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Abstract: Augmented IIR filter adaptive algorithms have been considered in many studies, which
are suitable for proper and improper complex-valued signals. However, lots of augmented IIR
filter adaptive algorithms are developed under the mean square error (MSE) criterion. It is an ideal
optimality criterion under Gaussian noises but fails to model the behavior of non-Gaussian noise
found in practice. Complex correntropy has shown robustness under non-Gaussian noises in the
design of adaptive filters as a similarity measure for the complex random variables. In this paper,
we propose a new augmented IIR filter adaptive algorithm based on the generalized maximum
complex correntropy criterion (GMCCC-AIIR), which employs the complex generalized Gaussian
density function as the kernel function. Stability analysis provides the bound of learning rate.
Simulation results verify its superiority.

Keywords: GMCCC; complex; augmented IIR; non-Gaussian noise; system identification

1. Introduction

Complex-valued adaptive filtering algorithm has a wide range of engineering appli-
cations in radio systems [1], system identification [2], environment signal processing [3],
and other fields. Generally speaking, complex-valued adaptive filtering algorithm is
an extension of the real-valued adaptive filtering algorithm. When the complex signal
is second-order circular (or proper) [3], the performance of adaptive filter is optimal.
For second-order circular signals, the covariance matrix Cxx = E

{
x(n)xH(n)

}
is second-

order statistics. A complex-valued random variable is second-order circular if its first
and second-order statistics are rotation-invariant in the complex plane, but in most cases,
complex signals are noncircular (or improper) [3].

In order to suit both proper and improper complex-valued signals, augmented com-
plex statistics are proposed. There are quantities of adaptive filtering algorithms based on
augmented complex statistics, such as augmented complex least mean square (ACLMS) [4],
augmented complex adaptive infinite impulse response (IIR) algorithm (ACA-IIR) [5],
diffusion augmented complex adaptive IIR algorithm (DACA-IIR) [6], and incremental
augmented complex adaptive IIR algorithm (IACA-IIR) [7]. These adaptive filtering al-
gorithms are based on the mean square error (MSE) criterion, which is mathematically
tractable, computationally simple, and optimal under Gaussian assumptions [8]. However, the
MSE-based algorithm may perform poorly or encounter instability problems when the
signal is disturbed by non-Gaussian noise [9,10]. From a statistical point of view, the mean
square error is not sufficient to capture all possible information in a non-Gaussian signal.
In practical applications, non-Gaussian noise is common. For example, some sources of
non-Gaussian impulse noise are non-synchronization in digital recording, motor ignition
noise in internal combustion engines, and lightning spikes in natural phenomena [11,12].

Entropy generally describes a measure of uncertainty of a real random variable, and
as a means of a functional analysis method, entropy of a signal can define the noise without
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using a threshold criterion [13]. Correntropy is an extension of entropy, which is a quantity
of how similar two random complex variables are in a neighborhood of the joint space
controlled by the kernel bandwidth. Compared with the MSE-based algorithms, corren-
tropy algorithm is superior. On the whole, the correntropy uses the Gaussian function
as the kernel function [14,15], because it is smooth and strictly positive definite. How-
ever, the Gaussian kernel is not always an appropriate choice. Recently, He et al. [16] and
Chen et al. [17] extended it to more general cases and proposed the generalized maximum
correntropy criterion (GMCC) algorithm, which has strong generality and flexibility, and
Qian et al. [18] proposed a GMCCC algorithm based on the generalized maximum complex
correntropy criterion, which uses the complex generalized Gaussian density(CGGD) func-
tion as a kernel of the complex correntropy. It succeeds in the excellent characteristics of
GMCC and can deal with complex signals at the same time. These correntropy algorithms
are finite impulse response (FIR) wide linear adaptive filtering algorithms, but when FIR
filters need to use a large number of coefficients to obtain satisfactory filtering performance,
FIR wide linear models may not always be appropriate.

Unlike the FIR counterpart, the memory depth of an IIR filter is independent of the
filter order and the number of coefficients [19]. Alternatively, an IIR filter generally requires
considerably fewer coefficients than the corresponding FIR filter to achieve a certain level
of performance. Thus, the IIR adaptive filters are suitable for systems with memory, such
as autoregressive moving average (ARMA) models. Navarro-Moreno et al. [20] developed
an ARMA widely linear model with fixed coefficients. To derive a recursive algorithm for
augmented complex adaptive IIR filtering, Took et al. [7] proposed the ACA-IIR to learn
the parameters of a widely linear ARMA model.

Based on the generalized maximum complex correntropy criterion (GMCCC) and
widely linear ARMA model, we propose a GMCCC algorithm variant, namely the GMCCC
augmented adaptive IIR filtering algorithm (GMCCC-AIIR). We show that the GMCCC-
AIIR is very flexible, with ACA-IIR, GMCCC, and ACLMS as its special cases. Stability
analysis shows that GMCCC-AIIR always converges when the step-size satisfies the theoret-
ical bound. Simulation results demonstrate the superiority of the GMCCC-AIIR algorithm.

The organization of the paper is as follows: Section 2 introduces and describes the
augmented IIR system. Section 3 defines the generalized complex correntropy, derives the
GMCCC-AIIR algorithm, and introduces a reduced-complexity version of the proposed
algorithm. Section 4 provides the analysis on the bounds of the step-size for convergence.
The superiority of the GMCCC-AIIR algorithm is verified by simulations in Section 4, and
the conclusion is drawn in Section 5.

2. Augmented IIR System

The signals used in communications are usually complex circular, whereas the class of
signals made complex by convenience of representation become more general, and such
signals are often noncircular. For the stochastic modeling of this kind of signal, Picinbono
et al. introduce a widely linear moving average (MA) model, which is given by [21]:

y(n) =
N

∑
m=0

bmx(n−m) +
N

∑
m=0

hmx∗(n−m) (1)

where bm and hm are filter coefficients. Based on this widely linear model, an ACLMS
algorithm was proposed [22].

Since the FIR generalized linear model is not always an optimal choice, Moreno et al.
introduce a fixed coefficient ARMA generalized linear model [20].

y(n) =
p

∑
m=1

amy(n−m) +
q

∑
m=0

bmx(n−m) +
p

∑
m=1

gmy∗(n−m)

+
q

∑
m=0

hmx∗(n−m) (2)
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where am, gm are the coefficients of feedback and its conjugation, p and q are the orders of
the AR and MA parts, respectively. The model provides a theoretical basis for the proposed
recursive algorithm for training adaptive IIR filters.

To introduce a recursive algorithm of augmented complex adaptive IIR filter, Took et al. [5]
give the output of the widely linear IIR filter in the following form:

y(n) =
M

∑
m=1

am(n)y(n−m) +
N

∑
m=0

bm(n)x(n−m) +
M

∑
m=1

gm(n)y∗(n−m)

+
N

∑
m=0

hm(n)x∗(n−m) (3)

where M is the order of the feedback and N is the length of the input. This model can be
simplified as follows:

y(n) = wT(n)z(n) (4)

where:

w(n) = [a1(n), . . . , aM(n), g1(n), . . . , gm(n), b0(n), . . . , bM(n), h0(n), . . . , hM(n)]T (5)

z(n) =
[
yT(n), xT(n)

]T
(6)

3. Generalized Complex Correntropy and GMCCC-AIIR Algorithm
3.1. Generalized Complex Correntropy

For two complex variables C1 = X + jY and C2 = Z + jS, complex Correntropy is
defined as [23]:

(C1, C2) = E[κ(C1 − C2)] (7)

where X, Y, Z, S are real variables, κ(C1 − C2) is the kernel function.
For the Gaussian kernel in the complex field [23], the kernel function can be ex-

pressed as:

κ(C1 − C2) = GC(C1 − C2) =
1

2πσ2 exp
(
− (C1 − C2)(C1 − C2)

∗

2σ2

)
(8)

where σ is the kernel width.
In this paper, we employ a CGGD function as the kernel function, and it’s correspond-

ing correntropy is named generalized complex correntropy [18]:

κ(C1 − C2) = GL
α,β(C1 − C2)

=
α

πβΓ(1/α)
exp

{
−
[
(C1 − C2)(C1 − C2)

∗]α

βα

}
= γα,β exp

{
−λ
[
(C1 − C2)(C1 − C2)

∗]α
}

(9)

where α is the shape parameter, β = 2σ2Γ(1/α)/Γ(2/α) is the kernel width, λ = 1/ βα,
γα,β = α

πβΓ(1/α)
.

In this way, generalized complex correntropy can be written as:

VC
α,β(C1, C2) = E

[
GC

α,β(C1 − C2)
]

(10)

The samples {(c1i, c2i)}N
i=1 are finite in reality, so we estimate the generalized complex

correntropy by sample mean.
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V̂C
α,β(C1, C2) =

1
N

N

∑
i=1

GC
α,β(c1i − c2i)

=
1
N

N

∑
i=1

GC
α,β(ei) (11)

where ei = c1i − c2i.
Instead of the correntropy in data analysis, the correntropic loss is often used, so we

define the generalized complex correntropic loss as:

JC
GC−loss(C1, C2) = GC

α,β(0)−VC
α,β(C1, C2) (12)

Then, when the sample is finite, the generalized complex correntropic can be ex-
pressed as:

̂JC
GC−loss(C1, C2) = γα,β −

1
N

N

∑
i=1

GC
α,β(c1i − c2i)

= γα,β −
1
N

N

∑
i=1

GC
α,β(ei) (13)

There are some properties of generalized complex correntropy [18].

Property 1. VC
α,β(C1, C2) is symmetric, i.e., VC

α,β(C1, C2) = VC
α,β(C2, C1)

Property 2. VC
α,β(C1, C2) is bounded with 0 ≤ VC

α,β(C1, C2) ≤ γα,β and achieves its maximum
when C1 = C2

We can get JC
GC−loss(C1, C2), it is symmetric and achieves its minimum when C1 = C2

on the basis of Properties 1 and 2.

Property 3. Given e = [e1, e2 . . . eN]T, the following conclusions about ̂JC
GC−loss are true:

• When α ≥ 1/2 , ̂JC
GC−loss is convex at any e with |en| ≤ [2a− 1/2aλ]1/2a;

• When 0 < α < 1/2, ̂JC
GC−loss is non-convex at any e with |en| 6= 0.

3.2. GMCCC-AIIR Algorithm

Based on properties of generalized complex correntropy, we define the cost function
of the GMCCC-AIIR algorithm as:

JC
GC−loss = GC

α,β(0)− E
[

GC
α,β(e(n))

]
= γα,β

{
1− E

[
exp

[
−λ(e(n)e∗(n))α]]} (14)

where e(n) = d(n)− y(n).
We can infer from (4) that e(n) = d(n)−wT(n)z(n), so e∗(n) = d∗(n)−wH(n)z∗(n).

Then, we search for the optimal solution by stochastic gradient descent method, i.e.,

w(n + 1) = w(n)− η∇w
{[

1− exp
[
−λ(e(n)e∗(n))α]]}

= w(n) + ηαλ exp
[
−λ|e(n)|2α

]
|e(n)|2α−2 ×∇w[e(n)e∗(n) ] (15)
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where the option of the kernel bandwidth alpha is according to property 3, so that the cost
function is convex and the result of the stochastic gradient descent method is the global
optimal solution rather than the local optimal one.

The gradients can be computed as: [24]

∇w[e(n)e∗(n)] = −
[

e(n)
∂y∗(n)
∂w(n)

+
∂y(n)
∂w(n)

e∗(n)
]

= −[e(n)Φw(n) + Ψw(n)e∗(n)] (16)

where:

Φw(n) =
(

∂y∗(n)
∂wR(n)

+ j
∂y∗(n)
∂wI(n)

)
(17)

Ψw(n) =
(

∂y(n)
∂wR(n)

+ j
∂y(n)

∂wI(n)

)
(18)

The gradient vectors (17) and (18) can be written as:

Φw(n) =
[
Φa1(n), . . . , ΦaM (n), Φg1(n), . . . , ΦgM (n), Φb0(n), . . . , ΦbN (n), Φh0(n), . . . , ΦhN (n)

]T (19)

Ψw(n) =
[
Ψa1(n), . . . , ΨaM (n), Ψg1(n), . . . , ΨgM (n), Ψb0(n), . . . , ΨbN (n), Ψh0(n), . . . , ΨhN (n)

]T (20)

where R and I are the real and the imaginary part of complex quantities respectively, and
j =

√
−1. To calculate the gradient in (16), items in (17), (18) must be calculated separately,

such as:

∂y∗(n)
∂amR(n)

= y∗(n−m) +
M

∑
l=1

a∗l (n)
∂y∗(n− l)
∂amR(n)

+
M

∑
l=1

g∗l (n)
∂y(n− l)
∂amR(n)

(21)

∂y∗(n)
∂amI (n)

= −jy∗(n−m) +
M

∑
l=1

a∗l (n)
∂y∗(n− l)

∂amI (n)
+

M

∑
l=1

g∗l (n)
∂y(n− l)
∂amI (n)

(22)

The feedback in the IIR system leads to the recursions on the right side of (21) and (22).
These are the derivatives of the past values to present weights, which are impossible to
compute. To avoid this problem, for a small step-size, we can approximate that:

w(n) ≈ w(n− 1) ≈ · · · ≈ w(n− τ) τ = max {M, N + 1} (23)

Thus, the gradient Φw(n) can be written in the following forms,

Φam(n) = y∗(n−m) +
M

∑
l=1

a∗l (n)Φam(n− l) +
M

∑
l=1

g∗l (n)Ψam(n− l) (24)

Φbm(n) = x∗(n−m) +
M

∑
l=1

a∗l (n)Φbm(n− l) +
M

∑
l=1

g∗l (n)Ψbm(n− l) (25)

Φgm(n) = y(n−m) +
M

∑
l=1

a∗l (n)Φgm(n− l) +
M

∑
l=1

g∗l (n)Ψgm(n− l) (26)

Φhm(n) = x(n−m) +
M

∑
l=1

a∗l (n)Φhm(n− l) +
M

∑
l=1

g∗l (n)Ψhm(n− l) (27)
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and for the gradient vector Ψw(n) in (18), similarly, we have,

Ψam(n) =
M

∑
l=1

al(n)Ψam(n− l) +
M

∑
l=1

gl(n)Φam(n− l) (28)

Ψbm(n) =
M

∑
l=1

al(n)Ψbm(n− l) +
M

∑
l=1

gl(n)Φbm(n− l) (29)

Ψgm(n) =
M

∑
l=1

al(n)Ψgm(n− l) +
M

∑
l=1

gl(n)Φgm(n− l) (30)

Ψhm(n) =
M

∑
l=1

al(n)Ψhm(n− l) +
M

∑
l=1

gl(n)Φhm(n− l) (31)

So the GMCCC-AIIR can be expressed in the form as:

w(n + 1) = w(n)− µαλ exp
[
−λ|e(n)|2α

]
|e(n)|2α−2[e(n)Φw(n) + Ψw(n)e∗(n)]

= w(n) + µ exp
[
−λ|e(n)|2α

]
|e(n)|2α−2[e(n)Φw(n) + Ψw(n)e∗(n)]

(32)

3.3. GMCCC-AIIR as a Generalization of ACA-IIR and ACLMS

When λ→ 0+ and α = 1 degenerate to:

w(n + 1) = w(n) + µ[e(n)Φw(n) + Ψw(n)e∗(n)] (33)

i.e., the classical ACA-IIR algorithm. On this basis, when feedback within the GMCCC-AIIR
is cancelled, that is, the partial derivatives on the right-hand side of (25), (27), (29) and (31)
vanish for the widely linear FIR filter, yielding:

Φbm(n) = x∗(n−m) m = 0, ..., N (34)

Φhm(n) = x(n−m) m = 0, ..., N (35)

Ψbm(n) = Ψgm(n) = 0 m = 0, ..., N (36)

As desired, the GMCCC-AIIR algorithm (32) now simplifies into the ACLMS algorithm
for FIR filters, given by [22]:

w(n + 1) = w(n)− µe(n)x(n) (37)

Reduce the Computational Complexity of AGMCCC-IIR

The weight update of AGMCCC-IIR has a large amount of calculation, and it requires
4× (M + N + 1) recursions for the sensitivities Φw(n) and Ψw(n). However, this can be
simplified to updating only eight sensitivities by the approximation (23). For example,

Φa(n) = [Φa1(n), Φa2(n), . . . , ΦaM (n)]T (38)

Φa2(n) = y∗(n− 2) +
M

∑
l=1

a∗l (n)Φa2(n− l) +
M

∑
l=1

g∗l (n)Ψa2(n− l) (39)
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Further, we define ΦF
a(n) as follows:

ΦF
a(n) =

[
ΦF

a1
(n), ΦF

a2
(n), . . . , ΦF

aM
(n)
]T

(40)

ΦF
a2
(n) = Φa1(n− 1)

= y∗(n− 1− 1) +
M

∑
l=1

a∗l (n− 1)Φa1(n− l − 1)

+
M

∑
l=1

g∗l (n− 1)Ψa2(n− l − 1)

= y∗(n− 2) +
M

∑
l=1

a∗l (n− 1)ΦF
a2
(n− l) +

M

∑
l=1

g∗l (n− 1)ΨF
a2
(n− l) (41)

For a small step-size, a∗l (n− 1) and g∗l (n− 1) approximate to a∗l (n) and g∗l (n) , hence
ΦF

a2
(n) ≈ Φa2(n). Φa(n) can be approximated, i.e.,

Φa(n) =
[
ΦF

a1
(n), ΦF

a2
(n), ΦF

a3
(n) . . . , ΦF

aM
(n)
]T

=
[
Φa1(n), Φa1(n− 1), Φa2(n− 1), . . . , ΦaM−1(n− 1)

]T (42)

= [Φa1(n), Φa1(n− 1), Φa1(n− 2), . . . , Φa1(n−M + 1)]T

We only need to update Φa1(n) for the sensitivity ΦF
a(n). This approximation also

applies for all other sensitivities.

4. Convergence of AGMCCC-IIR

For convenience, we write the algorithm (32) as:

w(n + 1) = w(n) + µ f (e(n))[e(n)Φw(n) + Ψw(n)e∗(n)] (43)

w0 is defined as the unknown system parameter, and w̃(n) = w0 −w(n). In this way,

w̃(n + 1) = w̃(n)− µ f (e(n))[e(n)Φw(n) + Ψw(n)e∗(n)] (44)

Thus,

E
{
||w̃(n + 1)||2

}
= E

{
‖w̃(n)‖2

}
− 2µE{Re[w̃(n) f (e(n))[e(n)Φw(n) + Ψw(n)e∗(n)]]} (45)

+µ2E
{
‖[e(n)Φw(n) + Ψw(n)e∗(n)]‖2| f (e(n))|2

}
We know that the step-size µ is a small positive constant. If the system converges when

n→ ∞, we can approximate E
{
||w̃(n + 1)||2

}
≈ E

{
‖w̃(n)‖2}. It can be inferred that:

0 < µ <
2E{Re[w(n) f (e(n))[e(n)Φw(n) + Ψw(n)e∗(n)]]}

E
{
‖[e(n)Φw(n) + Ψw(n)e∗(n)]‖2| f (e(n))|2

} (46)
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5. Simulation

In this section, we present simulation results to confirm the theoretical conclusions
drawn in previous sections. We demonstrate the superiority of the GMCCC-AIIR algorithm
compared with the ACA-IIR algorithm in non-Gaussian noise. All the system parameters,
signal noise, and input signals are complex valued. The unknown augmented IIR system is
given by:

y(0) = 0

y(n) = 0.125jy(n− 1) + 0.25jy(n− 2) + (−0.3 + 0.7j)x(n) + (0.5− 0.8j)x(n− 1)

+(0.2 + 0.5j)x(n− 2) + 0.25jy∗(n− 1) + 0.21jy∗(n− 2) + (0.32 + 0.21j)x∗(n)
+(−0.3 + 0.7j)x∗(n− 1) + (0.5− 0.8j)x∗(n− 2) (47)

The real part and the imaginary part of the input signal x are Gaussian distributed, with
zero mean and unit variance. One hundred Monte Carlo simulations were ran. To evaluate
estimation accuracy, the mean square deviation (MSD) is defined by MSD = ||w0 − w(n)||2.

5.1. Complex Non-Gaussian Noise Models

Unlike Gaussian noise, non-Gaussian noise is a random process which the probability
distribution function (pdf) of non-Gaussian noise does not satisfy the normal distribu-
tion. Generally speaking, the non-Gaussian noise distributions can be divided into two
categories: light-tailed (e.g., binary, uniform, etc.) and heavy-tailed (e.g., Cauchy, mixed
Gaussian, alphastable, etc.). In the following experiments, four common non-Gaussian
noise models, including Cauchy noise, mixed Gaussian noise, alpha-stable noise, and
Student’s t noise, are selected for performance evaluation, and the additive complex noise
can be written as: v = vre + jvim, where vre and vim are obedient to different distributions
in different non-Gaussian noise models. The descriptions of these non-Gaussian noise are
the following.

5.1.1. Mixed Gaussian Noise

The mixed Gaussian noise model is given by [25]:

(1− θ)N
(

λ1, v2
1

)
+ θN

(
λ2, v2

2

)
(48)

where N
(
λi, v2

i
)
(i = 1, 2) denotes the Gaussian distributions with mean values λi and

variances v2
i , and θ is the mixture parameter. Usually, one can set θ to a small value and

v2
2 � v2

1 to represent the impulsive noise. Thus, we define the mixed Gaussian noise
parameter vector as Vmix =

(
λ1, λ2, v2

1, v2
2, θ
)

.

5.1.2. Alpha-Stable Noise

The alpha-stable distribution is often used to model the probability distribution of
heavy-tailed impulse noise. It is a more generalized Gaussian distribution, or Gaussian
distribution is a special case of alpha-stable distribution. It is compatible with many
signals in practice, such as noise in telephone lines, atmospheric noise, and backscattering
echos in radar systems; even the modeling of economic time series is very successful.
The characteristic function of the alpha-stable noise is defined as [26,27]:

ψ(t) = exp{jδt− γ|t|α[1 + jβ sgn(t)S(t, α)]} (t 6= 0) (49)

in which:

S(t, α) =

{
tan(απ/2) if α 6= 1
2/π log |t| if α = 1

(50)
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From (49) and (50), one can observe that a stable distribution is completely deter-
mined by four parameters: (1) the characteristic factor α; (2) the symmetry parameter β;
(3) the dispersion parameter γ; and (4) the location parameter δ. Both vre and vim obey
the alpha-stable distribution, so we define the alpha-stable noise parameter vector as
Valpha = (α, β, γ , δ).

It is worth mentioning that, in the case of α = 2, the alpha-stable distribution coincides
with the Gaussian distribution, while α = 1, δ = 0 is the same as the Cauchy distribution.

5.1.3. Cauchy Noise

The PDF of the Cauchy noise is [28]:

p(v) =
1

π(1 + v2)
(51)

5.1.4. Student’s T Noise

The PDF of the Student’s t noise is [29]:

p(v, n) =
Γ
(

n+1
2

)
√

nπΓ
( n

2
)(1 +

v2

n

) n+1
2

,−∞ < v < +∞ (52)

where n is the degree of freedom, Γ(·) denotes the Gamma function.

5.2. Augmented Linear System Identification

Figure 1 is the block diagram of the system identification, and the length of the
adaptive filter is equal to the unknown system impulse response.

Figure 1. System Identification Configuration.

First, we demonstrate how kernel bandwidth α affects the convergence performance
of GMCCC-AIIR. Figure 2 shows the convergence curves of GMCCC-AIIR with different α,
in which the noise chooses mixed Gaussian noise and µ = 0.013, λ = 0.3. Obviously, the
choice of kernel bandwidth has a significant effect on the convergence. In this example,
the convergence performance and convergence speed of the proposed algorithm get better
when α decreases. Generally speaking, small bandwidth is more robust to impulse noise
without considering the convergence rate, and the performance of the algorithm is optimal
when α = 1.
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Figure 2. Learning Curve in different α.

Second, the stability of GMCCC-AIIR at different step sizes is investigated. Figure 3
shows the convergence performance for different step sizes. The noise is still the mixed
Gaussian noise and α = 1, λ = 0.3. The simulation results show that when the step size is
large, such as µ = 0.025, the convergence performance gets worse, and the GMCCC-AIIR
will diverge if step size continues to increase, which confirms the correctness of the stability
analysis in Section 4.

Figure 3. Learning Curve in different µ.

Third, we introduce how the parameter λ will affect the performance of the algorithm.
Figure 3 shows the learning curve of GMCCC-AIIR with different λ. The noise is mixed
Gaussian noise and α = 1, µ = 0.013. We can see from Figure 4 that when the parameter
λ increases, the convergence speed will slow down. However, when λ is too small, the
GMCCC-AIIR algorithm is approximate to the ACA-IIR, and the convergence performance
is poor in the non-Gaussian noise model. Therefore, we should choose the appropriate
parameter λ according to different situations.
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Figure 4. Learning Curve in different λ.

Fourth, we introduce how pairwise parameters α, µ, and λ affect the steady-state
excess MSD (EMSD) and give 3D diagrams of EMSD. The number of iterations is increased
to 15,000 to ensure the convergence of the algorithm, and the additive noise is still mixed
Gaussian noise. EMSD equals the average MSD of the last 1000 iterations. Figure 5 shows
that EMSD of GMCCC-AIIR mainly depends on α and µ. The performance of the algorithm
get worse when µ increases and α approaches 1, the algorithm performs best. Combined
with Figures 4 and 5b,c, λ mainly affects the convergence speed of the GMCCC. When λ
approaches 0, the robustness of the algorithm to non-Gaussian noise gets worse, the outliers
of EMSD increase, and the algorithm may even diverge.

Figure 5. EMSD with different pairwise parameters (a) α and µ (λ = 0.3) (b) α and λ (µ = 0.013)
(c) µ and λ (α = 1).

Fifth, we compare the performance of GMCCC-AIIR and ACA-IIR under four noise
distributions. In the simulation, the mixed Gaussian noise and alpha-stable noise param-
eters are set separately at Vmix = (0, 0, 0.01, 100, 0.03) and Valpha = (1.4, 0, 0.3 , 0), the
freedom parameter of student noise n is set to 2, and the Cauchy noise is the standard
form. The step-sizes are chosen such that both algorithms have almost the same initial
convergence speed. The simulation results are shown in Figure 6. As expected, the pro-
posed GMCCC-AIIR algorithm can achieve better steady-state performance than ACA-IIR
significantly in these non-Gaussian noise models. The ACA-IIR algorithm diverges after
encountering impulse and the MSD approaches infinity at this time. The convergence
process cannot be well observed when trying to display the ACA-IIR and the GMCCC-
AIIR learning curve in the same coordinate system. Therefore, we limit the height of all
simulation results.
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Figure 6. Learning Curve with different noise: (a) alpha-stable noise, (b) mixed Gaussian noise,
(c) Cauchy noise, (d) Student’s t noise.

6. Conclusions

In this paper, we propose an adaptive algorithm for augmented IIR filter based on
generalized maximum complex correlation entropy criterion. We study the convergence
performance, providing the bound for the step size. Moreover, computational complexity
is reduced by making use of the redundancy in the state vector of the filter. We also prove
that ACA-IIR and ACLMS are special cases of GMCCC-AIIR. The simulation results verify
the theoretical conclusion and show how parameters affect the convergence performance of
GMCCC-AIIR and superiority of the GMCCC-IIR algorithm compared with the MSE-based
algorithm ACA-IIR when the noise is non-Gaussian distribution.
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