Generalized Measures for Fault Tolerance of Star Networks

Xiang-Jun Li
School of Information and Mathematics, Yangtze University, Jingzhou, Hubei, 434023, China
School of Mathematical Sciences, University of Science and Technology of China, Wentsun Wu Key Laboratory of CAS, Hefei, 230026, China

Jun-Ming Xu
School of Mathematical Sciences, University of Science and Technology of China, Wentsun Wu Key Laboratory of CAS, Hefei, 230026, China

Abstract

This article shows that, for any integers n and k with $0 \leq$ $k \leq n-2$, at least $(k+1)!(n-k-1)$ vertices or edges have to be removed from an n-dimensional star graph to make it disconnected with no vertices of degree less than k. The result gives an affirmative answer to the conjecture proposed by Wan and Zhang (Appl Math Lett 22 (2009), 264-267). © 2014 Wiley Periodicals, Inc. NETWORKS, Vol. 63(3), 225-230 2014

Keywords: combinatorics; connectivity; k-super connectivity; fault-tolerance; star networks

1. INTRODUCTION

It is well known that interconnection networks play an important role in multiprocessor systems. An interconnection network can be modeled by a graph $G=(V, E)$, where V is the set of processors and E is the set of communication links in the network.

A subset $S \subset V(G)$ (resp. $F \subset E(G)$) of a connected graph G is called a vertex-cut (resp. edge-cut) if $G-S$ (resp. $G-F$) is disconnected. The connectivity $\kappa(G)$ (resp. edge-connectivity $\lambda(G)$) of G is defined as the minimum cardinality over all vertex-cuts (resp. edge-cuts) of G. The connectivity $\kappa(G)$ and edge-connectivity $\lambda(G)$ of a graph G are two important measurements for fault tolerance of the network since the larger $\kappa(G)$ or $\lambda(G)$ is, the more reliable the network is. However, in the definitions of $\kappa(G)$ and $\lambda(G)$, it is implicitly assumed that any subset of system components is equally likely to be faulty simultaneously, which may not be true in real applications, thus they underestimate

[^0]the resilience of the network. To overcome such shortcoming, Harary [6] introduced the concept of conditional connectivity by appending some requirements on the components of $G-S$ (resp. $G-F$). In this trend, Esfahanian [5] proposed the concept of restricted connectivity, Latifi et al. [8] generalized it to restricted k-connectivity which can measure fault tolerance of an interconnection network more accurately than the classical connectivity. The concepts stated here are slightly different from theirs.

Let G be a connected graph. A subset $S \subset V(G)$, if any, is called a k-vertex-cut, if $G-S$ is disconnected and has the minimum degree at least k. The k-super connectivity of G, denoted by $\kappa_{s}^{(k)}(G)$, is defined as the minimum cardinality over all k-vertex-cuts of G. Similarly, a subset $F \subset E(G)$, if any, is called a k-edge-cut, if $G-F$ is disconnected and has the minimum degree at least k. The k-super edge-connectivity of G, denoted by $\lambda_{s}^{(k)}(G)$, is defined as the minimum cardinality over all k-edge-cuts of G.

For an arbitrary connected graph G and an integer k, determining $\kappa_{s}^{(k)}(G)$ and $\lambda_{s}^{(k)}(G)$ is quite difficult, there is no known polynomial algorithm to compute them yet. In fact, for an arbitrarily given graph G and integer $k \geq 1$, the existence of $\kappa_{s}^{(k)}(G)$ and $\lambda_{s}^{(k)}(G)$ is an open problem so far. Only a little knowledge of results have been known on $\kappa_{s}^{(k)}$ and $\lambda_{s}^{(k)}$ for some special classes of graphs for any k. For example, for the hypercube Q_{n}, Oh et al. [12] and Wu et al. [17] independently determined $\kappa_{s}^{(k)}\left(Q_{n}\right)=2^{k}(n-k)$ for $k \leq n-2$, Xu [18] determined $\lambda_{s}^{(k)}\left(Q_{n}\right)=2^{k}(n-k)$ for $k \leq n-1$.

As an attractive alternative network to the hypercube, the n-dimensional star graph S_{n} is proposed by Akers et al. [1]. Since it has superior degree and diameter compared to the comparable hypercube as well as it is highly hierarchical and symmetrical [4], the star graph S_{n} has received considerable attention in recent years (see, e.g., [1,3, 9, 10, 14-16]). In particular, Cheng and Lipman [2], Hu and Yang [7], Nie et al. [11], and Rouskov et al. [15], independently, determined
$\kappa_{s}^{(1)}\left(S_{n}\right)=2 n-4$ for $n \geq 3$. Yang et al. [20] proved $\lambda_{s}^{(2)}\left(S_{n}\right)=6(n-3)$ for $n \geq 4$. Wan and Zhang [19] showed that $\kappa_{s}^{(2)}\left(S_{n}\right)=6(n-3)$ for $n \geq 4$ and conjectured that $\kappa_{s}^{(k)}\left(S_{n}\right)=(k+1)!(n-k-1)$ for $k \leq n-2$. In this article, we give an affirmative answer to the conjecture and generalize the afore mentioned results by proving that $\kappa_{s}^{(k)}\left(S_{n}\right)=\lambda_{s}^{(k)}\left(S_{n}\right)=(k+1)!(n-k-1)$ for any k with $0 \leq k \leq n-2$.

In section 2, we recall some structural properties of S_{n} and lemmas to be used in our proofs. The proofs of main results are in section 3. A conclusion is in section 4.

2. DEFINITIONS AND LEMMAS

For a given integer n with $n \geq 2$, let $I_{n}=$ $\{1,2, \ldots, n\}, I_{n}^{\prime}=\{2, \ldots, n\}$ and $P(n)=\left\{p_{1} p_{2} \ldots p_{n}: p_{i} \in\right.$ $\left.I_{n}, p_{i} \neq p_{j}, 1 \leq i \neq j \leq n\right\}$, the set of permutations on I_{n}. Clearly, $|P(n)|=n$!. For a permutation $p=p_{1} \ldots p_{j} \ldots p_{n} \in$ $P(n)$, the digit p_{j} is called the symbol in the j-th position (or dimension) in p. For each $i \in I_{n}^{\prime}$, we use p^{i} to denote the permutation obtained from p by exchanging two symbols in the first and the i-th position of p and leaving the rest unaltered, that is, $p^{i}=p_{i} p_{2} \ldots p_{i-1} p_{1} p_{i+1} \ldots p_{n}$.

The n-dimensional star graph, denoted by S_{n}, is an undirected graph with vertex-set $P(n)$ and edge-set $\left\{p p^{i}: p \in\right.$ $\left.P(n), i \in I_{n}^{\prime}\right\}$. The star graphs S_{2}, S_{3}, and S_{4} are shown in Figure 1.

Like the hypercube, the star graph is a vertex- and edgetransitive graph with degree $(n-1)$. Moreover, S_{n} is a Cayley graph on the symmetric group on I_{n} with respect to the generating set $\left\{t^{2}, t^{3}, \ldots, t^{n}\right\}$, where t is the identity permutation [1].

The following properties of S_{n} are very useful for our proofs.

Lemma 2.1 (see Cheng et al. [3], 2008). If $n \geq 3$, then $\kappa\left(S_{n}\right)=\lambda\left(S_{n}\right)=n-1$, and the length of the shortest cycle in S_{n} is 6 .

For fixed $i, j \in I_{n}$, we use $S_{n}^{j: i}$ to denote the subgraph of S_{n} induced by all vertices with symbol i in the j-th position. From definition, it is easy to see that $S_{n}^{j: i}$ is isomorphic to S_{n-1} for each $i \in I_{n}$ and each $j \in I_{n}^{\prime}$, and $S_{n}^{1: i}$ is an independent vertex set of size $(n-1)$! for each $i \in I_{n}$.

Using these subgraphs yields two types of partitions for S_{n} according as the fixed index is i or j. If a dimension $j \in I_{n}^{\prime}$ is fixed, then $\left\{S_{n}^{j: i}: i \in I_{n}\right\}$ is called the partition of S_{n} along the dimension j, or called the first partition for short. If a symbol $i \in I_{n}$ is fixed, then $\left\{S_{n}^{j: i}: j \in I_{n}\right\}$ is called the partition of S_{n} along the symbol i, or called the second partition for short. Figure 2 shows two types of partitions for S_{4}.

The following lemmas give two structural properties of S_{n} by using two partitions.

Lemma 2.2 (The first structural property, Akers and Krishnamurthy [1], 1989). For a fixed dimension $j \in I_{n}^{\prime}, S_{n}$ can

FIG. 1. The star graphs S_{2}, S_{3} and S_{4}.
be partitioned into n subgraphs $S_{n}^{j: i}$, which is isomorphic to S_{n-1} for each $i \in I_{n}$. Moreover, there are $(n-2)$! independent edges between $S_{n}^{j: i_{1}}$ and $S_{n}^{j: i_{2}}$ for any $i_{1}, i_{2} \in I_{n}$ with $i_{1} \neq i_{2}$.

Lemma 2.3 (The second structural property, Shi et al. [13], 2012). For a fixed symbol $i \in I_{n}, S_{n}$ can be partitioned into n subgraphs $S_{n}^{j: i}$, which is isomorphic to S_{n-1} for each $j \in I_{n}^{\prime}$ and $S_{n}^{1: i}$ is an independent vertex set of size $(n-1)!$. Moreover, there are a perfect matching between $S_{n}^{1: i}$ and $S_{n}^{j: i}$ for any $j \in I_{n}^{\prime}$, and there are no edges between $S_{n}^{j_{1}: i}$ and $S_{n}^{j_{2}: i}$ for any $j_{1}, j_{2} \in I_{n}^{\prime}$ with $j_{1} \neq j_{2}$.

3. MAIN RESULTS

In this section, we present our main results, that is, we determine the k-super connectivity and k-super edgeconnectivity of the n-dimensional star graph S_{n}. We first investigate the properties of subgraph H of S_{n} with minimum degree $\delta(H)$ at least k. For a subset $X \subseteq V\left(S_{n}\right)$ and $j \in I_{n}$, we use U_{j}^{X} to denote the set of symbols in the j-th position of vertices in X, formally, $U_{j}^{X}=\left\{p_{j}: p_{1} \ldots p_{j} \ldots p_{n} \in X\right\}$. The following lemma plays a key role in the proof of our main result.

Lemma 3.1. Let H be a subgraph of S_{n} with vertex-set X. For a fixed $k \in I_{n-1}$, if $\delta(H) \geq k$, then there exists some $j \in I_{n}^{\prime}$ such that $\left|U_{j}^{X}\right| \geq k+1$.

Proof. Without loss of generality, we can assume that H is connected. For sake of simplicity, for a fixed X, we write U_{j} for U_{j}^{X}. Let W_{i} be the set of positions which symbol i appears in vertices in X excluding the first position, that is, $W_{i}=\left\{j \in I_{n}^{\prime}: i \in U_{j}\right\}$.

We use the second partition of S_{n} to prove the lemma by induction on $n(\geq k+1)$.

If $n=k+1$, then $\delta(H) \geq k=n-1$, and so $H=S_{n}$. Since $\left|U_{1}\right|=\cdots=\left|U_{n}\right|=n=k+1$, the conclusion holds for $n=k+1$. We assume the conclusion is true for $n-1$ with $n \geq k+2$.

FIG. 2. Two perspectives of S_{4}, where the graph in the left-hand side is the first partition along the dimension 4, and one in the right-hand side is the second partition along the symbol 1.

Let $x=p_{1} p_{2} \cdots p_{n}$ be a vertex in H. Then $x \in V\left(S_{n}^{1: p_{1}}\right)$. By Lemma 2.3, all the neighbors of x are in different $S_{n}^{j: p_{1}}$ for each $j \in I_{n}^{\prime}$. Since $\delta(H) \geq k, p_{1}$ appears in at least k different positions of vertices in H excluding the first position. It follows that

$$
\begin{equation*}
\left|W_{p_{1}}\right| \geq k \text { for any } x=p_{1} p_{2} \cdots p_{n} \in X \tag{1}
\end{equation*}
$$

If $\left|U_{1}\right|=n$, then each symbol of I_{n} appears in the first position of vertices in H. By (1), we have

$$
\begin{equation*}
\left|W_{i}\right| \geq k \text { for each } i \in I_{n} \tag{2}
\end{equation*}
$$

Now we construct an $n \times(n-1)$ matrix $C=\left(c_{i j}\right)_{n \times(n-1)}$, where $c_{i j}$ is the indicator of whether i appears in position $j+1$ in the vertices of X, that is,

$$
c_{i j}= \begin{cases}1 & j+1 \in W_{i} \\ 0 & \text { otherwise }\end{cases}
$$

Then

$$
\begin{gathered}
\left|U_{j}\right|=\sum_{i=1}^{n} c_{i(j-1)} \text { for each } j \in I_{n}^{\prime} \text { and } \\
\left|W_{i}\right|=\sum_{j=1}^{n-1} c_{i j} \text { for each } i \in I_{n}
\end{gathered}
$$

It follows that

$$
\begin{align*}
\sum_{j=2}^{n}\left|U_{j}\right| & =\sum_{j=2}^{n} \sum_{i=1}^{n} c_{i(j-1)}=\sum_{i=1}^{n} \sum_{j=2}^{n} c_{i(j-1)} \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n-1} c_{i j}=\sum_{i=1}^{n}\left|W_{i}\right| . \tag{3}
\end{align*}
$$

Combining (3) with (2), we have

$$
\begin{equation*}
\sum_{j=2}^{n}\left|U_{j}\right|=\sum_{i=1}^{n}\left|W_{i}\right| \geq n k \tag{4}
\end{equation*}
$$

If $\left|U_{j}\right| \leq k$ for each $j \in I_{n}^{\prime}$, then $(n-1) k \geq n k$ by (4), a contradiction. Thus, there exists some $j \in I_{n}^{\prime}$ such that $\left|U_{j}\right| \geq k+1$.

If $\left|U_{1}\right|<n$, then there exists at least one symbol in I_{n} that does not appear in the first position of any vertex in H. Without loss of generality, assume $1 \notin U_{1}$. Then $S_{n}^{1: 1}$ does not contain vertices of H by the definition of U_{1}. By Lemma 2.3, H must be contained in the unique $S_{n}^{j_{0}: 1}$ for some $j_{0} \in I_{n}^{\prime}$ since H is connected. Because $S_{n}^{j_{0}: 1}$ is isomorphic to S_{n-1}, and $H \subseteq S_{n}^{j_{0}: 1}$, by the induction hypothesis, there exists some $j \in I_{n}^{\prime}$ such that $\left|U_{j}\right| \geq k+1$.

By the induction principle, the lemma follows.
Lemma 3.2. For any integer k with $0 \leq k \leq n-2$, $\lambda_{s}^{(k)}\left(S_{n}\right) \leq(k+1)!(n-k-1)$ and $\kappa_{s}^{(k)}\left(S_{n}\right) \leq(k+1)!(n-$ $k-1)$.

Proof. Let X be the set of permutations on I_{n} whose the last $(n-k-1)$ positions is $12 \cdots(n-k-1)$, and let H be the subgraph of S_{n} induced by X. Then, H is isomorphic to S_{k+1}. Let T be the set of neighbors of X in $S_{n}-X$ and F the set of edges between X and T in S_{n}. By the definition of S_{n},

$$
T=\left\{x^{i}: x \in X, i \in I_{n} \backslash I_{k+1}\right\}
$$

For a vertex of X, since it has k neighbors in X, it has exactly ($n-k-1$) neighbors in T. In addition, it is easy to see that every vertex of T has exactly one neighbor in X. It follows that

$$
|T|=|F|=(k+1)!(n-k-1)
$$

Since every vertex v in $S_{n}-X$ has at most one neighbor in X and S_{n} is $(n-1)$-regular, v has at least $n-2$ neighbors in $S_{n}-X$, which implies that F is a k-edge-cut of S_{n} by $n-2 \geq k$ and the arbitrariness of v. It follows that

$$
\lambda_{s}^{(k)}\left(S_{n}\right) \leq|F|=(k+1)!(n-k-1)
$$

as desired, and so the first conclusion follows.

We now show that T is a k-vertex-cut of S_{n}. To this end, we only need to show that every vertex in $S_{n}-(X \cup T)$ has at least k neighbors within.

Let u be arbitrary vertex of $S_{n}-(X \cup T)$. We need to show that at most one of neighbors of u is in T. Suppose to the contrary that u has two distinct neighbors v and w in T. Then the first digits of v and w are different. Without loss of generality, assume $v=1 p_{2} \ldots p_{k+1} p_{1} 23 \cdots(n-k-1)$ and $w=2 p_{2}^{\prime} \ldots p_{k+1}^{\prime} 1 p_{1}^{\prime} 3 \cdots(n-k-1)$. Since u is adjacent to v, then u and v have exactly one digit difference excluding the first one. So are u and w. Therefore, w and v have exactly two digits difference excluding the first one. But w and v have two digits (the $(k+2)$-th and the $(k+3)$-th) difference, then $p_{2} \ldots p_{k+1}=p_{2}^{\prime} \ldots p_{k+1}^{\prime}$, therefore $p_{1}=p_{1}^{\prime}$, thus there exists a vertex $z=p_{1} \cdots p_{k+1} 12 \cdots(n-k-1)$ in X such that $z v \in E\left(S_{n}\right)$ and $z w \in E\left(S_{n}\right)$, and so $z v u w$ is a cycle with length 4 , which contradicts to the second conclusion in Lemma 2.1.

Since u has at most one neighbor in T, u has at least ($n-$ 1) - 1 neighbors in $S_{n}-(X \cup T)$. Since $(n-1)-1 \geq k, u$ has at least k neighbors in $S_{n}-(X \cup T)$, which implies that T is a k-vertex-cut of S_{n}. It follows that

$$
\kappa_{s}^{(k)}\left(S_{n}\right) \leq|T|=(k+1)!(n-k-1)
$$

as desired, and so the second conclusion follows.
Theorem 3.3. $\kappa_{s}^{(k)}\left(S_{n}\right)=\lambda_{s}^{(k)}\left(S_{n}\right)=(k+1)!(n-k-1)$ for any k with $0 \leq k \leq n-2$.

Proof. By Lemma 3.2, we only need to show that, for any k with $0 \leq k \leq n-2$,

$$
\begin{align*}
\kappa_{s}^{(k)}\left(S_{n}\right) & \geq(k+1)!(n-k-1) \text { and } \lambda_{s}^{(k)}\left(S_{n}\right) \\
& \geq(k+1)!(n-k-1) \tag{5}
\end{align*}
$$

We prove (5) by induction on k. If $k=0$, then $\lambda_{s}^{(0)}\left(S_{n}\right)=$ $\lambda\left(S_{n}\right)=n-1$ and $\kappa_{s}^{(0)}\left(S_{n}\right)=\kappa\left(S_{n}\right)=n-1$ by Lemma 2.1, and so (5) is true for $k=0$. Assume (5) holds for $k-1$ with $k \geq 1$, that is, for any k with $1 \leq k \leq n-2$,

$$
\kappa_{s}^{(k-1)}\left(S_{n}\right) \geq k!(n-k) \text { and } \lambda_{s}^{(k-1)}\left(S_{n}\right) \geq k!(n-k)
$$

and so,

$$
\begin{align*}
\kappa_{s}^{(k-1)}\left(S_{n-1}\right) & \geq k!(n-k-1) \text { and } \lambda_{s}^{(k-1)}\left(S_{n-1}\right) \\
& \geq k!(n-k-1) . \tag{6}
\end{align*}
$$

Let T be a minimum k-vertex-cut (or k-edge-cut) of S_{n}. To prove (5), we only need to show that

$$
\begin{equation*}
|T| \geq(k+1)!(n-k-1) \text { for } 1 \leq k \leq n-2 . \tag{7}
\end{equation*}
$$

To the end, let X be the vertex-set of a connected component H of $S_{n}-T$, and let

$$
Y= \begin{cases}V\left(S_{n}-(X \cup T)\right) & \text { if } T \text { is a vertex-cut } \\ V\left(S_{n}-X\right) & \text { if } T \text { is an edge-cut }\end{cases}
$$

Then $\delta(H) \geq k$, and so there exists some $j \in I_{n}^{\prime}$ such that $\left|U_{j}^{X}\right| \geq k+1$ by Lemma 3.1. We choose $j_{0} \in\left\{j \in I_{n}^{\prime}:\right.$ $\left.\left|U_{j}^{X}\right| \geq k+1\right\}$ such that $\left|U_{j_{0}}^{X} \cap U_{j_{0}}^{Y}\right|+\left|U_{j_{0}}^{Y}\right|$ is as large as possible. Without loss of generality, assume $j_{0}=n$. In the following proof, we use the first partition of S_{n}. For $i \in I_{n}$, let

$$
\begin{gathered}
X_{i}=X \cap V\left(S_{n}^{n: i}\right), \quad Y_{i}=Y \cap V\left(S_{n}^{n: i}\right), \\
T_{i}= \begin{cases}T \cap V\left(S_{n}^{n: i}\right) & \text { if } T \text { is a vertex-cut } \\
T \cap E\left(S_{n}^{n: i}\right) & \text { if } T \text { is an edge-cut },\end{cases}
\end{gathered}
$$

and let

$$
J_{X}=\left\{i \in I_{n}: X_{i} \neq \emptyset\right\}
$$

$$
J_{Y}=\left\{i \in I_{n}: Y_{i} \neq \emptyset\right\}, J_{0}=J_{X} \cap J_{Y}
$$

Clearly, $\left|J_{X}\right|=\left|U_{n}^{X}\right|,\left|J_{Y}\right|=\left|U_{n}^{Y}\right|$ and $\left|J_{0}\right|=\left|U_{n}^{X} \cap U_{n}^{Y}\right|$.
If $i \in J_{0}, T_{i}$ is a vertex-cut (or an edge-cut) of $S_{n}^{n: i}$. For any vertex x in $S_{n}^{n: i}-T_{i}$, since x has degree at least k in $S_{n}-T$ and has exactly one neighbor outsider $S_{n}^{n: i}, x$ has degree at least $k-1$ in $S_{n}^{n: i}-T_{i}$. Therefore, T_{i} is a $(k-1)$-vertex-cut (or a ($k-1$)-edge-cut) of $S_{n}^{n: i}$ for any $i \in J_{0}$. By the induction hypothesis (6), we have

$$
\begin{equation*}
\left|T_{i}\right| \geq k!(n-k-1) \text { for each } i \in J_{0} \tag{8}
\end{equation*}
$$

If $\left|J_{0}\right| \geq k+1$, by (8) we have

$$
\begin{aligned}
|T| & \geq \sum_{i=1}^{n}\left|T_{i}\right| \geq \sum_{i \in J_{0}}\left|T_{i}\right| \geq(k+1) k!(n-k-1) \\
& =(k+1)!(n-k-1)
\end{aligned}
$$

and so (7) follows.
Now assume $\left|J_{0}\right| \leq k$. Then $J_{X} \backslash J_{0} \neq \emptyset$. We consider two cases, $J_{Y} \backslash J_{0} \neq \emptyset$ and $J_{Y} \backslash J_{0}=\emptyset$, respectively.

CASE 1. $\quad J_{Y} \backslash J_{0} \neq \emptyset$,
Let $E^{j_{1} j_{2}}$ denote the set of edges between $S_{n}^{n: j_{1}}$ and $S_{n}^{n: j_{2}}$, and let

$$
\left.\begin{array}{l}
E_{c}=\left\{e \in E^{j_{1} j_{2}}\right.
\end{array}: j_{1}, j_{2} \in I_{n}, j_{1} \neq j_{2}\right\} \text { and }, ~\left(\begin{array}{cl}
\emptyset & \text { if } T \text { is a vertex-cut } \\
T \cap E_{c} & \text { if } T \text { is an edge-cut. }
\end{array}\right.
$$

Assume $j_{1} \in J_{X} \backslash J_{0}, j_{2} \in J_{Y} \backslash J_{0}$. Then there are $(n-2)$! independent edges between $S_{n}^{n: j_{1}}$ and $S_{n}^{n: j_{2}}$ by Lemma 2.2. Since each vertex in $S_{n}^{n: j_{1}}$ has a unique external neighbor, thus there are $\left(\left|J_{X} \backslash J_{0}\right|\left|J_{Y} \backslash J_{0}\right|(n-2)\right.$!) independent edges between $\cup_{j_{1} \in J_{X} \backslash J_{0}} S_{n}^{n: j_{1}}$ and $\cup_{j_{2} \in J_{Y} \backslash J_{0}} S_{n}^{n: j_{2}}$. Note that each edge of these independent edges must have one end-vertex in T if T is a vertex-cut, and be contained in T_{c} if T is an edge-cut. Therefore, no matter whether T is a vertex-cut or an edge-cut, we have

$$
\begin{equation*}
\sum_{i \in\left(J_{X} \cup J_{Y}\right) \backslash J_{0}}\left|T_{i}\right|+\left|T_{c}\right| \geq\left|J_{X} \backslash J_{0}\right|\left|J_{Y} \backslash J_{0}\right|(n-2)!. \tag{9}
\end{equation*}
$$

Let

$$
a=\left|J_{X} \backslash J_{0}\right|, b=\left|J_{Y} \backslash J_{0}\right|, c=\left|I_{n} \backslash\left(J_{X} \cup J_{Y}\right)\right| .
$$

Then $a \geq 1, b \geq 1, a+b+c=n-\left|J_{0}\right|$, and so

$$
\begin{aligned}
a b+c & =a b+\left(n-\left|J_{0}\right|\right)-(a+b) \\
& =\left(n-\left|J_{0}\right|\right)+(a-1)(b-1)-1 \\
& \geq\left(n-\left|J_{0}\right|-1\right),
\end{aligned}
$$

that is,

$$
\begin{equation*}
a b+c \geq\left(n-\left|J_{0}\right|-1\right) \tag{10}
\end{equation*}
$$

Note that $c=0$ if T is an edge-cut. Thus if there exists some $i \in I_{n} \backslash\left(J_{X} \cup J_{Y}\right)$, then T is a vertex-cut and $T_{i}=S_{n}^{n: i}$, and so

$$
\begin{equation*}
\left|T_{i}\right|=(n-1) \text { ! if } i \in I_{n} \backslash\left(J_{X} \cup J_{Y}\right) . \tag{11}
\end{equation*}
$$

Combining (8), (9), and (11) with (10), we have that

$$
\begin{aligned}
& |T|=\sum_{i=1}^{n}\left|T_{i}\right|+\left|T_{c}\right| \\
& =\sum_{i \in J_{0}}\left|T_{i}\right|+\left(\sum_{i \in\left(J_{X} \cup J_{Y}\right) \backslash J_{0}}\left|T_{i}\right|+\left|T_{c}\right|\right)+\sum_{i \in I_{n} \backslash\left(J_{X} \cup J_{Y}\right)}\left|T_{i}\right| \\
& \geq\left|J_{0}\right| k!(n-k-1)+\left|J_{X} \backslash J_{0}\right|\left|J_{Y} \backslash J_{0}\right|(n-2)!+c(n-1)! \\
& =\left|J_{0}\right| k!(n-k-1)+a b(n-2)!+c(n-1)! \\
& \geq\left|J_{0}\right| k!(n-k-1)+(a b+c)(n-2)! \\
& \geq\left|J_{0}\right| k!(n-k-1)+\left(n-\left|J_{0}\right|-1\right)(n-2)! \\
& \geq(n-1) k!(n-k-1) \\
& \geq(k+1)!(n-k-1)
\end{aligned}
$$

and so (7) follows.
CASE 2. $J_{Y} \backslash J_{0}=\emptyset$,
In this case $J_{Y}=J_{0}$, then $\left|U_{n}^{Y}\right|=\left|J_{Y}\right| \leq k$. Let $\bar{X}_{i}=V\left(S_{n}^{n: i}\right) \backslash X_{i}$ for each $i \in I_{n} \backslash J_{0}$. Note that for each $i \in I_{n} \backslash J_{0}, \bar{X}_{i}=T_{i}$ if T is a vertex-cut, and $\bar{X}_{i}=\emptyset$ if T is an edge-cut.

We first show that $\left|\bar{X}_{i}\right| \geq(n-2)$! for any $i \in I_{n} \backslash J_{0}$. Suppose to the contrary that there exists some $i \in I_{n} \backslash J_{0}$ such that $\left|\bar{X}_{i}\right|<(n-2)$!.

We show $\left|U_{j}^{X_{i}}\right| \geq n-1$ for any $j \in I_{n-1}^{\prime}$. On the contrary, there exists some $j \in I_{n-1}^{\prime}$ such that $\left|U_{j}^{X_{i}}\right| \leq n-2$. Notice that the rightmost digit of every vertex in X_{i} is i. There is at least one symbol $i_{1} \in I_{n} \backslash\{i\}$ that does not appear in the j-th position of any vertex in X_{i}. Thus, the vertices with symbol i_{1} in the j-th position and symbol i in the n-th position are not contained in X_{i}, which means that \bar{X}_{i} contains at least $(n-2)$! vertices, that is, $\left|\bar{X}_{i}\right| \geq(n-2)$!, a contradiction. Thus, $\left|U_{j}^{X_{i}}\right| \geq n-1$, and so $\left|U_{j}^{\bar{X}}\right| \geq n-1$ for any $j \in I_{n-1}^{\prime}$.

Since $\left|U_{n}^{Y}\right| \leq k$ and the subgraph induced by Y has minimum degree at least k, by Lemma 3.1 there exists some $j_{1} \in I_{n-1}^{\prime}$ such that $\left|U_{j_{1}}^{Y}\right| \geq k+1$. Then $\left|U_{j_{1}}^{X}\right| \geq n-1$ and $\left|U_{j_{1}}^{Y}\right| \geq k+1$, and so $\left|U_{j_{1}}^{X} \cap U_{j_{1}}^{Y}\right| \geq k$, therefore $\left|U_{j_{1}}^{X} \cap U_{j_{1}}^{Y}\right|+\left|U_{j_{1}}^{Y}\right| \geq 2 k+1$. Noting that $\left|U_{n}^{X} \cap U_{n}^{Y}\right|=\left|J_{0}\right| \leq k$ and $\left|U_{n}^{Y}\right|=\left|J_{Y}\right|=\left|J_{0}\right| \leq k$, we have that

$$
\left|U_{n}^{X} \cap U_{n}^{Y}\right|+\left|U_{n}^{Y}\right| \leq 2 k<2 k+1 \leq\left|U_{j_{1}}^{X} \cap U_{j_{1}}^{Y}\right|+\left|U_{j_{1}}^{Y}\right|
$$

However, this fact contradicts the choice of j_{0} that $\mid U_{j_{0}}^{X} \cap$ $U_{j_{0}}^{Y}\left|+\left|U_{j_{0}}^{Y}\right|\right.$ is as large as possible since we have supposed that $j_{0}=n$.

Thus, $\left|\bar{X}_{i}\right| \geq(n-2)$! for any $i \in I_{n} \backslash J_{0}$. If T is an edge-cut, then $\bar{X}_{i}=\emptyset$, a contradiction. Therefore, T is a vertex-cut, and so $\bar{X}_{i}=T_{i}$. It follows that

$$
\begin{equation*}
\left|T_{i}\right|=\left|\bar{X}_{i}\right| \geq(n-2)!\text { for each } i \in I_{n} \backslash J_{0} \tag{12}
\end{equation*}
$$

Combining (12) with (8), we have

$$
\begin{aligned}
|T| & =\sum_{i=1}^{n}\left|T_{i}\right|=\sum_{i \in J_{0}}\left|T_{i}\right|+\sum_{i \in I_{n} \backslash J_{0}}\left|T_{i}\right| \\
& \geq\left|J_{0}\right| k!(n-k-1)+\left(n-\left|J_{0}\right|\right)(n-2)! \\
& \geq(k+1)!(n-k-1)
\end{aligned}
$$

By induction principles, (7) holds and so the theorem follows.

Corollary $3.4([19,20]) . \quad \kappa_{s}^{(2)}\left(S_{n}\right)=\lambda_{s}^{(2)}\left(S_{n}\right)=6(n-3)$ for $n \geq 4$.

4. CONCLUSIONS

In this article, we consider the generalized measures of fault tolerance for networks, called the k-super connectivity $\kappa_{s}^{(k)}$ and the k-super edge-connectivity $\lambda_{s}^{(k)}$. For n-dimensional star graph S_{n}, which is an attractive alternative network to hypercubes, we prove that $\kappa_{s}^{(k)}\left(S_{n}\right)=\lambda_{s}^{(k)}\left(S_{n}\right)=$ $(k+1)!(n-k-1)$ for $0 \leq k \leq n-2$, which gives an affirmative answer to the conjecture proposed by Wan and Zhang [19]. The results show that at least $(k+1)!(n-k-1)$ vertices or edges have to be removed from S_{n} to make it disconnected without vertices of degree less than k. Thus these results can provide more accurate measurements for fault tolerance of the system when n-dimensional star graphs is used to model the topological structure of a large-scale parallel processing system.

Acknowledgments

The authors would like to express their gratitude to the anonymous referees for their kind comments and valuable suggestions on the original manuscript, which resulted in this version.

REFERENCES

[1] S.B. Akers and B. Krishnamurthy, A group theoretic model for symmetric interconnection networks, IEEE Trans Comput 38 (1989), 555-566.
[2] E. Cheng and M.J. Lipman, Increasing the connectivity of the star graphs, Networks 40 (2002), 165-169.
[3] E. Cheng, M.J. Lipman, and L. Lipták, Strong structural properties of unidirectional star graphs, Discrete Appl Math 156 (2008), 2939-2949.
[4] K. Day and A. Triphthi, A comparative study of topological properties of hypercubes and star graphs, IEEE Trans Parallel Distrib Sys 5 (1994), 31-38.
[5] A.H. Esfahanian, Generalized measures of fault tolerance with application to n-cube networks, IEEE Trans Comput 38 (1989), 1586-1591.
[6] F. Harary, Conditional connectivity, Networks 13 (1983), 347-357.
[7] S.-C. Hu and C.-B. Yang, Fault tolerance on star graphs, Int J Foundations Comput Sci 8 (1997), 127-142.
[8] S. Latifi, M. Hegde, and M. Naraghi-Pour, Conditional connectivity measures for large multiprocessor systems, IEEE Trans Comput 43 (1994), 218-222.
[9] S. Latifi, A study of fault tolerance in star graph, Inf Process Lett 102 (2007), 196-200.
[10] S. Latifi, E. Saberinia, and X. Wu, Robustness of star graph network under link failure, Inf Sci 178 (2008), 802806.
[11] X.-D. Nie, H.-M. Liu, and J.-M. Xu, Fault-tolerant analysis of star networks (in Chinese), Acta Math Sci 24 (2004), 168-176.
[12] A.D. Oh and H. Choi, Generalized measures of fault tolerance in n-cube networks, IEEE Trans Parallel Distrib Syst 4 (1993), 702-703.
[13] W. Shi, F. Luo, and P.K. Srimani, "A new hierarchical structure of star graphs and applications," Distributed Computing and Internet Technology, LNCS, vol. 7154, Bhubaneswar, India, 2012, pp. 267-268.
[14] S. Sur and P.K. Srimani, "A fault-tolerant routing algorithm for star graph interconnection network," Proc Int Conf Parallel Process, CRC Press, Tustin, USA, 1991, pp. 267-270.
[15] Y. Rouskov, S. Latifi, and P.K. Srimani, Conditional fault diameter of star graph networks, J Parallel Distrib Comput 33 (1996), 91-97.
[16] D. Walker and S. Latifi, Improving bounds on link failure tolerance of the star graph, Inf Sci 180 (2010), 2571-2575.
[17] J. Wu and G. Guo, Fault tolerance measures for m-ary n dimensional hypercubes based on forbidden faulty sets, IEEE Trans Comput 47 (1998), 888-893.
[18] J.-M. Xu, On conditional edge-connectivity of graphs, Acta Math Appl Sinica 16 (2000), 414-419.
[19] M. Wan and Z. Zhang, A kind of conditional vertex connectivity of star graphs, Appl Math Lett 22 (2009), 264-267.
[20] W.-H. Yang, H.-Z Li, and J.-X Meng, Conditional connectivity of Cayley graphs generated by transposition trees, Inf Process Lett 110 (2010), 1027-1030.

[^0]: Received January 2013; accepted January 2013
 Correspondence to: J.-M. Xu; e-mail: xujm@ustc.edu.cn
 Contract grant sponsor: NNSF of China; Contract grant number: 61272008 DOI 10.1002/net. 21539
 Published online 27 January 2014 in Wiley Online Library (wileyonlinelibrary.com).
 (C) 2014 Wiley Periodicals, Inc.

