
function space. An analogous condition defines when EB is a non-expansion.

Many natural operators are non-expansions, such as max, min, midpoint, median, mean,
and fixed weighted averages of these operations (sec Appendix B) . Mode and Boltzmann­
weighted averages are not non-expansions (sec Littman's thesis [26] for information on
Boltzmann-weighted averages). Several previously described sequential decision-making
models are special cases of this generalized MDP model-Table 1 gives a brief sampling.
For more information about the specific models listed, see the associated references.

As with MDPS, we can define a dynamic-programming operator

TV = 0 EB(R + ,V) (1)

such that, for 0 -S , < 1 , t.he opt.imal value function V' is thc uniquc fixed point. of T.
The operator T is a contraction mapping as long as , < 1. Recall that an operator T is a
contraction mapping if I ITV, - TV2 1 1 -S ,llVi - V2 1 1 where �� and V2 are arbitrary functions
and 0 -S , < 1 is the index of contraction. Here, I I· II is the max norm. It is easy to see that
T is a contraction mapping using the non-expansion properties of @ and EB.

vVe can define a notion of stationary myopic policies with respect to a value function V;
it is any (stochastic) policy 7r for which T"V = TV where

[T"V](x) = I>(x, a) ((EB(R + ,V)) (x, a)) .
a

3If B, = B2 are spaces of function over X, i.e., if B, = B2 = (X --+ R) then we say that T : B, --+ B2 is a
pointwise non-expansion if for all x E X and I,g E B, there holds that I(Tf)(x) - (Tg)(x)I <: II(x) - g(x)l·
Taking the maximum of both sides over)(\ve see that if T is a point\vise non-expansion then T is also a
non-expansion for the max norm. It is ea.":ly to extend the notion of being a point\vise non-expansion to
spaces when B, = (X x A --+ R) and B2 = (X --+ R). We say that the operator T : B, --+ B2 is a pointwise
non-expansion over X if I(Tf)(x) - (Tg)(x)I <: 111(x,') - g(x, ')11 for all I,g E B, and x E X. Here, I(x, ')
and g(x,·) are understood as functions from A --+ R, and II· II denotes a norm over A --+ R, usually the
max norm. Usually it is much easier to check if an operator is a pointwise non-expansion. The operators we
consider arc, indeed, pointwise non-expansions. Qur statements� however, do not exploit this feature.

7

Here, 1I(x, a) represents the probability that an agent following 11 would choose action a in
state x. For later use, it is convenient to introduce the operator 0� defined by (0� f) (:r) = La 1I(x, a)f(x, a). To be certain that every value function possesses a myopic policy, we
require that the operator 0 satisfy the following property: for all functions f : X X A -+ !R
and states x,

min f (x, a) -S (QSi f) (.1:) -S maxf (x, a). a a (2)
In an alternate formulation, Inequality (2) is replaced by the restriction that (0 f) (.1:) =

f (x, at) for all f, where at E A is an action that may depend on f. In other words, 0 must
select an action. This has the price that st.ochastic act.ions must be explicit.ly introduced (the action set of the new model would be the set of probability distributions over A, lI(A)),
but has the advantage that "deterministic" policies suffice (since each stochastic policies in
the present model would have a corresponding deterministic action) . To put this another
way, Inequality (2) is just an extension of the selection condition to stochastic actions.

The value function with respect to a policy 11, vn is defined by the simultaneous equations
vn = Tnv�; it is unique.

We say a policy 11 is optimal if it is myopic with respect to its own value function. A
better term for such policies might be "self-consistent" ; we use the optimization-oriented
term "optimal" because the most common applications make use of a 0 operator that
selects extremals. Even in non-optimization settings, it is reasonable to call these policies
optimal since they share important properties of optimal policies of MDPS. The first such
property is that the evaluation of optimal policies is a particular function: the fixed point
of T. To see this, let 11' be an optimal policy. Then Vn' is the fixed point of T because
V�' = Tn'V'" = TV"'. Thus, V�' = V* when I < 1, because T has a unique fixed point
by the Banach fixed-point theorem [44] . All the statements of this section and some other
basic facts about generali7,ed MDPS are proved in Appendices A through D.

1.4 SOLVING GENERALIZED MDPS

The previous subsect.ions have mot.ivat.ed and described our generalizat.ion of :VIarkov deci­
sion processes. vVe showed how MDPS and alt.ernat.ing Markov games, two popular models
of sequential decision making, could be viewed as examples of the generalized model. In
Section 4, we will examine other examples including games in which players make their ac­
tion choices simultaneously, MDPS with a risk-sensitive performance criterion, MDPS with an
exploration-sensitive performance criterion, and the use of sampling to replace the compu­
tation of the maximum action in MDPS.

Formulating a problem as an instance of a formal model is rarely an end unto itself,
however. We address algorithms for solving generalized MDPS; that is, we would like to
identify optimal policies for specific instances of the model. One class of algorithms assumes
access to a complete description of the model instance. Examples of dynamic-programming
algorithms in this class are described in Section 2.

A second class of algorithms assumes that the only information available to the agent on
the specific problem instance being solved is via "experience" : state-to-state transitions with
their associated rewards. Problems couched this way are known as reinforcement-learning

8

p'f'Oblems and algorithms for solving them are called reinforcement-leaming algo7'dhm84, Sec­
tion 3 describes reinforcement-learning algorithms for generalized MDPS,

Because of the asynchronous manner in which information arrives in a reinforcement­
learning problem, the contraction assumption (that is, that ; < 1) becomes critical for
smoothing across pieces of information that arrive separately, vVe derive a powerful theorem
concerning the convergence of asynchronous learning processes that depends on little other
than the assumption of contraction; this makes it applicable to a wide variety of models,
Full generality of the theorem is achieved by stating the results in terms of general norm cd
spaces, The theorem will be presented and discussed in Section 3, L

The next section extends the standard value-iteration and policy-iteration algorithms to
the generalized modeL Section 3 describes a general theorem that can be used to prove the
convergence of several reinforcement-learning algorithms in the generalized MDP framework.

2 SOLVING GENERALIZED MDPS VIA A MODEL

The most basic algorithms for solving MDPS are value iteration [3] and policy iteration [18];
both date back the late 1950s, This section describes how these algorithms can be applied
to solve generalized Markov decision processes,

2 . 1 VALUE ITERATION

The method of value iteration, or successive approximations [3, 39], is a way of iteratively
computing arbitrarily good approximations to the optimal value function V' ,

A single step of the process starts with an estimate vt-l of the optimal value function,
and produces a better estimate vt = Tvt- l' We show that applying T repeatedly causes the
value function to become as close as desired to optimaL Again, the notation I I ' I I refers to
the IIlaxiIIluIIl nonn.

Lemma 1 Let vt be the value function produced 'iT! the tth demtion of value demt'ton, After'
t steps of value iteration on a generalized MDP, I lvt - V' I I ::; ;II IVo - V' I I ,
Proof: We proceed by induction, The base case, I lVa - V' I I ::; ;o l lVo - V' I I, is self evident.
By the inductive hypothesis we see

I lvt - V' I I = I ITVt-1 - TV' I I ::; °lllvt-l - V' I I ::; nt- 1 1 1Vo - V' I I = ;t l lVo - V' I I ,
Q,E.D,

Since 0 ::; '(< 1, we have that vt ---+ V' at a geometric rate as t increases, In some
circumstances, it is helpful to state this result without reference to the details of the initial
value function Vo, Let lvl = sup,Tmaxa IR(x, a) 1 = I I RI I , If the agent received a reward of 1'vl

"Traditionally, it waB the field of adaptive control that considered such "learning" problems [231, Adaptive­
control researchers, however, usually considered linear models only, i.e., when the evolution equation of
the controlled object is linear. Nonetheless, the results and emerged problems of adaptive control can be
instructive for reinforcement-learning researchers.

9

on every step, its total expected reward would be '£�o 'yi1'vI = 1'vI/(1 - 'f). Thus, the zero
value function, Vo = 0 cannot differ from the optimal value function by more than 1'vI/(I- ;)
at any state. This also implies that the value function for any policy cannot differ frorn the
optimal value function by more than 21\1/(1 - ;) at any state. This allows us to restate
Lemma 1 in a form that bounds the number of iterations needed to find an f-optimal value
function.

Theorem 1 Let Va be any value function such that IlVoll ::; kI/(1 - I)' and let

, _11 + log(lvf) + log(�) + 10g(2:y) l
t - (1) .

log -�
Running value iteration for t' or more steps results in a value function V such that IIV -
V'II ::; f.

Proof: This follows from simple algebraic manipulation of the bounds given in this section.
Q.E.D.

2 . 2 C OMPUTING NEAR-OPTIMAL P OLICIES

Thus, we know that the value function estimates converge to the optimal value function. But
when should we stop this iteration'? The following result shows that if 11V,+1 - V,II is small
then IIV, - V*II is small, too. The next question is which policy to usc after we have stopped
the iteration. The natural choice is the myopic policy with respect to the latest estimate
of the value function. Below we show that the value of such a policy is also close to the
optimum, i .e. , it can be bounded as a function of 11V[+1 - V[II = IITV[- V[II. More generally,
we will show that for an arbitrary function V, the distance between the value function for
any myopic policy with respect to V and the optimal value function can be bounded as a
function of the Bellman error magnitude of V, defined as IITV - VII. These results rely
entirely on the contraction property of the involved generalized MDPS. :-Iote that one must
be careful when applying these estimates in practice since the meaning of "small error" IS

highly problem dependent5 .
First, we establish a few basic results.

Lemma 2 Let V be a value function, V1r be the value function for the myopic policy with
respect to V, and V* be the optimal value function. Let f be the Bellman error magnitude
for V, f = IIV - TVII. Then, IIV - PII ::; f/(I - ;) and IIV - V'II ::; f/(I - ;) .

Proof: This result follows easily from the contraction property of T and the triangle in­
equality.

First, IIV -V1r11 ::; IIV -TVII + IITV -V1r11 = IIV -TVII + IIT1CV _T1CV1C11 ::; E+,IIV -V1rII·
Grouping like terms gives IIV - PII::; E/(I - 'f)·

5lVlcDonald and Hingston [28] pointed out that optimal values can be exponentially small in the number
of states for special classes of :\1DPs.

10

Similarly, I IV-V* I I <:: I IV-TV I I+I ITV-V* I I = I IV-TVI I + I ITV-TV* I I <:: f+,I IV-V'I I ·
Grouping like terms gives I IV - V' I I <:: f/(1 - ,) . Q . E.D.

vVe next. bound t.he dist.ance bet.ween V" and V' in t.erms of f, t.he Bellman error magni­
tude (related arguments have been made before [6, 42, 62, 16]6) .

Theorem 2 Let V be a value function, V" be the value function for the myopic policy with
re8pect to V, and V' be the optimal value function. Let f be the Bellman error ma.gnitude
for V, f = I IV - TVII· Then, I ITV - V"I I <:: f,/ (1 - ,) , I ITV - V* I I <:: q/(1 - 7), a.nd
I IV" - V'I I <:: 2q/(I - ,) .

Proof: The third statement follows from an application of the triangle inequality to the first
two statements, which we prove now. First,

Similarly,

I ITV - V* I I

completing the proof.

I ITV - TV' I I <:: 71 1V - V'I I <:: E'f!(1 - 7) ,

Q . E.D.

This result is concerned with values and not immediat.e rewards, so the total reward
earned by a myopic policy is not too far from optimal. The significance of the result is that a
value-iteration algorithm that stops when the Bellman error magnitude is less than or equal
to f 2'" 0 will produce a good policy with respect to f.

This result can be refined further for a subclass of generalized MDPS. In generalized MDPS

in which there is a finite set of policies such that every value function has a myopic policy
in that set, any myopic policy with respect to V; is optimal for large enough t . This is in
no way related to the contraction property of the value iteration operator, i .e. , it holds for
arbitrary monotone and continuous operators [48] . This means that value iteration can be
used to find optimal value functions in finite time for generalized MDPS in this subclass. A
further refinement, which relies on the contraction property of the dynamic-programming
operator, puts a pseudo-polynomial bound on the number of iterations required to find an
optimal policy [26]. This requires that " P and R are expressed with a polynomial number
of bits.

2 . 3 P OLICY ITERATION

In this section, we define a generalized version of policy iteration. Applied to MDPS, it
is equivalent to Howard's policy-iteration algorithm [18] and applied to alternating Markov
games, it is equivalent to Hoffman and Karp's policy-iteration algorithm [17]. Policy iteration
for MDPS proceeds as follows: Choose an initial policy 7fo and evaluate it. Let the next policy, 7fl, be the greedy policy with respect to the value function V"o. Continue in this way until 7ft+! = 7ft. The traditional proof of convergence relies on the following facts [18]:

6The most general of these arguments is due to Bertsekas and Shreve [61 (Proposition 4.5) for extremization
problems (although, the authors do not exploit this property). They also consider value iteration when the
precision of computation is limited. Williams and Baird [621 have proved these bounds tight for MDPS, and
this should hold for generalized MDl'S, as well.

1 1

(i) Vnt+l :;> V"t
, and the inequality is strict for at least one state if WI is not optimal,

(ii) there are a finite number of policies (since X and A are finite) , and

(iii) the fixed point of T is unique.

Unlike value iteration, the convergence of policy iteration seems to require that value is
maximi7.ed (or minimi7.ed in a cost-based setting) with respect to some set of possible actions
(this is because we require Condition (i) in the above paragraph) . To capture this, we will
restrict our attention to generalized MDPS in which 0 can be written

(3)

where R is a compact set and 0P is a non-expansion operator mapping functions over X x A
to functions over X for all p E R. '1ote that the conditions that R be compact and 0P be
a non-expansion for all p ensure that the maximum in the above equation is well defined.
Note that any operator 0 can be written this way by defining R = {Po} and 0pO = 0;
the choice of parameterization ultimately determines the efficiency of the resulting policy­
iteration algorithm. A generalized MDP satisfying Equation (3) and satisfying a monotonicity
property discussed in Appendix C is called a maximizing generalized MDP.

As a concrete example, MDPS can be viewed as type of maximizing generalized MDP. Let
R = A and [WQ](x) = Q(x, p) . Then, [0 Q] (x) = maxaEA Q(x , a) = maxpER Q(X , P) =
maxpER [0PQ] (x) as required by Equation (3). Similarly, alternating Markov games can be
viewed as maximizing generalized MDPS. Again, R = A and define

[0" Q] (:r) = { Q(:r;, p) , mm; Q(x, b),
if x E X"
if x E x2•

The maximization and minimization operators have been separated so that they can be
treated independently. To understand the importance of this, note that the essence of policy
iteration is that in every step the new policy is an improvement over the previous policy.
For alternating Markov games this would mean that V1Ct+1 (X) :;> V1rt (x) for x E Xl and
V1rtH(X) <::: V1Ct (X) for x E X2. However, as a careful analysis of an example by Condon [10]
shows, the additive structure of rewards is incompatible with this condition. To be able to
work with additive rewards, we need to separate the minimumization and maximumization
operators.

A more complex example is Markov games, in which R is not finite; it will be described
in Section 4.2.

The term p-myopic policy refers to a mapping w : X ---+ R such that

[0W(X)Q](x) = max ([0PQ](x)) = [0 Q] (x) , pER

for all x E X. Here w is myopic with respect to Q. If Q = EEl (R + IV) then the policy which
is myopic for Q is called myopic for V as well. The value function for a p-myopic policy w ,
VW , is defined as the optimal value function for the generalized MDP where 0w(x) is used as
the summary operator in state x; it is well defined.

12

If the condition mina Q(:r, a) <:: [0P Q] (x) <:: maxa Q(:r, a) is satisfied for all Q : X x
A --+ lR and :r E X (the last inequality is automatically satisfied) , then to every function
w : X --+ R we could assign one (or more) policy 7fw : X --+ II(A) with the property
that [0w(x) Q] (x) = 2::a 7fw (x, a)Q(x, a) . Then, every mapping w can be identified with an
equivalent stochastic stationary policy. This definition is in harmony with the definitions of
the value functions VW and vn, and the definition of greediness.

vVe characterize policy iteration as follows. Start with a value function V and compute
its p-myopic policy w and w's value function VW. If I IV - VW I I <:: f, terminate with VW as an
approximation of the optimal value function. Otherwise, start over, after assigning V := VW.

Note that if R contains a single element, then this policy-iteration algorithm terminates
after two steps since wPo = w and thus vwo = V* with wo (x) = Po for all x E X. This
illustrates the tradeoff between determining the optimal value function of a given mapping w
and determining the optimal value function. The following two examples are also instructive.
We can apply the generali�ed policy-iteration algorithm to MDPS by taking R to be the set
of actions and 0P to return Q(8, rho) . Because computing VW is equivalent to evaluating a
fixed policy and can be solved by, e.g. , Gaussian elimination, the resulting policy-iteration
algorithm (which is just standard policy iteration) is useful. In alternating Markov games,
we take 0P to return Q(8, p) for states in which value is maximized, and to pick out the
minimum value mina Q(3, a) otherwise. Computing VW is equivalent to solving an MDP,

which is conceptually easier than finding V' directly.
To show that policy iteration converges, we appeal to two important results. The first is

that, for maximizing generalized MDPS,

V' (.r) = max VW(x) , u):X-tR

meaning that the optimal value function dominates or equals the value functions for all
possible values of w. The second is a generalization of a result of Puterman [31] that shows
that the iterates of policy iteration are bounded below by the iterates of value iteration.
i.From these two facts, we can conclude that policy iteration converges to the optimal value
function, and furthermore, that its convergence is at least as fast as the convergence of
value iteration. This result can also be proved for continuous and monotone value-iteration
operators of maximizing type without assuming the contraction property [48].

Theorem 3 Let

and, JOT all w : X --+ R,

where 0P and EB are non-expansions and monotonic and R is compact. Then, Jar all x E X,

V* (x) = m.ax VW(x) .
W:A -tR

13

Proof: This result is proven in Appendix D. Q . E.D.

Lemma 3 Let Ut be the iterates of value iteration and V, be the iterates of policy iteration,
staTting fmm the same initial value function, Uo = Vo · If Uo and VA aTe undeTestimates of
the optimal value function, then fOT all t and x E X, Ut (x) -s:: v, (x) -s:: V* (x) .
Proof: The proof is in Appendix D. Q . E.D.

According to Lemma 3, policy iteration converges at least geometrically and a bound on
convergence time can be given by

t' = pog (l lVo - V' I I/(f(l - r))) l
I 10g(lh)

or in terms of the Bellman error magnitude of Va:

t* = pog (1 1Vo - TVo l l/(f(l - r)2)) l
I 10g(lh) .

If t :::> t' then I IV, - V' I I -s:: f (f :::> 0) .
It is worth noting that the implementation of policy evaluation in generali�ed MDPS

depends on the definition of EB. vVhen the expected-reward objective is used, as it is in
MDPS, policy evaluation can be implemented using a linear-equation solver. vVhen EB is
rnaxirnization or rninirnizatioIl; as it is in SOIne gaInes or under a risk-sensitive criterion,
policy evaluation is equivalent to solving an MDP and can be accomplished using linear
programming (or policy iteration!) .

vVith a little change, the above framework is also capable of expressing asynchronous
policy-iteration algorithms. Most of the previous results on asynchronous policy iteration
can be repeated since those proofs depend only on the monotonicity and the contraction
properties of the involved operators [61 , 40]. The work of I3ertsekas and Shreve [6] is also
worth mentioning here: they have considered a version of policy iteration in which both
myopic policies and the evaluation of these policies are determined with a precision geomet­
rically increasing in time. Such an approximate policy-iteration scheme is useful of the state
or the action spaces are infinite (such as a compact subset of a Euclidean space) .

3 REINFORCEMENT-LEARNING ALGORITHMS

In this section, we describe methods for solving MDPS that make use of "experience" instead of
direct access to the parameters of the model. We begin by introducing a powerful stochastic­
approximation theorem.

3.1 C OMPUTING THE FIXED P OINT OF A CONTRACTION

BY MEANS OF RANDOMIZED APPROXIMATIONS

Iterative approaches to finding an optimal value function can be viewed in the following
general way. At any moment in time, there is a set of values representing the current

14

approximation of the optimal value function. On each iteration, we apply some dynamic­
programming operator, perhaps modified by experience, to the current approximation to
generate a new approximation. Over time, we would like the approximation to tend toward
the optimal value function.

In this process, there are two types of approximation going on simultaneously. The first
is an approximation of the dynamic-programming operator for the underlying model, and
the second is the usc of the approximate dynamic-programming operator to find the optimal
value function. Both Q-learning and model-based reinforcement learning work in this way.
This section presents a theorem that gives a set of conditions under which this type of
simultaneous stochastic approximation converges to an optimal value function.

First, we need to define the general stochastic process. Let the set X be the states of
the model, and the set B(X) of bounded, real-valued functions over X be the set of value
functions. Let T : B(X) --+ B (X) be an arbitrary contraction mapping and V' be the fixed
point of T.

To apply the value-iteration algorithm, the contraction mapping T is applied directly
to successively approximate V'. In other algorithms, especially reinforcement-learning al­
gorithms, T is not available and we must use our experience to construct approximations
of T. Consider a sequence of random operators T{ : (B(X) x B(X)) --+ B(X) and define
Ut+1 = Tt(Ut, V) where V and Uo E B(X) are arbitrary value functions. We say Tt approxi­
mates T at V with probability one uniformly over X, if Ut converges to TV uniformly over
X 7 . The basic idea is that Tt is a randomized version of T in some sense; it uses Ut as
"memory" to help it approximate TV. Here, one may think of V as a "test function," as in
physics8

The following theorem shows that, under the proper conditions, we can use the sequence
Tt to estimate the fixed point V' of T.

THEOREM 3 . 1 Let T be an ar"bitrar"y mapping with fixed point V', and let Tt appr-oximate T
at V' with pr-obability one unifomdy over" X . Let Vo be an ar-bitr"ar-y value function, and define ��+1 = T{ (��, 1ft) . If ther'e exist function., 0 -c:: F{(:r;) -c:: 1 and 0 -c:: G, (;r;) -c:: 1 8ILtisfying the
cond#ion8 below with pmbab'ility one, then Vt. converges to V' w#h pr-obab'ility one un'ifonnly
over- X :

1 . for' all U1 , and U2 E B(X) and all x E X ,

ITt (U, , v') (x) - Tt(U2 , v') (x) l -c:: Gt(x) I U, (x) - U2 (.r) I ;

2. for- all U and V E B (X), and all x EX,

IT{(U, V') (x) - T{ (U, V) (x) 1 -c:: F{ (x) sup 1 V' (x') - V(x') I :
,7:1

7 A sequence of random functions In converges to f* with probability one uniformly over X ifl for almost
all events LV for which fn(w, x) --+ j"', the convergence is uniform in x. This should be contrasted to uniform
almost sure (or probability one) convergence, when we consider a sequence of random functionR, fn l and \ve
require that the speed of convergence of fn(w) - f(w) to zero should be independent of w.

BIn physics, the effect of electric fields is determined using the concept of "test charges,'l \vhich are
imagined unit-charge, no-mass particles subject to the field. The strength of the field (effect of the operator)
is determined as the force acting on the test charge. The situation here is analogous since we have an
imagined object subject to a transformation.

15

3. for· all k > 0, IIr�kGt(x) conveTge8 to zen) unifor·mly in x a8 n incTea8e8; and,
4 . there exists 0 ::; , < 1 such that for all x E X and large enough t,

Ft(:r) ::; ,(I - Gt(.r)) .

Proof: To prove this, we will define a sequence of auxiliary functions, Ut, that is guaranteed
to converge, and relate the convergence of V, to the convergence of Ut. Let Uo be an arbitrary
value function and let Ut+1 = Tt (Ut, V*). Since Tt approximates T at V*, Ut converges to
TV' = V' with probability one uniformly over X. We will show that I lUt - V, I I converges
to 7,ero with probability one, which implies that V, converges to V'. Let

o, (x) = IU, (x) - V/(:r) I

and let

\Ve know that L'>t (x) converges to 7,ero because Ut converges to V'.
By the triangle inequality and the constraints on Tt, we have

Ot+l (X) IUt+1 (x) - V,+l (x)1
ITt(Ut , V') (.r) - Tt (V" V,) (x) I

< ITt (Ui> V') (x) - Tt (V" V') (x) 1 + IT, (V" V') (x) - Tt(V/ , V,) (x)1
< Gt(x) I Ut (x) - v, (x) I + Ft (x) l lV* - V, I I
< Gt(x)6t (.r) + F,(.r) I IV' - V,I I
< Gt(x)6t (.r) + Ft(.r) (I IV' - Ut l l + I IUt - V,I I)
< Gt(x)6t(x) + Ft(x)(I IM + I IL'>t l l) (4)

If it were the case that I IL'>t l l = 0 for all t, then 6t would converge to "ero as shown in
Lemma 10 of Section E.1. Using this, one may show that the perturbation caused by L'>t
diminishes. The main difficulty of the proof is that an inequality similar to Inequality (4)
does not hold for 1 1 6d l , i.e. , different components of 0, may converge at different speeds and,
moreover, because of the disturbance term, I IL'>t l l , I I 0t i i may even increase sometimes. Even
more, we do not have an a priori estimate of the convergence rate of L'>t to zero, which would
enable a traditional treatment. However, the idea of homogeneous perturbed processes [19]
can be used to show that the effect of this perturbation can be neglected.

To usc Inequality (4) to show that 6t (x) goes to zero with probability one, we usc some
auxiliary results proven in Appendix E. Q . E.D.

Note that from the conditions of the theorem and the additional condition that Tt ap­
proximates T at every function V E B(X) , it follows that T is a contraction operator at V'
with index of contraction , (i.e. , I ITV - TV' I I ::; 'I I IV - V' I for all V)9 . We next describe
some of the intuition behind the statement of the theorem and its conditions.

9The proof of this goes as follows. Let V, Uo , Vo E B(X) be arbitrary and let Ut+1 = Tt(Ut, V) and
VI+1 = TI(�r" V*). Let 6,(x) = IU,(x) - VI(x) l . Then, using Conditions (1) and (2) of Theorem 3.1 we

16

The iterative approximation of V' is performed by computing vt+1 = Tt(Vl., vt) , where
T{ approximates T with the help of the "memory" present in V; . Because of Conditions (1)
and (2) , G, (x) is the extent to which the estimated value function depends on its present
value and Ft(x) "" 1 - Gt(x) is the extent to which the estimated value function is based
on "new" information (this reasoning becomes clearer in the context of the applications in
Section 4).

In some applications, such as Q-lcarning, the contribution of new information needs to
decay over time to insure that the process converges. In this case, Gt(x) needs to converge to
one. Condition (3) allows Gt(x) to converge to 1 as long as the convergence is slow enough
to incorporate sufficient information for the process to converge (this is discussed in some
detail in Section 4.8).

Condition (4) links the values of Gt(x) and Ft (x) through some quantity I < L If it were
somehow possible to update the values synchronously over the entire state space, the process
would converge to V' even when I = 1 provided that ni=l (Ft (x) + Gt (x)) -+ 0 uniformly
in x as T increases. In the more interesting asynchronous case, when I = 1 , the long-term
behavior of vt is not immediately clear; it may even be that \It converges to something other
than V' or it may even diverge depending on how strict Inequality (4) and the inequality of
Condition (4) are. If these were strict, then 1 1 6, 1 1 might not decrease at all. The requirement
that I < 1 insures that the use of outdated information in the asynchronous updates does
not cause a problem in convergence.

One of the most noteworthy aspects of this theorem is that it shows how to reduce the
problem of approximating V' to the problem of approximating T at a particular point V
(in particular, it is enough that T can be approximated at V*); in many cases, the latter is
much easier to achieve and also to prove. For example, the theorem makes the convergence
of Q-learning a consequence of the classical Robbins-Monro theorem [34].

In many problems we do not have full access to the operator EEl or the immediate rewards
R 10 . Basically, there are two ways to deal with this: we can build an estimate of EEl and R, or
we can estimate a function (without ever building a model of EEl and R) from which an optimal
policy is easily be determined. In the next section, we discuss a particular generalized Q­
learning algorithm which provides an interesting insight into how Q-learning-like algorithms
should be constructed.

3.2 GENERALIZED Q-LEARNING

A defining attribute of the generali�ed Q-learning algorithm is that we exchange the ordering
of the EEl and Q9 operators in the update equation relative to the defining generali�ed Bellman

get that 0t+l (X) ::; Gt(x)o,(x) + ,(1 - G,(xl l llV - V'II· By Condition (3), n�o Gt(x) = 0, and thus,
lim sup,->= o,(x) ::; ,IIV - V'II (see, e.g., the proof of Lemma 10 of Section Kl). Since T, approximates T
at V' and also at V, we have that U, -+ TV and Vi -+ TV' with probability one. Thus, Ot converges to
IITV - TV'II with probability one and thus IITV - T V' II ::; ,IIV - V' II holds with probability one. Since any
probability space must contain at least one element; the above inequality, \vhich contains only deterministic
vaI'iablcs, is true. Note that if Condition (1) were not restricted to V', this argument would imply that T is
a contraction \'lith index i'.

10It is reasonable to assume complete access to Q9, since this determines how the agent should optimize
its choice of actions. In Section 4.7, we will discuss cases \\Then this assumption is relaxed.

17

equations. Remember that the fixed-point equation of V' is

Now, if we let Q' = EB(R + ,V*) then we arrive at the fixed point equation

i.e., Q' is the fixed point of the operator K : ((X x A.) -+ �) -+ ((X x A.) -+ �) , with
KQ = EB(R + , 0 Q). The reason for exchanging summary operators is that

(i) we have access to 0, not EB, but

(ii) we have a "consistent" method for estimating EB which we will apply to estimate Q*.

Once we have a good estimate of Q', say Q, a near optimal policy is easily determined: one
takes a policy 7r, which is myopic for Q, i.e. , 0" Q = 0 Q. Then, using the technique of
Section 2 .2 , it can be shown that I IV" - V' I I -<:: 2 1 1 Q - Q' I I / (l - I) ' i.e. , we can bound the
sub optimality of the resulting policy.

Now, what do we mean by a "consistent" method? Let Bl, B2 be arbitrary normed
spaces and let T : HI -+ H2 be a mapping. By a method which estimates T, we mean any
procedure which to every f E X assigns a sequence mt(f) E H2 . The method is said to be
consistent with T if, for any f, the sequence mt (f) converges to T f with probability one.
Usually, we will consider iterative methods of the form M = (lVla , lVII , . . . , Alt, . . .) , where
!'vlt : B2 X Bl -+ B2 and

(5)

rno (f) being arbitrary. The first argument of Aft can be viewed as the internal "memory" of
the method.

The most well-known example corresponds to the estimating of averages of functions.
Let Bl = (X -+ �) for some finite X, B2 = �, and let T : (X -+ �) -+ � be given by

Tf = L Pr(x)f (.r) ,
xEX

where Pr(x) is a probability distribution over X. If Xt is a sequence of identically distributed
independent random variables with underlying probability distribution Pr(-) , then the iter­
ative method with

IVft(rn, f) = (1 - at)m + at!(xt) ,

where at ::> 0, Z=�o at = (Xl and Z=�o a; < (Xl i s consistent with T. Indeed, since

we see that this is the simplest Robbins-Monro process (iterated averaging) and mt(f) con­
verges to Tf with probability one.

To present the following example, we need to refine the definition of consistent iterative
methods. We say that an iterative method M is consistent with T for the initial set Yo (f) ,
if for each f E Bl and moU) E Yo(f) the process mt(f) defined by Equation (5) converges

18

to T f with probability one. The next example shows why we must restrict the set of initial
values-also as a function of f.

Let B, = (X -+ �) for some finite X, B2 = �, and let T : (X -+ �) -+ � be
given by (T 1) = minYExU f(y). l\ow, if Xt is a sequence of random variables such that
{Xl , X2 , . . . , Xt, . . . } = Xo with probability one, then the iterative method with

lvft(rn, f) = min(m, f(Xt))
is consistent with T and the initial set Yo (J) = {y I y ;;. T f } .

Consistency of a method with an n-dimensional operator follows from componentwise
convergence of the estimates. That is, let T = (Ti , T'2, . . . , T",) : B -+ B1 X B2 X . . . x Bn
and let mt(J) E B1 x B2 X . . . x Bn be a sequence generated by some method. Then it is
clear that mt (J) converges to T f if and only if 'lnt (J)i converges to (T f), = T;J. From this
it follows that if M, is an iterative method which is consistent with Ti, then the method
M : (B, X B2 x . . . x Bn) x B -+ B, X B2 X . . . x Bn defined by

1vlt(m, 1); = Mt.i (mi , f)
will be consistent with T. That is, consistent methods for a multidimensional operator
T can be constructed by the composition of one-dimensional methods consistent with T"
i = 1 , 2, . . . , n. This is useful since the EEl operator is usually multidimensional.

How a consistent method of estimating EEl results in a Q-leaming algorithm is discussed
next. In general, if the iterative method M = (Ah, lVh, . . . , lvft, . . .) with Mt : (X x A x Y -+
�) x (X x A -+ �) -+ (X x A -+ �) is consistent with EEl then the appropriate Q-leaming
algorithm is given by

Qt+! = lvlt(Qt , R + , tg) Qt).
Note that such an algorithm would need explicit knowledge of n. To avoid this we introduce
a new operator Q which maps X -+ � to X x A -+ � and which is defined by (QV) =
EEl(R+-(V). Now, if M, is consistent with the operator Q then the corresponding generalized
Q-leaming rule takes the form

All the Q-leaming algorithms which we will discuss are of this form.
How is the convergence of such an algorithm ensured? Defining Tt (Q, Q') = Mt (Q, 0 Q') ,

we arrive at an operator sequence Tt, which, in many cases, satisfies the conditions of The­
orem 3 .1 . It is immediate that Tt approximates K at any Q' since Qt+! = Tt (Qt, Q') =
Mt(Qt, 0 Q') converges to Q0Q' = R + , 0 Q' = KQ' by assumption. The other condi­
tions on Tt (Condition (1)-(4)) result in completely similar conditions on lvlt, which we do
not list here since it will be equally convenient to check them directly for Tt. The aim of this
discussion was to give an explanation of how Q-leaming algorithms are constructed.

4 APPLICATIONS

This section uses Theorem 3.1 to prove the convergence of various decision-making algo­
rithms.

19

4 . 1 GENERALIZED Q-LEARNING FOR EXPECTED VALUE

MODELS

In this section, we will consider a model-free algorithm for solving the family of .finite state
and action generalized MDPS defined by the Bellman equations V* = Q9 EB(R + IV*) where
EB is an expected value operator, (EB g) (x, a) = L.y P(x, a, y)g(x, a, y) , and the definition of
Q9 does not depend on R or P.

A Q-learning algorithm for this class of models can be defined as follows. Given experience
(XL, at, Yt , T't) at time t and an estimate Qt (x, a) of the optimal Q function, let

Qt+1 (Xt, at) : = (1 - at(xt, at))Qt(Xt, at) + at(xt, at) (Tt + 0((0 Qt) (Yt)) . (6)
\Ve can derive the assumptions necessary for this learning algorithm to satisfy the con­

ditions of Theorem 3.1 and therefore converge to the optimal Q function. The randomized
approximate dynamic-programming operator that gives rise to the Q-learning rule is

7;(q', Q) (x, a) = { (('�' (-x,
a
a
t
)
(
,
x, a))Q' (x, a) + [Vt(x, a) (T't + I(Q9 Q) (Yt)) , if x = Xt and a = at

(otherwise.

If

• Yt is randomly select.ed according t.o t.he probabilit.y distribut.ion defined by P(Xt, at, .) ,
• Q9 is a non-expansion,

• T't has a finite variance and expected value given :r;L , at and Yt equal to R(xL, at, Yt) ,
• the learning rates are decayed so that L.�, X(Xt = x, at = a)at (x, a) = 00 and

L.�, X(Xt = x, at = a)at(x, aJ2 < 00 uniformly with probability oneil ,

then a standard result from the theory of stochastic approximation [34] states that Tt approx­
imat.es K at. Q* wit.h probability one. That is, this method of using a decayed, exponent.ially
weight.ed average correctly computes t.he average one-st.ep reward.

Let.

and

G () = { 1 - at (x, 0.) , t x, a 1 , if x = Xt and 0. = at;
otherwise,

F: () _ { 'la, t (x, a), if x = Xt and 0. = at ; t .T , 0. - 0, otherwise.
These funct.ions satisfy the conditions of Theorem 3.1 (Condit.ion (3) is implied by t.he
restrictions placed on the sequence of learning rat.es at) .

Theorem 3 .1 therefore implies that this generalized Q-learning algorithm converges to
the optimal Q function with probability one uniformly over X x A. The convergence of
Q-learning for discounted MDPS and alternating 'vIarkov games follows trivially from this.
Ext.ensions of t.his result for a "spreading" learning rule [32] are given in Appendix 4.8.

1 1 Here, X denotes the characteristic function. A common choice for learning rates is O:t(x,a) = 1/(1 +
nt(x, a)), where nt(x,a) is the number of times (x,a) has been visited before t. For this learning-rate
function, the condition on learning rates requires that every state-action pair is updated infinitely often. If
a central decreasing learning rate, e.g. "t(x, a) = lit, is used, then the learning-rate condition additionally
requires that the update rate of any given (x, a) pair should not decrease faster than the decrease of learning
rates. More results on this can be found in Appendix F .

20

4.2 Q-LEARNING FOR MARKOV GAMES

Markov games are a generalization of MDPS and alternating Markov games in which both
players simultaneously choose actions at each step. The basic model was developed by Shap­
ley [39] and is defined by the tuple (X. A, B, r, R) and discount factor f. As in alternating
Markov games, the optimality criterion is one of discounted minimax optimality, but because
the players move simultaneously, the Bellman equations take on a more complex form:

V* (:c) = max min L
.
pea) (R(:l , (a, b)) + -(L P(:c, (a, b) , Y)V' (Y)) . (7) pEII(A) bE R aEA yEX

In these equations, R(x, (a, b)) is the immediate reward for the maximizer for taking action
a in state x at the same time the minimizer takes action b, P(:c, (a, b) , y) is the probability
that state Y is reached from state x when the maximizer takes action a and the minimizer
takes action b, and n(A) represents the set of discrete probability distributions over the set
A. The sets X, A, and B are finite.

Once again, optimal policies are policies that are in equilibrium, and there is always a
pair of opt.imal policies t.hat. are st.at.ionary. Unlike MDPS and alt.ernat.ing Markov games, t.he
opt.imal policies are somet.imes st.ochast.ic; t.here are Markov games in which no determinist.ic
policy is opt.imal. The stochast.ic nat.ure of opt.imal policies explains t.he need for t.he opt.i­
mization over probability distributions in the Bellman equations, and stems from the fact
that players must avoid being "second guessed" during action selection. An equivalent set of
equations can be written with a stochastic choice for the minimizer, and also with the roles
of the maximizer and minimizer reversed.

To clarify the connection between this model and the class of generalized MDPS, define
Q : (X x (A x B)) --+ lR to be an arbitrary Q function over pairs of simultaneous actions,

and

(® q) (x) = max min L p[a]q(x, (a, b)) , pEII(A) bEll aElI

(EB V) (x, (a, b)) = L reX , (a, b) , y)V(y),
yEX

then Equation (7) can be expressed in the familiar form V* = @ E9(R+'(V*) . Note that both
E9 and @ defined this way are non-expansions and monotonic (see Appendices B and C) .

The Q-learning update rule for Markov games [24] given step t experience (:c[, ai, bl, YL, T"L)
has the form

This is identical to Equation (6) , except that actions are taken to be simultaneous pairs
for both players. The results of the previous section prove that this rule converges to the
optimal Q function under the proper conditions.

In general, it is necessary to solve a linear program to compute the update given above.
We hypothesize that Theorem 3.1 can be combined with the results of Vrieze and Tijs [57] on
solving Markov games by "fictitious play" to prove the convergence of a linear-programming­
free version of Q-learning for Markov games.

21

4.3 C ONVERGENCE UNDER ERGODIC SAMPLING

In most of the sequential decision problems that arise in practice, the state space is huge.
The most sensible way of dealing with this difficulty is to generate compact parametric
representations that approximate the Q function. One form of compact representation, as
described by Tsitsiklis and Van Roy [55], is based on the use of feature extraction to map
the set of states into a much smaller set of feature vectors. By storing a value of the optimal
Q-function for each possible feature vector, the number of values that need to be computed
and stored can be drastically reduced and, if meaningful features are chosen, there is a chance
of obtaining a good approximation of the optimal Q-function. This approach is extended by
Singh et al. [43], where the authors consider learning Q-values for "softly aggregated" states,
i.e., for any given aggregated state s there is a probability distribution over the states which
determines to which extent a given state from X belongs to s (this can also be viewed as fuzzy
sets over the state space and is also related to the spreading rule described in Section 4.8) .
In this section, we describe a lemma which provides general conditions under which the raw
generalization of Q-learning for such aggregate models converges.

Assume that the sequence of experience tuples is an arbitrary stochastic process, �n =<
Xn, an, Yn, rn > , that satisfies the following criterion. For a given state x and action a let
��(x, a) be the subprocess for which Xn = x and an = a. Assume that X and A are finite,
r n <:: B for some fixed number B and

1 N+K
lim - L r�(;:r;, a) K-too K n=N

1 N+K
lim - L X (Y;, (:T, a) = y) K-+oo K ndV

R(.T , a) (8)

P(:T, a, y) (9)

and both converge to their limit values with a speed that is independent of N. Here X(Y;, (x, a) = y) = 1 if y;, (x, a) = y and X(Y;, (x, a) = y) = 0, otherwise. A real-valued
function f that satisfies 1 ik+T

lim - f (s)ds = F T-+oo T . k
with a convergence speed independent of k is said to admit the "uniform averaging" property.
Thus, we may say that a process �n can be averaged uniformly if the above conditions hold.

Lemma 4 Q-lea.rning applied to a sequence �n that admits the uniform averag'ing property
converges to the optimal Q-funct'ion of the MDP determined by rewards R and transit-ion
probabilities P given by the averages in Equations (8) and (g).
Proof: We immediately see that the conditions of Theorem 3 .1 are satisfied except that Tt
approximates T, the value operator of the MDP given by (X, A, R, J'). However, this follows
from standard stochastic-approximation results. Q . E.D.

The above lemma can be used to show that if the sampling of states and actions comes
from a fixed distribution, then an aggregate model will converge. That is, if you have a Q
function represented by an m-entry table E and a mapping G : X x A to T, and you update
entry e of E (according to the Q-learning rule) whenever G(Xt, at) = e, and, you are sampling

22

XL and at according to some probabilistic laws, then the values in your table will converge.
Section 4.8 discusses this in more detail. Lemma 4 is concerned with the case when the :r:t
states are sampled asymptotically according to a distribution function poo defined over X
(Pr(xt = x) converges to pOO(x)).

4.4 RISK-SENSITIVE MODELS

Heger [15] described an optimality criterion for MDPS in which only the worst possible value
of the next state makes a contribution to the value of a state12. An optimal policy under
this criterion is one that avoids states for which a bad outcome is possible, even if it is not
probable; for this reason, the criterion has a risk-averse quality to it. This can be expressed
by changing the expected value operator EEl used in MDPS to

(EJjy)(x, a) = min y(x, a, y) . y:P(a,x,y» o
The argument in Section 4.6 shows that model-based reinforcement learning can be used

to find optimal policies in risk-sensitive models, as long as 181 does not depend on R or P,
and P is estimated in a way that preserves its zero vs. non-zero nature in the limit.

For the model in which (181 f) (x) = maxa f(.T, a) , Heger defined a Q-learning-like al­
gorithm that converges to optimal policies without estimating R and P online [15] . In
essence, the learning algorithm uses an update rule analogous to the rule in Q-learning
with the additional requirement that the initial Q function be set optimistically; that is,
Qo(x, a) ::: Q*(x, a) for all x and a 13 . Like Q-learning, this learning algorithm is a general­
ization of Korf's [22] LRTA * algorithm for stochastic environments. The algorithm and its
convergence proof can be found in Appendix G.

4.5 EXPLORATION-SENSITIVE MODELS

A major practical difficulty with Q-learning in MDPS is that the conditions needed to ensure
convergence to the optimal Q function and optimal policy make it impossible for a learning
agent to ever adopt the optimal policy. In particular, an agent following the optimal policy
will not visit every state and take every action infinitely often, and this is necessary to assure
that an optimal policy is learned.

John [20, 21] devised an approach to this problem based on the idea that any learning
agent must continue to explore forever. Such an agent should still seek out actions that result
in high expected discounted total reward, but not to the exclusion of taking exploratory
actions. He found that better learning performance can be achieved if the Q-learning rule
is changed to incorporate the condition of persistent exploration. More precisely, in some
domains, John's learning rule performs better than standard Q-learning when exploration is

12Such a criterion was also analyzed by Bertsekas and Shreve [61.
13The necessity of this condition is clear since in this Q-learning algorithm we need to estimate the

operator miny:p(x,a,y» O from the observed transitions, and the underlying iterative method-as discussed
in Section 3.2 is consistent only if the initial estimate is overestimating. Since we require only that Tt
approximates T at Q', it is sufficient if the initial value of the process satisfies Qo 2: Q' . "lote that
Qo = AI/(l- -i) satisfies this condition, where AI = max(x.a.y) R(x, a, y) .

23

retained, i.e., the discounted cumulated reward during learning was higher for his learning
rule. However, this does not mean that his learning rule converges to a better estimate of
the optimal Q-function: if exploration were stopped at sorne point late in the run, then it is
likely that the myopic policy with respect to the Q-function learned by standard Q-Iearning
would perform better than the myopic policy with respect to the Q-function learned by his
rule.

One concrete implementation of this idea is the following metapolicy. Given a Q function
and a small value " > 0, when in state x, take the action argmaxa Q(x, a) with probability
1 - e and a random action from A with probability e. Assuming that an agent will select
actions according to this metapolicy (instead of, for example, the greedy metapolicy, which
always selects the action with the highest Q value), which is a reasonable Q function to use?

John shows empirically that the optimal Q function for the MDP is not always the best
choice here. So instead of using the standard Q-Iearning update rule, he updates Q values
by

Q/.+l (:D/., at) :=

(1 - Gt(xt, ai))Qi (Xi , at) + G/. (xt, at) (ri + I (e I�I � Qi (Y/., a) + (1 - e) mfx Qt(Yi, a))) .
This update rule tries to learn the value of the exploring metapolicy instead of the value of
the optimal MDP policy.

It is not difficult to apply the arguments of Section 4 .1 to this variation of Q-Iearning to
show that the learned Q function converges to Q' defined by

Q' (X, a) = R(x, a) + -(� P (x, a, y) (e I�I � Q'(y, a) + (1 - e) m!x Q' (y , a)) . (10)

(The operator of the corresponding generalized MDP are given as follows: 0 operator takes
the bizarre form (0 Q)(x, a) = e(l/ IA I) �a Q(y, a) + (1 - e) maxa q(y, a) which is a non­
expansion by the results of Appendix B, and EEl is the usual averaging operator underlying
the transition probabilities Pl. In addition, we can show that using this Q' in the metapolicy
results in the best possible behavior over the space of all policies generated by this metapolicy.
The conclusion is that John's learning rule converges to the optimal Q function for this type
of exploration-sensitive MDP. These results are discussed in a forthcoming technical note [25] .

This update rule was also described by Rummery [35] in the context of variations of the
TD(.\) rule. In addition, Rummery explored a related update rule:

where bi is chosen as the action in state Yi stochastically according to the exploring meta pol­
icy. It can be viewed as an action-sampled version of Jolm's update rule. This rule has also
been studied by .John [21] , and under the name "SARSA" by Sutton [47] and Singh and
Sutton [41]. Once again, it is possible to apply Theorem 3.1 to show that Qt converges to
Q' as defined in Equation (10) [25]. (In Section 4.7 we describe a related algorithm in which
o is estimated by computing randomized maximums.)

24

4.6 MODEL-BASED LEARNING METHODS

The defining assumption in reinforcement learning is that the reward and transition func­
tions, R and P, are not known in advance. Although Q-learning shows that optimal value
functions can be estimated without ever explicitly learning R and P, learning R and P makes
more efficient use of experience at the expense of additional storage and computation [29] .
The parameters of R and P can be learned from experience by keeping statistics for each
state-action pair on the expected reward and the proportion of transitions to each next
state. In model-based reinforcement learning, R and P are estimated on-line, and the value
function is updated according to the approximate dynamic-programming operator derived
from these estimates. Theorem 3 .1 implies the convergence of a wide variety of model-based
reinforcement-learning methods.

The dynamic-programming operator defining the optimal value for generalized MDPS is
given in Equation (1) . Here we assume that EB may depend on P and/or R, but ® may not.
It is possible to extend the following argument to allow ® to depend on P and R as well. In
model-based reinforcement learning, R and P are estimated by the quantities Rt and Pto and
EBI is an estimate of the EB operator defined using R., and Pt. As long as every state-action
pair is visited infinitely often, there are a number of simple methods for computing Rt and
Pt that converge to R and P. A bit more care is needed to insure that EB{ converges to
EB, however. For example, in expected-reward models, (EB g) (x, a) = Ly P(x, a, y)g(x, a, y)
and the convergence of Pt to P guarantees the convergence of EBt to EB. On the other
hand, in a risk-sensitive model, (EB g) (x, a) = miny,p(x,a,y» O g(x, a, y) and it is necessary to
approximate P in a way that insures that the set of y such that p{ (x, a, y) > 0 converges
to the set of y such that P(x, a, y) > O. This can be accomplished easily, for example, by
set.ting Pt(:r, a., y) = 0 if no transit.ion from x to y under a. has been observed.

Assuming P and R can be estimated in a way t.hat resuit.s in the convergence of EBt to EB
and that ®t is a non-expansion (more precisely we need that the product of the "expansion
index" of ®t and I is smaller than one) , the approximate dynamic-programming operator
Tt defined by

Tt(U, V) (x) = { ® EBt (Rt + IV) ,
U(x),

if x E Tt
othenvise,

converges to T with probability one uniformly. Here, the set Tt C;; X represents the set of
states whose values are updated on step t; one popular choice is to set Tt = {Xt } .

The functions

G{ (x) = { �: if x E Tt ;
otherwise,

and
Ft (x) = { " if x E Tt ;

0, otherwise,

satisfy the conditions of Theorem 3 . 1 as long as each x is in infinitely many Tt sets (Condi­
tion (3)) and the discount factor I is less than 1 (Condition (4)) .

As a consequence of this argument and Theorem 3.1 , model-based methods can be used to
find optimal policies in MDPS, alternating Ylarkov games, Ylarkov games, risk-sensitive MDPS,

and exploration-sensitive MDPS. Also, if Rt = R and Pt = P for all t, this result implies that
asynchronous dynamic programming converges to the optimal value function [2, 1] .

25

4.7 SAMPLED MAX

The asynchronous dynamic-programming algorithm uses insights from the reinforcement­
learning literature to solve dynamic programming problems more efficiently. At time step
t + 1 , the algorithm has an estimate V! of the optimal value function and is given a state Xt
at which to improve its estimate. It executes the update rule

V!+1 (:rt) = mal (R(.Tt , a) + il: P(:rt , a., y)V!(y)) . nE. y
(11)

The state Xt is typically selected by following a likely trajectory through the state space,
which helps the algorithm focus its computation on parts of the space that are likely to be
important. The convergence of asynchronous dynamic programming to the optimal value
function (under the assumption that all states are visited infinitely often) follows from the
work of Gullapalli and Barto [13] and the results in this paper.

\Vhen the set of actions is extremely large, computing the value of the maximum action
in Equation (1 1) becomes impractical. An alternative that has been suggested is to use the
update rule

where At is a random subset of A and at (x) is the learning rate at time t for state x. The idea
behind this rule is that, if At is big enough, Equation (12) is just like Equation (11) except
that estimates from multiple time steps are blended together. Making At small compared
to A allows the update to made more efficiently, at the expense of being a poor substitute
for the true updat.e. For t.he purposes of t.he analysis present.ed here, we assume each At is
generat.ed independent.ly by some fixed process. \Ve assume t.he learning rat.es sat.isfy t.he
standard properties (square summable but not directly summable).

We can show that the update rule in Equation (12) converges and can express (indirectly)
what it converges to. The basic approach is to notice that choosing the maximum action
over a random choice of At corresponds to a particular probability distribution over ranks,
that using this probability distribution directly would result in a convergent rule, and that
estimating it indirectly converges as well. Once the proper definitions are made, the analysis
mirrors that of Q-learning quite closely. The main difference is that Q-learning is a way to
average over possible choices of next state whereas Equation (12) is a way of averaging over
possible choices of action.

The first. insight. we will use is as follows. Consider the effect of selecting a random set.
At and t.hen comput.ing argmaxaEAt f(a) . It. is not hard t.o sec t.hat. f induces a probabilit.y
distribution over the elements of A. Taking this a step further, note that this probability
distribution is exactly the same if we replace f with any order-preserving transformation
of f. In fact , the method for selecting At induces a fixed probability distribution on the
rank positions of A: there is some probability (independent of f) that the selected a will
result in the largest value of f(a.), some probability that it will result in the second largest
value of f (a) , and so OIl. Let p(i) be the probability that the a with the ith largest value of
f(a) is selected; this function can be derived (in principle) from the method for selecting At.

26

(l\ote that it is possible for ties to exist in the rank ordering. \Ve imagine these are broken
arbitrarily.)

An a concrete example, we will quickly derive the p function for the case in which all
a have probability p of being included in At. In this case, the maximum valued action
will be included in At, and will therefore be selected as the maximum element in At, with
probability p. This implies that p(l) = p. The action with the second largest value will be
chosen as the max if and only if it is included in At while the maximum valued action is not:
p(2) = (1 - p)p. Continuing in this way, we find that p(i) = (1 - p)i-1p in general.

Using the concepts introduced in the previous paragraphs, we can see that Equation (12)
is equivalent to

where action a is selected as at with probability p(i) and i is the rank position of action a
under one-step lookahead on VI.

Let lei, V) be the action with the ith largest value as computed by one-step lookahead
on V 11. Define

IAI () V*(x) = � p(i) R(x, I(i, V*)) + I � P(x, I(i , V*) , y)V* (y) , (14)

for all x. Because V* is defined by taking a fixed probability-weighted average of a rank­
based selector function, it is a form of generali7,ed MDP (see Appendix 13). It follows from
this that V* is well defined (for I < 1) .

If p(l) = 1 , Equation (14) is precisely the Bellman equations defining the optimal value
function for an MDP. In general, any (non-metric) sampling method for estimating the best
action will result in a different rank-position probability function p.

We next show that the update rule in Equation (12) results in the convergence of VI
to V* as defined in Equation (14) (i.e., not the optimal value function, in general) . To
do this, we need to first define a dynamic-programming operator T that captures a value­
iteration method for finding V'. This is a straightforward translation of Equation (14) . We
next need a sequence of dynamic programming operators Tt that capture the update rule in
Equation (12) . This is a simple translation of the equivalent Equation (13) .

To apply our stochastic-approximation theorem, we next need to define functions Ft and
Gt and show that they satisfy a set of conditions. As the necessary definitions are precisely
the same as in our proof of the convergence of Q-learning (Section 4 . 1) , we will not repeat
them here.

The final step is to show that T, approximates T at V'. In other words, we need to show
that

VI+! (Xt) = (1 - (}:t(.rt))VI(xt) + (}:t (.rt) (R(.rt, at) + I � P(.rt , at, Y)V' (Y)) (15)

converges to V' if at is selected according to p(i) as described above and every state is visited
infinitely often. Equation (15) is a variation of Equation (13) in which V* is used in place of

14For those who have already read Appendix E, we note that I(i, V) = argord�(R(x, a)+'(Ly P(x, a, y)V).

27

�� for one-step lookahead. Proving the convergence of Vt. to V* under Equation (15) parallels
the analogous result for Q-learning.

The ease with which this final condition can be checked follows directly from the fact
that we only require that the update rule emulate the true dynamic-programming operator
at a fixed value function, namely V'.

In conclusion, the sampled max update rule, as defined in Equation (12) , converges to
the value function V' as defined in Equation (14) . Whether V* is a good approximation
of the true value function depends on the sampling method used and the degree to which
suboptimal action choices in the underlying MDP result in near optimal values.

4.8 Q-LEARNING WITH SPREADING

Ribeiro [33] argucd that thc use of availablc information in Q-lcarning is incfficicnt: in
each step it is only the actual state and action whose Q-value is reestimated. The training
process is local both in space and time. If some a prioT'i knowledge of the "smoothness" of the
optimal Q-value is available then one can make the updates of Q-learning more efficient by
introducing a so-called "spreading mechanism," which updates the Q-values of state-action
pairs in the vicinity of the actual state-action pair, as well.

The rule studied by Ribeiro is as follows: let Qo be arbitrary and

Qt+1 (z, a) := (l-at (z, a)s(z, a, xt))Qt(z, a) +at (z, a)s(z, a, xt) (rt + i m:x Qt(Yt , a)) , (16)

where at (z, a) is the local learning rate of the state-action pair (z, a) which is 0 if a # at ,
s(z, a, x) is a fixed "similarity" function satisfying 0 :::; s(z, a, x), and (xt , at, Yt , rt) is the
experience of the agent at time t.

The difference between the above and the standard Q-learning rule is that here we may
allow at(z, a) # 0 even if Xt # z, i.e., states different from the actual may be updated, too.
The similarity function 8 (Z, a, :r) weighs the relative strength at which the updates occur. (One could also use a similarity which extends spreading over actions. For simplicity we do
not consider this case here.)

Our aim here is to show that under the appropriate conditions this learning rule converges
and also we will be able to derive a bound on how far the converged values of this rule are
from the optimal Q function of the underlying MDP. These results extend to generalized
MDPS when maxa. is replaced by any non-expansion operator 181.

Theorem 4 If
1 . X, A m'e finite,
2. Pr(Yt = y lx = x"� a = at) = P(x, a, y) ,
3. E[rt l :r = X I , a = at , Y = Yt] = R(:r, a, y) and Varlrt l :rl , at o Ytl is bounded,
4- Yt and rt are independent,
5. the states, x"� are sampled from a probability distribution poo E II(X) , with poo(.r,) > 0,

28

6. 8 (Z, a, .) :0- 0,
7. G:t (z, a) = 0 if a f. at,
8. G:t(z, a) is independent of Xt, Yt and rt,
9. 0 <:: G:L(z, a), 2::�o c¥L(z, a)s (z, a, xL) = 00 and 2::�o G:; (z, a) s2 (z, a, xL) < 00, both hold

uniformly with probability one.
Then Ql as given by Equaf'ion (16) converges to the fixed point of the operator' T : ((X x A) -+ W) -+ ((X x A) -+ W),

(TQ)(z, a) = L 8(Z, a, x) L I'(x, a, y) (R(X, a, y) + , m:x Q(y, b)) , (17)
xEX yEX

' (.) s (z, a, x) s z a x = " 2::y 8(Z, a, y)poo(y)
Proof: Note that by definition T is a contraction with index , since 2::, 8(Z, a, x) = 1 for all
(z, a) . We use Theorem 3.1 . Let

It can be checked that T, approximates T at any fixed function Q. Moreover, Tt satis­
fies Conditions (1) through (3) of Theorem 3.1 with Gt (z, a) = 1 - G:t(z, o,)8(z, a, .Tt) and
Ft(z, a) = ,IYt (z, o.)8(z, a, .Tt) . Q . E.D.

It is interesting and important to ask how close Qo, the fixed point of T where T is
defined by (17), is to the true optimal Q' . By Theorem 6.2 of Gordon [12] we have that

where

I IQo - Q' I I <:: �, 1 - '(

f = inf{ I IQ - Q' I I I FQ = Q },
where (FQ) (z, a) = 2::x 8(Z, a, x)Q(x, a) . This helps us to define the spreading coefficients
s(z, a ,x) . Namely, let n > 0 be fixed and let

() _ { I ,. if iln <:: Q
.
* (z, a) , Q' (:r, a) < Ci + 1)ln for some 'i ; s z, a, x - 0 I . , , ot lenVlse,

then we get immediately that f <:: lin. Of course, the problem with this is that we do not
know in advance the optimal Q-values. However, the above example gives us a guideline, how
to define a "good" spreading function: s (z, a, x) should be small (zero) for states z and x if
Q'(z, a) and Q' (x, a) differ substantially, otherwise 8 (Z, a, x) should take on larger values. In
other words, it is a good idea to define 8(Z, a, x) as the degree of expected difference between
Q* (z, a) and Q* (x, a).

29

Note that the above learning process is closely related to learning on aggregated states
(if X = UiXi is a partition of X let 8 (Z, a, x) = 1 if and only if Z, :C E Xi for some i ,
otherwise 8(Z , a, :r;) = 0) and also to learning using interpolator function approximators.
In order to understand this, let us reformulate the model suggested by Gordon [12]. Let
us fix a subset of X, say Xo. This is the "sample space" , which should be much smaller
t.han X. Let A : (Xo x A -+ W) -+ (X x A -+ W) be a "funct.ion approximat.or" . The
motivat.ion behind t.his notion is that to each sample { (.Tl ' a, Vr) , (.T2 ' b, V2), . . . , (xn ' c, Yn) } ,
where {Xl , .T2 , . . . , .Tn} = Xo, and a, b, . . . , c E A, Yi E W, A assigns a funct.ion defined on X x A. \Ve assume that A is a non-expansion. Now, consider the process

Ql+l (z, a) := (1 - (lL(Z, a)s(z, a, XL))Q, (z, a) + (l1(Z, a) 8(Z, a, :r:I) (r, + , mJlx[APQtJ (YI, a)) ,
(18)

where P projects (X x A -+ W) to (Xo x A -+ W), i .e. , [PQ] (x, a) = Q(x, a) for all
(x, a) E Xo x A. As we noted above, Rule (16) works equally well if maxa is replaced
by any non-expansion. In this particular case, this non-expansion is given by (@ Q) (x) =
maxa[APQ] (x, a) (it is a non-expansion, since @ is a composition of non-expansions) . Thus,
under the conditions of Theorem 4, this rule converges to the fixed point of the operator

(TQ) (z, a) = L s(z, a, x) L P(x, a, y) (R(x , a, y) + , Q9 Q(y, b)) .
xEX VEX

Note that in Equation (18) if z E Xo then the update of (z, a) depends only on the values
of Qt(xo, a) , where Xo E Xo . This means that it is sufficient to store these values during the
update process-all the other values can be reproduced using A. Also, operator T can be
restricted to Xo x A.

If 8(Z, a, x) = 0 for all z # x (in this case the "reduced Q-table" is updated only if
Xt E Xo, which is somewhat wasteful15) , thcn thc abovc argumcnt shows that Q-lcarning
combincd with a non-cxpansivc function approximator convcrgcs to thc fixcd point of thc
undcrlying contraction, T : ((Xo x A) -+ W) -+ ((Xo x A) -+ W), whcrc

(TQ) (x, a) = L P(x, a, y) (R(X, a, y) + , mJlx [AQ] (Yt , a)) .
'!lEX

Using standard non-expansion and contraction arguments Gordon proves that I IAQoo-Q* 1 1 <::
2E/(I - ,) , where TQoo = Qoo and E = inf{ I IQ - Q* I I I AQ = Q }. We note that these results
rely only on the non-expansion and contraction properties of the involved operators.

The above convergence theorem can be extended to the case when the agent follows
a given exploration "metapolicy" (e.g., by using the results from stochastic-approximation
theory [4]) which ensures that every state-action pair is visited infinitely often and that there
exists a limit probability distribution over the states X. For example, persistently exciting
(exploring) policies satisfy these conditions. A stochastic policy 7r = 7r(x, a) is persistently

'"Gordon also considered briefly the other case, when s(z, a, xl can be non-zero for z of x, and stated that
this is equivalent to introducing hidden states into the derived I'v1Dl' and concluded, pessimistically, that \ve
then run the risk of divergence. The above argument shows that, under appropriate conditions, this is not
the ease.

30

exciting if the Markov chain with state set S = X x A and given by the transition probabilities
p((:r;, a), (y, b)) = P (x, a, y)1r(y, b) is strongly ergodic' 6 . This means that if the agent uses
1r then it will visit every state-action pair infinitely often; moreover, given any initial state
there exists a limit distribution, pOO(x, a), of Pr(x = XI, a = ad which satisfies pOO(x, a) > 0
for all (x, a). Since Pr(xt = x, at = a) = Pr(at = alxt = x)P(Xt = x) = 1r(x, a) Pr(xt = x) ,
under the above conditions the limiting distribution (let us denote it by]Joo (.r)) of Pr(.rt = .r)
exists as well, and satisfies

pOO(x) =]J""(.r, a)/1r (x, a),

(a is arbitrary!) and thus pOO(x) > 0 11.

All this shows that, under a persistently exciting policy, there exists a probability distri­
bution poo over X such that Xl is sampled asymptotically according to poo . As a consequence,
we have that the conclusion of Theorem 4 still holds in this case.

Ribeiro and Szepesvari studied the above process when s(z, a, x) is replaced by a time
dependent function which is also a function of the actual action, that is, the spreading
coefficient of (z, a) at time t is given by St(z, a, Xt, at) [32]. By using Theorem 3 .1 they
have shown that if St(z, a, Xl, at) - X(z = Xt, a = at) converges to zero no more slowly than
does (tt (z, a), and the expected time between two successive visits of all state-action pairs is
bounded, then Q(, as defined by the appropriately modified Equation (16) , converges to the
true optimal Q function, Q'.

This algorithm, therefore, can make more efficient use of experience than Q-learning does,
and still converge to the same result.

5 CONCLUSIONS

We have presented a general model for analyzing dynamic-programming and reinforcement­
learning algorithms and have given examples that show the broad applicability of our results.
This section provides some concluding thoughts.

5 . 1 RELATED WORK

The work presented here is closely related to several previous research efforts. Szepesvari [50,
48] described a generalized reinforcement-learning model that is both more and less general
than the present model. His model enables more general value propagation than EB(R + '!V)
with -(< 1 but is restricted to maximization problems, i .e . , when Q9 = max. He proves that,
under mild regularity conditions such as continuity and monotonicity of the value propaga­
tion operator, the Bellman optimality equation is satisfied and policy and value iteration are
valid algorithms. He also treats non-Markovian policies. The main difficulty of this approach
is that one has to prove fixed-point theorems without any contraction assumption and for

1 6Some authors call a policy 'IT persistently exciting if the l\larkov chain over X \�lith transition probabilities
p(x, y) = L.:a 7r(x, a)p(x, a, y) is strongly ergodic. These two definitions are equivalent only if 1f(x, a) > a for
all (.r" a).

17 Another way to arrive at these probabilities is to consider the rvlarkov chain vvith states X and transition
probabilities p(x, y) = L.:a 1f(x, a)P(x, u, V) .

31

infinite state and action spaces. His model can be viewed as the continuation of the work
of Bertsekas [.5] and Bertsekas and Shreve [6], who proved similar statements under different
assumptions.

Waldmann [58] developed a highly general model of dynamic-programming problems,
with a focus on deriving approximation bounds. Heger [15, 16] extended many of the stan­
dard MDP results t.o cover t.he risk-sensit.ive model. Alt.hough his work derives many of t.he
import.ant t.heorems, it docs not. present. these t.heorems in a generalized way to allow t.hem t.o
be applied to any other models. Verdu and Poor [56] introduced a class of abst.ract dynamic­
programming models that is far more comprehensive than the model discussed here. Their
goal, however, was different from ours: they wanted to show that the celebrated "Principle
of Optimality" discovered by Bellman relies on the fact that the order of selection of optimal
actions and the computation of cumulated rewards can be exchanged as desired: in addition
to permitting non-additive operators and value functions with values from any set (not just
the real numbers) , they showed how, in the context of finite-horiwn models, a weaker "com­
mutativity" condition is sufficient for the principle of optimality to hold. For infinite models
they have derived some very general results18 that are too general to be useful in practice.

Jaakkola, Jordan, and Singh [19] and Tsitsiklis [53] developed the connection between
stochastic-approximation theory and reinforcement learning in MDPS. Our work is similar in
spirit to that of .Jaakkola, et al. We believe the form of Theorem 3 . 1 makes it particularly
convenient for proving the convergence of reinforcement-learning algorithms; our theorem
reduces the proof of the convergence of an asynchronous process to a simpler proof of con­
vergence of a corresponding synchronized one. This idea enables us to prove the convergence
of asynchronous stochastic processes whose underlying synchronous process is not of the
Robbins-Monro type (e.g., risk-sensitive MDPS, model-based algorithms, etc.) in a unified
way.

5 . 2 FUTURE WORK

There arc many areas of interest. in t.he theory of reinforcement learning that we would like t.o
address in future work. The results in this paper primarily concern reinforcement-learning in
contractive models (r < 1) , and there are important non-contractive reinforcement-learning
scenarios, for example, reinforcement learning under an average-reward criterion [38, 27] .
Extending Theorem 3.1 to all-policies-proper MDPS should not be too difficult. Actor-critic
systems and asynchronous policy iteration would also worth the study. It would be interesting
to develop a TD(>') algorithm [45] for generalized MDPS; this has already been done for
MDPS [30] and exploration-sensitive MDPS [35]. Theorem 3.1 is not restricted to finite state
spaces, and it might be valuable to prove the convergence of a finite reinforcement-learning
algorithm for an infinite state-space model. A proof of convergence for modified policy
iteration [31] in generalized MDPS should not be difficult.

18Here is an example of their statements translated into our framework. They first show that from their
commutativity condition it follows that Tny = V; , \vhere ,,�: is the n-step optimal value function, V is the
terminal re\vard function. Now, the statement which concerns infinite-hori�mn models goes like this: if 1/�
converges to V* (their Condition 3 [56]) then Tny converges to l·�*. The problem is that, in practice, it is
usually clear that ,,�; = Tny, but it is much harder to show that V; converges to 17* [5, 48].

32

Another possible direction for future research is to apply to modern ODE (ordinary dif­
ferential equation) theory of stochastic approximations. If one is given a definite exploration
strategy then this theory may yield results about convergence, speed of convergence, finite
sample size effects, optimal exploration, limiting distribution of Q-values, etc.

5 .3 C ONCLUSION

By identifying common elements among several sequential decision-making models, we cre­
ated a new class of models that generalizes existing models in an interesting way. In the
generalized framework, we replicated the established convergence proofs for reinforcement
learning in Markov decision processes, and proved new results concerning the convergence
of reinforcement-learning algorithms in game environments, under a risk-sensitive assump­
tion, and under an exploration-sensitive assumption. At the heart of our results is a new
stochastic-approximation theorem that is easy to apply to new situations.

A OPTIMAL VALUE FUNCTION IS UNIQUE

We consider a generalized MDP defined by (X, A, R, P, @, EEl), where @ and EEl are non­
expansions. \Ve use Q : X x A -+ lR to stand for Q functions and V : X -+ lR to stand for
value functions. We define TV = @ EEl(R + IV) , Kq = EEl(R + I@ Q) , V' = TV" and
Q' = KQ' .

It is the non-expansion property of T and K that will be most convenient for proving
results about them. Here is the first.

Lemma 5 The T and K operators are contraction mappings if I < 1 . In particular, if VI
and V2 are value functions and (21 and (22 arc Q functions, I ITV1 -TV21 1 -S II IVI - V2 1 1 , and
I IK(21 - K(22 1 1 -s 1 1 1(21 - Ch l l ·

Proof: We address the T operator first. By the definition of T, we have

I ITV1 - TV2 1 1 I I ® EB(R + -IV1) - ® EB(R + -tV2) I I
< I I EB(R + IVr l - EB(R + IV2) 1 1
< I I (R + -rVl) - (R + IV2) 1 1
< I I IVI - V2 1 1 ·

The definition of K give us

I IKQ1 - KQ2 1 1 I I ® EB(R + IQ1) - ® EB(R + IQ2) 1 1
< I I EB(R + IQ1) - EB(R + IQ2) 1 1
< I I (R + IQ1) - (R + -tQ2) 1 1 = I I IQ1 - Q&

Another way to prove this is the following: the composition of a contraction with a
non-expansion (in arbitrary order) is a contraction with the same index. Since the mapping
V -+ R + IV is a contraction with index I the desired result follows. Q . E.D.

33

Because the operator T is guaranteed to bring two value functions closer together, and the
operator K is guaranteed to bring two Q functions closer together, they are called contmction
mapp'tng.s .

Because all the results in this chapter are stated in terms of norms, they apply to any up­
date rule as long as the dynamic-programming operator under consideration is a contraction
mapping. (Sec recent work by Tsitsiklis and van Roy [54] for the usc of anot.her import.ant.
and int.erest.ing norm for reinforcement. learning.) The fact. that t.he opt.imal value functions
arc well defined docs not. imply t.hat. t.hey arc meaningful; t.hat. is, it. may be t.he case t.hat.
the optimal value function is not the same as the value function for some appropriately de­
fined optimal policy. The results in this section apply to value functions defined by I3ellman
equations; to relate the I3ellman equations to a notion of optimality, it is necessary to put
forth arguments such as are given in Puterman's book [31].

Theorem 5 For any genemlized Markov decision process, if I < 1 then ther'e is a unique
V' , called the optimal value function, such that V* = TV*; a unique Q* , called the optimal
Q function, such that Q* = KQ*; and an optimal (possibly stochastic) policy, 71"* , such that
V' (x) = La 71"' (x, a)Q' (:c, a) .
Proof: i,From Lemma ,5, the T and K operators for the generalized MDP are contraction
mappings with respect to the max norm. The existence and uniqueness of V' and Q' follow
directly from the Banach fixed-point theorem [44] .

vVe can define the optimal value function and the optimal Q function in terms of each
other:

V' = 0 Q', (19)

and Q' = EB(R + IV'). These equations can be shown to be valid from the definitions of K
and T and the uniqueness of Q' and V'.

I3y Condition (2) of @ and Equation (19) ,

min Q* (.T, a) :::; V* (.T) :::; max Q*(x, a). a a
Therefore, it is possible to define a stochastic policy 71"' such that

V' (x) = 2 >' (x, a)Q' (x, a) .
a

Q . E.D.

The use of the word optimal is somewhat strange since V' need not be the largest or
smallest value function in any sense; it is simply the fixed point of the dynamic-programming
operator T. This terminology comes from the Markov decision process model, where V' is
the largest value function of all policies and is retained for consistency.

B SOME NON-EXPANSION SUMMARY OPERA­

TORS

In this section, we prove several properties associated with functions that summari�e sets
of values. These summary operators are important for defining generali�ed Markov decision

34

processes, which involve summaries over the action set A and the set of next states (we need
the results presented here when discussing simultaneous :Vlarkov games and exploration­
sensitive models) .

Let I be a finite set and h : I -+ iR. We define a summary operator 0 over I to be a
function that maps a real-valued function over I to a real number. The maximum opera­
tor maXiEI h(i) and the minimum operator miniEI h(i) arc important examples of summary
operators.

Let h be a real-valued function over I. \Ve say a summary operator 0 is a con�ervative
non-expansion if it satisfies two properties: it is conservative

min h(i) <:.: O h <:.: max h(i),
zEI zEI (20)

and it is a non-expansion

(21)

\Ve will show that the max and min summary operators arc both conservative non­
expansions, after proving a series of related results.

Usually, in MDPS, we deal with multidimensional operators, i .e . , operators of the form
T : 1 -+ iRn . Define Ti : (I -+ iR) -+ iR as Ti.r = (Tx)i ' i .e. , Tx = (T, x, . . . , Tn.r) ; the TiS are
the coordinate-wise components of T. Non-expansion operators have the nice property that
if they are non-expansions componentwise then they are non-expansions as well. The same
is true for the conservativeness of operators. This is our first theorem.

Theorem 6 Let T : (I -+ iR) -+ iRn be an arbitmry opemtor. If T, IS non-expansion/
conseTvative (i = 1 , 2, . . . , n) then T is non-expansion/ conser·vative.
Proof: For brevity let 1 1 · 1 1 denote the max norm, I lh l l = max; I h(i) l . Let h, h' E (I -+ iR)
be two functions. Then, since T, is a non-expansion, I (Th - Th') i l = I (Th)i - (Th')i l =
ITih - Tih' l <:.: I l h - h' l l · Then, 1 1Th - Th' l l = maXi I (Th - Th'); 1 <:.: maXi I h - h' l = I l h - h' l l ·
That T is conservative follows immediately since h <:.: h' if and only if h(i) < h' (i) for all i E 1. Q . E.D.

Note that if I .I I = n then the set .I -+ iR can be identified with }Rn.
Let h and h' be real-valued functions over I. For i E I, let Oi be the summary operator

Oi h = h(i) (0' is the projection operator).

Theorem 7 The summary operator Oi is a conservative non-expansion.
Proof: Condition (20) requires that Oi h = h (i) lie between mini'EI h (i') and max,'EI h (i') .
This holds trivially.

To see that Condition (21) holds, note that 1 0' h-Oi h' l = I h(i) -h'(i) 1 <:.: maxi'EI Ih (i')-
h' (i') I . Q . E.D.

\Ve next examine a more complicated set of non-expansions. For real-valued function h
over I, let ordnh be the nth largest value in {h(i) l i E I} (1 <:.: n <:.: II I) . According to this
definition, ord1h = maXi h(i) and ord11 1 h = mini h (i) . We will show that the ordn summary

35

operator is a conservative non-expansion for ali I <:: n <:: I I I . To do this, we show that pairing
two sets of numbers in their sorted order minimizes the largest pairwise difference between
the sets of numbers.

Proof: Two bounds can be proven separately:

and

max(h1 - 91 , 91 - hI)
< max(h2 - 91 , 92 - 17,1)

< . max Ihi - gj l. 1,#J, 'l,]=1,2

max(h2 - 92, 92 - 17,2)
< max(h2 - 91 , 92 - hI)

< max Ihi - 9j l. 'i#-j, -i,j=1,2

Combining these two inequalities proves the lemma.

\Ve use Lemma 6 to create a bound involving the ord" summary operator.

Lemma 7 Let hI and h2 be r·eal-vaZ,ued functions over- I. Then

Q . E.D.

Proof: Both quantities in the inequality involve taking a maximum over differences between
matched pairs of values. This lemma states that, of all possible matchings, pairing values
with the same position in a sorted list of values gives the smallest maximum difference.

To prove this, we argue that, from any matching that violates the sorted order we can
produce a matching that is "more sorted" without increasing the maximum difference (and
perhaps decreasing it.). The idea is t.hat. we can find a pair of pairs of values t.hat are matched
out. of order, and swap the mat.ching for that pair. By Lemma 6, the resulting matching has
a maximum difference no larger t.han t.he previous matching. After generat.ing pairings t.hat.
are more and more sorted, we eventually reach the totally sorted matching. Since the initial
matching was arbitrary, the lemma follows. Q . E.D.

That ord" is a conservative non-expansion follows easily from Lemma 7.

Theorem 8 The ord"" opemtoT is a conseTvative non-expansion faT ali I <:: n <:: II I .

36

Proof: Condition (20) is satisfied easily since it is always the case that ordnh = h(i) for
sorne 'i E I.

To verify Condition (21) , let h, and h2 be real-valued functions over I. It follows frorn
Lemma 7 that

< max lord7EIhl (i) - ord�Elh2 (i) 1
n

< max I hl (i) - h2 ('i) I . ,EI
Since n was arbitrary, the theorem is proved. Q . E.D.

Theorems 7 and 8 state that two very specific classes of summary operators are conserva­
tive non-expansions. The next theorem makes it possible to create more complex conservative
non-expansions by blending conservative non-expansions together.

Theorem 9 If 01 and 02 are conservative non-expansions, then for any 0 <:: v < 1, the
su��ary operator

is a conservative non-expansion.
Proof: Once again, Condition (20) is not difficult to verify since the operators are being
combined using a convex weighted average.

Condition (21) follows from

10(1+2)'Vh _ 0(H2)'"h' l
I VOlh + (1 - V)02h - (1IOlh' + (1 - V)02h,) I
I II (Olh - 01h,) + (1 - v) (02h - 02h,) I

< v I0' h - 0' h' I + (I - v) 10
2h - 0

2h' l
< v max I h (i) - h'(i) I + (1 - v) max I h(i) - h'(i) 1 = max Ih (i) - h'(i) l . lET tET 1,E T

The proof is easily extended to weighted averages of more than two operators. Q . E.D.

The previous theorem demonstrated one way of making conservative non-expansions
out of other conservative non-expansions by averaging. The next theorem shows a more
sophisticated method for constructing conservative non-expansions.

If 01 is a summary operator over 1" and 02 is a summary operator over 12, we define
the co�position of 0' and 02 to be a summary operator over Ir x I"

, 2 1 2 (0 0 0)h = 0 0 h.
Theorem 10 Let 0 = 01 0 02 for' con8eTvat'ive non-expan8ions 01 oveT 1, and 02 oveT
12 , Then 0 over' I = 1, X 12 'i8 a con8eTvat'ive non-eJ;pILnsion.

37

Proof: Let h and h' be real-valued functions over I. For Condition (20), we see that

The argument that 0 h 2> min(i1 ;i,)E r h(Cil , i2)) is similar.
For Condition (21) ,

This proves that 0 is a conservative non-expansion. Q . E.D.

As a non-trivial application of the preceding theorems, we will show that the minimax
summary operator, used in Markov games, is a conservative non-expansion. Let Al and A2
be finite sets. The m.inim.ax summary operator over Al X A2 is defined as

Let p E II(AI) and let hI be a real-valued function over AI . Define

by Theorem 9 and Theorem 7, OP is a conservative non-expansion. Let h be a real-valued
function over Al x A2. By Theorem 8, the minimum operator is a conservative non-expansion.
Rewrite

minimax is a conservative non-expansion by Theorem 10. The compactness of the set II(AI)
of probability distributions over Al ensures that the above operator is well defined.

The class of conservative non-expansions is quite broad. It is tempting to think that any
operator that satisfies Condition (20) will be a non-expansion. Boltzmann averaging is an
example where this is not the case [26]. It is also easy to construct summary operators that
are non-expansions, but not conservative: 0 h = 1 + maXi h(i) .

38

C POLICY ITERATION AND MAXIMIZING MOD­

ELS

Appendix B describes a collection of important non-expansion operators based on element
selection, ordering, convex combinations, and composition. All of these operators obey an
additional monotonicity property as well.

Operator 0 is monoton·ic if, for all real-valued functions h and h' over a (finite) set I,
h(i) 2:: h'(i) for all i E I implies

O h 2:: O h'.
Theorem 11 The following summary operators are monotonic: Oi for all i E I, ordn for'
all 1 -<; n -<; IJ I , 0(1+2),v for all 0 -<; 1) -<; 1 if 01 and 02 are monotonic, and 01 0 02 if
01 and 02 ar'e monotonic. An operator T : Rn --+ Roo is monotonic if and only if for' all
i = 1 , 2, . . . , Tn T;, is a non-expansion. Moreover, 'if T : Rn --+ Rm and S : Rm --+ Rk al'e
monoton·ic then ST : Rn --+ Rk ·is monotonic, too.
Proof: The monotonicity of 0\ 0(1+2).v , and 01 0 02 follow immediately from their defi­
nitions. The monotonicity of ordn can be proven by considering the effect of increasing h(i)
to h' Ci) for each i E I, one at a time. A simple case analysis shows that each increase in
h('i) cannot decrease the value of ordnh. The rest follows since comparisons are performed
componentwise. Q . E.D.

D POLICY-ITERATION CON VERGENCE PROOF

In this section, we develop the necessary results to show that the generalized policy-iteration
algorithm of Section 2.3 converges to the optimal value function. We will first prove several
simple lemmas that illuminate the fundamental properties of value functions in maximizing
generalized MDPS.

First, for maximizing generalized MDPS, a single step of value iteration on a value function
associated with a mapping w results in a value function that is no smaller.

Lemma 8 For all w : X --+ R, TVw 2:: VW .
Proof: "From Equation (1) , the constraints on 181, and the definition of VW,

[TVW] (x) (® EB (R + '(VW)) (x)
max(®P EB (R + ,VW)) (x) pEn

> (®W(X) EB (R + ,VW)) (x) = VW(x) .

Let TW be the dynamic-programming operator associated with the mapping w
Q . E.D.

The next lemma says that the monotonicity properties of 181 and EB carry over to T and TW.
39

Lemma 9 The mappings T and TW are monotonic JOT' maJ:'imiz'ing general'ized MDP 8.

Proof: For value functions V and V' , we want to show that if V ::> V', then TV ::> TV' and
TWV ::> TWV'. This follows easily frmn the definitions and the monotonicity of the operators
involved and because composition of operators preserves monotonicity. Q . E.D.

Theorem 3 (of Section 2.3) states that the optimal value function dominates the value
functions for all w . We will now prove this using Lemmas 8 and 9.

i.From Lemma 8, we have that VW s: TVw for all w . Combining this with the result of
Lemma 9, we have TVw s: T(TVW) . By induction and transitivity, VW s: (T)kVw for all
integers k ::> 0 where (T)k corresponds to the application of T repeated k times. Because
limk-too(T)kVW = V', it follows that VW s: V', proving the first part of Theorem 3, i.e. ,
that V' ::> maxw VW. (This last inequality is easily proved if we assume that mina Q(x, a) s:
[@P Q](x) s: maxa Q(x, a) holds for all Q and x E X. Then, as it was noted in Section 8, to
every p-policy w we may assign a stochastic policy 1': with @w = @K and t.hus with TK = TW.
From this, the desired inequalit.y follows immediately.) That. V* = maxw VW, follows from
Lemma 3, proved next..

The final result we need relates the convergence of policy iteration to that of value
iteration. Let Ut be the iterates of value iteration and V; be the iterates of policy iteration,
starting from the same initial value function. Let Wt : X -+ R be the sequence of mappings
such that V; = VWt .

Lemma 3 states that, for all t and x E X, Ut (x) s: V;(x) s: V' (x) . We proceed by
induction. Clearly Uo(x) s: Vo(x), because they are defined to be equal. Now, assume that
Ut(x) s: V;(x) s: V*(x). By Lemma 9, TUt (x) s: TV;(x). By definition, TUt (x) = Uf+l (X) ,
by Lemma 8, V; s: TV;, and by definition TV; = TWIV;. Now by an argument similar to the
proof of Theorem 3,

Therefore, Ut+1 (x) s: V;+1 (x) . By Theorem 3, V;+1 (x) = VWt+l s: V*(x), completing the
proof of Lemma 3.

Lemma 3 and Lemma 1 (which stated that value iteration converges) together imply the
convergence of policy iteration. Lemma 3 also provides a bound on the convergence rate of
the algorithm; it is no slower than value iteration, but perhaps faster.

E REDUCTION OF SOME PARALLEL ITERATI VE

PROCEDURES TO SIMPLER ONES

Jaakkola et al. [19] proved (Lemma 2) that if

(22)

and Ft s: ,(1 - Gt) for some 0 s: , < 1 and limn-+oo n�=k Gt 0 with probability one
uniformly over X for all k > 0 then the process of Equation (22) converges to "ero with
probability one uniformly over X. To be precise, the conditions of their Lemma are not

40

exactly the same as the above conditions. Particularly, they assume that condition Ft <:: '((1 - Gt) holds only in the conditional mean with respect to the history of the process and
make sorne additional assumptions concerning Gt.

We may expect that, for $Deltat -+ 0, a 8t (x) which satisfies

(see Equation (4)) still converges to zero since it is just a perturbed version of the process
of Equation (22) where the perturbation converges to zero. Indeed, according to Lemma 12
stated and proved below, this process converges to zero with probability one uniformly over
x.

Before proving Lemma 12 we prove some additional statements that are required for the
proof. The proof of Lemma 12 follows along the same lines as the proof of Lemma 2 of
Jaakkola et al. [19] . First, we prove a simplified version of Lemma 12 then a rather technical
lemma follows. (It may be considered as an extension to Jaakkola et al. 's Lemma 1 [19] .)
This lemma is about the convergence of homogeneous processes. \Ve will use this result to
show that the perturbation caused by Llt can be neglected. Finally, the proof of Lemma 12
follows. We would like to emphasize that the main result of this section is Lemma 10 since
this is the very point in the proofs when we must take into account that d�fferent components
of 8t(x) change independently of each other.

E . 1 THE MAIN CONVERGENCE LEMMA

Now, we prove our version of Jaakkola et al. 's [19] Lemma 2. l\ote that both our assumptions
and our proof are slightly different from theirs.

Lemma 10 Let Z be an arbitrary set and consider the sequence

where z E Z and I I .r, II < C < 00 with probability one for .some C > o. AS8ume that for all
k limn-+oo rr�=k gt(z) = 0 uniformly in z with probability one and ft (z) <:: '((1 - gt (z)) with
probability one. Then I IXt l 1 converges to 0 with probability one.

Proof: We will prove that for each E, 8 > 0 there exist an index T = T(E, 8) < 00 (possibly
random 19) such that

Pr(sup I I :rt l l < 8) > 1 - f. (24)
t>T

Fix arbitrary f, (j > 0 and a sequence of numbers PI , . . . , Pn, . . . satisfying 0 < Pn < 1 to be
chosen later.

191\0te that in probability textbooks usually T is not allowed to be random. However, the following short
train of thoughts justifies that T can be random and almost sure convergence still holds. First, note that
Pr (SUPk<t IXt l 2: 0) :S Pr((suPT<t IXt l 2: 0, (T > k)) or (T > k)) :S Pr(suPT<t IXtl 2: b) + Pr(T > k). Now,
fix an arDitrary 0, 1} > 0 and let

-
To = T(O,1}/2), and let k = k(t, 1}) be a natural number, large enough so

that Pr(To > k) < 11/2. Such a number exists since To < x . Then, Pr(suPk<t IXtl < 6) :S Pr(suP1o<I IXtl 2:
6) + Pr(To > k) < 1} which Willi the desired result.

- -

41

We have that

Xt+1 (Z) Yt(Z)Xt (Z) + ft(z) I IXt l l
< gt(z) l lxt l l + ft(z) l lxt l l
< (gl (Z) + f, (z)) I I :1:1 1 1
< I lxt l l ,

since, by assumption, gl(z) + f, (z) <:: g,(z) + ,(1 - g, (z)) <:: l . Thus, we have that I IXL+, I I <::
I lx L i I for all t and, particularly, I lxL i I <:: C, = I lx, l l holds for all t . Consequently, the process

(25)

with y, = x, estimates the process {Xt} from above: 0 <:: Xt <:: Yt holds for all t . The process
Yt converges to ,C, with probability one uniformly over Z and, thus,

lim sup I lx, 1 1 <:: �jC, t-+oo
with probability one. Thus, there exist an index, say NI" for which if t > NI, then I IXt l 1 <::
(1 +,)/2 C, with probability p, . Assume that up to some index i ? 1 we have found numbers
Nli such that when t > Ali then

(26)

holds with probability P,P2 . . . Pi. Now let us restrict our attention to those events for which
Inequality (26) holds. Then we see that the process

YM,
Yt+1 (z)

bounds Xt from above from the index 1\1[i. Now, the above argument can be repeated to
obtain an index 1'vll+' such that Inequality (26) hold for i + 1 with probability P,P2 · · . PiPi+1'

Since (1 + ,)/2 < 1, there exists an index Ii: for which ((1 + '()/2)kC, < f. Then we get
that Equation (24) is satisfied when we choose p" . . . , Pk in a way that P,P2 . . . Pk ? 1 - f
and we let T = Nlk (= Nh(p, ,P2, · · · , Pk)) . Q . E.D.

When Equation (23) is subject to decaying perturbations, say tt , then the proof does not
apply any more. The problem is that I I .Tt l l <:: I lx, l l (or I I .THt l l <:: I I .TT I I , for large enough T)
can no longer be ensured without additional assumptions. For .Tt+1 (z) <:: I IXt l 1 to hold, we
would need that ,ft <:: (1 - ,) I IXt l l , and if lim inft-too I IXt l 1 = 0 then we could not check this
relation a priori. Thus we choose another way to prove Lemma 12. Notice first, that the
key idea in the above proof is to bound Xt by Yt. This can be done if we assume that Xt is
kept bounded artificially, e.g., by scaling. The next subsection shows that such a change of
Xt does not effect the convergence properties.

42

E.2 SCALED HOMOGENEOUS PROCESSES

The next lemma is about homogeneous processes, that is about processes of form

(27)

where Gn is a random function which is homogeneous, i .e. ,

(28)

holds for all Ii > 0, .T and f. We arc int.erest.ed in the quest.ion whet.her .Tn converges t.o zero
or not.. Not.e that 6, defined by Inequalit.y (4) , when t.he inequality is replaced by equalit.y,
is a homogeneous process. The lemma below says that, under additional conditions, it is
enough to prove t.he convergence of a modified process which i8 kept bounded by "ealing to
zero, that is, for the process

if I IGn (Yn, En) 1 1 ::; T;
otherwise,

(29)

where T > 0 is an arbit.rary fixed number.
Let us denote the solution of Equation (27) corresponding to the initial condition Xo = w

and t.he sequence f = {fd by :r,, (w, f) . Similarly, let. us denote t.he solut.ion of Equat.ion (29)
corresponding to the init.ial condit.ion Yo = 711 and t.he sequence f by y,, (w, f) .

We say t.hat. t.he process .Tn is in8en.9itive to .finite perturbation8 of f if it. holds t.hat. if
Xn (w, E) converges to "ero then so does Xn (w , E') , where E' is an arbitrary sequence that differs
only in a finite number of terms from E. Further, we say that the process Xn is insensitive
to scaling of E by number's smaller than 1, if for all 0 < C < 1 there holds that if xn (w, E)
converges to zero then so does ern (w, Cf).

Lemma 11 Let us .fix an arbitrary positive number T and an arbitrary Wo and sequence E­
Then, a homogeneous process Xn (Wo, E) converge" to zero with probability one, provided that
Xn is insensitive to finite pertur'bations of f and also Xn is insensitive to the sealing of f by
numbers smaller than one and y,,(wo, e) converyes to ze7"O.

Proof: Let Ck be an arbitrary sequence of reals. For convenience, we will denote the product
sequence {ckEd by CE. We state that

(30)

for some sequences {cn} and {dn} satisfying 0 < dn ::; 1 and Cn = (Cno, Cnl, . . . , Cnk, . . .) , with o < Cnk ::; 1 and Cnk = 1 for k ::> n. Kote that YnCw, E) , and also xnCw, E) depends only
on EO , " " En-I' Thus, it is possible to prove Equation (30) by constructing the appropriate
sequences Cn and dn·

Set COi = 1 for all i = 0, 1 , 2, . . . and let do = 1 . Then, Equation (30) holds for n = O. Let
us assume that Equation (30) holds for n. Let Sn be the "scaling coefficient" of Yn at step
(71 + 1) (Sn = 1 if there is no scaling, otherwise 0 < Sn < 1 with Sn = T/ I IGn(Yn, En) I I) :

SnGn (Yn(w, E) , En)
Gn (SnYn (W , E) , Snen)
Gn (S"x,, (dnw, Cnf), Snfn) '

43

We claim that

holds for all w, E and S > O.
For n = 0, this obviously holds. Assume that it holds for n. Then

Thus,

SGn(Xn(W, E) , En)
Gn(SXn(W, E), SEn)
Gn(Xn(S"W, Sf) , SEn)

:l:n+1 (Sw, SE).

Yn+1 (W, E) = Gn(Xn(Sndnw, SnCnE), SnEn)

(31)

and we see that Equation (30) holds if we define en+!,. through Cn+!,i := SnCn" i = 0, . . . , n
and we let Cn+1.i = 1 for i > n + 1 and dn+1 = Sndn.

Thus, we find that with the sequences

do = 1 , and

Equation (30) is satisfied.

. . _ { ITj�/ Sj, if i < n;
Cn,t - 1 th ' , 0 , en:�nse,

on
dn+! = II Sj

j=O

Now, assume that we want to prove for a particular sequence f and initial value 111 that

lim Xn(11I, E) = 0 n---+oo (32)

holds with probability one. It is enough to prove that Equation (32) holds with probability
1 - J when 15 > 0 is an arbitrary, small enough number.

We know that Yn Cw, E) --+ 0 with probability one. We may assume that T > 15. Then,
there exist an index 11:1 = 11:1(15) such that if n > M then

Pr(I I YnCw, E) I I < 15) > 1 - 15.
Now, let us restrict our attention to those events for which I I Y,,(w, E) I I < J for all n > AI.
Since 15 < T, we get that there is no rescaling after step 11:1: Sn = 1 if n > 11:1. Thus,
Cn,i = CM+!,i for all n ::: 11:1 + 1 and i, and specifically en,i = 1 if i, t ::: 11:1 + 1 . Similarly, if
n > }vI then dn+! = m\clO Si = dM+!. By Equation (30) , we have that if n > 11:1 then

Yn (11I, f) = Xn (d"1+l"W, CM+!f).

Thus, we have that Xn(d"'f+111l, CM+!E) converges to zero and by Equation (31) , Xn (11I, CM+!E/dM+!)
converges to zero. Since Xn is insensitive to finite perturbations (in C1<1+l only a finite number
of entries differs from 1) , xn (w, E/dM+l) also converges to zero, and further since dAHl < 1 ,
Xn Cw, E) converges to zero, too (xn is insensitive to scaling of E by dl'Hl) ' All these hold with
probability at least 1 - J. Since J was arbitrary, the lemma follows. Q . E.D.

Now, we are in the position to prove that Lemma 10 is immune against decaying pertur­
bations.

44

Lemma 12 A8sume that the conditions of Lemma 1 0 m'e wtisfied but Eq'Uat'ion (23) is
replaced by

(33)

where Et ?': 0 and Et converges to zero with probability one. Then Xt (z) still converges to zero
with probability 1 'Unzformly over Z.

Proof: We follow the proof of Lemma 1 1 . First, we show that the process of Equation (33)
satisfies the assumptions of Lemma 1 1 and, thus, it is enough to consider the version of
Equation (33) that is kept bounded by scaling.

First, note that Xt is a homogeneous process. Let us prove that Xt is immune against
finite perturbations of E. To this end, assume that E; differs only in a finite number of terms
from Et, and let

Take

Then,

For large enough t ,

which is known to converge to "ero by Lemma 10. Thus, Xt and Yt both converge or not
converge and if one converges then the other must converge to the same value.

The other requirement that we must satisfy to be able to apply Lemma 1 1 is that Xn
is insensitive to scaling of the perturbation by numbers smaller than one; let us choose a
number 0 < e < 1 and assume that xn (w , E) converges to zero with probability one. Then,
since x,, (w, eE) ::; Xn (W , E) , Xn (W , eE) converges to zero with probability one, too.

Now, let. us prove t.hat. t.he process t.hat. is obt.ained from Xt by keeping it. hounded
converges t.o zero. The proof is t.he mere repetition of the proof of Lemma 10 except. a few
point.s t.hat. we discuss now. Let us denote hy .Tt t.he process t.hat. is kept. hounded and let.
the bound be C, . It is enough to prove that I I .Tt l l converges to 7,ero with probability one.
Now, Equation (25) is replaced by

!it+1 (Z) = gt(z)!it (z) + i(l - gt(z)) (C1 + Et) .

Now, !it still converges to iCI by Lemma 3.5 of Szepesvari [49] and also 0 ::; Xt ::; !it. Thus,
the whole argument of Lemma 10 can be repeated for the process .Tt, and we get that I IXt l 1
converges to zero with probability one and consequently so does 1 1 :);t i I - Q . E.D.

F CENTRALIZED LEARNING RATES

Note that the learning rate of the on-line Q-learning procedure is given by X(x = Xt, a =
at)at(x, a) for a given state-action pair (x, a). Thus, in order to ensure that Qt converges
to Q' uniformly we have to be certain that ��I X(x = Xt, a = at)at(x, a) is infinity. In

45

practice, instead of a separate learning rate for each state-action pair, often a single learning
rate is used (this choice is especially reasonable if the spreading version of Q-learning or soft
state aggregation is used). Bradtke conjectured that if this single "centralized" learning rate,
nt, satisfies the criteria L�l nt = 00 and L�l n; < 00 then for each (x, a) L�l ntX(x =
Xt, a = ad = 00 and L�l n;x(x = Xt, a = at) < 00 will still hold [8]. This second condition
is satisfied since n;x(x = Xt, a = at) <:: n; for all t :;, 1 . The following propositions give some
conditions under which the first condition is still met.

Lemma 13 If the state-action inter-arrival times in X (x = Xt, a = at) have a common
'Upper bound then L�1 X(x = Xl, a = al)nl(x, a) = 00 holds wdh probabildy one provided
that L�l nl(x, a) = 00 and al (x, a) is a decreasing sequence.

Proof: It is enough to prove the statement for an arbitrary decreasing numerical sequence,
nt. Note that L�l Xtat can be rewritten as L�l an, with an appropriate increasing random
sequence nt. Assume that ntH - nt <:: d, i .e . , that the state-action inter-arrival times are
bounded. Since an, :;, an,+i , i = 0, 1 , . . . , ntH - nt - 1 ,

and

n[+1-nt-1
(nt+l - nt)ont � L Ctnt+i

i=O

1 nt+l-nt-1
ant 2: d L ant+i

i=O
holds for all t with probability one. Summing this with respect to t, we get

holds with probability one.

An important extension of the above proposition is the following.

Q . E.D.

Lemma 14 Assume that an is a deer'easing seq'uenee and let dl be mndorn n'Umbers. Assume
that there exists a sequence HI such that

00
L Pr(dt :;, Rt) < 00
t�l

and the HI thinn'ing of Ln nn (that 'is Lt amt , where rrtl
converges to infinity, Then

00

L::Cl:nt = oc
t=l

with probability one, where nl = 1 and nH 1 = nt + dt ·

46

Proof: It is enough to prove that there exists a fixed T such that d{ -<: R, holds for all t > T
with probability one, since then Tn{ :0- TI{-T and, thus, (im, -<: (int_r for T = max{sITlr_s <
mT}. Let At = {w ld, (w) :0- R{}. The required statement is equivalent to

(34)

According to the Borel-Cantelli Lemma, in order to prove Equation (34) it is enough to show
that L, Pr(A{) < oc However, this holds by assumption. Q . E.D.

The main result of this section is the following.

Theorem 12 Let (in = l/TI and assume that the dts are exponentially distrib'uted w-ith corn­
man parameters, that is there exist numbers p and q such that Pr(dt :0- k) -<: qpk Then

with probability one, where TIl = 1 and TltH = TIt + dt.

Proof: We make use of Lemma 14. Let R, = (2/c) log t , where c = log(l/p) . Then,
Pr(dt :0- Rt) = q/t2 and, thus, L�l Pr(dt :0- Rt) < 00. On the other hand, let Tnl = 1 and
mtH = LTnt + RtJ = Lmt + (2/c) log t] . Then, Tnt -<: i(2/c)t log tl can be proved by induction,
glVmg us

� am, = � �t :O- I�l � Lt l�g tJ
=

oc
and proving the theorem. Q . E.D.

The implication of this result for Q-learning is this. If the policy followed by the learner is
eventually strongly ergodic, then the distribution of the visits of a state becomes exponentiaL
This means that it in Q-learning it is sufficient to consider a unique sequence of learning
rates together with sufficient exploration to ensure convergence to the optimal Q-function.

G CON VERGENCE OF Q-LEARNING FOR RISK­

SENSITIVE MODELS

Assume that both X and A are finite. Heger studied the risk-sensitive criterion defined by
(E!7 g) (x, a) = miny,p(a.x.v» o g (x, a, y) and (@ f) (x) = lnaxa f(x, a). In this section, we will
prove the following theorem (also proven by Heger [14]) .

Theorem 13 Let

Q () _ { min (Tt + ,[@ Qt] (Yt) , Qt(x, a)) ; if (.T, a) = (:Tt , at); H, x, a - Q () . h
. t x, a , at er1m.5e,

(3,5)

where (xt, at, Yt, rt) is the experience of the agent at time t, Yt is selected according to
P(x, a, ,) , and rt is a random variable with lim inf(x,a,y)=(x" a" y,) rt = R(x, a, y) with prob­
ability one. Then, Qt converges to Q', the fixed point of oper'ator' K, KQ = E!7(R + , @ Q)
pTovided that Qo :0- Q* and ever'Y state-action pair is updated infinitely often.

47

Proof: \Ve prove this theorem in two parts. First, we assume that Tt = R(xL , at , YL) , i .e . , Tt
is non-random. \Ve want to use Theorem 3. 1 . Let our random operator sequence be defined
in the customary way:

[T, (Q' Q)] (x a) = { min (Tt + ;[@ qt] (Yt) , cJ(x, a)) ; if (x, a) = (Xt, at) ; t , , Q'(x, a) ; otherwISe,

It is immediate that Tt approximates T at Q' provided that Qo :;,. Q'. However, the definition
of an appropriate function FL seems to be impossible since Ft .(x, a) -<: ; should hold if
(x, a) = (xt, at) . But, if rt + ;[@ q] (Yt) :;,. q(x, a) , then Tt(q' , q') (x, a) - Tt(q' , Q) (x, a) =
q' (x, a) - q(x, a) , and there is no guarantee that Iq' (x, a) - q(x, a) l -<: Il lq - q' l l . In the
other case, when Tt + ;[@ Q] (Yt) < q(x, a) , Tt(q', q') (x, a) - Tt (Q', q) (x, a) = q' (x, a) -
(R(xt , at, Yt) + 7[@ Q] (Yt)) , which seems much more promising since Q* (.7:, a) = R(.7:, a, y) +
1[@ Q*] (y) for Y = argminzR(.7: , a, z) +7[@ Q*](Z). If Y = Yt (by chance) , then it follows that
ITt(Q' , Q*) (x, a) - 71(Q', Q) (.7:, a) l -<: 7 1 IQ - Q' I I · Since the case when (.7:, 0,) f. (Xt, at) , i.e. ,
when there is no update, is pleasant (Gt(x, a) = 1 and Ft (x, a) = 0) , the idea is to restrict
the updates to the other tractable case when Yt = y.

Let the set of critical states for a given (x, a) pair be given by

M(x, a) = {y E X I P(x, a, y) > 0, Q' (x, a) = R(x, a, y) + 1[0 Q'] (y)} .

1'vf(x, a) is non-empty since X is finite. Let us consider the artificial operators

T'(Q'. Q) (x a) = { I.nin (TL + 7[@ Q](Yt) , Q(x, a)) ; if (x, a) = (XL , at) and Yt E lvf(x, a) ; t . , q'(x, a) ; otherWise

and the sequence q� = Qo and Q;+I = T:(Q;, Q;) . Kow, the question is whether it is
sufficient to consider the convergence of Q;. Fortunately, it is. Since there are no more
updates (decreases of value) in the sequence defined by T[, we have that Q' -<: Qt -<: Q; and,
thus, if Q; converges to Q* then necessarily so does Qt. It is again immediate that T[still
approximates T at Q' and also that

Gt(x, a) = { o; if (:T, a� = (Xt , at) and Yt E 1\;f(.7: , a) ,
1 ; otherWise.

Let us show that we can also define a suitable Ft function for T; ' Assume first that
(x, a) = (XL, at) and Yt E kf(x, a) . Note that we may assume that all the test functions are
overestimating, in particular in the inequality below we may assume that Q' :;,. Q'.

IT;(Q', Q) (x, a) T; (Q', Q') (x, a) I = min(Tt + 7[0 Q] (Yt) , Q(x, a)) - (rt + 1[0 Q'] (Yt))
< rL + 7[0 Q] (Yt) - (Tt + -([0 Q'] (YL))
< -(([0 q](Yt) - [0 q*] (Yt)) -<: I l lq - q' l l ·

In the other casc, when (x, a) f. (Xt, at) or Yt rt kI(x, a) thcn

IT;(Q', Q) (x, a) - T;(Q', Q') (x, a) I = IQ'(x, a) - Q'(x, a) 1 = o.

48

Thus,
Q () _ { ,; if (x, a) = (Xl, at) and Y{ E M(x, a) , rt .T. a - I ' . 0; ot lenVlse,

Condition (3) of Theorem 3.1 is satisfied if and only if the event { (x, a) = (Xt, at) , Yt E
M(x, a) } occurs infinitely often. By assumption, { (x, a) = (xt, at)} occurs infinitely many
times and, since if Y E iVl(x, a) then P(x, a, y) > 0 and since Yl is sampled according to
P(x, a, .) , (x, a) = (Xl, at) , Yt E iVl(x, a) occurs infinitely often, too. Finally, Condition (4) is
satisfied since, for all t, F{(x) = ,(I - Gt (x)) holds.

Now, we turn to the second part of the proof which is based on an idea very similar in
spirit to the idea on which the proof of the first part was built. Assume that the rewards Tt
are random and

lim inf Tt = R(x, a, y) (x ,a,y)=(.Tt ,at ,Yt) ,t--+oo
with probability one and, thus, for each triple (x, a, y) we may choose a subsequence tk such
that (x, a, y) = (xtk , atk , Yt,) for all k and

lim Ttk = R(:E, a, y). k--+oo
Let T(x, a, y) be the set of numbers {tk} when (Xl, at, Yt) = (x, a, y). Further, let T(x, a) =
UyEM(x,a)T(x, a, y) . The above proof can be repeated almost exactly, the only exception is
that we must further restrict the updates. Now let

T'(Q' Q) (x a) = { min (rt + ,[@Q](Yt), Q(x, a)) ; if t E r,(x, a) , t , , Q'(x, a); otherWIse.

We still have that T! approximates T at Q' with probability one provided that Qo ::> Q*. As
in the previous case, we get that

G () _ { O; if t E T(x, a); t x. a - . . 1 ; otherWIse

but the estimation of ITi(Q', Q) (x, a) - Ti(Q', Q') (x, 0,) 1 must be changed. Assume first that
t E T(x, a) . Then,

ITi (Q', Q) (x, a) - Ti(Q', Q') (x, 0,) 1 (36)

min(Tt + ,[® Q](Yl) , Q(x, a)) - (R(x, a, Yt) + 'd® Q'] (Yt))
< rt + ,[® Q] (Yt) - (R(:E, a, Yt) + ,[® Q*] (Yt))
< ,I IQ - Q' I I + I Tt - R(x, a, Yt) l · (37)

Let (Jl (:r, a) = I Tl - R(:r, a, Yt) l . Note, that

lim (J{(x, a) = 0 t--+XJ,tET(x,a)
with probability one. In the other case ITi(Q', Q) (x, a) - T;(Q', Q*) (x, 0,) 1 = O. Because of
the appearance of (Jt(x, a) in Inequality (37) instead of Condition 2 of Theorem 3.1 we have
that

IT/ (Q' , Q) (x, a) - T/(Q', Q') (x, 0,) 1 = Ft(x, a) (I IQ - Q' I I + At (X, a)) ,
49

where
if t E T (x , a) ,
otherwise,

and At(X, a) = (Jt(x, a)1! if t E T(x, a), At(X, a) = 0, otherwise.
But, then the change in the proof of Theorem 3.1 is just superficial, namely, instead of

Equation (4) we have that (in the notation of Theorem 3.1)

(38)

where At(X) converges to hero with probability one. However, this additional decaying pertur­
bation can be blended into Ll.t and, thus, we see that our method still applies and Q-learning
converges to Q' in this ease, as well. Q . E.D.

References

[1] Andrew G. Barto, S . . J. Bradtke, and Satinder P. Singh. Learning to act using real-time
dynamic programming. Artificial Intelligence, 72(1) :81-138, 1995.

[2] Andrew G. Barto, Richard S. Sutton, and Christopher J . C. H. Watkins. Learning
and sequential decision making. Technical Report 89-95, Department of Computer and
Information Science, University of Massachusetts, Amherst, yIA, 1989. Also published in
Leaming and Computational Neuroscience: Foundations of Adaptive Networ'ks, Michael
Gabriel and John Moore, editors. The MIT Press, Cambridge, MA, 1991.

[3] Richard Bellman. Dynamic Programming. Princeton Cniversity Press, Princeton, NJ,
1957.

[4] A. Benveniste, M. yIetivier, and P. Priouret. Adaptive Algorithms and Stochastic Ap­
proximations. Springer Verlag, Kew York, 1990.

[5] D.P. Bertsekas. Monotone mappings with application in dynamic programming. SIAM
Joumal on Control and Optimization, 15(3) :438-464, 1977.

[6] D.P. Bertsekas and S.E. Shreve. Stochastic Optimal Control: The Discrete Time Case.
Academic Press, New York, 1978.

[7] Justin A. Boyan. yIodular neural networks for learning context-dependent game strate­
gies. Master's thesis, Department of Engineering and Computer Laboratory, University
of Cambridge, Cambridge, CK, August 1992.

[8] S.J. Bradtke. Incremental dynamic programming for on-line adaptive optimal control.
Technical Report 94-62, Department of Computer and Information Science, University
of yIassachusetts, Amherst, Massachusetts, 1994.

[9] Anne Condon. The complexity of stochastic games. Information and Computation,
96(2) :203-224, February 1992.

50

[10] Anne Condon. On algorithms for simple stochastic games. DIMACS SeTies in Discrete
Mathemat'ic.s and Them'etical Computer' Science, 13:51-71, 1993.

[11] Cyrus Derman. Finite State Markovian Decision Processes. Academic Press, New York,
NY, 1970.

[12] Geoffrey J. Gordon. Stable function approximation in dynamic programming. In Ar­
mand Prieditis and Stuart Russell, editors, Proceeding.s of the Twelfth International
Conference on Machine Learning, pages 261-268, San Francisco, CA, 1995. Morgan
Kaufmann.

[13] Vijaykurnar Gullapalli and Andrew G. Barto. Convergence of indirect adaptive asyn­
chronous value iteration algorithms. In J. D. Cowan, G. Tesauro, and J. Alspector,
editors, Advance8 in Neural Information Processing Systems 6, pages 695-702, San Ma­
teo, CA, 1994. Morgan Kaufmann.

[14] :Vlatthias Heger. Risk-averse reinforcement learning. Ph.D. thesis, in preparation.

[I S] :Vlatthias Heger. Consideration of risk in reinforcement learning. In PToceeding.s of the
Eleventh International ConfeTence on Machine LeaTning, pages lOS-I l l , San Francisco,
CA, 1994. Morgan Kaufmann.

[16] :Vlatthias Heger. The loss from imperfect value functions in expectation-based and
minimax-based tasks. Machine Learning, 22 (1/2/3) : 197-226, 1996.

[17] A. J. Hoffman and R. M. Karp. On nonterminating stochastic games. Management
Science, 12:3.59-370, 1966.

[18] Ronald A. Howard. Dynamic Programming and Markov Processes. The :VIIT Press,
Cambridge, Massachusetts, 1960.

[19] Tommi Jaakkola, Michael 1. Jordan, and Satinder P. Singh. On the convergence of
stochastic iterative dynamic programming algorithms. Ne'ural Computution, 6(6) :1 185-
1201, Kovember 1994.

[20] George H. John. When the best move isn't optimal: Q-learning with exploration. In
PToceeding.s of the Twelfth Nat'ional Confer'ence on ATtificial Intelligence, page 1464,
Seattle, WA, 1994.

[21] George H. John. When the best move isn't optimal: Q-learning
with exploration. Unpublished manuscript, available through URL
ftp : //starry . stanford . edu/pub/gj ohn/papers/rein-nips . ps, 1995.

[22] R. E. Korf. Real-time heuristic search. Artificial Intelligence, 42:189-211 , 1990.

[23] P.R. Kumar. A survey of some results in stochastic adaptive controls. SIAM Journal
of Control and Optim'ization, 23:329-380, 1985.

51

[24] :VIichael L. Littman. Markov games as a framework for multi-agent reinforcement learn­
ing. In PToceeding.s of the Eleventh Inter'national ConfeTence on Machine Learning,
pages 157-163, San Francisco, CA, 1994. Morgan Kaufmann.

[2.5] :VIichael L. Littman. Combining exploration and contol m reinforcement learn-
ing: The convergence of SARSA. Unpublished manuscript. Available through URL
http : //www . cs . duke . edurmlittman, 1996.

[26] :VIichael Lederman Littman. Algorithm.s for Sequential Deci8ion Making. PhD thesis,
Department of Computer Science, Brown University, February 1996. Also Technical
Report CS-96-09.

[27] Sridhar Mahadevan. Average reward reinforcement leaming: Foundations, algorithms,
and empirical results. Machine Learning, 22 (1/2/3) :159-196, 1996.

[28] :Vlatthew A. F. :VIcDonald and Philip Hingston. Approximate discounted dynamic pro­
gramming is unreliable. Technical report 94/7, Department of Computer Science, The
University of Western Australia, Crawkey, WA, 6009, October 1994.

[29] Andrew \V. Moore and Christopher G. Atkeson. Prioritized sweeping: Reinforcement
learning with less data and less real time. Machine Lear'ning, 13:103-130, 1993.

[30] Jing Peng and Ronald J. Williams. Incremental multi-step Q-learning. In Proceeding.s
of the Eleventh International Conference on Machine Learning, pages 226-232, San
Francisco, CA, 1994. :Vlorgan Kaufmann.

[31] :Vlartin 1. Puterman. Markov Deci.sion Proce.s8e8-Di.screte Stocha8tic Dynamic Pro­
gramming. John Wiley & Sons, Inc., New York, NY, 1994.

[32] Carlos Ilibeiro and Csaba Szepesvari. Spatial spreading of action values in Q-leaming. In
PToceed'ing.s of ISRF-lEE Intemational ConfeTence: Intelligent and Cogn-itive Sy.stems,
Neural Networb Sympo.sinm, pages 32-36, 1996,

[33] C.H.C. Ribeiro. Attentional mechanisms as a strategy for generalisation in the Q­
learning algorithm. In Proceeding.s of ICANN'95, volume 1 , pages 45.5-460, 199.5.

[34] Herbert Robbins and Sutton MOIlIO. A stochastic approximation method. Anna!., of
Mathemat'ical Stat'i.st'ic.s, 22:400-407, 1951.

[3.5] G. A. Rummery. Problem .solving with reinforcement leaming. PhD thesis, Cambridge
University Engineering Department, 1994.

[36] G. A. Rummcry and :VI. Niranjan. On-linc Q-lcarning using connectionist systems.
Technical Report CCED/F-I'<FENG/TR 166, Cambridge University Engineering De­
partment, 1994.

52

[37] Nicol N. Schraudolph, Peter Dayan, and Terrence J. Sejnowski. Temporal difference
learning of position evaluation in the game of Go. In J. D. Cowan, G . Tesauro, and
J. Alspector, editors, Advance., in Neuml Infor"Tnation PTlJce88ing Sy.,tem8 6, pages 817-
824, San Mateo, CA, 1994. Morgan Kaufmann.

[38] Anton Schwartz. A reinforcement learning method for maximizing undiscounted re­
wards. In Proceedings of the Tenth International Conference on Machine Learning,
pages 298-305, Amherst, MA, 1993. Morgan Kaufmann.

[39] L.S. Shapley. Stochastic games. Proceeding8 of the National Academy of Sciences of the
United State8 of America, 39:1095-1100, 1953.

[40] Satinder P. Singh and Vijaykurnar Gullapalli. Asynchronous modified policy iter­
at.ion wit.h single-sided updat.es. Unpublished manuscript.. Available t.hrough URL
ftp : //ftp . cs . colorado . edu/users/bavej a/Papers/single-sided . ps . Z, 1993.

[41] Satinder P. Singh and Richard S. Sutton. Reinforcement learning with replacing eligi­
bility traces. Machine Learning, 22 (1/2/3) : 123-158, 1996.

[42] Satinder Pal Singh and Richard C. Yee. An upper bound on the loss frorn approximate
optimal-value functions. Machine Leaming, 16:227, 1994.

[43] S.P. Singh, T. Jaakkola, and M.I . Jordan. Reinforcement learning with soft state ag­
gregation. In G . Tesauro, D. S. Touretzky, and T. K. Leen, editors, Advances in Nenml
Information Proces8ing Systems 7, pages 361-368, Cambridge, MA, 1995. The MIT
Press.

[44] D.R. Smart. Fixed point theorems. Cambridge University Press, Cambridge, 1974.

[45] Richard S. Sutton. Learning to predict by the method of temporal differences. Mach-inc
Leam-ing, 3(1) :9-44, 1988.

[46] Richard S. Sutton. Integrated architectures for learning, planning, and reacting based
on approximating dynamic programming. In Pmceed-ing8 of the Seventh International
Confer'ence on Machine Leaming, pages 216-224, Austin, TX, 1990. Morgan Kaufmann.

[47] Richard S. Sutton. Generalization in reinforcement learning: Successful examples using
sparse coarse coding. In D . S. Touretzky, M. C. :VIozer, and M. E. Hasselmo, editors,
Advances in Neural Information Processing Systems 8, Cambridge, MA, 1996. The MIT
Press.

[48] Cs. Szepesvari. Abstract dynamic programming under monotonicity assumptions: Non­
:VIarkovian policies, policy iteration and the optimality equation. Technical Report
96-103, Research Group on Artificial Intelligence, JATE-:VITA, August 1996.

[49] Cs. Szepesvari. Synthesis of neural networks: the case of cascaded Hebbians. Technical
Report TR-96-102, Research Group on Artificial Intelligence, JATE-MTA, August 1996.

53

[50] Csaba Szepesvari. A general framework for reinforcement learning. In Pmceed'ings of
ICA NN '95, volume 2, pages 165-170, 1995.

[51] Gerald Tesauro. Temporal difference learning and TD-Gammon. Communications of
the ACM, pages 58-67, March 199.5.

[52] Sebastian Thrun. Learning to play the game of chess. In G. Tesauro, D. S. Touretzky,
and T. K. Leen, editors, Advances in Neural Information Proce8.sing Sy.stem8 7, pages
1069-1076, Cambridge, MA, 199.5. The MIT Press.

[53] John N. Tsitsiklis. Asynchronous stochastic approximation and Q-lcarning. Machine
Leam'ing, 16(3) :185-202, September 1994.

[54] John 1\. Tsitsiklis and Benjamin Van Roy. An analysis of temporal-difference
learning with function approximation. Technical Report LIDS-P-2322, Mas­
sachusetts Institute of Technology, March 1996. Available through URL
http : //web .mit . edu/bvr/www/td . ps. To appear in IEEE Transactions on Automat·ic
Control,

[5.5] John N. Tsitsiklis and Benjamin Van Roy. Feature-based methods for large scale dy­
namic programming. Machine Learning, 22(1/2/3) :59-94, 1996.

[56] Sergio Verdu and H. Vincent Poor. Abstract dynamic programming models under
commutativity conditions. SIAM Journal of Control and Optimization, 25(4):990-1006,
July 1987.

[57] O. J. Vrieze and S. H. Tijs. Fictitious play applied to sequences of games and discounted
stochastic games. International Journal of Game Theory, 1 1 (2) :71-85, 1982 .

[58] K.-H. Waldmann. On bounds for dynamic programs. Mathematics of Operations Re­
sear'ch, 10(2) : 220-232, May 198.5.

[59] Christopher J. C. H. Watkins. Learn'ing jrmn Delayed Rewards. PhD thesis, King's
College, Cambridge, UK, 1989.

[60] Christopher J. C. H. Watkins and Peter Dayan. Q-learning. Machine Learning, 8(3) :279
292, 1992.

[61] Ronald J. Williams and Leemon C. Baird, III. Analysis of some incremental variants of
policy iteration: First steps toward understanding actor-critic learning systems. Tech­
nical Report NC-CCS-93-11 , Northeastern University, College of Computer Science,
Boston, MA, September 1993.

[62] Ronald J . Williams and Leemon C. Baird, III. Tight performance bounds on greedy
policies based on imperfect value functions. Technical Report I\U-CCS-93-14, North­
eastern University, College of Computer Science, Boston, MA, November 1993.

54

