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In the current study, a generalization of POD Galerkin models is proposed targeting
strategies for experimental feedback flow control. For practical reasons, that model should
incorporate a range of flow operating conditions with small number of degrees of freedom.
Standard POD Galerkin models are challenged by the over-optimization at one operating
condition (Deane et al. 1991). Recent successful developments to extend the dynamic
range require additional modes. This leads to a control design which is less online-capable
and less robust. These side constraints for control-oriented ROMs are taken into account
by a ’least-dimensional’ Galerkin approximation based on a novel technique for continuous
mode interpolation (Morzyński et al. 2006). This interpolation allows to preserve the model
dimension of a single state while covering several states by adjusting (interpolated) modes.
The resulting 3-dimensional Galerkin model is presented for the transient flow around
the circular cylinder and shown to be in good agreement with the corresponding direct
numerical simulation. The 3-dimensional model is based on the shift mode and interpolates
between the two most energetic POD modes of natural limit cycle and the complex stability
eigenmode representing the fixed-point dynamics. The interpolation technique is also used
to approximate the POD modes with suitable stability eigenmodes. These efforts shall lead
to a priori models from first principles without the need for empirical flow data.

I. Introduction

Closed-loop flow control is characterized by a very short time between sensing of flow properties and
adequate actuating action. Depending on the flow conditions the time required for the action is of order of
milliseconds. It is obvious that under such circumstances only the Reduced Order Models (ROMs) can be

∗Professor
†PhD Student
‡Ass. Professor
§Professor
¶Professor
‖Professor

1 of 11

American Institute of Aeronautics and Astronautics



used in the controller design. The extensive survey of the model-based control can be found, for example,
in.1, 2 Proper Orthogonal Decomposition (POD) Galerkin model, the most frequent tool for control design,
can exhibit dynamic fragility even for natural flow conditions. The simplest remedy for this fact is to
increase the number of degrees of freedom of the model on cost of additional computational effort. Much
more improvement of Galerkin model can be gained by combining two state descriptions as demonstrated by
Noack et al. in.3 That Galerkin model was build on POD resolving the attractor and stability eigenmodes
resolving the linearized dynamics. Thus, transient and post-transient flow behavior was accurately predicted.
The concept of hybrid model reduces significantly the number of necessary degrees of freedom of the system.
However, this approach is based on a union of modes. In similar spirit, Ma et al. in4 add modes of 2D vortex
shedding to 20 POD of the 3D flow to resolve the transition from 2D to 3D wake dynamics.

The narrow dynamic bandwidth of POD-based Galerkin model is even more pronounced for controlled
flow and under changing operating conditions. One example of operating condition is the Reynolds number.
The deviation from the Reynolds number for which the Galerkin approximation is made results in poor
properties of the Galerkin model. Deane et. al.5 showed that the POD modes determined for Re = 100
can resolve only 35% of the fluctuation energy at Re = 150. Preserving adequate dynamics for model-based
MISO control with the use of Galerkin flow model6 necessities about 40 POD modes obtained of transient
forced data while only 2 POD modes are required for natural flow.

The ”ideal” set of modes should not only adequately represent the flow dynamics and transients but also
”adapt itself” to the controlled flow conditions. The traditional Galerkin models do not include the mode
adjustments on operating condition. The idea of mode parameterization instead of increasing the number
of POD modes is pursued by several groups. Luchtenburg et al.7 employ a parameterization based on
control. Further improvement of the Galerkin model for control purposes is presented in.8 The POD modes
are derived from the controlled flow subjected to moderate to aggressive forcing. In this way the dominant
modes change along the transients is taken into account. The concept of interpolated POD modes used for
circular cylinder flow control is elaborated in details in.8 While retaining relatively large number of modes
- about 40 - only 3 Fourier coefficients have to be dynamically estimated in the controller. Siegel et al.9

employ short time sampling of transient flows to improve the dynamical properties of the model.
In this paper a novel continuous mode interpolation technique is proposed. The mode interpolation

smoothly connects not only different operating conditions, but also stability and POD modes. In addition,
the extrapolation of modes outside the design conditions is illustrated. In the final section it is shown
how interpolated modes enable ’least-order’ Galerkin models keeping the dimension from a single operating
condition but resolving several states. These models are especially well suited for control design.

To develop the proposed methodology the benchmark problem must be stated. One of the most common
benchmark problems for methodological developments of the controller is the bluff body wake dynamics with
special emphasis to flow about a circular cylinder. Since von Kármán model (1911), numerous new models
for this flow have been proposed but only some are exploited for model based control design.10, 11 The
suppressing of vortex shedding can be a challenging benchmark for closed-loop control with active means.

II. Different operating conditions

It is of interest of control design to smoothly and continously pass from one operating condition to
another. For example for circular cylinder operating conditions range from the state near the fixed point
(steady solution) to the limit cycle (time-averaged flow) (figure 2).

While the fixed point operating conditions are precisely described by flow stability eigenmodes with the
transition and increased value of the disturbance amplitude the modes structure changes up to the one
corresponding to oscillatory limit cycle related to the POD modes. In the same time the coherent structures
are distorted, the oscillation period and growth rate increases, and the maximum of the turbulent kinetic
energy moves toward the cylinder (figure 4). All these phenomena cannot be accounted by simple linear
combination of both mode kinds as it leads directly to the beat phenomenon instead of desired interpolated
value. In the controlled flow situation the use of POD modes computed for the wrong orbit results in false
prediction of the phase of the controller and leads to deterioration of the controlling effect.
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Figure 1. Streamlines of the mean flow (a), shift mode (c), and first POD modes (b), (d)
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Figure 2. Principle sketch of the generalized mean-field paraboloid

III. Interpolated modes

To overcome the problem of inadequate modes and preserving the low dimensional character of the model
several techniques 9 were proposed.

Here the novel approach is presented. We target the least-dimensional models by mode interpolation, i.e.
always being in minimum subspaces.

Flow control design needs continuous interpolation between different states. In particular interpolation
between stability eigenmode basis, POD mode basis and stability-POD basis must be performed. For any
discretization of the computational domain the matrix eigenvalue problem (resulting from flow stability
analysis and POD) has the same dimension at all operating conditions. In the present study FEM is applied
for discretization. A linear interpolation of the underlying eigenproblems can be performed with κ as the
interpolation parameter. Here, κ = 0 for the steady flow and stability eigenmodes and κ = 1 for the periodic
flow and POD modes.

The simplest form of local linearization can be obtained by linear interpolation of matrices Ao and As at
two different states:

A(κ) = As + κ(Ao − As) (1)

The As matrix refers to the steady flow conditions and Ao to the periodic limit cycle.
In practice this technique is adequate only for mode interpolation of the same basis. The stability matrix

with non-normal eigenvectors and complex eigenvalues requires special treatment to be interpolated with

3 of 11

American Institute of Aeronautics and Astronautics



symmetric Fredholm kernel, hermitian eigenvalue problem with real eigenvalues. Details of this procedure
can be found in.12

IV. Reduced Order Models for control and toward a priori model of the flow

In the current study, we consider two-dimensional incompressible flows around stationary cylinders with
size D placed in a uniform stream with velocity U . The velocity and pressure field are denoted by u and p.
The flow is characterized by the Reynolds number Re = UD/ν, ν being the kinematic viscosity of the fluid.
The non-dimensionalized Navier-Stokes equation of incompressible flow reads

∂tu + ∇ · (u ⊗ u) = −∇p +
1

Re
△u +

Nb∑

l=1

bl(t) gl(x). (2)

The classical13–15 Galerkin approximation of a velocity field u(x, t) is given by:

u(x, t) =
N∑

i=0

ai(t) ui(x), (3)

where a0 ≡ 1 for reasons of simplicity.
The generalized Galerkin method based on interpolated modes will differ from the standard one due to

the presence of κ in the model.
This gives rise to a generalized Galerkin approximation

uκ(x, t) =

N∑

i=0

aκ
i (t) uκ

i (x). (4)

Again, aκ
0 ≡ 1. The superscript κ refers to the operating condition which this expansion shall approximate.

Traditional Galerkin models do not include the mode adjustments for time-varying operating condition.
However, modes varying with stationary operating conditions have been utilized before.16, 17

The resulting low-dimensional Galerkin model can be derived from Eq. (2) and Eq. (4) in a straightfor-
ward manner18 assuming a slowly varying κ,

d

dt
aκ

i =
1

Re

N∑

j=0

lκija
κ
j +

N∑

j,k=0

qκ
ijkaκ

j aκ
k +

Nb∑

l=1

gκ
ilbl, (5a)

d

dt
κ = F (κ, aκ,b). (5b)

The Galerkin system coefficients lκij and qκ
ijk depend on the operating condition κ. During a natural

transient of an oscillatory flow, uκ
0 may be the phase-averaged velocity and κ may be identified with the

shift-mode amplitude.3 Moreover, Eq. (5b) is derived from the Navier-Stokes equation filtered with the
phase average 〈 〉 and projected onto the mean-field correction. During an actuated transient, κ may be
identified with a forcing amplitude or frequency. In this case, Eq. (5b) is replaced by a prescribed dynamics
of κ.

In a simple case, the Galerkin system coefficients may be linearly interpolated between two close operating
conditions identified by κ = 0 and κ = 1:

lκij = l0ij + κ (l1ij − l0ij), qκ
ijk = q0

ijk + κ (q1
ijk − q0

ijk). (6)

It should be noticed that, targeting least-dimensional representations, the whole model is reduced to 4
ODEs. In the method presented here only two interpolated modes, shift mode and the parameter κ represent
the flow in the very wide range of significantly different operating conditions. From the point of view of the
flow control practice this is of the highest importance.

In the same time the proposed method of ROM of the flow can be a crucial step toward construction of
the fully a priori model of the time-averaged flow, based only on the steady solution of the Navier-Stokes
equations and physical stability eigenmodes.
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V. Interpolation between POD and stability eigenmode basis

The method presented in section §III is tested on interpolation of POD and stability eigenmode basis.
This example represents a more complex problem than simple linear interpolation between basis of the same
mode and is also more important for practical applications.

Figure 3, 4 shows the results of the corresponding interpolated modes ui
κ. The detail results can be

found in.12

For interpolation the real part of the most unstable stability mode and the first POD mode is applied.
Interpolation, performed for the wake behind a circular cylinder at Re = 100 is shown in figure 3. In figure
4 the energy q = 1

2
‖u‖2 on the centerline is depicted. The modes change smoothly from one operating state

to another. Thereby, the maximum of fluctuation level moves to the outflow. A similar observation has been
made by Lehmann et al.8 for the flow subjected to increasingly aggressive stabilizing control.

(a) POD mode 1 (b) POD mode 2

(c) κ = 0.75 (d) κ = 0.75

(e) κ = 0.50 (f) κ = 0.50

(g) κ = 0.25 (h) κ = 0.25

(i) Eigenmode 1 (j) Eigenmode 2

Figure 3. Interpolated modes. Bottom: real (left) and imaginary part (right) of the dominant eigenvector.
Top: Two most energetic POD modes. Middle: Interpolated modes for κ=0.75, κ=0.50 and κ=0.25. In the
figure, the vorticity of the modes is depicted.
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Figure 4. q = 1

2
u2 distribution along x-axis for first two modes. Top: Two most energetic POD modes. Bottom:

Real and Imaginary part of the dominant eigenvector. Middle: Interpolated modes for κ=0.75, κ=0.50 and
κ=0.25.

VI. Mode extrapolation for other operating conditions

In many practical situations the estimation of the unknown flow state based on information already
available is of great interest. The flow control design is the natural candidate to use any application solving
this problem. Also CFD depends on any ”guess solution” estimation dramatically changing the iteration
convergence. Experiments with continuous mode interpolation, shown in section §V are here ground for
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further investigation of mode extrapolation.
Interpolation shown in figure 3 and 4 rises the question if it is possible to extrapolate the operating

conditions by setting κ > 1 (or κ < 0). In this way it would be possible to determine the approximation
of the flow field for new conditions without computations. This attractive feature of the approach presented
here is also tested. The POD modes for Re = 100 and Re = 125 were applied to predict the conditions at
higher Reynolds number, Re = 150. The result is shown in figure 5.

(a) Re = 100 (b) Re = 150, computed

(c) Re = 125 (d) Re = 150, extrapolated

Figure 5. Approximation of POD mode for higher Reynolds number basing on extrapolation between POD
modes at the lower one.

Figure 6. q = 1

2
u2 distribution along x-axis for computed (left) and extrapolated (right) POD mode.

The right hand side of the Figure shows almost indistinguishable vorticity fields for the computed POD
mode and the extrapolated one. The closer look to the fluctuation energy plot in figure 6 shows minimal
differences between the latter two. In12 it is shown that extrapolation for smaller Reynolds number performs
equally well.

VII. Approximation of a POD basis using stability eigenmodes

The ultimate goal of modeling time-averaged flow is limitation of empirical input to a minimum. A major
step towards this model would be prediction of POD modes on base of stability eigenmodes. Global flow
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stability analysis predicts exactely the periodic flow behaviour near the fixed point, only with the steady
base flow. Composition of this predictive feature with continuous mode interpolation should accomplish the
desired solution.

Here extrapolation of physical modes to approximate empirical ones is attempted. Starting points are
eigenmodes computed from a global stability analysis of the steady solution and of time-averaged flow. The
POD mode shall be expressed in terms of these physical modes (stability eigenmodes) only.

The real parts of the most unstable eigenmodes at Re = 100 are depicted in left part of figure 7. With
these stability modes the POD-mode approximation is constructed. The result is shown in right bottom part
of figure 7 and compared with the POD mode at Re = 100 computed from the snapshots of unsteady flow
simulation. In the near wake, the extrapolated field is in very good agreement with the POD computation.
As the near wake is particularly important for flow control, the results of the a priori mode interpolation
are encouraging.

(a) Eigenmode of steady solution (b) POD mode, computed

(c) Eigenmode of mean flow (d) POD mode, approximated (κ = 1.44)

Figure 7. Approximation of POD mode extrapolating from two eigenmodes at Re = 100. For details see text.

VIII. Galerkin model based on interpolated modes

In this section, the Galerkin model based on continously interpolated modes (described in section §IV)
is presented and compared with commonly used POD Galerkin models and DNS.

To assure better adjustment for time-varying operating conditions, two mode sets are included. In each
set, base flow and shift mode remain unchanged, while two remaining modes depend on operating conditions.
For the state corresponding to the fixed point, the two most unstable eigenmodes of global stability analysis
are used. For limit cycle dynamics, two first POD modes have been chosen.

For both mode sets the Galerkin projection have been performed, leading to two sets of Galerkin system
coefficients lκij and qκ

ijk, where κ = 0 represents fixed point (eigenmodes) and κ = 1 represents limit cycle
(POD modes).

In proposed Galerkin model, constructed as shown in Eq. (5), the interpolation parameter κ is identified
with shift-mode amplitude a3:

κ =
a3

a•

3

− 1, (7)

where a•

3 represents amplitude of the shift mode for periodic solution.
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This choice assures that during the transition of the flow from steady state into periodic one κ changes
continously from 0 to 1 (figure 8), allowing proper interpolation of used modes and Galerkin system coeffi-
cients given by Eq. (6).

0

0.2

0.4

0.6

0.8

1

 0  5 10 15 20 25 30 35 40 45 50

t/T

κ

Figure 8. Interpolation parameter κ in dependency of the time for the transient cylinder wake. This time is
normalized by the period T . For details see text.

Since the interpolated modes are matching the transients of the flow better than POD modes, the
dynamical behaviour of proposed model (represented in figure 9 by the turbulent kinetic energy of fluctuation
K) is much closer to DNS results than in case of POD-only models.

1

0

-1

-2

-3
 0  5 10 15 20 25 30 35 40 45 50

t/T

log(K)

DNS
GM (POD-6)
GM (POD-2)

GM (interpolated modes)

Figure 9. Turbulent kinetic energy of the fluctuation around mean-flow in dependency of time normalized by
the period T . Transient solutions for DNS (thick black line), Galerkin models based on 2 POD modes (blue
line), 6 POD modes (green line) and GM including continuous mode interpolation (red line).

The transient time is comparable to the one obtained in the Navier-Stokes simulation, and about three
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times shorter than in POD-model cases. The over–estimation of K is almost absent and its final value is
much closer to DNS than in other cases.

Summarizing, the presented model, containing only 3 degrees of freedom (two interpolated modes and
shift-mode), is more accurate than 7-dimensional POD model.

IX. Conclusions

In the current study, a key enabler for control-oriented POD Galerkin models is proposed: a novel
continuous mode interpolation.12 Thus, a 3-dimensional Galerkin model is constructed which describes
robustly and accurately the transient flow around a circular cylinder from the steady solution to periodic
flow. The underlying Galerkin approximation resolves the mean-field correction19, 20 via the shift-mode and
the oscillatory fluctuations by an interpolation between stability eigenmodes and POD modes. Thus, an
efficient generalization of mean-field models at large supercritical Reynolds numbers is proposed.

The incorporation of small flow changes in interpolated modes allows to preserve model dimension of
a single state while extending the dynamic range to other states included in that interpolation. Related
mode-interpolation studies are based on new simulations for the intermediate states7 or on transient flow
data,6, 21 i.e. require information beyond the two reference conditions.

It should be noted that the very ansatz of continuous mode interpolation allows to construct structures
which have not been computed before. Examples for the wing at different angles of attack and a Ahmed
body at different distances from the ground are provided by in.12
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