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This article shows that, for any integers n and k with 0 ≤
k ≤ n−2, at least (k +1)!(n−k −1) vertices or edges have
to be removed from an n-dimensional star graph to make
it disconnected with no vertices of degree less than k .
The result gives an affirmative answer to the conjecture
proposed by Wan and Zhang (Appl Math Lett 22 (2009),
264-267). © 2014 Wiley Periodicals, Inc. NETWORKS, Vol. 63(3),
225–230 2014
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1. INTRODUCTION

It is well known that interconnection networks play an
important role in multiprocessor systems. An interconnection
network can be modeled by a graph G = (V , E), where V is
the set of processors and E is the set of communication links
in the network.

A subset S ⊂ V(G) (resp. F ⊂ E(G)) of a connected
graph G is called a vertex-cut (resp. edge-cut) if G − S
(resp. G − F) is disconnected. The connectivity κ(G) (resp.
edge-connectivity λ(G)) of G is defined as the minimum
cardinality over all vertex-cuts (resp. edge-cuts) of G. The
connectivity κ(G) and edge-connectivity λ(G) of a graph G
are two important measurements for fault tolerance of the
network since the larger κ(G) or λ(G) is, the more reliable
the network is. However, in the definitions of κ(G) and λ(G),
it is implicitly assumed that any subset of system compo-
nents is equally likely to be faulty simultaneously, which
may not be true in real applications, thus they underestimate
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the resilience of the network. To overcome such shortcoming,
Harary [6] introduced the concept of conditional connectivity
by appending some requirements on the components of G−S
(resp. G−F). In this trend, Esfahanian [5] proposed the con-
cept of restricted connectivity, Latifi et al. [8] generalized it
to restricted k-connectivity which can measure fault toler-
ance of an interconnection network more accurately than the
classical connectivity. The concepts stated here are slightly
different from theirs.

Let G be a connected graph. A subset S ⊂ V(G), if any,
is called a k-vertex-cut, if G − S is disconnected and has the
minimum degree at least k. The k-super connectivity of G,
denoted by κ

(k)
s (G), is defined as the minimum cardinality

over all k-vertex-cuts of G. Similarly, a subset F ⊂ E(G), if
any, is called a k-edge-cut, if G−F is disconnected and has the
minimum degree at least k. The k-super edge-connectivity of
G, denoted by λ

(k)
s (G), is defined as the minimum cardinality

over all k-edge-cuts of G.
For an arbitrary connected graph G and an integer k, deter-

mining κ
(k)
s (G) and λ

(k)
s (G) is quite difficult, there is no

known polynomial algorithm to compute them yet. In fact,
for an arbitrarily given graph G and integer k ≥ 1, the exis-
tence of κ

(k)
s (G) and λ

(k)
s (G) is an open problem so far. Only a

little knowledge of results have been known on κ
(k)
s and λ

(k)
s

for some special classes of graphs for any k. For example,
for the hypercube Qn, Oh et al. [12] and Wu et al. [17] inde-
pendently determined κ

(k)
s (Qn) = 2k(n − k) for k ≤ n − 2,

Xu [18] determined λ
(k)
s (Qn) = 2k(n − k) for k ≤ n − 1.

As an attractive alternative network to the hypercube, the
n-dimensional star graph Sn is proposed by Akers et al. [1].
Since it has superior degree and diameter compared to the
comparable hypercube as well as it is highly hierarchical
and symmetrical [4], the star graph Sn has received consider-
able attention in recent years (see, e.g., [1, 3, 9, 10, 14–16]).
In particular, Cheng and Lipman [2], Hu and Yang [7], Nie
et al. [11], and Rouskov et al. [15], independently, determined

NETWORKS—2014—DOI 10.1002/net



κ
(1)
s (Sn) = 2n − 4 for n ≥ 3. Yang et al. [20] proved

λ
(2)
s (Sn) = 6(n − 3) for n ≥ 4. Wan and Zhang [19]

showed that κ
(2)
s (Sn) = 6(n − 3) for n ≥ 4 and conjec-

tured that κ
(k)
s (Sn) = (k + 1)!(n − k − 1) for k ≤ n − 2. In

this article, we give an affirmative answer to the conjecture
and generalize the afore mentioned results by proving that
κ

(k)
s (Sn) = λ

(k)
s (Sn) = (k + 1)!(n − k − 1) for any k with

0 ≤ k ≤ n − 2.
In section 2, we recall some structural properties of Sn and

lemmas to be used in our proofs. The proofs of main results
are in section 3. A conclusion is in section 4.

2. DEFINITIONS AND LEMMAS

For a given integer n with n ≥ 2, let In =
{1, 2, . . . , n}, I ′

n = {2, . . . , n} and P(n) = {p1p2 . . . pn : pi ∈
In, pi �= pj, 1 ≤ i �= j ≤ n}, the set of permutations on In.
Clearly, |P(n)| = n !. For a permutation p = p1 . . . pj . . . pn ∈
P(n), the digit pj is called the symbol in the j-th position (or
dimension) in p. For each i ∈ I ′

n, we use pi to denote the per-
mutation obtained from p by exchanging two symbols in the
first and the i-th position of p and leaving the rest unaltered,
that is, pi = pip2 . . . pi−1p1pi+1 . . . pn.

The n-dimensional star graph, denoted by Sn, is an undi-
rected graph with vertex-set P(n) and edge-set {ppi : p ∈
P(n), i ∈ I ′

n}. The star graphs S2, S3, and S4 are shown in
Figure 1.

Like the hypercube, the star graph is a vertex- and edge-
transitive graph with degree (n − 1). Moreover, Sn is a
Cayley graph on the symmetric group on In with respect
to the generating set {t2, t3, . . . , tn}, where t is the identity
permutation [1].

The following properties of Sn are very useful for our
proofs.

Lemma 2.1 (see Cheng et al. [3], 2008). If n ≥ 3, then
κ(Sn) = λ(Sn) = n − 1, and the length of the shortest cycle
in Sn is 6.

For fixed i, j ∈ In, we use Sj:i
n to denote the subgraph of

Sn induced by all vertices with symbol i in the j-th position.
From definition, it is easy to see that Sj:i

n is isomorphic to Sn−1

for each i ∈ In and each j ∈ I ′
n, and S1:i

n is an independent
vertex set of size (n − 1)! for each i ∈ In.

Using these subgraphs yields two types of partitions for Sn

according as the fixed index is i or j. If a dimension j ∈ I ′
n is

fixed, then {Sj:i
n : i ∈ In} is called the partition of Sn along the

dimension j, or called the first partition for short. If a symbol
i ∈ In is fixed, then {Sj:i

n : j ∈ In} is called the partition of Sn

along the symbol i, or called the second partition for short.
Figure 2 shows two types of partitions for S4.

The following lemmas give two structural properties of Sn

by using two partitions.

Lemma 2.2 (The first structural property, Akers and Krish-
namurthy [1], 1989). For a fixed dimension j ∈ I ′

n, Sn can

FIG. 1. The star graphs S2, S3 and S4.

be partitioned into n subgraphs Sj:i
n , which is isomorphic to

Sn−1 for each i ∈ In. Moreover, there are (n−2)! independent
edges between Sj:i1

n and Sj:i2
n for any i1, i2 ∈ In with i1 �= i2.

Lemma 2.3 (The second structural property, Shi et al. [13],
2012). For a fixed symbol i ∈ In, Sn can be partitioned
into n subgraphs Sj:i

n , which is isomorphic to Sn−1 for each
j ∈ I ′

n and S1:i
n is an independent vertex set of size (n − 1)!.

Moreover, there are a perfect matching between S1:i
n and Sj:i

n

for any j ∈ I ′
n, and there are no edges between Sj1:i

n and Sj2:i
n

for any j1, j2 ∈ I ′
n with j1 �= j2.

3. MAIN RESULTS

In this section, we present our main results, that is,
we determine the k-super connectivity and k-super edge-
connectivity of the n-dimensional star graph Sn. We first
investigate the properties of subgraph H of Sn with minimum
degree δ(H) at least k. For a subset X ⊆ V(Sn) and j ∈ In,
we use UX

j to denote the set of symbols in the j-th position of

vertices in X, formally, UX
j = {pj : p1 . . . pj . . . pn ∈ X}. The

following lemma plays a key role in the proof of our main
result.

Lemma 3.1. Let H be a subgraph of Sn with vertex-set X.
For a fixed k ∈ In−1, if δ(H) ≥ k, then there exists some
j ∈ I ′

n such that |UX
j | ≥ k + 1.

Proof. Without loss of generality, we can assume that H
is connected. For sake of simplicity, for a fixed X, we write
Uj for UX

j . Let Wi be the set of positions which symbol i
appears in vertices in X excluding the first position, that is,
Wi = {j ∈ I ′

n : i ∈ Uj}.
We use the second partition of Sn to prove the lemma by

induction on n (≥ k + 1).
If n = k + 1, then δ(H) ≥ k = n − 1, and so H = Sn.

Since |U1| = · · · = |Un| = n = k + 1, the conclusion holds
for n = k + 1. We assume the conclusion is true for n − 1
with n ≥ k + 2.
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FIG. 2. Two perspectives of S4, where the graph in the left-hand side is the first partition along the dimension 4,
and one in the right-hand side is the second partition along the symbol 1.

Let x = p1p2 · · · pn be a vertex in H. Then x ∈ V(S1:p1
n ).

By Lemma 2.3, all the neighbors of x are in different Sj:p1
n

for each j ∈ I ′
n. Since δ(H) ≥ k, p1 appears in at least k

different positions of vertices in H excluding the first position.
It follows that

|Wp1 | ≥ k for any x = p1p2 · · · pn ∈ X . (1)

If |U1| = n, then each symbol of In appears in the first
position of vertices in H. By (1), we have

|Wi| ≥ k for each i ∈ In. (2)

Now we construct an n× (n−1) matrix C = (cij)n×(n−1),
where cij is the indicator of whether i appears in position j+1
in the vertices of X, that is,

cij =
{

1 j + 1 ∈ Wi ;
0 otherwise.

Then

|Uj| =
n∑

i=1

ci(j−1) for each j ∈ I ′
n and

|Wi| =
n−1∑
j=1

cij for each i ∈ In.

It follows that
n∑

j=2

|Uj| =
n∑

j=2

n∑
i=1

ci(j−1) =
n∑

i=1

n∑
j=2

ci(j−1)

=
n∑

i=1

n−1∑
j=1

cij =
n∑

i=1

|Wi|. (3)

Combining (3) with (2), we have

n∑
j=2

|Uj| =
n∑

i=1

|Wi| ≥ nk. (4)

If |Uj| ≤ k for each j ∈ I ′
n, then (n − 1)k ≥ nk by (4),

a contradiction. Thus, there exists some j ∈ I ′
n such that

|Uj| ≥ k + 1.
If |U1| < n, then there exists at least one symbol in In

that does not appear in the first position of any vertex in H.
Without loss of generality, assume 1 �∈ U1. Then S1:1

n does not
contain vertices of H by the definition of U1. By Lemma 2.3,
H must be contained in the unique Sj0:1

n for some j0 ∈ I ′
n

since H is connected. Because Sj0:1
n is isomorphic to Sn−1,

and H ⊆ Sj0:1
n , by the induction hypothesis, there exists some

j ∈ I ′
n such that |Uj| ≥ k + 1.

By the induction principle, the lemma follows. ■

Lemma 3.2. For any integer k with 0 ≤ k ≤ n − 2,
λ

(k)
s (Sn) ≤ (k + 1)!(n − k − 1) and κ

(k)
s (Sn) ≤ (k + 1)!(n −

k − 1).

Proof. Let X be the set of permutations on In whose the
last (n − k − 1) positions is 12 · · · (n − k − 1), and let H be
the subgraph of Sn induced by X. Then, H is isomorphic to
Sk+1. Let T be the set of neighbors of X in Sn − X and F the
set of edges between X and T in Sn. By the definition of Sn,

T = {xi : x ∈ X, i ∈ In\Ik+1}.
For a vertex of X, since it has k neighbors in X, it has exactly
(n − k − 1) neighbors in T . In addition, it is easy to see that
every vertex of T has exactly one neighbor in X. It follows
that

|T | = |F| = (k + 1)!(n − k − 1).

Since every vertex v in Sn −X has at most one neighbor in
X and Sn is (n − 1)-regular, v has at least n − 2 neighbors in
Sn−X, which implies that F is a k-edge-cut of Sn by n−2 ≥ k
and the arbitrariness of v. It follows that

λ(k)
s (Sn) ≤ |F| = (k + 1)!(n − k − 1)

as desired, and so the first conclusion follows.
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We now show that T is a k-vertex-cut of Sn. To this end,
we only need to show that every vertex in Sn − (X ∪ T) has
at least k neighbors within.

Let u be arbitrary vertex of Sn − (X ∪ T). We need to
show that at most one of neighbors of u is in T . Suppose to
the contrary that u has two distinct neighbors v and w in T .
Then the first digits of v and w are different. Without loss of
generality, assume v = 1p2 . . . pk+1p123 · · · (n − k − 1) and
w = 2p′

2 . . . p′
k+11p′

13 · · · (n − k − 1). Since u is adjacent to
v, then u and v have exactly one digit difference excluding
the first one. So are u and w. Therefore, w and v have exactly
two digits difference excluding the first one. But w and v
have two digits (the (k + 2)-th and the (k + 3)-th) difference,
then p2 . . . pk+1 = p′

2 . . . p′
k+1, therefore p1 = p′

1, thus there
exists a vertex z = p1 · · · pk+112 · · · (n − k − 1) in X such
that zv ∈ E(Sn) and zw ∈ E(Sn), and so zvuw is a cycle
with length 4, which contradicts to the second conclusion in
Lemma 2.1.

Since u has at most one neighbor in T , u has at least (n −
1) − 1 neighbors in Sn − (X ∪ T). Since (n − 1) − 1 ≥ k, u
has at least k neighbors in Sn − (X ∪ T), which implies that
T is a k-vertex-cut of Sn. It follows that

κ(k)
s (Sn) ≤ |T | = (k + 1)!(n − k − 1)

as desired, and so the second conclusion follows. ■

Theorem 3.3. κ
(k)
s (Sn) = λ

(k)
s (Sn) = (k + 1)!(n − k − 1)

for any k with 0 ≤ k ≤ n − 2.

Proof. By Lemma 3.2, we only need to show that, for
any k with 0 ≤ k ≤ n − 2,

κ(k)
s (Sn) ≥ (k + 1)!(n − k − 1) and λ(k)

s (Sn)

≥ (k + 1)!(n − k − 1). (5)

We prove (5) by induction on k. If k = 0, then λ
(0)
s (Sn) =

λ(Sn) = n − 1 and κ
(0)
s (Sn) = κ(Sn) = n − 1 by Lemma 2.1,

and so (5) is true for k = 0. Assume (5) holds for k − 1 with
k ≥ 1, that is, for any k with 1 ≤ k ≤ n − 2,

κ(k−1)
s (Sn) ≥ k!(n − k) and λ(k−1)

s (Sn) ≥ k!(n − k),

and so,

κ(k−1)
s (Sn−1) ≥ k!(n − k − 1) and λ(k−1)

s (Sn−1)

≥ k!(n − k − 1). (6)

Let T be a minimum k-vertex-cut (or k-edge-cut) of Sn.
To prove (5), we only need to show that

|T | ≥ (k + 1)!(n − k − 1) for 1 ≤ k ≤ n − 2. (7)

To the end, let X be the vertex-set of a connected
component H of Sn − T , and let

Y =
{

V(Sn − (X ∪ T)) if T is a vertex-cut;
V(Sn − X) if T is an edge-cut.

Then δ(H) ≥ k, and so there exists some j ∈ I ′
n such that

|UX
j | ≥ k + 1 by Lemma 3.1. We choose j0 ∈ {j ∈ I ′

n :

|UX
j | ≥ k + 1} such that |UX

j0
∩ UY

j0
| + |UY

j0
| is as large as

possible. Without loss of generality, assume j0 = n. In the
following proof, we use the first partition of Sn. For i ∈ In,
let

Xi = X ∩ V(Sn:i
n ), Yi = Y ∩ V(Sn:i

n ),

Ti =
{

T ∩ V(Sn:i
n ) if T is a vertex-cut;

T ∩ E(Sn:i
n ) if T is an edge-cut,

and let

JX = {i ∈ In : Xi �= ∅},
JY = {i ∈ In : Yi �= ∅}, J0 = JX ∩ JY .

Clearly, |JX | = |UX
n |, |JY | = |UY

n | and |J0| = |UX
n ∩ UY

n |.
If i ∈ J0, Ti is a vertex-cut (or an edge-cut) of Sn:i

n . For any
vertex x in Sn:i

n −Ti, since x has degree at least k in Sn −T and
has exactly one neighbor outsider Sn:i

n , x has degree at least
k − 1 in Sn:i

n − Ti. Therefore, Ti is a (k − 1)-vertex-cut (or
a (k − 1)-edge-cut) of Sn:i

n for any i ∈ J0. By the induction
hypothesis (6), we have

|Ti| ≥ k!(n − k − 1) for each i ∈ J0. (8)

If |J0| ≥ k + 1, by (8) we have

|T | ≥
n∑

i=1

|Ti| ≥
∑
i∈J0

|Ti| ≥ (k + 1)k!(n − k − 1)

= (k + 1)!(n − k − 1),

and so (7) follows.
Now assume |J0| ≤ k. Then JX\J0 �= ∅. We consider two

cases, JY \J0 �= ∅ and JY \J0 = ∅, respectively.

CASE 1. JY \J0 �= ∅,

Let Ej1j2 denote the set of edges between Sn:j1
n and Sn:j2

n ,
and let

Ec = {e ∈ Ej1j2 : j1, j2 ∈ In, j1 �= j2} and

Tc =
{ ∅ if T is a vertex-cut;

T ∩ Ec if T is an edge-cut.

Assume j1 ∈ JX\J0, j2 ∈ JY \J0. Then there are (n − 2)!
independent edges between Sn:j1

n and Sn:j2
n by Lemma 2.2.

Since each vertex in Sn:j1
n has a unique external neighbor,

thus there are (|JX\J0||JY \J0|(n − 2)!) independent edges
between ∪j1∈JX\J0 Sn:j1

n and ∪j2∈JY \J0 Sn:j2
n . Note that each edge

of these independent edges must have one end-vertex in T if
T is a vertex-cut, and be contained in Tc if T is an edge-cut.
Therefore, no matter whether T is a vertex-cut or an edge-cut,
we have ∑

i∈(JX∪JY )\J0

|Ti| + |Tc| ≥ |JX\J0||JY \J0|(n − 2)!. (9)
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Let

a = |JX\J0|, b = |JY \J0|, c = |In\(JX ∪ JY )|.
Then a ≥ 1, b ≥ 1, a + b + c = n − |J0|, and so

ab + c = ab + (n − |J0|) − (a + b)

= (n − |J0|) + (a − 1)(b − 1) − 1

≥ (n − |J0| − 1),

that is,

ab + c ≥ (n − |J0| − 1). (10)

Note that c = 0 if T is an edge-cut. Thus if there exists
some i ∈ In\(JX ∪ JY ), then T is a vertex-cut and Ti = Sn:i

n ,
and so

|Ti| = (n − 1)! if i ∈ In\(JX ∪ JY ). (11)

Combining (8), (9), and (11) with (10), we have that

|T | =
n∑

i=1

|Ti| + |Tc|

=
∑
i∈J0

|Ti| +
⎛
⎝ ∑

i∈(JX∪JY )\J0

|Ti| + |Tc|
⎞
⎠ +

∑
i∈In\(JX∪JY )

|Ti|

≥ |J0|k!(n − k − 1) + |JX\J0||JY \J0|(n − 2)! + c(n − 1)!
= |J0|k!(n − k − 1) + ab(n − 2)! + c(n − 1)!
≥ |J0|k!(n − k − 1) + (ab + c)(n − 2)!
≥ |J0|k!(n − k − 1) + (n − |J0| − 1)(n − 2)!
≥ (n − 1)k!(n − k − 1)

≥ (k + 1)!(n − k − 1),

and so (7) follows.

CASE 2. JY \J0 = ∅,

In this case JY = J0, then |UY
n | = |JY | ≤ k. Let

Xi = V(Sn:i
n )\Xi for each i ∈ In\J0. Note that for each

i ∈ In\J0, Xi = Ti if T is a vertex-cut, and Xi = ∅ if T
is an edge-cut.

We first show that |Xi| ≥ (n − 2)! for any i ∈ In\J0.
Suppose to the contrary that there exists some i ∈ In\J0 such
that |Xi| < (n − 2)!.

We show |UXi

j | ≥ n − 1 for any j ∈ I ′
n−1. On the contrary,

there exists some j ∈ I ′
n−1 such that |UXi

j | ≤ n − 2. Notice
that the rightmost digit of every vertex in Xi is i. There is at
least one symbol i1 ∈ In\{i} that does not appear in the j-th
position of any vertex in Xi. Thus, the vertices with symbol
i1 in the j-th position and symbol i in the n-th position are
not contained in Xi, which means that Xi contains at least
(n − 2)! vertices, that is, |Xi| ≥ (n − 2)!, a contradiction.
Thus, |UXi

j | ≥ n − 1, and so |UX
j | ≥ n − 1 for any j ∈ I ′

n−1.

Since |UY
n | ≤ k and the subgraph induced by Y has min-

imum degree at least k, by Lemma 3.1 there exists some
j1 ∈ I ′

n−1 such that |UY
j1
| ≥ k + 1. Then |UX

j1
| ≥ n − 1

and |UY
j1
| ≥ k + 1, and so |UX

j1
∩ UY

j1
| ≥ k, therefore

|UX
j1

∩UY
j1
|+|UY

j1
| ≥ 2k+1. Noting that |UX

n ∩UY
n | = |J0| ≤ k

and |UY
n | = |JY | = |J0| ≤ k, we have that

|UX
n ∩ UY

n | + |UY
n | ≤ 2k < 2k + 1 ≤ |UX

j1
∩ UY

j1
| + |UY

j1
|.

However, this fact contradicts the choice of j0 that |UX
j0

∩
UY

j0
| + |UY

j0
| is as large as possible since we have supposed

that j0 = n.
Thus, |Xi| ≥ (n−2)! for any i ∈ In\J0. If T is an edge-cut,

then Xi = ∅, a contradiction. Therefore, T is a vertex-cut, and
so Xi = Ti. It follows that

|Ti| = |Xi| ≥ (n − 2)! for each i ∈ In\J0. (12)

Combining (12) with (8), we have

|T | =
n∑

i=1

|Ti| =
∑
i∈J0

|Ti| +
∑

i∈In\J0

|Ti|

≥ |J0|k!(n − k − 1) + (n − |J0|)(n − 2)!
≥ (k + 1)!(n − k − 1).

By induction principles, (7) holds and so the theorem follows.
■

Corollary 3.4 ( [19, 20]). κ
(2)
s (Sn) = λ

(2)
s (Sn) = 6(n − 3)

for n ≥ 4.

4. CONCLUSIONS

In this article, we consider the generalized measures
of fault tolerance for networks, called the k-super con-
nectivity κ

(k)
s and the k-super edge-connectivity λ

(k)
s . For

n-dimensional star graph Sn, which is an attractive alternative
network to hypercubes, we prove that κ

(k)
s (Sn) = λ

(k)
s (Sn) =

(k + 1)!(n − k − 1) for 0 ≤ k ≤ n − 2, which gives an
affirmative answer to the conjecture proposed by Wan and
Zhang [19]. The results show that at least (k + 1)!(n − k − 1)

vertices or edges have to be removed from Sn to make it dis-
connected without vertices of degree less than k. Thus these
results can provide more accurate measurements for fault tol-
erance of the system when n-dimensional star graphs is used
to model the topological structure of a large-scale parallel
processing system.
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