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1. INTRODUCTION 

The three most important developments in time series 
econometrics in the last 25 years arguably are generalized 
method-of-moments (GMM) estimation, vector autoregres- 
sions (VARs), and the analysis of nonstationary time series 
(unit roots and cointegration). This article surveys the role of 
GMM in macroeconomic time series. 

The seminal contribution to the literature on GMM was 
made by Lars Peter Hansen (1982); his work is the focal point 
of our survey. Hansen's article had important antecedents in 
the econometrics literature. Two-stage least squares was devel- 
oped independently by Theil (1953) and Basmann (1957). 
Basmann (1960) provided an alternative derivation similar 
to minimum chi-squared estimation (see also Rothenberg 
1973). The formulation of two-stage least squares as an opti- 
mal instrumental variable (IV) estimator under conditional 
homoscedasticity and a test for overidentifying restrictions 
was proposed by Sargan (1958, 1959). These methods were 
extended to nonlinear models by Amemiya (1974, 1977), 
Jorgenson and Laffont (1974), Gallant (1977), and Gallant 
and Jorgenson (1979), Gallant and Jorgenson also proposed 
a test statistic that ties naturally to Hansen's (1982) test of 
overidentifying restrictions. In addition, several articles by 
White (1980, 1982a, 1982b) can be viewed as GMM applied 
to cross-section linear regression. 

The starting point for this article is not this earlier literature, 
however, but rather Hansen's (1982) contribution. Sections 
2-4 exposit the rationale, structure, and impact on applied 
work of Hansen's article. Section 2 presents a simple ratio- 
nal forecasting example to illustrate why in many applications 
generalized least squares (GLS) is not an alternative to GMM. 
Section 3 defines notation and illustrates the use of GMM 
to estimate a nonlinear time series model (the consumption- 
based capital asset pricing model), and then outlines a linear 
dynamic panel model. Section 4 reports a small survey of eco- 
nomics journals, examining the prevalence of GMM and other 
estimation methods in empirical time series work. 

Section 5 turns to subsequent literature that builds on the 
work of Hansen (1982). This section reviews some current 
issues of research interest for time series GMM: efficiency 
bounds, feasible attainment of efficiency bounds, weight matrix 
estimation, the time series bootstrap, and empirical likelihood 
methods. Section 6 concludes the article. 

2. WHY GENERALIZED METHOD OF MOMENTS? 

We use a simple example to motivate use of GMM in time 
series applications. Suppose that we wish to test the "ratio- 
nality" of a scalar variable xt as an n period ahead pre- 
dictor of a variable qt+n; the null is Eq,+n = xt, where for 
the moment we leave unspecified the information set used in 
forming the expectation. The variable xt might be the expec- 
tation of qt+n reported by a survey. Alternatively, xt might 
be a market-determined variable posited by economic theory 
to be the expectation of qt+n (e.g., qt+n = spot rate, xt = n 
period-ahead-forward rate). Let ut denote the expectational 
error, ut = qt+n - Etqt+n = qt+n - xt. (The expectational error 

u, is dated t rather than t + n for consistency with the dating 
of regression residuals in the main part of this article.) Under 
the null, Extu = 0, and ut follows a moving average process 
of order n -1. 

The many implications of the hypothesis that xt is the 
expectation of qt+n can be tested in various ways. A particu- 
larly simple and natural approach is to regress qt+n on xt, to 
see whether the coefficient on xt, call it 3, is 1: 

qt+n = 
PXt + Ut, Ho: 3 = 1. (1) 

(To keep the algebra relatively uncluttered, we omit the con- 
stant that in practice likely would be included in this regres- 
sion.) Suppose that n > 1. A question is how to deal with the 
moving average disturbance ut. 

We note that a GLS transformation generally will not be 
appropriate. (In the presence of a serially correlated distur- 
bance, GLS generally requires that x, be strictly exogenous. 
This is unlikely to be true in dynamic models and cannot be 
true when xt is a predictor for qt+n.) This has been observed 
before (e.g., Hansen and Hodrick 1980), but may not be gen- 
erally appreciated. We illustrate the problem with a particu- 
larly simple example (although even this "simple" example 
inevitably involves some tedious algebra). Suppose that n = 2. 
Let v,, and v2t be two iid random variables that are mutually 
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independent and have finite variance. Suppose that q, is gen- 
erated by 

q, = 1qt-1 + Vlt + V2t-1, < 1, b 0 0. (2) 

Let Etqt+2 - E(qt+2 vlt, v2t, lt-1, 2t-1 . ...); that is, the 
expectation is formed using observations on both v's and not 
just the sum vIt + V2z-,. Then x, =-- Etqt+2= -2q + v2t, ut 
qt+2 - Eqt+2 = vlt+2 + (Vlt+l + U2t+l " MA(1). Because ut " 
MA(1), it has a Wold representation of, say, 

u, = E,. - OE,_, 101 < 1, with 0 the smaller root 

to the quadratic (1+ 02)Eutu,_1 - OEu2 = 0. (3) 

For t < 0, let us define q, = 0, x, = 0. If we abstract from 
error in estimation of 0, then the GLS transformation involves 
applying the transformation (1 - OL)-' to both sides of (1) 
and then estimating by least squares. The result of the trans- 
formation is 

Sqt2-xtj t- +E = +Et, (say). (4) 
j=0 j=0 

A standard condition for consistency of the least squares 
estimator of /f in (4) is that E x, Et = 0. But this condition 

typically will not hold. Observe that both E, and x, depend on 
lagged v,,'s and v2t 's, 

Et 
= 

JUt_j 
= terms in 

vlt+2, vlt+1, and v2t+1 
j=0 

+ 0[(0 + )v,, + v2t] 
+ 02[(0+ )v ?v)lt_1 ]+ V2t + 

, = L jx,_ = oJ(24t-j + v2j 
j=o j=o 

= (P2vIt + kV2t + ((p3 + 0(2)Vlt-1 
+ ((p2 + 6k)v2t- + • .. (5) 

It is clear from (5) that in general, both x, and et depend on 

v,'s and v2's dated period t and earlier. Thus x, and et will 
be correlated with one another. An exception to this general 
result is if v2t is shut down. If q, = qt-1 + v,,, then 0 = -P, 
and E, = 1t+2: Xt depends on past v's, but E does not, and 

E, E, O. In the present context, v2t- 0 means that the 
expectation of future q's is set using only data on past q's; 
more generally, in tests of rationality the condition for consis- 
tency of GLS is that the econometrician sees and uses all data 
used in setting the expectation. In many contexts, this condi- 
tion seems implausibly strong. (Ka-fu Wong has suggested to 
us that the assumption be tested with a Hausman (1978) test 
comparing GLS and GMM estimates.) 

Although GLS is inconsistent, other estimators are not. One 
could specify a time series process for q, and xt, and apply 
maximum likelihood. Or one could estimate by least squares, 
because an expectational error (u,) is uncorrelated with the 
expectation (x,). This approach is problematic, because serial 
correlation in u, invalidates conventional least squares stan- 
dard errors-a fatal shortcoming in an application whose pur- 
pose is to test the hypothesis that 3 = 1. One possible solution 

is to eliminate the serial correlation by creating a subsample 
of every nth observation and then apply least squares. 

This is patently an unattractive approach. A GMM solu- 
tion is to estimate by least squares, using every observation 
and adjusting the covariance matrix of the estimator. The 
adjustment to the covariance matrix accounts not only for the 
moving average aspect of the disturbance, but also for het- 
eroscedasticity of u, conditional on x, (if any). This was the 
estimation strategy of the Hansen and Hodrick (1980) study 
of efficiency of forward exchange rates. These authors used 
weekly observations on 13-week-ahead-forward rates; in the 
notation of this section, n = 13, q,+n = difference between 
exchange rate in t + 13 and exchange rate in t, xt = difference 
between 13-week-ahead-forward rate in t and exchange rate 
in t. 

This estimation technique allowed Hansen and Hodrick to 
estimate: 

"* efficiently 
"* under weak assumptions (6) 
"* with a technique that is computationally convenient. 

(These points were made explicitly in Hansen and Hodrick's 
article.) Indeed, these benefits are what Hansen's subsequent 
(1982) article provided for a wide range of applications. 
These include models that, unlike the one presented here, are 
multiple-equation, nonlinear, and overidentified, with multiple 
endogenous variables in a single equation. To illustrate such 
models, we first review the setup of Hansen (1982). 

3. GENERALIZED METHOD-OF-MOMENTS 
ESTIMATION 

The first part of this section serves mainly to define nota- 
tion. The second part illustrates two applications of GMM, one 
a nonlinear model and the second a panel data application. 

Let 80 denote the k x 1 parameter vector of interest, and 
let g,(/3) denote an m x 1 vector of moments that depends 
on data through /, with m > k. The vector of moments is 
stationary and satisfies the orthogonality condition, Eg,(3o0) = 
0. We generally consider systems of a equations with additive 
regression errors, writing the orthogonality condition as 

EW,u, =0 (7) 

In (7), W, is an m x a matrix of instruments and u, is an a x 1 
vector of regression errors from the a equations in the system. 
We suppress dependence of ut on the parameter vector in (7) 
and, subsequently, when we can do so without confusion. 

Let D be an m x m positive definite weighting matrix, with 
the "^" emphasizing that D may be sample dependent. Let T 
be the sample size. Hansen's (1982) GMM estimator chooses 

p3 to minimize 

T-1 g,(t) T-1Z gtr ? 
(8) 

Hansen (1982) showed that under general conditions, /3 is vT 
consistent and asymptotically normal. 
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Let fl be the long-run covariance of g (3o),) -= 

E•j_- Egt,(fl)gt_j(I3o)'. 
The efficient GMM estimator 

chooses D so that D ' - pf1. Assume efficient estimation, 
and accordingly call the weighting matrix f1-'. Let Gt denote 
the m x k matrix of derivatives of the orthogonality condi- 
tion, evaluated at 30o: Gt = dg,(o3)/l38. Similarly, define G 
as the sample counterpart evaluated at the sample estimate of 

0o, G = T' ET=1 dg,()/d"3. The first-order condition satisfied 
by /3 is G'1- [T-1 ET=I g,(/)] = 0. For future reference, it 
will be helpful to observe that because g& = Wu,, this first- 
order condition may also be written as 

T-l -t t --0, 9 2 = G11-lWt, = u,(t). (9) T-1 
T 

(9) 

Thus, if there are more moment conditions than parameters 
(m > k), then GMM proceeds in a fashion familiar from IV 
estimation. It takes a linear combination of the instruments-a 
linear combination chosen to minimize the asymptotic vari- 
ance of the estimator-and ensures zero sample correlation 
between this linear combination and the residual. 

The asymptotic variance of the GMM estimator is 

[(EGt)f)-'(EGt)]-1. The criterion function (8), evaluated at 
the estimated parameter vector and suitably normalized by 
sample size, is asymptotically chi-squared, 

J -TT T1 gt(f)]D T-1 gt(-3) ] AX2(m - k). (10) 
t=l t=l 

We refer to the use of (9) as the "J test." It can also be called 
a test of overidentifying restrictions. Evidently, it requires that 
there be more moment conditions (m) than parameters (k)- 
that is, that the model be overidentified. This test ties natu- 
rally to criterion function-based tests of parametric hypothe- 
ses (Gallant 1987; Newey and West 1987b). 

We now return to illustrating GMM in application. We do 
so with a widely used model, the consumption-based capi- 
tal asset pricing model. Let Ct be consumption, U(Ct) be 
per-period utility from consumption, and b be a subjective 
discount factor, 0 < b < 1. A representative consumer max- 
imizes E, 'j = bjU(Ct+) subject to a budget constraint that 
allows the consumer to invest in any of a securities. Period 
t investment in the ith security pays off in period t + 1, with 
return Rit+,. A set of a first-order conditions for the max- 
imization is U'(C,) = Et[bRit+l U'(Ct+)], i = 1,.... , a. On 
rearrangement, these first-order conditions can be written as 
1 = E,[bRit+, U'(C+, )/U'(C)], i = 1,..., a. 

Further suppose that utility is isoelastic, U(C,)= C= +, 
y < 0. With this utility function, U'(Ct+)/U' (C,) = (Ct/ 
C,) . Define consumption growth, x,,1 = Ct,/C,. Then the 
set of first-order conditions may be written as 

Etut = Oa? 1, ut = (11) 
bRlat+lXtl 

t-1 

The aim is to estimate the 2 x 1 parameter vector 3 - (b, y)'. 
A set of orthogonality conditions is obtained by noting that 

for any vector of variables in the consumer's period t informa- 
tion set, say Wt, Et Wut = 0, and thus by the law of iterated 

expectations, EWu, = 0. Natural candidates for elements of 
W, include lags of returns and consumption growth and the 
product of these two. For a single equation system (a = 1, ut = 

bRt+,lx+, - 1), Hansen and Singleton (1982) set the orthogo- 
nality condition to gt = Wtut, W'=(1Rltxt... Rlt-m+2Xt-m+2), 
for various choices of m > 2. Because the dimension of 80 is 
k = 2, this system is overidentified if m > 2. Evidently this 
model is nonlinear, with multiple (specifically, two) endoge- 
nous variables in the equation. If a > 1, it is multiequation as 
well. 

We briefly expand on the three points in (6) for the present 
example. Given a vector of moment conditions Wu,, GMM 
with weighting matrix l-'1 is efficient in the class of esti- 
mators that exploit EWu, = 0. Because much financial data, 
including the monthly stock return series used by Hansen and 
Singleton (1982), seem to display conditional heteroscedas- 
ticity, nonlinear two-stage least squares would be less effi- 
cient. The GMM estimator maintains weak assumptions, for 
example, not requiring a parametric model for conditional het- 
eroscedasticity or any distributional assumption. Finally, the 
GMM estimator probably is no more computationally involved 
than maximum likelihood. 

To illustrate panel data with dynamics, we modify this 
example as follows. First, for simplicity, we suppose that there 
is single security with a time-invariant return R. The Euler 
equation developed earlier can be written as bR(Ct+/Ct,) = 
1 + ,t+1, where Etet+ = 0. Taking the natural logarithm, we 
find A log Ct+ = 

--t+ et+l, where /t is a constant and et+1 is a 
mean-zero transformation of Et+1 (and conditionally mean zero 
under normality). Next, we introduce habit formation by spec- 
ifying the consumer's utility to be a function of Ct,- a C,_, 
rather than Ct for a parameter a. Under a series of approx- 
imations (see Dynan 2000), the first-order condition may be 
written as A log Ct = -t aA log Ct,_ + et. Finally, we sup- 
pose that we have data from a panel with an error-component 
model of the form eit = Xt y + ? /i + it. (Here Xi, is a vector of 
individual specific variables and is not related to the variable 
x, defined in the preceding example.) The regression equation 
is thus 

Yit = ayit-1 + Xt Y +?Li + Vit , (12) 

where Yit = A log Cit. 
Equation (12) is known as a dynamic panel. The complica- 

tion is the joint presence of the lagged dependent variable yit- 
and the individual-specific effect pi. It is convenient to treat 

/i as a fixed effect, because yit-_ is predetermined but not 
strictly exogenous. However, the classic fixed-effects estimator 
[ordinary least squares (OLS) applied to (12) after removing 
individual-specific means] is inconsistent, because time aver- 
ages of the lagged dependent variable are correlated with time 
averages of the error, as shown by Nickell (1981). A robust 
solution is to take first differences of (12), 

Ayit 
= 

aAyit-1 
+ AX"t Y+ A it, (13) 

which eliminates the fixed effect ,i. Clearly, OLS on (13) is 
inappropriate, because E(AyilAvit) # O. Anderson and Hsiao 
(1981, 1982) observed that lags of the data (such as Ayit_2 
and yit-2) are valid instruments, so IV estimation of (13) is 
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appropriate. The number of valid instruments is proportional 
to the number of available lags, however, motivating Arellano 
and Bond (1991) and Arellano and Bover (1995) to formulate 
a GMM estimator that exploits all lags as instruments. Once 
again this estimator is efficient, maintains weak assumptions 
(i.e., does not require specification of the process followed by 
the X's), and is computationally convenient (the likelihood can 
be quite complicated when X is nontrivial). For these reasons, 
it is quite popular in the growing body of recent applied work 
that estimates dynamic panel models. 

4. LITERATURE SURVEY 

This section presents the results of a small-scale survey of 
some prominent journals that categorizes empirical time series 
articles in terms of the techniques used (e.g., GMM, maxi- 
mum likelihood). Our aim is to get a sense (admittedly crude) 
of how prominent is the use of GMM in empirical work, and 
to get a feel for the role that GMM plays in articles that do 
use it. We recognize that our survey may have yielded unrep- 
resentative set of articles, that others might disagree with our 

categorization of some articles, and that a simple tabulation 
does not reveal whether articles using one technique are, on 

average, more influential than those using another. We leave 
these as tasks for future research. 

To conduct the survey, we looked for articles on empiri- 
cal time series published in 1990 and 2000 in seven journals: 
American Economic Review; Econometrica; Journal of Polit- 
ical Economy; Journal of Monetary Economics; Journal of 
Money, Credit and Banking; Quarterly Journal of Economics; 
and Review of Economics and Statistics. We judged those jour- 
nals to contain 84 such articles in 1990 and 103 in 2000. 

In each article we attempted to identify the main technique 
or techniques used. Categories of techniques were "VAR," 
referring to estimation of vector autoregressions; "parametric," 
referring to non-VAR articles relying on parametric estima- 
tion by least squares or IV techniques that either assume iid 
errors or correct parametrically for serial correlation or condi- 
tional heteroscedasticity of disturbances; "unit root," for arti- 
cles in which unit root or cointegration tests were focal; "max- 
imum likelihood" (no explanation needed!); "nonparametric," 

referring to nonparametric estimation of a regression func- 
tion, a category that does not include papers whose only non- 
parametric element was related to covariance matrix estima- 
tion; "calibration and other" (again, no explanation needed); 
and "GMM." The GMM category includes linear regressions 
that correct nonparametrically for serial correlation of distur- 
bances, or that cite Hansen (1982) in presenting a test of 
overidentifying restrictions. But it typically excludes OLS and 
two- and three-stage least squares estimators of linear models 
whose disturbances are assumed to be iid, even though these 
are special cases of the work of Hansen (1982). 

In the handful of articles that made heavy use of two tech- 
niques, we attributed a .5 share to each technique. An example 
is the article by Kocherlakota (1990), which received a weight 
of .5 in calibration and .5 in GMM. Such joint attribution was 
rare-we repeat that an article was counted in a given cate- 
gory only if it made central use of the relevant technique. For 
example, an article that performed unit root tests as a precur- 
sor to a detailed VAR analysis (e.g., Fackler 1990) would be 
counted as "VAR" but not as "unit root." 

The results are given in Table 1. Column 1 indicates that 
these journals included 187 empirical time series articles in 
these 2 years. Column 9 indicates that 35 of these articles made 
heavy use of GMM. Of these 35 articles, several also made 
heavy use of a second technique, so the figures in column 8 
are slightly smaller than those in column 9 (see notes 4 to the 
Table for further details). Columns 2-7 present totals for other 
techniques computed similarly to those for GMM in column 8. 

The share of GMM in techniques used is 14 of 84 in 1990 
and 18 of 103 in 2000, or about one-sixth. Unsurprisingly, the 
modal technique is parametric regression, accounting for about 
40% of all techniques in 1990 (.40 • 36.5 of 84) and about 
30% in 2000 (.30 , 31 of 103). Had VARs not been broken 
out as a separate category, the parametric share would have 
continued to be about 40% in 1990. Equally unsurprisingly, 
calibration has risen to a (distant) second in 2000, although it 
and GMM are roughly equally common. 

That our sample size is small, and our categorization rough, 
are suggested by the figures for VARs. These figures show a 
big jump between 1990 and 2000, whereas our sense is that 
VARs enjoyed more or less equal popularity in the 2 years. 

Table 1. Empirical Techniques Used in Published Articles, 1990 and 2000 

Major techniques used (9) 
(7) Reference: 

(1) (2) (3) (4) (5) (6) Calibration + (8) no. of articles 
No. of articles VAR Parametric Unit root MLE Nonparametric other GMM using GMM 

1990 84 1.5 36.5 4 14.5 8 5.5 14 16 
2000 103 9 31 4.5 10.5 7 23 18 19 
Total 187 10.5 67.5 8.5 25 15 28.5 32 35 

NOTE: We surveyed the following journals in 1990 and 2000: American Economic Review; Econometrica; Journal of Political Economy; Journal of Monetary Economics; Journal of Money, 
Credit and Banking; Quarterly Journal of Economics; and Review of Economics and Statistics. We judged these journals to contain 84 empirical time series articles in 1990 and 103 
empirical time series articles in 2000. In each article we attempted to identify the main technique or techniques used. These techniques are listed in columns 2-8. VAR refers to estimation 
of vector autoregressions. "Parametric" refers to estimation by least squares or IV techniques that either assume iid errors or correct parametrically for serial correlation or conditional 
heteroscedasticity of disturbances; VAR articles are not counted in this category. An article falls in the "unit root" category only if unit root or cointegration tests seemed focal to the study. 
The nonparametric estimation category does not include articles whose only nonparametric element was related to covariance matrix estimation. GMM includes nonlinear overidentified 
models; linear models are included only if there is nonparametric correction for serial correlation of disturbances. Columns 2-8 sum to the total number of articles in column 1. If an article 
used two main techniques, then we gave each technique a count of .5. This explains the fractional figures in some columns. It also explains the discrepancy between the figures in columns 
8 and 9. The totals in column 9 are larger than those in column 8 because 2 of the 16 GMM articles from 1990, and 4 of the 19 GMM articles from 2000, received a .5 weight in column 8. 
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Table 2. Aspects of Published Articles That Use GMM, 1990 and 2000 

Type of study Aspects of study 

(2) (3) (6) 
(1) Dynamic Forecasting (4) (5) Nonlinear (7) 

No. of articles optimization study Other Panel restrictions J test 

1990 16 6 9 1 1 7 5 
2000 19 10 1 8 7 7 11 
Total 35 16 10 9 8 14 16 

NOTE: The articles considered here are those defined as using GMM in column (9) of Table 1. Column (1) is the same as column (9) of Table 1. 
The categories in "Type of Study" are mutually exclusive and exhaustive; those in "Aspects of Study" are neither. 

Similar caution applies to interpretation of the figures for the 
maximum likelihood estimator and nonparametric columns. 

What sort of economic problem led to the use of GMM in 
these 35 articles? Most of the articles fall into one of three 
categories. The first category is those articles that estimated a 
first-order condition or decision rule from a dynamic optimiza- 
tion problem. The leading example is an Euler equation for 
consumption (e.g., Dynan 2000). Column 2 in Table 2 indi- 
cates that such articles account for about 40% of the 1990 
GMM articles and 50% of the 2000 articles. The second cat- 
egory includes articles that examined forecasting ability over 
a multiperiod horizon, of either survey data or of a financial 
variable (e.g., Mishkin 1990). Least squares was the regression 
technique, with nonparametric computation of the variance- 
covariance matrix. Column 3 Table 2 indicates that such studies 
were very common in 1990 and less so in 2000. The third cate- 
gory comprises articles describing a setup in which there were 
efficiency gains came from the use of many moments (e.g., 
Attanasio, Picci, and Scorcu 2000); most of these involved 
dynamic panels [see (12)]. Column 4 in Table 2 includes these 
articles, as well as a couple of others that used GMM for com- 
putational convenience or as a check on maximum likelihood 
estimation (e.g., McConnell and Perez-Quiros 2000). 

The remainder of Table 2 describes some technical char- 
acteristics of these articles. A given article can display more 
than one of these characteristics. Column 5 shows that panel 
studies using GMM have become much more common. A sig- 
nificant fraction of the articles estimate or test models with 
nonlinear restrictions (Column 6), and many use the test of 
overidentifying restrictions (Column 7). 

We conclude, as expected, that parametric linear models 
dominate time series work. In terms of frequency of use, the 
GMM techniques introduced by Hansen (1982) are tied for 
second place, perhaps along with calibration and maximum 
likelihood. In recent work, GMM techniques are most com- 
monly used in nonlinear and panel data studies; in 1990, fore- 
casting applications were also common. 

5. SOME TOPICS OF CURRENT RESEARCH 

In this section we touch on some active areas of theoretical 
research. Much of this research has yet to have a noticeable 
impact on empirical practice. But this research may be moti- 
vated by three related practical problems. The first problem 
is that much simulation evidence indicates that the first-order 
asymptotic approximations for /3, and for t tests and J tests, 

work poorly in samples of typical size. The second problem 
is that in practice, the J test often rejects at traditional signifi- 
cance levels. The third problem is that minor changes in spec- 
ification, weight matrix, or choice of instruments sometimes 
have major effects on estimates and p values. These prob- 
lems have led to a desire to find improved GMM estimators, 
practical methods for selecting instruments and weight matri- 
ces, improved distributional approximations, and the desire 
to better understand the behavior of GMM estimation under 
misspecification. We discuss in turn theoretical results on the 
choice of instruments and efficiency bounds, feasible selection 
of optimal instruments, weight matrix estimation, the boot- 
strap, and estimation by empirical likelihood. 

5.1 Efficiency Bounds 

In our presentation of results of Hansen (1982) in Sections 2 
and 3, we assumed that we were given an m x a matrix of 
instruments W, that was uncorrelated with our a x 1 vector 
of regression disturbances, EWu, = 0. We illustrated where 
that matrix might come from. In practice, there is often a 
surplus of possible instruments. In the forecasting example of 
Section 2, lags of the expectation xt satisfy Ex,_jut = 0 for any 
j > 0, as does any other variable available for use when the 
expectation was formed. In the consumption-returns example 
of Section 3, lags of returns, lags of consumption growth, and 
nonlinear transformations of these are uncorrelated with ut 
defined in (11), provided that consumers used these efficiently 
when making their consumption decisions. In the panel data 
example of that same section, lags of consumption growth 
beyond the first are uncorrelated with Avit defined in (13). 

This leads to both theoretical and practical questions about 
instrument choice. In practice, choice of instruments involves 
judgment and generally cannot be reduced to a mechanical 
rule. Good empirical practice generally calls for some exper- 
imentation with alternative instrument lists, to ensure that 
results are not sensitive to exact choice of moments. But there 
are also some useful formal results that can help guide prac- 
titioners. In this section we summarize theoretical results on 
efficiency bounds when there is an infinite set of potential 
instruments (see Hansen 1985; Hansen, Heaton, and Ogaki 
1988; Bates and White 1993). Related results when there is a 
finite set of potential instruments have been given by Breusch, 
Qian, Schmidt, and Wyhowski (1999). Section 5.2 discusses 
feasible estimation. 

Throughout, we are informal in our statement of conditions. 
Moreover, for expositional ease, most of our discussion takes 
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place in the model like that in Section 2: a linear regression 
with a single right-side variable that is uncorrelated with the 
MA(1) disturbance, 

Yt = XtP + Ut, Eut = E(u, lx,, x,_1,.. ) = 0, 

Ex,u,x,_ju,_j=0 for IjI>1. (14) 

Assume first that ut is homoscedastic conditional on current 
and lagged x's: E(uu,_ I current and lagged x's)= Eu,u,_j for 
all j. As in (3), let 0 be the MA parameter for ut. Also assume 
that the GMM estimators allowed are those that use current 
and lagged values of xt as instruments. We know from Hansen 
(1982) how to choose the optimal linear combination if given a 
finite set of lagged x's. But what linear combination of current 
and lagged values of xt results in the optimal instrument, say 
zt, when an infinite set of lags of x may be used? 

To derive z4, follow Hansen and Sargent (1982) and 
Hayashi and Sims (1983) and forward filter (14) with the filter 
1/(1 - OL-1). Define Y, - Yt/(l - OL-') = Ej=0 O Jt+j, Xt - 

Xt/(1 - OL-') = ,100 Ojxt+j, and it = ut/(1 - OL-1) = 

=_-0Ojut+j. Then (14) becomes Yt = xit + it. In contrast to 
the residual that results from the usual GLS transformation, 
defined in (4) and (5), i, is uncorrelated with all potential 
instruments because it is a linear combination of future u's, 
whereas the GLS residual is a linear combination of past u's. 
Moreover, ii, is serially uncorrelated. Because it is also condi- 
tionally homoscedastic by assumption, an optimal estimator of 
/ in the equation Yt 

= Pit + ii, is one that uses an instrument 

zt 
= E(,it instruments). In terms of the initial equation (14), 

an asymptotically equivalent estimator relies on an instrument 
and the estimator 

Zt = Ozt_l +? cit, * = *x) ? I+i* 9 t t tztYt 
t=1 t=1 

f* = E(forward filtered xt, instruments) 

= E•-(EOjxt+jxt'Xt-1j=O .... "(15) 

Here c is an arbitrary nonzero scalar. Thus zt = c = j=0 c ztj, 
the optimal instrument puts nonzero weight on all lags of 
x,. For example, if xt -- AR(1) with parameter 0, iz = (1- 
04)-lx, and z* -= cE e, *ztj. Hansen (1985) provided the 
generalization of this result to multiple-equation, possibly non- 
linear systems with possibly high-order serial correlation (see 
the final paragraph of this section). 

Now suppose that the regression disturbance is het- 
eroscedastic conditional on the instruments. The literature 
on efficient GMM estimation under such conditional het- 
eroscedasticity is less well developed. Suppose first that the 
GMM estimators allowed are those that exploit the infinite set 
of moment conditions Ex, _ju, = 0 for j > 0. Then in some 
special cases, most notably that of a serially uncorrelated dis- 
turbance, closed forms for the optimal instruments have been 
derived (Kuersteiner 2000; West 2001). 

But with conditional heteroscedasticity, it is natural to aim 
to exploit moments associated with the conditional variance of 
the regression disturbance, in example (14) allowing for instru- 
ments that are measurable with respect to the sigma algebra 

generated by current and lagged x's. In the special case when 
the disturbance is serially uncorrelated (Ex,u,x,_ju,_j = 0 for 
all j : 0), an analog to weighted least squares is optimal, 
z4 = x,/,r2, where ot2 = E(ulx, xt_1,. .) (Hansen et al. 
1988). 

Hansen et al. (1988) described the efficiency bound for 
when the regression disturbance follows an MA process and 
is possibly conditionally heteroscedastic. This bound may 
be described in a series of steps that parallel the argument 
for the conditionally homoscedastic MA(1) model given ear- 
lier. First, forward filter the equation with a filter that, when 
applied to ut, yields a serially uncorrelated and condition- 
ally homoscedastic random variable. Let 2t denote the random 
variable that results when the filter is applied to xt. The min- 
imum asymptotic variance is obtained by instrumenting the 
resulting equation with the instrument E(,tlx,, xt_1,...). The 
efficiency bound may be obtained with estimation of (14) by 
an instrument that results from filtering E(,tIx,, xt,_,...) in 
a certain way (see Hansen et al. 1988; Anatolyev 2002). 

5.2 Feasible Estimation 

How does one construct a feasible estimator that asymp- 
totically attains the efficiency bound described in the pre- 
vious section? Hayashi and Sims (1983) and Hansen and 
Singleton (1991) noted that one possibility is to estimate 
using the techniques of Hansen (1982) with an instrument 
list that grows with the sample size. In our example (14), 
this might mean estimating with an instrument vector Wt = 

(xt, xt_1 ..., x,_,n)', where n grows with T at a suitable rate. 
Koenker and Machado (1999) established the rate for a cross- 
sectional model with errors that are independent across obser- 
vations. To our knowledge, the rate has not been established 
for time series models. 

In addition, there is some simulation evidence that in sam- 
ples of typical size, a GMM estimator that uses sufficient 
number of instruments to come close to the efficiency bound 
will tend to have poor properties in practice (West and Wilcox 
1996; West, Wong, and Anatolyev 2001). In conditionally 
homoscedastic models, an alternative route to attaining the 
efficiency bound is to obtain the necessary quantities with 
parametric models, letting the dimension of these models 
increase with sample size. To our knowledge, the relevant rate 
results have not been established. But simulation evidence of 
West and Wilcox (1996) and West et al. (2001) suggests that 
such estimators will work well in practice (see also Keane and 
Runkle 1992; Schmidt, Ahn, and Wyhowski 1992). 

Fewer results are available in conditionally heteroscedastic 
models. In an autoregression with a serially uncorrelated dis- 
turbance, Kuersteiner (2000) showed how to obtain the effi- 
ciency bound in the space of estimators that used lagged val- 
ues as instruments. A major roadblock is that we typically 
do not know how to construct the forward filter referenced in 
the last paragraph of Section 5.1. Tauchen (1986) and Ana- 
tolyev (2000) used approximations and nonfeasible estimators 
to evaluate GMM estimators that efficiently use information 
on conditional heteroscedasticity in the regression disturbance. 
They often find that the finite-sample distribution is poorly 
approximated by the asymptotic distribution. 
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5.3 Weight Matrix 

In Section 3 we stated that the efficient GMM estimator 
chooses the weight matrix D = f-)', where fl is a consistent 
estimator of fl, the long-run covariance of gt (O). Because 
this matrix is defined as the sum of autocovariances of all lag 
orders, fl is typically a kernel-weighted average of sample 
autocovariances of the form 

h 

f 
= 

F(O) + E wjh [F(j) + F(j)'] 
j=1 

T-j 

F(j) = T-1 g+j(*)gt(Pj*)'. (16) 
t=1 

where 3* is a preliminary estimate of P. This heteroscedas- 
ticity and autocorrelation consistent (HAC) estimator depends 
critically on the kernel weights Wjh and the bandwidth h 
(sometimes called the lag truncation). 

Which kernel weights should be used? The early literature 

(e.g., Hansen 1982; White and Domowitz 1984) presented an 
estimator that is equivalent to setting wjh = 1, the so-called 
truncated or uniform kernel, which weights all estimated auto- 
covariances equally. One problem with this choice is that the 
estimate f1 is not necessarily positive definite (which it should 
be to be a proper weight matrix). This motivated Newey and 
West (1987a) to suggest using kernel weights that guarantee a 

positive definite f1. Popular choices in this class of kernels 
includes the Bartlett Wjh = 1- j/(h + 1), Parzen, and quadratic 
spectral. 

How should the bandwidth h be selected in practice? One 
guideline is to select h to minimize the mean squared error of 
the estimator fl. Optimal rates and plug-in rules for h were 
derived by Andrews (1991) and Newey and West (1994). 

An alternative to kernel HAC estimation is parametric esti- 
mation based on a fitted VAR. Some properties of such a 
covariance matrix estimator have been analyzed by den Haan 
and Levin (2000). An estimator that fits an MA model, under 
the assumption that the autocovariances are known a priori to 
be zero after a lag, was analyzed by West (1997). 

As noted earlier, the estimator fl is a function of a prelim- 
inary estimate 1*. We can make this dependence explicit by 
writing fl = fl(p*). Thus the conventional GMM estimator 
minimizes 

T- gt() (*)- T-1 gt() (17) 
t=l t=l 

Alternatively, we can allow f(3) to be freely varying in /3 in 
the construction of the GMM criterion 

T-1E gt03) f(•)-i T-1 gt (/) . (18) 
= t=l 

The estimator that minimizes (18), known as the continu- 
ously updated GMM (CU-GMM) estimator, was introduced 
by Hansen, Heaton, and Yaron (1996). 

Focusing on the test for overidentifying restrictions, Hall 
(2000) observed that whereas gt (o) is mean zero under the 
null hypothesis of correct specification, it has a non-zero mean 

under the alternative hypothesis of misspecification. Thus con- 
ventional HAC estimators f1-', which are based on autoco- 
variances of g, (P*) without recentering, will be asymptotically 
singular under the alternative hypothesis reducing the power of 
the overidentification test. A simple solution is to use a HAC A 

estimator fl based on the autocovariances of demeaned g, (P*). 
Because efficient GMM requires that the inverse weight 

matrix be consistent for fl, the conventional asymptotic 
approximation specifies that h/T -- O0. An alternative asymp- 
totic framework has been proposed by Kiefer and Vogelsang 
(2002). Working with the "large bandwidth" approximation 
h/T -- c > 0, they derive asymptotic distributions that are 
nonstandard and reflect the randomness in the estimation of 
the weight matrix. They find that larger values of c (e.g., larger 
bandwidths h) result in tests with better finite-sample size per- 
formance (when the nonstandard critical values are used) but 
with reduced power. In some sense, this result is not surpris- 
ing. The large bandwidth decreases the bias of the estimated 
weight matrix but increases its variance. The expansions of 
Inoue and Shintani (2001) discussed in the next section sug- 
gest that bias is important for distributional approximations, 
which is consistent with the improved size performance. And 
an inconsistently estimated optimal weight matrix necessarily 
results in inefficient parameter estimates and reduced power. 
However, the new asymptotic distribution of Kiefer and Vogel- 
sang (2002) may prove useful as an alternative approximation 
device, especially for analysis of the bootstrap. 

5.4 Bootstrap 
Monte Carlo simulations have shown that asymptotic first- 

order approximations for GMM estimators and tests have low 
accuracy in moderate sample sizes. An important alternative 
to conventional asymptotic approximations are bootstrap dis- 
tributions, which calculate the finite-sample distribution of 
GMM test statistics based on an approximate data generat- 
ing process. Because GMM is inherently semiparametric (i.e., 
the full distribution of the data is unspecified), it is neces- 
sary to use a nonparametric bootstrap (rather than a parametric 
bootstrap). 

The primary bootstrap method appropriate for nonparamet- 
ric time series data is the block bootstrap, which works as fol- 
lows. Let Yt denote the vector of observations (including lags) 
used to construct the moment gt (8) of Section 3. (Note that 
this is a change in notation from earlier sections.) For some 
block length C (which grows at a slower rate than T) construct 
blocks of data of the form (Yt, Yt-1, ... Yt-e). Then construct 
a random time series y* by drawing random data blocks and 
pasting them together, until a time series of length T is cre- 
ated. GMM estimators and tests can be constructed on this 
bootstrap data, and their distribution calculated by simulation 
to construct confidence intervals and significance levels. 

One important issue is block construction and length. 
Hall and Horowitz (1996) considered nonoverlapping blocks, 
whereas Andrews (2002) allowed for overlapping blocks. 
Hall, Horowitz, and Jing (1995) discussed the optimal choice 
of block length e. They found that ox T1/4 for a one- 
sided significance test (or equal-tailed confidence interval) 
and e oc T1/5 for a two-sided significance test (or symmet- 
ric confidence interval). A disappointing message delivered 
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by Zvingelis (2001) is that the best possible error rates for 
confidence intervals constructed using the block bootstrap are 
O(T-3/4) and O(T-4/3) for equal-tailed and symmetric confi- 
dence intervals, which are noticeably larger than the O(T-') 
and O(T-2) rates obtained for independent sampling. Thus 
the block bootstrap achieves a low asymptotic refinement-the 
improvement in the error rate relative to a conventional test. 

It is probably well known that bootstrap test statistics (e.g., 
a t ratio) should be centered at the sample estimate of the 
parameter, rather than at the value specified under the null 
hypothesis. (From the perspective of the bootstrap, the sample 
estimate is the true value.) What is probably less well under- 
stood is that overidentified GMM estimation requires addi- 
tional recentering. Because the number of moments m exceeds 
the number of parameters k, the sample moments cannot be 
set to 0. The problem is that the "true" moments of the boot- 
strap sample will equal the non-zero sample values, which 
clearly violates the orthogonality condition (7). As a result, 
naive bootstrap estimates and tests will be biased. A solution 
proposed by Hall and Horowitz (1996) is to alter the boot- 
strap criterion function so that the moments are centered at the 

sample moments. An alternative solution based on empirical 
likelihood weights has been suggested by Brown and Newey 
(2002) in the context of independent data, but their method 
does not immediately apply to the block bootstrap. 

The choice of kernel for HAC estimation when using the 
block bootstrap is not straightforward. Hall and Horowitz 

(1996) and Andrews (2002) assumed use of the truncated ker- 
nel. This may appear to be only a technicality, but it actually is 
an important simplification. Gotze and Kunsch (1996) showed 
that for one-sided confidence intervals, the block bootstrap 
does not provide refinement for the Bartlett kernel. Inoue and 
Shintani (2001) further showed that for symmetric confidence 
intervals and the J test, asymptotic refinements essentially 
require use of the truncated kernel. [The technical condition 
relates to the characteristic exponent of the kernel (Anderson 
1971, chap. 9). Gotze and Kunsch require an exponent greater 
than 1; Inoue and Shintani, an exponent greater than 2.] Their 

insight is that bootstrap refinements focus on the bias of the 
variance estimator, which is minimized by the truncated ker- 
nel. The dilemma is that the truncated kernel does not guar- 
antee a positive definite weight matrix. We are not aware of a 
constructive solution to this problem. 

Another major difficulty imposed by the block bootstrap is 
that the serial correlation properties of the bootstrap data are 
altered by the blocking. This affects the variance of sample 
averages of bootstrap data. Regardless of the actual serial cor- 
relation properties of the data series Yt, the bootstrap series yt 
is C dependent. Thus the sample mean of the bootstrap series 
yT* has an exact variance that takes a complicated form involv- 
ing the sample autocovariances of Yt. For example, if overlap- 
ping blocks are used, 

var T-1/2 Y Y) 

T-e e e 

= e-'(T -e +1)-' C • (yi+O -Y)(yi+k -). (19) 
i=0 j=1 k=l 

Because the formula for the variance of the bootstrap sam- 
ple is not the usual one, a naive application of the block boot- 
strap using a conventional variance formula to construct the 
bootstrap test statistic will be incorrectly normalized. Davison 
and Hall (1993) showed that the resulting error is of order 
O(f/lT) + O(t-1), which can be greater than or equal to the 
error of the first-order asymptotic approximation. Hall and 
Horowitz (1996) showed that this problem can be solved by 
rescaling the bootstrap t statistic by a correction factor that 
involves calculating (19). Andrews (2002) adopted the same 
solution. Inoue and Shintani (2001) went a step further, rec- 
ommending using the corrected estimate (19) for the weight 
matrix used for the bootstrap GMM criterion function, param- 
eter estimate, and test statistics, eliminating the need for the 
correction factor. 

To summarize, regardless of the choice of kernel and band- 
width used in the actual estimation, when using the block 
bootstrap it is necessary to construct the bootstrap GMM cri- 
terion function, parameter estimates, and test statistics using 
the corrected variance (19). It is probably surprising to realize 
that this must be done even if the weight matrix used in esti- 
mation does not take the HAC form (e.g., in an autoregression 
with martingale difference errors.) Again, this is because the 
block bootstrap produces data with an altered serial correlation 
pattern, and this must be handled in the computation of the 
bootstrap variance estimators. Without these corrections, the 
block bootstrap may perform worse than conventional asymp- 
totic approximations. Notice that there is a disconnect between 
estimation and the bootstrap, because different formulas are 
used for the HAC estimator in actual estimation and in boot- 
strap estimation. This dilemma might appear artificial, but it 
is the best recommendation currently offered by theory. 

A recent development is the Markov conditional bootstrap 
(MCB) of Horowitz (2002), who suggested estimating the 
one-step-ahead conditional density of the time series using a 
multivariate nonparametric kernel density estimator, and using 
the estimated conditional density to construct the bootstrap 
time series. This method avoids many of the problems of the 
block bootstrap, including the need to modify the HAC matrix. 
Horowitz (2002) showed that in some cases the MCB achieves 
a better asymptotic refinement than the block bootstrap. 

5.5 Empirical Likelihood Estimation 

GMM is used in econometrics when estimation and test- 
ing is based solely on a set of unconditional moment equa- 
tions. In this sense the method is semiparametric, because the 
other dimensions of the joint distribution are left unspecified. 
A closely related alternative estimation and testing framework, 
also well suited for semiparametric models defined by a set 
of unconditional moment conditions, was developed by Owen 
(1988, 2001) (see also Imbens 2002). Owen called this method 
"empirical likelihood" (EL), because it is based on the con- 
struction of a nonparametric likelihood using no information 
other than the sample and the moment conditions. An inter- 
esting feature is that unlike GMM estimation, EL does not 
require estimation of an optimal weight matrix. The criterion 
function naturally adapts to the data. 
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Qin and Lawless (1994) and Imbens, Spady, and Johnson 
(1998) developed EL estimation for independent observations 
and general overidentified nonlinear moment equations. For 
just-identified models, the parameter estimates are identical to 
GMM. For overidentified models, the estimator is a relative of 
the CU-GMM estimator (18). Testing and confidence intervals 
in the EL framework are naturally based on the EL criterion 
function. Kitamura (2001) suggested that such tests have a 
strong optimality property. 

Kitamura (1997) and Kitamura and Stutzer (1997) extended 
EL estimation and testing to time series. When the moment 
conditions are martingale differences, estimation and inference 
are identical to the case of independent observations. Under 
serial correlation, however, the criterion must be modified. 
Kitamura (1997) suggested a blocking of the EL that stylisti- 
cally resembles the block bootstrap, but plays a statistical role 
closer to that of HAC estimation with the Bartlett kernel. 

6. CONCLUSION 

GMM is essential to macroeconometrics. It has been central 
in a wide variety of applications. First, many dynamic opti- 
mizing models imply conditional moment restrictions (Euler 
equations) that can be used to construct unconditional moment 
equations. Second, many forecasting equations imply orthog- 
onality relations that can be used for moment construction. 
Third, complicated dynamics, in dynamic panel models and 
elsewhere, can give rise to intractable likelihoods but feasible 
moment relationships. Finally, models that are linear in the 
variables but subject to nonlinear restrictions on the param- 
eters are naturally estimated by GMM. 

The generalized method of moments estimator has had a 
profound impact on our own research and the entire field of 
macroeconometrics. This article has partially surveyed this lit- 
erature. We have no doubt that GMM will continue to be vital 
to macroeconometric research for the foreseeable future. 
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