
IL NUOVO CIMENTO VOL. 109 B, N. 8 Agosto 1994 

Generalized Mean Fields and Quasi-Particle Interactions 

in the Hubbard Model. 

A. L. KUzEMs~(*)(**) 

Dipartimento di Fisica Teorica dell'Universit~ di Salerno - 1-84081 Baronissi (SA), Italia 

(ricevuto il 10 Dicembre 1993; approvato il 12 Maggio 1994) 

Summary. - -  The self-consistent theory of the correlation effects in transition 

metals and their compounds (TMC) and disordered binary alloys has been developed 

using the Hubbard model and random Hubbard model. In order to obtain the 

interpolation solution for the quasi-particle spectrum, which is valid for both the 

atomic and band limits, the novel Irreducible Green's Function (IGF) method has 

been used. This method permits to calculate the quasi-particle spectra of 

many-particle systems with complicated spectra and strong interaction in a very 

natural and compact way. The essence of the method is deeply related with the 
notion of the Generalized Mean Fields (GMFs), which determines the elastic- 

scattering corrections. The inelastic-scattering corrections lead to the damping of 

the quasi-particles and is the main topic of the present consideration. The calculation 

of the damping has been done in a self-consistent way for both limits. For the 

random Hubbard model the weak-coupling case has been considered and the 

self-energy operator has been calculated using the combination of the IGF method 

and Coherent Potential Approximation (CPA). 

PACS 05.30 - Quantum statistical mechanics. 

PACS 05.30.Fk - Fermion systems and electron gas. 

PACS l l.15.Tk - Other nonperturbative techniques. 

PACS 71.10 - Electron states: General theories and computational techniques 

(including many-body perturbation theory, density-functional theory, atomic sphere 
approximation methods, Fourier decomposition methods, etc.). 

PACS 71.20.Ad - Electron states: Developments in mathematical and computa- 
tional techniques. 

1. - I n t r o d u c t i o n .  

The study of the excitations in many-body systems has been one of the most important 

and interesting subjects in the last few decades. The quantum field-theoretical techniques 
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have been widely applied to the statistical treatment of a large number of interacting 

particles. Many-body calculations are often done for model systems of statistical 

mechanics using the perturbation expansion. The basic procedure in many-body theory is 

to find the relevant unperturbed Hamiltonian and then take into account the small- 

perturbation operator. This procedure, which works well for the weakly interacting 

systems, needs the suitable reformulation for the many-body systems with complicated 

spectra and strong interaction. 

The most characteristic feature of the recent advancement in basic research on 

electronic properties of solids is the development of a variety of a new class of materials 

with unusual properties: high-To superconductors, heavy-fermion compounds, diluted 

magnetic semiconductors, etc. Contrary to the simple metals, where the fundamentals 

are very well known and the electrons can be represented in a way such that they weakly 

interact with each other, in these materials the electrons interact strongly and moreover 

their spectra are complicated, /~e. they have many branches, etc. This gives ~ e  to 

interesting phenomena such as magnetism, metal-insulator transition in oxides, heavy 

fermions, etc., but the understanding of what is going on is in many cases only partial if it 

exists at all. Therefore, the theoretical studies of the Highly Con'elated Electron Systems 

(HCES) are ve.ry important and actual [1]. The principal importance of these studies is 

concerned with a fundamental problem of electronic solid-state theory, namely with the 

tendency of 3d electrons in TMC and 4f electrons in rare-earth metal compounds (REC) 

and alloys to exhibit both localized and delocalized behaviour. The interesting electronic 

and magnetic properties of these substances are intimately related to this dual behaviour 

of the electrons. In spite of experimental and theoretical achievements [2], still it remains 

much to be understood concerning such systems. 

Recent theoretical investigations of HCES have brought forth the significant variety 

of the approaches which are trying to solve these controversial problems. It seems 

appropriate to point out that a number of perturbation theory or mean-field theory 

approaches which have been proposed in the past few years are in fact questionable or 

inadequate. In order to match such a trend, we need to develop a systematic theory of the 
Highly Correlated Systems, to describe from the first principles of the condensed-matter 

theory and statistical mechanics the physical properties of this class of materials. In the 

present paper we will present the approach which allows one to describe completely the 

quasi-particle spectra with damping in a very natural way. The essence of our 

consideration of the dynamical properties of many-body systems with strong interaction 

is related closely with the field-theoretical approach and has the advantage of using the 

Green's functions language and the Dyson equation. It is possible to say that our method 

tends to emphasize the fundamental and central role of the Dyson equation for the 

single-particle dynamics of the many-body systems at finite temperature. This approach 

has been suggested as essential for various many-body systems and we believe that it 

bears the real physics of Highly Correlated Systems [3, 4]. 

2. - I r r e d u c i b l e  G r e e n ' s  F u n c t i o n s  m e t h o d .  

In this section, we will discuss briefly the novel non-perturbative approach for the 

description of the many-body dynamics of the HCES. At this point it is worthwhile to 

underline that it is essential to apply an adequate method in order to solve a concrete 

physical problem; the final solution should contain a correct physical reasoning in a 

most natural way. The list of many-body techniques that have been applied to 

strongly correlated systems is extensive. The problem of an adequate description of 
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many-body dynamics for the case of very strong Coulomb correlations has been 

explicitly raised by Anderson, who put the direct question: ..... whether a real 

many-body theory would give answers radically different from the Hartree-Fock 

results?- [5] (cf. [6]). The formulation of the Anderson model [51 and closely related 

Hubbard model[7,8] dates really a better understanding of the electronic 

correlations in solids, especially if the relevant electrons are modelled better by 

tight-binding approximation. Both of the models, Anderson's and Hubbard's, are 

often referred to as the simplest models of magnetic metals and alloys. This naive 

perception contradicts the enormous amount of papers which has been published 

during the last decades and devoted to attacking the Anderson/Hubbard model by 

many refined theoretical techniques. As is well known now, the simplicity of the 

Anderson/Hubbard model manifests itself in the dynamics of a two-particle 

scattering. Nevertheless, as to the true many-body dynamics, there is still no simple 

and compact description. In this paper it will be attempted to justify the use of a 

novel Irreducible Green's Functions (IGF) method for the interpolation solution of 

the single-band Hubbard model. A number of other approaches has been proposed 

and our approach is in many respects an additional and incorporates the logic of 

development of the many-body techniques [9]. 

Let me first sketch this logic. The study of the quasi-particle excitations in solids 

has been one of the most fascinating subjects for many years. The considerable 

progress in studying the spectra of elementary excitations and thermodynamic 

properties of many-body systems has been for the most part due to the development 

of the temperature-dependent Green's Functions methods. We have developed the 

helpful reformulation of the two-time GFs method which is especially adjusted [9] for 

the correlated fermion systems on a lattice. The very important concept of the whole 

method are the G e n e r a l i z e d  M e a n  Fie lds .  These GMFs have a complicated structure 

for the strongly correlated case and are not reduced to the functional of the mean 

densities of the electrons. 

To clarify the foregoing, let us consider the retarded GF of the form 

(1) G r = ((A(t) ,  B(t')}} = -iO(t - t ' ) ( [A( t )B( t ' ) ]~} ,  r, = +_ 1.  

As an introduction of the concept of IGFs, let us describe the main ideas of this 

approach in a symbolic form. To calculate the retarded GF G(t  - t ' ) ,  let us write down 
the equation of motion for it: 

(2) coG(~o) = ([A, A'L,) + (([A, H] [A')},~. 

The essence of the method is as follows [3]. It is based on the notion of the 

. i r r e d u c i b l e .  parts of GFs (or the irreducible parts of the operators, out of which the 

GF is constructed) in terms of which it is possible, without recourse to a truncation of 

the hierarchy of equations for the GFs, to write down the exact Dyson equation and 

to obtain an exact analytical representation for the self-energy operator. By 

definition wc introduce the irreducible part (ir) of the GF, 

(3) ir(([A, H] IA'}} = (([d, Y]_ - z A I A ~ } } .  

The unknown constant z is defined by the condition (or constraint) 

(4) ([[A,  H ]  ir , A '~ ]~) = 0. 
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From the condition (4) one can find 

<[[A, H]_ ,  A*]~,> M1 
(5) z = - 

<[A, A~]~,> Mo 

Here Mo and MI are the zeroth- and first-order moments of the spectral density. 

Therefore, the irreducible GF (3) is defined so that it cannot be reduced to the 

lower-order ones by any kind of decoupling. It is worthy to note that the irreducible 

correlation functions are well known in statistical mechanics. In the diagrammatic 

approach the irreducible vertices are defined as the graphs that do not contain inner 

parts connected by the G~ With the aid of the definition (3), these concepts are 

translated into the language of retarded and advanced GFs. This procedure extracts 

all relevant (for the problem under consideration) mean-field contributions and puts 

them into the generalized mean-field GFs, which here are defined as 

<[A, At]~,> 
(6) G 0 (co) - 

( o ~  - z )  

To calculate the IGF ir(([A, HI_ (t), A * ( t ' ) ) >  in (2), we have to write the equation 

of motion after differentiation with respect to the second time variable t'. The 

condition (4) removes the inhomogeneous term from this equation and is the very 

crucial point of the whole approach. If one introduces an irreducible part for the 

right-hand side operator as discussed above for the -left>> operator, the equation of 

motion (2) can be exactly rewritten in the following form: 

(7) G = G o + G~ P G  ~ . 

The scattering operator P is given by 

(8) P = (M0)-I~"(([A, H]_ [[A t , H]_ })it (M0) 

The structure of eq. (7) enables us to determine the self-energy operator M, in 

complete analogy with the diagram technique 

(9) P = M + M G ~  

From the definition (9) it follows that we can say that the self-energy operator M is 

defined as a proper (in diagrammatic language ,connected,) part of the scattering 

operator M- - (P )P .  As a result, we obtain the exact Dyson equation for the 

thermodynamic two-time Green's Functions: 

(10) G = G o + G ~  , 

which has the well-known formal solution of the form 

G = [ ( G  O ) l - M ]  1 

Thus, by introducing irreducible parts of GF (or the irreducible parts of the 

operators, out of which the GF is constructed) the equation of motion (2) for the GF 

can be exactly (but using the constraint (4)) transformed into the Dyson equation for 

the two-time thermal GF. This is a very remarkable result, which deserves to be 

underlined, because the traditional form of the GF method [10, 11] did not include 

namely this point. The projection operator technique [12] has essentially the same 
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philosophy, bu~ by using the constraint (4) in our approach we emphasize the 

fundamental and central role of the Dyson equation for the calculation of the 

single-particle properties of the many-body systems. It is important to note, that for 

the retarded and advanced GFs the notion of the proper part is symbolic in nature [3]. 

However, because of the identical form of the equations for the GFs for all three 

types (advanced, retarded and causal), we can convert in each stage of calculations to 

causal GFs and, thereby, confmn the substantiated nature of definition (9)I We 

therefore should speak of an analog of the Dyson equation. Hereafter we will drop 

this stipulation, since it will not cause any misunderstanding. It should be 

emphasized that the scheme presented above gives just  a general idea of the IGF 

method. The specific method of introducing IGFs depends on the form of the operator 

A, the type of the Hamiltonian and the conditions of the problem. 

The general philosophy of the IGF method lies in the separation and identification 

of elastic-scattering effects and inelastic ones. This last point is quite often 

underestimated and both effects are mixed. However, as far as the right definition of 

quasi-particle damping is concerned, the separation of elastic- and inelastic-scat- 

tering processes is believed to be crucially important for the many-body systems with 

complicated spectrum and strong interaction. From a technical point of view, the 

elastic (GMF) renormalizations can exhibit a quite non-trivial structure. To obtain 

this structure correctly, one must construct the full GF from the complete algebra of 

the relevant operators and develop a special projection procedure for higher-order 

GFs in accordance with a giwm algebra. The Hubbard model is a very suitable tool for 

the application of this approach as it will be demonstrated below. 

The present paper deals with many points of my own works on electron 

con-elation effects. It reflects the evolution of my own understanding of the physics of 

HCES and the influence of more recent theoretical investigations in this field. As a 

result, the present considerations are addressing a number of new issues, which have 

not been mentioned previously. 

3.  - H u b b a r d  m o d e l .  

The model Hamiltonian which is usually referred to as Hubbard Hamiltonian [7, 8] 

(11) H : ~ t  U * ai~ aj~ + U/2  ~ ni~ ni_ 5, 
U': iz 

includes the intra-atomic Coulomb repulsion U and the one-electron hopping energy 

t~j. The electron correlation forces electrons to localize in the atomic orbitals, which 

are modelled here by the complete and orthogonal set of the Wannier wave functions 

[r  ~j)]. On the other hand, the kinetic energy is reduced when electrons are 

delocalized. The main difficulty of the right solution of the Hubbard model is the 

necessity to take into account both these effects simultaneously. Thus, the 

Hamiltonian (11) is specified by two parameters: U and the effective electron 
bandwidth 

lj2 
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The band energy of Bloch electrons s(k) is defined as follows: 

ti.i = N -~ ~] E(k) exp[i  k ( R ~ -  Rj], 

where N is the number of the lattice sites. I t  is convenient to count the energy from 

the centre of gravity of the band, i .e .  t i i  = ~] ~(k) = 0. The effective electron band- 
k 

width J and Coulomb intrasite integral U define completely the different regimes in 3 

dimension depending on the parameter  ), = J / U .  It  is usually a rather difficult task to 

find an interpolation solution for the dynamical properties of the Hubbard model. To 

solve this problem with a reasonable accuracy and describe correctly an interpolating 

solution from ,band,, limit ( r>> l )  to ,,atomic,, limit (~.--~0), one needs a more 

sophisticated approach than usual procedures which have been developed for the 

description of the interacting electron-gas problem. We evidently have to improve 

the early Hubbard's theory taking account of the variety of possible regimes for the 

model depending on electronic density, temperature and values of y. The single- 

electron GF 

(12) G i j ~ ( ( o )  = ((ai~laj*:}} = N -~  E G ~ ( k  ~, oJ) e x p [ -  i k(Ri - RN], 

which has been calculated by Hubbard [7, 13], has the characteristic two-pole func- 

tional structure 

(13) G : ( k ,  co) = [F:((o) - e(k)] 1 , 

where 

(14) F j  1 (co) = 
CO - -  E +  

§ 
co - ( n _ ~ E  + n S ~ E  ~ ) - ), 

- n 2 ~ ) , ) ( ~ o  - E _  - n +~)~) - n ~ n S ~ ) ,  2 

and ), is the certain function which depends on the parameters of the Hamiltonian. If  ), 

is small (), ~ 0), then expression (14) takes the form 

F j _ l ( ~ o  ) -.~ n:_~ + n 4_, 

so - E _  - n +_~), ~o - E +  - n Z~),  

which corresponds to the two shifted subbands with the gap 

c o l -  ~o,2 = ( E +  - E ) + ( n _ - :  - n +_:)), = U +  ; ~ 2 n  +_~. 

Here n § = n and n -  = 1 - n; E+ = U, E_ = 0. If  ;~ is very big, then we obtain 

F / 1  (co) -- 
[(co - E _ ) n : ~  + ( ~  - E+) n_:.] ;~ co - ( n  +_,E+ - n J ~ E _ )  

The latter solution corresponds to the single band, centred at the energy ~o = n_+~ U. 

The two-pole functional structure of the single-particle GF is very easy to under- 

stand within the formalism which describes the motion of electrons in binary alloys 
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[13,14]. If one introduces the two types of scattering potentials t• ~ (~o- E• -~, 

then the two kinds of the t-matrix T .  and T_ appear which satisfy the following 
system of equations: 

T+ = t ,  + t~ G o + T+ + t + G  ~  T _ ,  

T _ = t _  + t _ G  ~ _ T_ + t _ G  ~ T+ - -  + , 

where G o is the bare propagator between the sites with the energies E§ The 

solution of this system has the following form: 

(15) T• = 
t• + t + G ~  

( 1  - t+  G o + ) ( 1  - t _  G O _ )  - GO- + G O _ t §  t _  

t ; l G  o 

( t 7  ~ - G o +) ( t_  -~ - Go_ _)  - G 0- + G o _ 

Thus, by comparing this functional two-pole structure and well-known ,~Hubbard 
I I I ,  solution [13] 

~ ( ~ )  = (o - F ~ ( ~ ) ,  

it is possible to identify the ,scattering corrections, and ,resonance broadening 
corrections, in the following way: 

F~((,~) = 
~ ( ~  - U )  - ( ~  - U n _ ~ ) A ~ ( ~ )  

co - U(1 - n_~) - A~(~o) 

A~(~o) = Y~(o~) + Y_~(oJ) - Y*_~(U - ~o), 

Y~ = F ~ ( ~ )  - G s  1 (~o),  Go~(OJ) = N l l  ~ G ~ ( c o ) .  
k 

If we put A~ (o J) = 0, we immediatedly obtain the -Hubbard I- solution [7]. The ,alloy 

analogy, approximation corresponds to At (oJ) ~- Y~ (~). Note that the ,Hubbard I I I -  

self-energy operator ~ ( (o )  is local, i.e. it does not depend on quasi-momentum. 

Another drawback of this solution is the very inconvenient functional representation 
of the elastic- and inelastic-scattering processes. The conceptually new approach to 

the theory of very strong but finite electron correlation for the Hubbard model has 

been proposed by Roth [15]. She clarified microscopically the origination of the 

two-pole solution of the single-particle GF, which was a very unusual fact from the 

point of view of the standard Fermi-liquid approach, showing that the naive 

one-electron approximation of the band structure calculations is not valid for the 

description of the electron correlations in TMC. Thus the use of the sophisticated 

many-body technique is required for the calculation of the excitation spectra at finite 

temperature. The last point should be underlined, because the suitable modification 

of the Density Functional Approximation[16,17] could give the reasonable 

description of the ground-state properties of TMC. We shall show here that the use of 

the IGF method permits to improve substantially both solutions, Hubbard's and 

Roth's, by defining the correct Generalized Mean Fields for the Hubbard model. 



836 A.L. KUZEMSKY 

4. - H u b b a r d  m o d e l .  W e a k  c o r r e l a t i o n .  

The concept of the GMFs and the relevant algebra of operators from which GFs 

are constructed are the central ones to our treatment of electron correlation in solids. 

It will be convenient (and much shorter) to discuss these concepts for weakly and 

strongly correlated cases separately. For the first time we must construct the 

suitable state vector space of the many-body system[10]. The fundamental 

assumption implies that the states of a system of interacting particles can be 

expanded in terms of the states of non-interacting particles [18]. This concept 

originates in perturbation theory and finds support for weakly interacting 

many-particle systems. For the strongly correlated case, this approach needs the 

suitable reformulation (cf. [19]) and, namely, in this point the right definition of the 

GMFs is vital. 

Let us consider the weakly correlated Hubbard model (11). In many respects, this 

case is similar to the ordinary interacting electron gas, but with very local, singular 

interaction. It will be shown below that the usual creation ait~ and annihilation ai~ 

second quantized operators with the properties 

a[}F(o) = }F~I), ai}F(1) = u 

ai~'(~ = 0, a/~F~') = 0 ( i ~ j )  

are suitable variables for the description of the considered systems. Here F(0) and 

~F (~) are the vacuum and single-particle states, respectively. 

The question now is how to describe our system in terms of the quasi-particles. 

For a translationary invariant system, to describe the low-lying excitations of the 

system in terms of quasi-particles [20], one has to choose eigenstates such that they 

all correspond to definite momentum. For the single-band Hubbard model (11) the 

exact transformation reads 

ai~ = N-1/2 ~ exp [ ~  - i k R i ] a ~ - .  
i 

Note that for a degenerate band model the more general transformation is necessary. 

Then the Hubbard Hamiltonian (11) in the Bloch vector state space is given by 

(16) H =  E s ( k ) a ~ a ~  + ( U / 2 N )  E -~o o a t a (s + r - ~ t ~ . ~  q - z  r - ~  i 

k~ pqrs 

If the interaction is weak, the algebra of the relevant operators is very simple: it is an 

algebra of the non-interacting fermion system (ak~, a~:,  nk~ = a ~ a k ~ ) .  For the 

calculation of the electronic quasi-particle spectrum of the Hubbard model in this 

limit let us consider the single-electron GF, which is defined as 

(17) Gk~( t  - t ' )  = ((ak~, a~}} = - iO(t - t ' ) ( [ a k ~ ( t ) ,  aL(t')]+ 
1 

27r 

~ 1 *~ 1 ~ d~o' 
" I d o J e x p [ - i ~ o t ] G k ~ ( o J ) = - - -  I d c o e x p [ - i ~ t ] - ~ =  
- ~ 2= _ ~ = _ ,J c o - c o  

~ ( e x p  [~o/] + 1)Ak: (~o'), 

where ~ = ( k T )  -1 and Ak,(~o) is the spectral intensity. The equation of motion for the 
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Fourier transform of the GF Gk~(~,~) has the form 

(18) (co - dk))Gk.~(oJ) = 1 + ( U / ) N ~  ((ak+p.:a~+q._~aq_~la~.~}}~.~ . 
Pq 

Let us introduce, by definition, an ,irreducible- GF in the following way: 

(]9) i"((ak~p~ap+~_~aq__~la~}}~,, --- ((ak§ q .~la~.~))~,~- ~p,o(nq-~}Gk~. 

The irreducible (ir) GF in (19) is defined in such a way that it cannot be reduced to GFs 

of lower order with respect to the number of fermion operators by an arbitrary 

pairing of operators or, in other words, by any kind of decoupling. Substituting (19) 

in (18) we obtain 

(20) 6k~(~,~) = 6MF (o~) + GMF ( o g ) ( U / N )  Eir((ak~-p~a~,,~-~aq-~la~)}~,~ . 
Pq 

Here we have introduced the notations 

(21) MF , Gk~ (o~) = (oJ - ~(k~)) -~ ~(k~) = ~(k) + ( U / Y )  ~(nq_. :} .  
q 

In this paper, for brevity, we confine ourselves by considering the paramagnetic 

solutions only, i.e. (n~} = (n_~). In order to calculate the higher-order GF in the 

right-hand side of (20), we have to write the equation of motion obtained by means of 

differentiation with respect to the second variable t'. Constraint (4) allows us to 

remove the inhomogeneous term in this equation for (d/tit') ~ ({A(t), a~ (t'))). For the 

Fourier components, this is written in the form 

(22) (oJ - s(k))ir((Alak~}}~o = ( i t [ A ,  a~] .}  + ( U / N ) E ~ ( ( A l a ~ _ . ~ a r + ~  .~ak+s.~))~.~. 
r8 

The anticommutator in (22) is calculated on the basis of the definition of the 

irreducible part 

(23)  ([ i~(a k a t * ~t~ ~_q_~aq_~), ak~]+) = 

If one introduces the irreducible part for the right-hand side operators by analogy 

with expression (19), the equation of motion (20) can be exactly rewritten in the 
form (7) 

(24) Gk: (co) = G ME (co) + G MF (co) Pk- (~o) G MF ~oJ) 

where we have introduced the following notation for the operator P (8): 

U2 ~ i~ 
= DI::(p,  q l r ,  s; co) = (25) Pk:((,~) ~- i  pq~ 

U 2 
g 2 E i r ( ( a k  * ~p:ap.q_zaq_: [a,T._ :ar+s_: * 

pqrs 

To define the self-energy operator according to (9), one must separate the ((proper- 
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part in the following way: 

(26) Dk~(p, qlr, s; ~o) = L;~_(p, qlr, s; co) + 

U 2 
; )Gk: (co)Dk~(p , Ir, s; ~o) + - ~  ~,  L ~ ( p , q ] r ' , s '  (o MF ir , q ,  . 

r's'p'q' 

Here L~(P,k~ q]r, s; ~o) is the ,,proper)) part of the GF Dk"~(p, q]r, s; ~o), which, in 
accordance with the definition (19), cannot be reduced to the lower-order one by any 
type of decoupling. Using (9) we find 

(27) Gk~ MF MF = Gk~ (oJ) + Gk~ (~o)M~(k, ~)Gk~(oJ). 

Equation (27) is the Dyson equation for the single-particle two-time thermal GF. 

According to (10) it has the formal solution 

(28) Gk~ (~o) = [~o - e(k~) - M~ (k, ~)]-1 , 

where the self-energy operator M is given by 

U2 ~ 
(29) M~(k, co) = ~ p~r Lk~(p, qlr,  s; o~) = 

t t ir U2 Zir<<ak+p~ap+q_~aq_~l 
- ak+s~ar-:ar~s-:)} �9 

N 2 pqrs 

The latter expression (29) is an exact representation (no decoupling has been made till 
now) for the self-energy in terms of higher-order GFs up to second order in U (for the 

consideration of the higher-order equations of motion see ref. [4]). Thus, in contrast to 

the standard equation-of-motion approach, the determination of the full GF has been 
reduced to the calculation of the mean-field GF GMF and the self-energy operator M. 
The main reason for this method of calculation is that the decoupling is only introduced 
into the self-energy operator, as will be shown in detail below�9 The formal solution of 

the Dyson equation (28) defines the right reference frame for the formation of the 
quasi-particle spectrum due to its own (formal solution) correct functional structure. 
In the standard equation-of-motion approach such a structure could be lost by using 
decoupling approximations before arriving at the correct functional structure of the 

formal solution of the Dyson equation. This is a crucial point of the IGF method. 

The energies of the electronic states in the mean-field approximation are given by 

the poles of G MF (21). Now let us consider the damping effects and finite lifetimes. To 

find an explicit expression for the self-energy M (29), we have to evaluate 
approximatively the higher-order GF in (21). It will be shown below that the IGF 

method can be used to derive the damping in a self-consistent way simply and more 

generally than other formulations. First, it is convenient to write down the GF in (29) 

in terms of correlation functions by using the well-known spectral theorem [10,11]: 

t (30) < < a k , p ~ a p ~  q _ ~aq_~ ] a~+~a:_~a~, ~_~ >>~o = 

+ ~  + : r  

__ 127: I ~od~~ ~o' (exp[~(o'] + 1 ) I  exp[ico't]" 
. - a v  - c o  

�9 < a ~ + ~ ( t ) a : _ ~ ( t )  ~ a a~.~_~(t)ak+p~ap+q_~ q-~>. 
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Further insight is gained if we select the suitable relevant ,,trial- approximation for 

the correlation function in the right-hand side of (30). In this paper we show that the 

earlier formulations, based on the decoupling or/and diagrammatic methods can be 

arrived at by our technique but in a self-consistent way. Clearly the choice of the 

relevant trial approximation for the correlation function in (30) can be done in many 

ways. For example, the reasonable and workable one may be the following -pair 

approximation,, which is especially good for the low density of the quasi-particles: 

(31) ( a ~ ( t ) a ~  ~ . ~ ~(t)a~+,~_~(t)ak ~p~up+q_~ _t a q_~]~ 

Using (30) and (31) in (29) we obtain the aPproximative expression for the self-energy 

operator in a self-consistent form (the self-consistency means that we express 

approximatively the self-energy operator in terms of the initial GF and, in principle, 

one can obtain the required solution by suitable iteration procedure): 

U ' ~  I dc,~ dc,J~ d~o3 
(32) M~(k, oJ) = ~-~ ~o + ~'Jl - ~o,z - ~o~ 

�9 [n(c,~,,) n(o~s) + n(c,Jl)(1 - n((o2) - n(oJ,,O)]gT~+q_:(~o~)g~ ~)~(o~.))gq ~(~o~), 

where we have used the notations 

gk~(o)) = - 1 Im Gk~(co + is), n(o~) = [exp [floJ] + 1] 1 

Equations (28) and (32) form a closed self-consistent system of equations for  the 

single-electron GF for the Hubbard model, but for weakly correlated limit only�9 In 

principle, we may use, in the right-hand side of (32) any workable first iteration step 

form of the GF and find a solution by repeated iteration. It is most convenient to 

choose as the first iteration step the following simple one-pole approximation: 

(33) gk.~ (~o) = ~(c,~ - s(kz)). 

Then, using (33) in (32), we get for the self-energy an explicit and simple expression, 

U 'z n p ~ q _ ~ ! l - n k §  ~ 
(34) Mr(k,  ~,J) : - ~  Epq -~ +--~p + -~)--  - ~  + p ~  --_--~q~) �9 

The numerical calculations of the real and imaginary parts of the self-energy (34) have 

been performed[21] for the model density of states of the FCC lattice. The 

calculations were done taking the dispersion law 

akx aky akz akz akz aky 
---:-" COS- + C O S - -  C O S - -  ~- COS COS } ,  d k ) = E 0 + 4 t  cos 2 2 2 2 2 2 

with the appropriate set of metal parameters, which approximatively represent the 

ones for d-bands in transition metals. In fig. 1 the typical behaviour of the real and 

imaginary parts of the self-energy M: (k, oJ) is shown. This picture proves that the 

conventional one-electron approximation of the band theory is not always a 
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Fig. 1. - Real and imaginary parts of self-energy calculated for the point 1' of the Brillouin zone 
(k = (0, 0, 0)) and for FCC crystal lattice with parameters close to the nickel metal. 
- - -  ReMk(E+), - -  ImMk(E+), EF~,~i = 0.0 eV, band limits = (-4.0, + 1.2). 

sufficiently good approximation for transition metals like nickel. An adequate 

description of electronic quasi-particle spectra in transition metals like nickel 

requires including electron-electron scattering processes in a self-consistent way. 

The simple formula (32) derived above for the self-energy operator is typical in 

showing the role of correlation effects in the formation of quasi-particle spectrum of 

the Hubbard model. It is instructive to examine other types of the possible trial 

solutions for the six-operator correlation function in eq. (30). The approximation 

which we propose now reflects the interference between the one-particle branch of 

the spectrum and the collective one: 

(35) <a~+~(t)a~_~(t)ar+8_~(t)ak~ ~ p~ap+q_~aq_~> * ir 

--~ <a~+~(t)ak+,~><a~_~(t)ar+.~_~(t)a~§ ~aq_~> + 

+ <ar§ * t p~aq_~> + 

+<a~ ~(t)aq_~>(a~+s~(t)a~8 ~(t) ak~p~a~ q_~>. 

It is visible now that the three contributions in this trial solution describe the 

self-energy corrections that take into account the collective motions of electron 

density, the spin density and the density of -doubles,, respectively. The essential 

feature of this approximation is connected with the fact that correct calculation of the 

single-electron quasi-particle spectra with damping requires the suitable incorpor- 
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ation of the influence of the collective degrees of freedom on the single-particle ones. 
The most interesting contribution is related with the spin degrees of freedom because 
correlated systems are magnetic or have very well developed magnetic fluctuations. 
We follow the above steps and calculate the self-energy operator (29) as 

U z f 1 + N(~o~) - n(co z) 
(36) M_(/~, co) = - -  d(,Jl d(oe 

" N ~ o  - ~ o  1 - c o  2 

�9 ~ exp [ -  i ] ~ ( R i - , , 3  RJ)]( - l Imr~  {Si+ 'SJ~ }~"0 ( -  ! I m  {a~_: [ ai;-~ }}~.,~ ) , 

where the following notations have been used: 

S[- =a[r  ai.L , Si- = ai~ a~ ~ , 

N(~o) = [exp [i%J] - 1] ' 

It is possible to rewrite (37) in a more convenient way now, 

U'~ - -  + tg 
(37) M : ( k ,  co)= ~ -  doJ' ctg 2T 2--T! 

�9 ( - ! - I m ; / ~ "  ~-(k-  q, co-co')gq~(O)')) .  

Equations (28) and (37) form again another self-consistent system of equations for the 

single-particle GF of the Hubbard model. Note that both expressions for the 
self-energy depend on quasi-momentum; in other words, the approximative 
procedure does not break the momentum conservation law. It is important, because 
the poles (,J(k, ~) = ~(k, ~) - iF(k) of the GF (28) are determined by the equation 

(38) c,J- ~(kz) - Re [M:(k, o~)] - i I m [ M ~ ( k ,  co)] = 0. 

It may be shown quite generally that Luttinger's definition of the true Fermi 

surface [20] is valid in the framework of our theory. It  is worthy to note that for 
electrons in a crystal where there is a band index, as well as quasi-momentum, the 
definition of the Fermi surface is a little more complicated than the single-band one. 
Before the single-particle energies and Fermi surface are known, one must carry out 
a diagonalization in the band index. 

In order to give a complete picture of the GMFs, let us discuss briefly the 

interesting question of the correct definition of the so-called unrestricted 

Hartree-Fock approximation (UHFA). Very recently, this approximation has been 

applied to the single-band Hubbard model (11) for the calculation of the density of 

states for CuOe clusters [22]. The following definition of UHFA has been used: 

(39) n i - :  a~ = (ni_ ~) ai~ - (a~_~ ai:) ai_7 . 

Thus, in addition to the standard HF term, the new, the so-called (,spin-flip,, terms, 

are retained�9 This example clearly shows that the nature of the mean fields follows 
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from the essence of the problem and should be defined in a proper way. It is clear, 

however, that the definition (39) broke the rotational symmetry of the Hubbard 

Hamiltonian. For the single-band Hubbard Hamiltonian the averaging (a[_~a~, ~} = O, 
because of the rotational symmetry of the Hubbard model. So, in ref. [22] the 

effective Hamiltonian Heff has been defined. We have analysed in detail [231 the 

proper definition of the irreducible GFs which include the ,,spin-flip, terms. The 

definition (19) must be modified in the following way: 

(40) i"((ak+,~ap+q_~a,+q_~]a~}}~,j= ((ak~,~a~§ ~ laL}}~o- 

From this definition it follows that such a type of introduction of the IGF broadens 

the initial algebra of the operator and the initial set of the GFs. That means that 

,<actual, algebra of the operators must include the spin-flip terms at the beginning, 

namely: (a~, a[~, ni~, a i  ~, a~_~). The corresponding initial GF will have the form 

((a~ ~la;}} ((a~-~lai%}} 

In fact, this approximation has been investigated earlier by Kishore and 

Joshi [24]. They clearly pointed out that they assumed that the system is magnetized 

in the x-direction instead of the conventional z-axis. Very recently, the detailed and 

clear reconsideration of the HF and UHF approximations in comparison with the 

Density Functional Theory has been given in paper [25]. 

5. - H u b b a r d  m o d e l .  S t r o n g  c o r r e l a t i o n .  

When studying the electronic quasi-particle spectrum of the strongly correlated 

systems, one must take care of, at least, three facts of major importance: 

i) The ground state is reconstructed radically as compared with the weakly 

correlated case. Namely, this fact leads to the necessity of the redefinition of the 

single-particle states. Due to the strong correlation, the initial algebra of the oper- 

ators is transformed into the new algebra of the complicated operators. In principle, 

in terms of the new operators the initial Hamiltonian may be rewritten as bilinear 

form and the generalized Wick theorem can be formulated[26,27]. It is very 

important to underline that the transformation into the new algebra of relevant 

operators reflects some important internal symmetries of the problem and nowadays 

this way of thinking is formulated in the elegant and very powerful technique of the 

classification of the integrable models [28, 29] and exactly soluble models (see also [30]). 

ii) The single-electron GF, which describes the dynamical properties, must 

have a two-pole functional structure, giving, in the atomic limit, when the hopping 

integral tends to zero, the exact two-level atomic solution. 

iii) The GMFs have, in the general case, a very non-trivial structure. The 

GMFs functional cannot be expressed in terms of the functional of the mean particles 

density. 

In this section we consider large, but finite, Coulomb repulsion. The inspiring 
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ideas of papers [13, 19, 27] where the problem of the relevant algebra of the operators 

has been considered, are central to our consideration here. Following this approach 

we consider the new set of relevant operators: 

(41) 
{ di~ ~ = n~' = •  + ,ai~ , (~ , n i :  = ni .~  , hi. ~ = (1  -- ni:) , 

= ni .n  i ~ di~: = ai~ 

The new operators di:: and d}~: have complicated commutation rules, namely 

[di . . . .  ], = a i j%~n i  ,~ . 

The convenience of the new operators follows immediately if one writes down the 

equation of motion for them, 

(42) I.? 

bij~ = (a ti:aj~ - af:ai~). 

It is possible to interpret [7, 13], both contribution in this equation, as alloy analogy 
and resonance broadening corrections. The usefulness of the new algebra of the 

operator has been emphasized by Matsumoto and Umezawa in the context of thermo 

field dynamics[31] and recently for the consideration of the strong electron 

correlation in the high-T~ superconductors[32,33]. The refbrmulation of the 

many-body diagrammatic technique [34] for the correlated systems underlines the 
same aspect of the problem. 

Let us consider the single-particle GF (12) in the Wannier basis. Using the new 

operator algebra it is possible to rewrite identically GF (12) in the following way: 

(43) Gij~(o~) = 2 ((dj~:ldj~:}},,, = N'FZ(oj~ 

The equation of motion for the auxiliary matrix GF 

(44)  ~'~ ( ' 
FiT:((o)= ((di+:ldJ~'))" ((di~:ldf,)),,~ I 

[ 
B 

has the following form: 

(45) ( E F i j ~ ( ~ o )  - I~ij)~ = • Q ((n? ~a,~ + aai:bu_~ I d j ~ ) ) , o ,  

where the following matrix notations have been used: 

(46) 
0) (n:0) 

0 (co - E_ ) n_-~ 
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In accordance with the general method of sect. 2, we introduce by definition the IGF 
matrix: 

(((Zl 1 ] d;+ ~ }} ~,J ((Zi2]d;-z))~ol_ 
(47) D~,j((o) = 1 ((Z21ld}+'}}('~ ((Z~ld]_~)~,~] 

[ A~T~'] [F~j, F~3.'~-] - [Bt~ -~'1 [Fl~;- Ft~--] �9 

Here  the following notations have been used: 

Zll  = Zrz = ni+-~al.~ + ai:bil-~ , Z21 = Zzz :: ni--:al~ - ai:bil-~ �9 

It  is worth underlining that the definition (47) is in the heart  of our whole approach to 

describe the strong correlation in the Hubbard model. The coefficients A and B are 

determined from the constraint (4), namely 

(48) i~ d § ([(D~t,j)~z, jz~]+ > : 0. 

After some algebra we obtain from (48) (i ~ j )  

{ [A~-~]~ = ~((d~ ~at_~} + (di-~-~a~-~})(n ~ ~ ) 1 ,  

(49) [Bti]~ [(n~_ n~_:) ~- ~[t((ai~a[_:al_~a~} - (ai~ai :a~-:al*~})](n~-:) -~,  

As previously, we introduce now the GMF GF F~ in analogy with (6); however, as it 

is clear from (47), the actual definition of the GMF GF is very non-trivial. After the 

Fourier transformation we get 

(5O) 
r O  ~ F ~  - 

The coefficients a, b, c, d are equal to 

(51) [ = o J - E . - N - 1 E ~ ( p ) ( A  
b - P 

n 2 : b  n ~ d  ) 

ab - cd ab - cd 

n2:c n~:a 

ab - cd ab - cd 

.... ( _ p )  - B -+ ~= (p  - q ) ) ) ,  

c ~ ~ = N_~  ~ e(P)(A ~ • ( - P )  - B ~- -~= (P _ q) ) .  
d J p 

Then, using the definition (43) we find the final expression for the GMF GF, 

~o - ( n  ~ : E _  + n : - : E + )  - ) , ( k )  

(52) GMF (k, (o) = 
- ~ - + ~ - + k (co E§  n : : ) ~ l ( k ) ) ( ~ o - E _ - n _ :  2 ( k ) ) - n _ : n _ ~ ) ~ 3 (  ))~4(k) 
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Here we have introduced the following notations: 

(53) )~ (k )~= 1_ ~ s ( p ) ( A : ~ • 1 7 7 1 7 7  
)~.~ (k) J n § p 

(54) ),4 (k) J n - :  p 

),(k) = (n-)2() ,1  + ;~3) + (n-+~)2(;~2 + )~4). 

From eq. (52) it is obvious that our two-pole solution is more general than 

the , ,Hubbard I I I ,  [13] and Roth [15] solutions. Our solution has the correct non-local 

structure, taking into account the non-diagonal-scattering matrix elements more 

accurately. Those matrix elements describe the virtual ,,recombination, processes 

and reflect the extremely complicated structure of the single-particle state, which 

virtually includes a great  number of intermediate scattering processes (cf. the 

interesting analysis in ref. [351). 

The spectrum of the mean-field quasi-particle excitations follows from the poles of 

the GF (52) and consists of two branches: 

(55) ( ~  --  1/2 [(E~ - E__ + a I + 51) _+ ~ / / E _  + E _  - a 1 - b l )  2 - 4cd] 
~o2(k) J 

where al(b)= co- E •  a(b). Thus the Spectral Intensity Ak~(oJ) of the GF (52) 

consists of two peaks, which are separated by the distance 

(56) ~ - ~~ = ~ / ( U -  al - b~)2- cd = U( 1 -  al - bl ) + 

For  a deeper insight into the functional structure of the solution (52) and for 

comparison with the other solutions we rewrite (50) in the following form: 

(57) F~ (o J) = 

I a db- lc  -1 b da- lc  -11 ) ) 
n'_~ n+_~ n2: n2~ 

n+-~ n+_~ n , n_ _ 

from which we obtain for the G~ F (k, co), 

(5s) G~ F(k, so) = 
n:~(1  + cb -1) 

a - db- lc  

n_--~(1 + da-~) 
+ 

b - ca- ld  

+ 

(,J - E_ - n _-~W-:(k) ~o - E .  - n~:W+_:(k) ' 
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where 

(59) n ~_~n:~W_~(k) = N - I  ~ tij exp [ - ik(Ri  - Rj)]. 
~3 

"~ + W- �9 (((ai-=ni~ aj_=) + (ai_=n(= a/~_=)) + ((nj=_=ni+-_=) + (ai=ati_=aj_=af=) - (ai=ai _=af.=af=))), 

are the shifts for the upper and lower splitted subbands due to the elastic scattering 

of the carriers in the Generalized Mean Field. Namely W • are the functionals of the 

GMF. The most important feature of the present solution of the strongly correlated 

Hubbard model is a very non-trivial structure of the mean-field renormalizations (59), 

which is crucial to understand the physics of strongly correlated systems. It is 

important to emphasize that this complicated form of the GMF namely is only 

relevant to the essence of the physics under consideration. The attempts to reduce 

the functional of the GMF to the simpler functional of the average density of electrons 

are incorrect, mainly from the point of view of the real nature of the physics of 

HCES. This physics clearly shows that the mean-field renormalizations cannot be 

expressed as a functional of the electron mean density. To explain this statement, let 

us derive the ,,Hubbard I ,  solution [7] from our GMF solution (52). If we approximate 

(59) as 

(60) + - + - 1 r + n _ = n _ , W -  (k) ~ N E t i j  e x p [ -  ik(R~ - Rj)](n~%n,_,)  
U 

aiad make the additional approximation, namely 

(nj_=ni_=) = n2= , 

the solution (52) goes over into the ,,Hubbard I ,  solution, 

n_= 1 - n_.= 
(61) G~ (o)~  + 

o~ - U -  e ( k ) n _ ~  (o - e ( k ) ( 1  - n _ ~ )  

This solution, as is well known, in unrealistic from many points of view. 

As regards our solution (52), the second important aspect is that the parameters 

hi(k) do not depend on frequency, i.e. they depend essentially on the elastic-scattering 

processes. Such a dependence on frequency arises due to inelastic-scattering processes 

which are contained in our self-energy operator and we proceed now with the 

derivation of the explicit expression for it. 

To calculate the high-order GF in the right-hand side of (45) we should use the 

second time variable (t') differentiation of it again. If one introduces irreducible parts 

for the right-hand side operators by analogy with expression (47), the equation of 

motion (45) can be rewritten exactly in the following form: 

(62) Fk=((o) = F~ + F~176 

Here the scattering operator P (8) has the form 

(63) [ ~  Dir i~,+ ] i - 1  Pq.(r 1-1 tizt~j (( iz, j ))~,, �9 
q 
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In accordance with the definition (9) we write down the Dyson equation 

(64) F = F ~ + F ~  

The self-energy operator M is defined by eq. (9). Let us note again that  the 

self-energy corrections, according to (10), contribute to the full GF as additional 

terms. This is an essential advantage in comparison with the -Hubbard I I I ,  solution 

and other two-pole solutions. For  the full GF we find, using the formal solution of the 

Dyson equation, 

1 
(65) G : ( k ,  co) = 1 (a  - n : ~ M ~  + + ( k ,  oJ)) + 

n ~ n 
(b - n _ ~ M :  - ( k ,  o~)) + 

+ 1 n +  M +  1 / 
n +-~ (d  + _~ ~ - ( k ,  co)) + n y ~  (C + n : ~ M ~  ~ (k ,  o~))] . 

.[det((FO (oj)) 1 _ M ~ ( k ,  e,J))] -1 . 

After some algebra we can rewrite this expression in the following form, which is 

essentially new and, in a certain sense, is the central result of the present theory: 

(66) G - 
c o - ( n + E  + n  E _ ) - L  

(oJ - E +  - n L1)(co - E - n - L. , )  -- n n ' L : ~ L  4 

where 

(67) 

L 1 (k, oJ) = ),, (k) - n-+: M• + (k, o)), 

L 2 ( k ,  co) = ).2(k) - n*_~ M j  - ( k ,  oJ), 

, n ' + ( k ,  L 3 ( k ,  c)) = ),s(k) + ~ M~ oJ), 
'f~ _ 

n + 
L 4 ( k ,  o~) = s  + ~ M :  (k, c~), 

n _ 

L ( k ,  co) =),(k) + n 4_.n . ( M  + ' + M -  - - M ~ _ M + - ) .  

Thus, now we have to find the explicit expressions for the elements of the self-energy 

matrix M. To proceed we should use the spectral theorem again, as in eq. (30), to 

express the GF in terms of correlation functions: 

(68) M : ' Z ( k ,  c,~) - (D;~] /~(t) D ~  ~>. 

For the approximative calculation of the self-energy we propose to use the following 
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trial solution: 

(69) (Dirt (t)D ~) ~ ( a ~  (t) at:)(n~_:(t)n{_~) + (a,~: (t) ni-:)(n~_:(t) al:) + 

+ fl(b~j_:(t)a~:)(aj*,(t)n~_:) + fl(b~j ~(t)n; :)(a]~(t)at~) + 

* r3 ? 
+ ~ ( a ~  (t) a~)(nj ~ (t) b~_ ~) + ~ (am~ (t) b~_ ~)(njZ: (t) b~ ~) + 

+ afl(b:,i_~(t)a~:)(a~(t)bi~_:) + :r 

It is quite natural to interpret the contributions in this expression in terms of 

scattering, resonance broadening and interference corrections of different types. For 

example, let us consider the simplest approximation. To this aim we retain the first 

contribution in (69) 

(70) [IMI]~ = I dco' , (exp[flco'] + 1). 
09 - -  ( 0  

- = c  

f d_t_t exp rico'tiN -~ ~ exp[ - ik(R~ - Rj)] t~tt~,j" 
2 ~ i jim 

f (1 ) �9 dcoln(~ol) exp[icolt]g,,z~(COl) - - ImKi~(oJl - co') . 
7~ 

Equations (70) and (64) constitute the self-consistent system of equations for the 

single-particle Green's function. For a simple estimation, for the calculation of the 

self-energy (70) it is possible to use any initial relevant approximation of the two-pole 

structure�9 As an example we take the expression (61). We then obtain 

[ n_~ i - n _ ,  ] 
(71) [ I M I ] : + ~  I~ (k -q )12K~ ~ + s(k - q~(1 n_:) " 

q co - U - d k  - q )  n _ ~  c,J - - 

On the basis of the self-energy operator (71) we can explicitly find the energy shift 

and damping due to inelastic scattering of the quasi-particles, which is a great 

advantage of the present approach. It is clear from the present consideration that for 

the systematic consti'uction of the approximate solutions we need to calculate the 

collective correlation functions of the electron density and spin density and the 

density of doubles, but this problem must be considered separately. 

6. - Correlat ions  in random Hubbard model.  

In this chapter we shall apply the IGF method for the consideration of the 

electron-electron correlations in the presence of disorder to demonstrate the 

advantage of our approach. The treatment of the electron motion in substitutionally 

disordered AxB1-x transition metal alloys is based upon a certain general~ation of the 

Hubbard model, including random diagonal and off-diagonal elements caused by 

substitutional disorder in binary alloys. The electron-electron interaction plays an 

important role for various aspects of behaviour in alloys, e.g., in the weak localisation 
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in Ti-A1 alloys [36]. There are certain aspects of the high-T~ superconductivity where 

disorder plays a role and very recently in the paper [37] the fictitious alloy resulting 

from the random distribution of magnetic molecular fields has been treated within the 

single-site Coherent Potential Approximation (CPA)[38]. The CPA has been refined 

and developed in many papers (e.g., [39, 40]) and till now [41] it is the most popular 

approximation for theoretical studying of alloys. But the simultaneous effect of 

dk~order and electron-electron inelastic scattering has been considered for some 

limited cases only [421 and not within the self-consistent scheme. Let us consider the 

Hubbard-model Hamiltonian on a given configuration of alloy (v), 

(72) H (~) = H~ ~) + H2 ('~) , 

where 

(73) 

HI ̀ ') E oini~ + s ti] a[:aj:, 
i v  U v  " 

**2 -~ U; ni, ni , 

Contrary to the periodic model (11), the atomic-level energy ~ ,  the hopping integrals 

ti"j '~ as well as the intra-atomic Coulomb repulsion Ui ~ here are the random variables, 

which take the values r -~, t ~.'~ and U", respectively; the superscript ,~(a) refers to the 

atomic species (,~, .~ =A,  B) located on site i ( j ) .  The nearest-neighbour hopping 

integrals are included only. 

To unify the IGF method and CPA into a completely self-consistent scheme, let us 

consider the single-electron GF (17) Gij: in the Wannier representation for a given 

configuration (,~). The corresponding equation of motion has the form (for brevity we 

shall omit the superscript (v) where its presence is clear) 

(74) (~o - e D ( ( a ~ , l @ ) ) ~ , ,  = " , ~  + 2t i , ,  {a,,~]@)),., + Ui {ai-.-ai~laf~))~o. 
7l 

In the present paper, for brevity, we will confine ourselves to the weak-correlation 

case and the diagonal disorder only. The generalization for the case of strong 

correlation or off-diagonal disorder is straightforward, but its length considerations 

preclude us from discussing at this time. 

Using the definition (3), we define the IGF for a given (fLxed) configuration of 

atoms in an alloy as follows: 

(75) i~ (( ni_: ai: l a]: )) = (( ni _: ai~ [ a]~ )) - ( n i  ~)((aiv[a~:)). 

This time, contrary to (19), because of lack of translational invariance we must take 

into account the site dependence of (n~ _~). Then we rewrite the equation of motion 

(76) in the following form: 

(76) E[(o~-  si Ui(ni r ti,,.]{a,~] + " (~ 
~l 

In accordance with the general method of sect. 2, we find then the Dyson equation for 
a given configuration (v), 

(77) Gij~(o)) GO(Co) + ~ 0 = Gi,,,~ (~0) M,,,,,~ (o)) G~2 v (co). 
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The GMF GF G~ and the self-energy operator M are defined as 

Him,  Gmj, (co) = ~ ~j, 

(78) ~J 

P,nn~(OJ) = Urn( <<n.~_. ,,~ln,~_.a,~>>~,~)Un . 

In order to calculate the self-energy operator M self-consistently, we have to express 

it approximatively by the lower-order GFs. Employing the same pair approximation 

a s  (31) (now in Wannier representation) and the same procedure of calculations we 

arrive at the following expression for M for a given configuration (v): 

M(") o~ 1 [ ) = UmU, -- R( ol,  o2,  o3) " 
27r 4 

(79) �9 Im G(m~ ) _ ~ (co 1) Im Gm,_~ (co2) (') Im G~)~ (r 

R = dc~176176 (1 - n((o~))n(~o2)n((,~3) 

co + co 1 - o~2 - ~o3 n(~o2 ~- 09 3 - -  CO 1)  

As we have mentioned previously, all the calculations just presented have been done 

for a given configuration of atoms in alloy. All the quantities in our theory 

(G, G ~ P, M) depend on the whole configuration of the alloy. To obtain a theory of a 

real macroscopic sample, we have to average over various configurations of atoms in 

the sample. The configurational averaging cannot be exactly made for a macroscopic 

sample. Hence we must resort to an additional approximation. It is obvious that 

self-energy M is in turn the functional of G, namely M = M [ G ] .  If the process of 

taking configurational averaging is denoted by G, then we have 

= ~ o  + G O M G .  

Few words are now appropriate for the description of general possibilities. The 

calculations of ~0 can be performed with the help of any relevant available scheme. In 

the present work, for the sake of simplicity, we choose the single-site CPA[38], 

namely we take 

(80) ~o (~) = N -~ ~ exp [ ik(R,~ - R,,)] 

Here ~(k) = ~ t,, 0 exp [ ikR~] ,  z is the number of nearest neighbours of the site 0, 
n = l  

and the coherent potential Z~'(~o) is the solution of the CPA self-consistency 

equations. For the A ~ B ~ x  these read 

I E~(~o) = x ~  + (1 - x ) ~  - ( ~  - Z ~ ) F ~ ( ( o ,  E~)(~=B - E ~ ) ,  
(81) [ = 

Now, let us return to the calculation of the configurationa!ly averaged total GF G. To 
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perform the remaining averaging in the Dyson equation we use the approxhnation 

GOMG ~_ G ~  

The calculation of 114 requires further averaging of the product of matrices. We again 

use the prescription of the factorisability there, namely 

/~ ~ (U,, U0(Im G)(Im G)(Im G). 

However, the quantities U.~ U, entering into ll4 are averaged here according to 

u,,~ U,~ - U~ + (u~ - U~) , ~ ,  

(82) U1 = xeU# + 2x(1 - x) UAUB + (1 - x)2U~,  

2 9 
U2 = XUA + (1 - x) U~. 

The averaged value for the self-energy is 

27r4 ' . ,  

+ U 1 -  U,, f 
27,4 ~mn 

R(oJl, o,2, o~a) Im (~n,,, ~(co 1) Im(~,,~,~ :(~o~) Im(2..~:(oJa). 

The averaged quantities are periodic, so we can introduce the Fourier transform of 
them, i.e. 

k 

and similar formulae for d and ~0. Performing the configurational averaging of the 

Dyson equation and Fourier-transforming the resulting expressions according to the 
above rules, we obtain 

(84) 
where 

Gk:((o) = (*,~ - ~(k) - 'Z ~(o~) - M : ( k ,  ~ ) )  ' ,  

1__ 
(85) 0))  

�9 . 2 : : 4  ' . 

�9 I]2 ImGk~j,(oJ~) + (U1 N- tL2) ~]g ImOk~_p g(oJ3)]. 

The simplest way to obtain the explicit solution for the self-energy 114 is to start with 

a suitable initial trial solution as was done for the periodic ease (33). For the 

disordered system, it is reasonable to  use as the first iteration approximation the 

so-called Virtual Crystal Approximation (VCA): 

- t  

- - - I m  (;YEA (oJ + i t )  -- a(~,~ - E D ,  
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where for the binary alloy A~B~ x this approximation reads 

V = x V A + ( 1  - x ) V  R', E ~ = 7 ~ + e ( k ) ,  

=~ = xE~ + (1 - x ) ~  

Note that the use of VCA here is by no means the solution of the correlation problem 

in VCA. It is only the use of VCA for the parametrisation of the problem, to start 

with VCA input parameters. After the integration of (83) the final result for the 

self-energy is 

(86) _~  (k, (o)= ~ U2 ~pq n(EpSq)[ 1 - n(E~-o~ + Ep+q ~) - -n(E[+9]E~7 ~ - E~, + n(E;,p p)n(E~ -~)_ + 

+ 
(U1 - U,~) ~ n(Ep ~q)[1 - n(E~ -~) - n(E[.p g)] + n(E~+p_g)n(E~ -~) 

N 3 pq9 oJ + Ep-tq - Eq ~ - E~  p_g 

It must be emphasized that eqs. (84), (85) give the general microscopic self-consistent 

description of inelastic electron-electron scattering in alloy in the spirit of the CPA. 

We take into account the randomness not only through the parameters of the 

Hamiltonian, but also in a self-consistent way through the configurational depend- 

ence of the self-energy operator. 

7.  - C o n c l u s i o n s .  

In the present paper we have formulated the theory of the correlation effects 

using the ideas of the quantum field theory for the interacting electron system on a 

lattice. The main achievement of this formulation is the derivation of the Dyson 

equation for two-time thermodynamic retarded Green's Functions instead of causal 

ones. Such a formulation permits to use the convenient anal~ical properties of 

retarded and advanced GFs and gives the advantage of using the formal solution of 

the Dyson equation, which, in spite of required approximations for the self-energy, 

provides the correct functional structure of the single-electron GF. This strong point 

of our approach does not give the possibility of direct application of it to the 

calculation of the two-particle GFs. In this paper we have restricted ourselves to the 

idealized single-band Hubbard model, which is one of the simplest (in the sense of 

formulation, but not solution) and most popular models of correlated lattice fermions. 

We have presented here the novel method of calculation of the quasi-particle spectra 

for this model, as the most representative example. We hope that this explanation 

has been done with sufficient details to bring out their scope and power, since we 

believe that such techniques will be applied to a variety of many-body systems with 

complicated spectrum and strong interaction. 
In summary, using the IGF method we were able to obtain the closed 

self-consistent set of equations determining the electron GF and self-energy. These 

equations define the renormalization coefficient of the one-electron GF [20], defined 



GENERALIZI~]I) MEAN FIELDS AND QUASI-PARTICLE INTERACTIONS IN THE HUBBARD MODEL 853 

for a point (k, c,) = e(k)): 

(87) Z(k)  = 
1 dM(k, ~o) 

do) )~,,- ~(k) 

The renormalization coefficient (87) is one of the most important notions for the 

characterization of the single-particle behaviour of the quasi-particle excitations in 

correlated many-body systems. For the Hubbard model, these equations provide the 

general microscopic description of correlation effects for both the weak and strong 

Coulomb correlation, representing the complete interpolation solution of the 

Hubbard model. Moreover, this approach gives the workable scheme for the 

definition of the relevant Generalized Mean Fields written in terms of appropriate 

correlators. The most important conclusion to be drawn from the present 

consideration is that the GMF for the case of strong Coulomb interaction has a quite 

non-trivial structure and cannot be reduced to the mean-density functional. This last 

statement resembles very much the situation with the strongly non-equilibrium 

system, where the single-particle distribution function only is not enough to describe 

the essence of the strongly non-equilibrium state and more complicated correlation 

functions must be taken into account, in accordance with general ideas of Bogoljubov 

and Mori-Zwanzig. The IGF method is intimately related to the projection method in 

this sense, which espresses the idea of a -reduced description, of the system in the 

most general form. This line of consideration is very promising for the development of 

the complete and self-contained theory of the strongly interacting many-body systems. 
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