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Abstract

Using many moment conditions can improve efficiency but makes the usual
GMM inferences inaccurate. Two step GMM is biased. Generalized empirical
likelihood (GEL) has smaller bias but the usual standard errors are too small in
instrumental variable settings. In this paper we give a new variance estimator for
GEL that addresses this problem. It is consistent under the usual asymptotics
and under many weak moment asymptotics is larger than the usual one, and is
consistent. We also show that the Kleibergen (2005) Lagrange multiplier and con-
ditional likelihood ratio statistics are valid under many weak moments. In addition
we introduce a jackknife GMM estimator, but find that GEL is asymptotically
more efficient under many weak moments. In Monte Carlo examples we find that
t-statistics based on the new variance estimator have nearly correct size in a wide
range of cases.
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1 Introduction

Many applications of generalized method of moments (GMM, Hansen, 1982) have low

precision. Examples include some natural experiments (Angrist and Krueger, 1991), con-

sumption asset pricing models (Hansen and Singleton, 1982), and dynamic panel models

(Holtz-Eakin, Newey and Rosen, 1988). In these settings the use of many moments can

improve estimator accuracy. For example, Hansen, Hausman and Newey (2008) have

recently found that in an application from Angrist and Krueger (1991), using 180 instru-

ments, rather than 3, shrinks correct confidence intervals substantially.

A problem with using many moments is that the usual Gaussian asymptotic approx-

imation can be poor. The two-step GMM estimator can be very biased. Generalized

empirical likelihood (GEL, Smith 1997) and other estimators have smaller bias but the

usual standard errors are found to be too small in examples in Han and Phillips (2006)

and here. In this paper we use alternative asymptotics that addresses this problem in

overidentified instrumental variable models that are weakly identified. Such environments

seem quite common in econometric applications. Under the alternative asymptotics we

find that GEL has a Gaussian limit distribution with asymptotic variance larger than

the usual one. We give a new, ”sandwich” variance estimator that is consistent un-

der standard and many weak moment asymptotics. We find in Monte Carlo examples

that, in a range of cases where identification is not very weak, t-ratios based on the new

variance estimator have a better Gaussian approximation than the usual ones. We also

show that the Kleibergen (2005) Lagrange multiplier (LM) and conditional likelihood

ratio statistics, the Stock and Wright (2000) statistic, and the overidentifying statistic

have asymptotically correct level under these asymptotics, but that the likelihood ratio

statistic does not.

For comparison purposes we also consider a jackknife GMM estimator that generalizes

jackknife instrumental variable (IV) estimators of Phillips and Hale (1977), Angrist,

Imbens and Krueger (1999), and Blomquist and Dahlberg (1999). This estimator should

also be less biased than the two-step GMM estimator. In the linear IV case Chao and
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Swanson (2004) derived its limiting distribution under the alternative asymptotics. Here

we show that jackknife GMM is asymptotically less efficient than GEL.

The alternative asymptotics is based on many weak moment sequences like those of

Chao and Swanson (2004, 2005), Stock and Yogo (2005a), and Han and Phillips (2006).

This paper picks up where Han and Phillips (2006) leave off, by showing asymptotic

normality with an explicit formula for the asymptotic variance that is larger than the

usual one and by giving a consistent variance estimator. This paper also extends Han and

Phillips (2006) by giving primitive conditions for consistency and a limiting distribution

when a heteroskedasticity consistent weight matrix is used for the continuous updating

estimator (CUE), by analyzing GEL estimators other than the CUE, and by consideration

of jackknife GMM.

The standard errors we give can be thought of as an extension of the Bekker (1994)

standard errors from homoskedasticity and the limited information maximum likelihood

(LIML) estimator to heteroskedasticity and GEL. Under homoskedasticity these standard

errors and Bekker’s (1994) have the same limit but the ones here are consistent under

heteroskedasticity.

The asymptotics here is well suited for IV estimators but will not be particularly

helpful for the type of minimum distance estimator considered in Altonji and Segal (1996).

Estimation of the weighting matrix can strongly affect the properties of minimum distance

estimators but the asymptotics here treats it as fixed.

The limiting distribution for GEL can be derived by increasing the number of moments

in the Stock and Wright (2000) limiting distribution of the continuous updating estimator

(CUE). This derivation corresponds to sequential asymptotics, where one lets the number

of observations go to infinity and then lets the number of moments grow. We give here

simultaneous asymptotics, where the number of moments grows along with, but slower

than, the sample size.

One might also consider asymptotics where the number of moments increases at the

same rate as the sample size, as Bekker (1994) did for LIML. It is harder to do this for

GEL than for LIML, because GEL uses a heteroskedasticity consistent weighting matrix.
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Consequently, estimation of all the elements of this weighting matrix has to be allowed

for rather than just estimation of a scalar variance term. If the number of instruments

grows as fast as the sample size the number of elements of the weight matrix grows as

fast as the square of the sample size. It seems difficult to simultaneously control the

estimation error for all these elements. Many weak moment asymptotics sidesteps this

problem by allowing the number of moments to grow more slowly than the sample size,

while accounting for the presence of many instruments by letting identification shrink.

In the linear heteroskedastic model we give primitive conditions for consistency and

asymptotic normality of GEL estimators under many weak moments. For consistency of

the CUE these conditions include a requirement that the number of moments m and the

sample size n satisfym2/n −→ 0. This condition seems minimal given the need to control

estimation of the weighting matrix. For asymptotic normality we require m3/n −→ 0

for the CUE. We impose somewhat stronger rate conditions for other GEL estimators.

In comparison, under homoskedasticity Stock and Yogo (2005a) require m2/n −→ 0,

Hansen, Hausman and Newey (2008) can allow m to grow at the same rate as n but

restrict m to grow slower than the square of the concentration parameter, and Andrews

and Stock (2006) require m3/n −→ 0 when normality is not imposed. Of course one

might expect somewhat stronger conditions with a heteroskedasticity consistent weighting

matrix.

The new variance estimator from the many weak instrument asymptotics is different

than Windmeijer (2005). That paper adjusts for the variability of the weight matrix while

the many instrument asymptotics adjusts for the variability of the moment derivative.

In Section 2 we describe the model, the estimators, and the new asymptotic variance

estimator. Test statistics that are robust to weak instruments and many weak instruments

are described in Section 3. The alternative asymptotics is set up in Section 4. Section 5

calculates the asymptotic variance. Section 6 gives precise large sample results for GEL.

Section 7 reports some Monte Carlo results. Section 8 offers some conclusions and some

possible directions for future work. The Appendix gives proofs.
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2 The Model and Estimators

The model we consider is for i.i.d. data where there is a countable number of moment

restrictions. In the asymptotics we allow the data generating process to depend on the

sample size. To describe the model, let wi, (i = 1, ..., n), be i.i.d. observations on a data

vector w. Also, let β be a p× 1 parameter vector and g(w, β) = (gm1 (w, β), ..., gmm(w, β))0

be an m × 1 vector of functions of the data observation w and the parameter, where

m ≥ p. For notational convenience we suppress an m superscript on g(w, β). The model

has a true parameter β0 satisfying the moment condition

E[g(wi, β0)] = 0,

where E[.] denotes expectation taken with respect to the distribution of wi for sample

size n, and we suppress the dependence on n for notational convenience. To describe the

estimators and the asymptotic approximation we will use some notation. Let ej denote

the jth unit vector and

gi(β) = g(wi, β), ĝ(β) =
nX
i=1

gi(β)/n, Ω̂(β) =
nX
i=1

gi(β)gi(β)
0/n,

ḡ(β) = E[gi(β)], gi = gi(β0),Ω(β) = E[gi(β)gi(β)
0],Ω = Ω(β0),

Ĝ(β) = ∂ĝ(β)/∂β,G(β) = E[∂gi(β)/∂β], Gi(β) = ∂gi(β)/∂β,Gi = Gi(β0),

G = G(β0), B
j = Ω−1E[gie

0
jG

0
i], U

j
i = Giej −Gej −Bj0gi, Ui = [U

1
i , ..., U

p
i ].

An important example of this model is a single linear equation with instruments

orthogonal to disturbances and heteroskedasticity of unknown form. This model is given

by

yi = x0iβ0 + εi, xi = Υi + ηi, (2.1)

E[εi|Zi,Υi] = 0, E[ηi|Zi,Υi] = 0,

where yi is a scalar, xi is a p×1 vector of right-hand side variables, Zi is an m×1 vector

of instrumental variables, and Υi is a p× 1 vector of reduced form values. In this setting

the moment functions are

g(wi, β) = Zi(yi − x0iβ).
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The notation for the linear model is then

gi(β) = Zi(yi − x0iβ), ĝ(β) =
nX
i=1

Zi(yi − x0iβ)/n, Ω̂(β) =
nX
i=1

ZiZ
0
i(yi − x0iβ)

2/n,

ḡ(β) = −E[ZiΥ
0
i](β − β0),Ω(β) = E[ZiZ

0
i(yi − x0iβ)

2],Ω = E[ZiZ
0
iε
2
i ], gi = Ziεi,

Ĝ(β) = −
nX
i=1

Zix
0
i/n,G(β) = G = −E[ZiΥ

0
i], Gi(β) = Gi = −Zix

0
i,

Bj = −Ω−1E[ZiZ
0
iεixij], U

j
i = −Zixij +E[Zixij]−Bj0Ziεi.

To describe the Hansen (1982) two step GMM estimator let β̇ be a preliminary esti-

mator and B be a compact set of parameter values. This estimator is given by

β̈ = argmin
β∈B

Q̈(β), Q̈(β) = ĝ(β)0Ŵ ĝ(β)/2, Ŵ = Ω̂(β̇)−1.

The weighting matrix Ŵ = Ω̂(β̇)−1 is optimal in minimizing the asymptotic variance of

β̈ under standard asymptotics.

The CUE has an analogous form where the objective function is simultaneously min-

imized over β in Ω̂(β), i.e.

β̂ = argmin
β∈B

Q̂(β), Q̂(β) = ĝ(β)0Ω̂(β)−1ĝ(β)/2.

To describe a GEL estimator let ρ(v) be a function of a scalar v that is concave on an

open interval V containing zero and let ρj(0) = ∂jρ(0)/∂vj. We normalize ρ(v) so that

ρ(0) = 0, ρ1(0) = −1 and ρ2(0) = −1. Let L̂(β) = {λ : λ0gi(β) ∈ V, i = 1, ..., n}. A GEL

estimator is given by

β̂ = argmin
β∈B

Q̂(β), Q̂(β) = sup
λ∈L̂(β)

nX
i=1

ρ(λ0gi(β))/n,

as in Smith (1997). The empirical likelihood (EL; Qin and Lawless, 1994, Imbens, 1997)

estimator is obtained when ρ(v) = ln(1− v) (and V = (−∞, 1)), and exponential tilting

(ET, Imbens, 1997, Kitamura and Stutzer, 1997) when ρ(v) = −ev + 1. When ρ(v) =

−v−v2/2 the objective function has an explicit form Q̂(β) = ĝ(β)0Ω̂(β)−1ĝ(β)/2 (Newey

and Smith, 2004) and GEL is CUE.

To describe the new variance estimator for GEL, assume that

λ̂(β) = arg max
λ∈L̂(β)

nX
i=1

ρ(λ0gi(β))/n
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exists (which will be true with probability approaching one in large samples) and let

D̂(β) =
nX
i=1

π̂i(β)
∂gi(β)

∂β
, π̂i(β) =

ρ1(λ̂(β)
0gi(β))Pn

j=1 ρ1(λ̂(β)
0gj(β))

, (i = 1, ..., n).

For the CUE, the jth column D̂j(β) of D̂(β) will be taken to be

D̂j(β) =
1

n

nX
i=1

∂gi(β)

∂βj
− 1

n

nX
i=1

∂gi(β)

∂βj
gi(β)

0Ω̂(β)−1ĝ(β).

In general, D̂ = D̂(β̂) is an efficient estimator of G = E[∂gi(β0)/∂β], like that considered

by Brown and Newey (1998). Also let

Ω̂ = Ω̂(β̂), Ĥ =
∂2Q̂(β̂)

∂β∂β0
.

The estimator of the asymptotic variance of β̂ is V̂ /n where

V̂ = Ĥ−1D̂0Ω̂−1D̂Ĥ−1.

When m is fixed and identification is strong, i.e. under ”textbook” asymptotics, V̂ will

be consistent. In that case ĝ(β̂)
p−→ 0 so that D̂

p−→ G, and hence V̂
p−→ (G0Ω−1G)−1,

the textbook GMM asymptotic variance. The virtue of V̂ is that it also consistent under

the alternative, many weak moment asymptotics (when normalized appropriately).

Under the alternative asymptotics the asymptotic variance of β̂ has a ”sandwich”

form that is estimated by V̂ /n. The matrix Ĝ0Ω̂−1Ĝ, where Ĝ = ∂ĝ(β̂)/∂β, cannot be

used in place of Ĥ in V̂ because Ĝ0Ω̂−1Ĝ has a bias. This bias can be removed by using

H̆ =
P

i6=j Ĝ
0
iΩ̂
−1Ĝj/n

2 for Ĝi = ∂gi(β̂)/∂β, but we do not consider this further because

it did not work well in trial simulations. The middle term D̂0Ω̂−1D̂ in V̂ estimates a

different, larger object than Ĥ. It is an estimator of the asymptotic variance of ∂Q̂(β0)/∂β

under weak identification due to Kleibergen (2005) for CUE and Guggenberger and Smith

(2005) for other GEL objective functions. They show that this estimator can be used to

construct a test statistic under weak identification with fixed m. Here we give conditions

for consistency of a properly normalized version of V̂ when m is allowed to grow with

the sample size.The jackknife GMM estimator is obtained by deleting ”own observation”
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terms from the double sum that makes up the two-step GMM estimator, as

β̆ = argmin
β∈B

Q̆(β), Q̆(β) =
X
i6=j

gi(β)
0W̆gj(β)/2n

2, W̆ = Ω̂(β̇)−1,

where β̇ is a preliminary jackknife GMM estimator based on a known choice of W̆ (anal-

ogously to two step optimal GMM). For example, consider the linear model and let

P̆ij = Z 0iW̆Zj. Here the jackknife GMM estimator is

β̆ =

⎛⎝X
i6=j

P̆ijxix
0
j

⎞⎠−1X
i6=j

P̆ijxiyj.

This estimator is a generalization of JIVE2 of Angrist, Imbens, and Krueger (1999) to

allow a general weighting matrix W̆ .

To describe the variance estimator for jackknife GMM, let Ω̆ = Ω̂(β̆), Ği = Gi(β̆),

ği = gi(β̆), and Ğ =
Pn

i=1 Ği/n. Also let

H̆ =
X
i6=j

Ğ0
iΩ̆
−1Ğj/n

2, Λ̆J =
X
i6=j

Ğ0
jΩ̆
−1ğiğ

0
jΩ̆
−1Ği/[n

2(n− 1)].

The estimator of the asymptotic variance of β̆ is V̆ /n where

V̆ = H̆−1(Ğ0Ω̆−1Ğ+ Λ̆J)H̆
−1.

This has a sandwich form like V̂ , with a jackknife estimator H̆ of H rather than the

Hessian Ĥ and an explicit adjustment term Λ̆J for many moments. V̆ will be consistent

under both standard and many weak moment asymptotics, though we do not show this

result here.

The many moment bias of two-step GMM with nonrandom Ŵ has a quite simple

explanation that motivates CUE, GEL, and jackknife GMM. This explanation is also

valid under many weak moments with a random Ŵ , because estimation of Ŵ does not

affect the limiting distribution. The absence of weighting matrix effects from many weak

moment asymptotics indicates these asymptotics may not be a good approximation for

minimum distance settings like those of Altonji and Segal (1996), where estimation of

the weighting matrix is important.
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Following Han and Phillips (2006), the bias is explained by the fact that the expecta-

tion of the objective function is not minimized at the truth. Since the objective function

will be close to its expectation in large samples, the estimator will tend to be close to

the minimum of the expectation, leading to bias. When Ŵ equals a nonrandom matrix

W, the expectation of the GMM objective function is

E[ĝ(β)0Wĝ(β)/2] = E[
X
i6=j

gi(β)
0Wgj(β) +

nX
i=1

gi(β)
0Wgi(β)]/2n

2 (2.2)

= (1− n−1)ḡ(β)0Wḡ(β)/2 +E[gi(β)
0Wgi(β)]/2n

= (1− n−1)ḡ(β)0Wḡ(β)/2 + tr(WΩ(β))/2n.

The term (1− n−1)ḡ(β)0Wḡ(β) is a ”signal” term that is minimized at β0. The second

term is a bias (or ”noise”) term that generally does not have zero derivative at β0 (and

hence is not minimized at β0), when Gi is correlated with gi, e.g. when endogeneity

is present in the linear model. Also, when Gi and gi are correlated the second term

generally increases in size with the number of moments m. This increasing bias term

leads to inconsistency of the two-step GMM estimator under many weak moments, as

shown by Han and Phillips (2006). This bias also corresponds to the higher order bias

term BG in Newey and Smith (2004) that is important with endogeneity.

One way to remove this bias is to choose W so the bias does not depend on β. Note

that ifW = Ω(β)−1, then the bias term becomes tr(WΩ(β))/2n = tr(Ω(β)−1Ω(β))/2n =

m/2n, which does not depend on β. A feasible version of this bias correction is to choose

Ŵ = Ω̂(β)−1, leading to the objective function

Q̂(β) = ĝ(β)0Ω̂(β)−1ĝ(β)/2 (2.3)

=
X
i6=j

gi(β)
0Ω̂(β)−1gj(β)/2n

2 +
nX
i=1

gi(β)
0Ω̂(β)−1gi(β)/2n

2

=
X
i6=j

gi(β)
0Ω̂(β)−1gj(β)/2n

2 +m/2n.

The estimator β̂ = argminβ∈B Q̂(β) that minimizes this objective function is the CUE.

It is interesting to note that it also has a jackknife GMM form.

Another way to remove the bias is to simply subtract an estimator tr(Ŵ Ω̂(β))/2n of

[8]



the bias term from the GMM objective function, giving

Q̆(β) = Q̈(β)− tr(Ŵ Ω̂(β))/2n =
X
i6=j
[gi(β)

0Ŵgj(β)]/2n
2,

giving the jackknife GMM objective function. The corresponding estimator will be con-

sistent under many weak moment asymptotics because the own observation terms are

the source of the bias in equation (2.2).

In what follows we will focus most of our attention on the GEL estimators. As

shown below, when Ŵ is optimal in the usual GMM sense, the GEL estimators will

be asymptotically more efficient than the jackknife GMM estimators under many weak

moments. They are also inefficient relative to GEL in our Monte Carlo study, giving us

further reason for our GEL focus.

3 Large Sample Inference

As shown by Dufour (1997) in linear models, if the parameter set is allowed to include

values where the model is not identified then a correct confidence interval for a structural

parameter must be unbounded with positive probability. Hence, bounded confidence in-

tervals, such as Wald intervals formed in the usual way from V̂ , cannot be correct. Also,

under the weak identification sequence of Stock and Wright (2000) the Wald confidence

intervals will not be correct, i.e. the new variance estimator is not robust to weak identi-

fication. These observations motivate consideration of statistics that are asymptotically

correct with weak or many weak moment conditions.

One identification robust statistic proposed by Stock and Wright (2000) is a GMM

version of the Anderson Rubin statistic. For the null hypothesis H0 : β0 = β, where β is

known, the GEL version of this statistic, as given by Guggenberger and Smith (2005), is

AR(β) = 2nQ̂(β). (3.4)

Under the null hypothesis and weak identification, or many weak moments, treating this

as if it were distributed as χ2(m) will be asymptotically correct. As a result we can form

a joint confidence interval for the vector β by inverting AR(β). Specifically, for the 1−α

[9]



quantile qmα of a χ
2(m) distribution an asymptotic 1−α confidence interval for β will be

{β : AR(β) ≤ qmα }. This confidence interval will be valid under weak identification and

under many weak moments. However, there are other confidence intervals that have this

property but are smaller in large samples, thus producing more accurate inference.

One of these is the Kleibergen (2005) and Guggenberger and Smith (2005) Lagrange

multiplier (LM) statistic for GEL. For the null hypothesis H0 : β0 = β, where β is known,

the LM statistic is

LM(β) = n
∂Q̂(β)

∂β

0

[D̂(β)0Ω̂(β)−1D̂(β)]−1
∂Q̂(β)

∂β
. (3.5)

Under the null hypothesis and weak identification or many weak moments this statistic

will have a χ2(p) limiting distribution. As a result we can form joint confidence intervals

for the vector β0 by inverting LM(β). Specifically, for the 1 − α quantile qpα of a χ
2(p)

distribution, an asymptotic 1 − α confidence interval is {β : LM(β) ≤ qpα}. These

confidence intervals are also correct in the weak identification setting of Stock and Wright

(2000).

Kleibergen (2005) also proposed a GMM analog of the conditional likelihood ratio

(CLR) test of Moreira (2003), motivated by the superior performance of the analogous

CLR statistic, relative to LM, in the linear homoskedastic model. Smith (2006) extended

this statistic to GEL. Here we consider one version.

Let R̂(β) be some statistic which should be large if the parameters are identified and

small if not, and with fixed m depends only on D̂(β) asymptotically. Kleibergen (2005)

suggests to use a statistic of a null hypothesis about the rank of D̂(β). We consider a

simple choice of R̂(β) given by

R̂(β) = nξmin(D̂(β)
0Ω̂(β)−1D̂(β)),

where ξmin (A) denotes the smallest eigenvalue of A. A version of the GEL-CLR statistic

is

CLR(β) =
1

2

(
AR(β)− R̂(β) +

∙³
AR(β)− R̂(β)

´2
+ 4LM(β)R̂(β)

¸1/2)
.
(3.6)
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Under the null hypothesis H0 : β0 = β a level α critical value q̂α(β) for this test statistic

can be simulated. Let (qm−ps , qps), s = 1, ..., S, be i.i.d. draws (independent from each

other and over s) of χ2(m − p) and χ2(p) random variables. Let q̂α(β) be the 1 − α

quantile of(
1

2

(
qm−ps + qps − R̂(β) +

∙³
qm−ps + qps − R̂(β)

´2
+ 4qpsR̂(β)

¸1/2)
; s = 1, ..., S

)
.

An asymptotic 1− α confidence interval can then be formed as {β : CLR(β) ≤ q̂α(β)}.

These confidence intervals will be correct under weak identification and also under many

weak moment conditions.

Another test statistic of interest is the overidentification statistic AR(β̂). This sta-

tistic is often used to test all the overidentifying restrictions associated with the moment

conditions. Under a fixed number of moment conditions this statistic converges in distri-

bution to χ2(m−p) and the critical value for this distribution remains valid under many

weak moments. Thus, it will be the case that Pr(AR(β̂) > qm−pα ) −→ α.

In addition to these statistics Hansen, Heaton, and Yaron (1996) considered the like-

lihood ratio statistic corresponding to the CUE. For GEL this statistic takes the form

LR(β) = 2n
h
Q̂(β)− Q̂(β̂)

i
.

As discussed in Stock and Wright (2000), this statistic does not have a chi-squared

limiting distribution under weak identification. We show that it also does not under

many weak moments. We find that the critical value for a chi-squared distribution leads

to overrejection, so that the confidence interval based on this statistic is too small.

Under local alternatives and many weak moments, one could compare the power

of some of these test statistics as a test of H0 : β = β0. The Wald statistic is T̂ =

n(β̂ − β0)
0V̂ −1(β̂ − β0). We will show that there is a bounded sequence {cn} with cn

bounded positive such that

LM(β0) = T̂ + op(1); CLR(β0) = cnT̂ + op(1).

Thus, the Wald test based on T̂ will be asymptotically equivalent under the null hy-

pothesis and contiguous alternatives to the LM and CLR tests. The implied asymptotic

[11]



equivalence of LM and CLR is a GMM version of a result of Andrews and Stock (2006).

In contrast, a test based on AR(β0) will have asymptotic local power equal to size, be-

cause its degrees of freedom goes to infinity. However these comparisons do not hold up

under weak identification. No power ranking of these statistics is known in that case.

The new variance estimator seems useful despite the lack of robustness to weak in-

struments. Standard errors are commonly used in practice as a measure of uncertainty

associated with an estimate. Also, for multidimensional parameters the confidence inter-

vals based on the LM or CLR are more difficult to compute. Confidence ellipses can be

formed in the usual way from β̂ and V̂ while LM or CLR confidence sets need to be cal-

culated by an exhaustive grid search. Furthermore, the conditions for an accurate many

weak moment approximation seem to occur often in applications, as further discussed

below. For all these reasons, the standard errors given here seem useful for econometric

practice.

It does seem wise to check for weak moments in practice. One could develop GMM

versions of the Hahn and Hausman (2004) and/or Stock and Yogo (2005b) tests. One

could also compare a Wald test based on the corrected standard errors with a test based

on an identification robust statistic.

4 Many Weak Moment Approximation

As always, asymptotic theory is meant to provide an approximation to the distribution

of objects of interest in applications. The theory and Monte Carlo results below indicate

that many weak moment asymptotics, applied to β̂ and V̂ , should provide an improve-

ment in 1) overidentified models where 2) the variance of the Jacobian of the moment

functions is large relative to its average and 3) the parameters are quite well identified.

Condition 2) is often true in IV settings, tending to hold when reduced form R2s are low.

Condition 3) is also often true in IV settings (e.g. see the brief applications survey in

Hansen, Hausman and Newey, 2008).

The many weak moment asymptotics will not provide an improved approximation in

[12]



minimum distance settings where g(w, β) = g1(w)− g2(β). In that setting ∂gi(β0)/∂β is

constant, so that condition 2) will not hold. In fact, the asymptotic variance under many

weak moments will be the same as the usual variance.

Conditions 1), 2), and 3) are simultaneously imposed in the asymptotics, where 1) m

grows, 2) some components of G0Ω−1G go to zero, so that the variance of ∂gi(β0)/∂β is

large relative to G, and 3) nG0Ω−1G grows, so that the parameters are identified. The

following specific condition incorporates each of 1), 2), and 3).

Assumption 1: i) There is a p × p matrix Sn = S̃n diag (μ1n, ..., μpn) such that

S̃n is bounded, the smallest eigenvalue of S̃nS̃
0
n is bounded away from zero, for each j

either μjn =
√
n or μjn/

√
n −→ 0, μn = min

1≤j≤p
μjn −→ ∞, and m/μ2n is bounded; ii)

nS−1n G0Ω−1GS−10n −→ H and H is nonsingular.

This assumption allows for linear combinations of β to have different degrees of identi-

fication, similarly to Hansen, Hausman and Newey (2008). For example, when a constant

is included one might consider the corresponding reduced form coefficient to be strongly

identified. This will correspond to μjn =
√
n. For less strong identification μjn will be

allowed to grow slower than
√
n. This condition is a GMM version of one of Chao and

Swanson (2005) for IV. It generalizes Han and Phillips (2006) to allow μjn to differ across

j.

The linear model of equation (2.1) is an example. Suppose that it has reduced form

and instruments given by

xi = (z
0
1i, x

0
2i)

0, x2i = π21z1i +
μn√
n
z2i + η2i, Zi = (z

0
1i, Z

0
2i)

0,

where z1i is a p1 × 1 vector of included exogenous variables, z2i is a (p − p1) × 1 vector

of excluded exogenous variables, and Z2i is an (m− p1)× 1 vector of instruments. This

specification allows for constants in the structural equation and reduced form by allowing

an element of z1i to be 1. The variables z2i may not be observed by the econometrician.

For example, we could have z2i = f0(wi) for a vector of underlying exogenous variables

wi and an unknown vector of functions f0(w). In this case the instrument vector could

[13]



be Zi = (z01i, p1,m−p1(wi), ..., pm−p1,m−p1(wi))
0, where pj,m−p1(wi), (j = 1, ...,m − p1) are

approximating functions, such as power series or splines. In this case the model is like

Newey (1990), except that the coefficient the unknown function f0(wi) goes to zero to

model weaker identification.

To see how Assumption 1 is satisfied in this example, let

S̃n =

Ã
Ip1 0
π21 Ip−p1

!
, μjn =

( √
n : j = 1, ..., p1

μn : j = p1 + 1, ..., p
.

Then for zi = (z
0
1i, z

0
2i)

0 the reduced form is

Υi =

Ã
z1i

π21z1i +
μn√
n
z2i

!
= Snzi/

√
n,G = −E[ZiΥ

0
i] = −E[Ziz

0
i]S

0
n/
√
n.

Assume that zi and Zi are functions of some variables z̃i and let σ
2
i = E[ε2i |z̃i] > 0 and

z∗i = zi/σ
2
i . Then

nS−1n G0Ω−1GS−10n = E[ziZ
0
i]Ω

−1E[Ziz
0
i]

= E[σ2i z
∗
iZ

0
i](E[σ

2
iZiZ

0
i])
−1E[σ2iZiz

∗0
i ].

The expression following the second equality is the mean square error of a linear projec-

tion of z∗i on Zi, weighted by σ
2
i . Therefore, if linear combinations of Zi can approximate

z∗i , i.e. if there is πm such that limm−→∞E[σ2i kz∗i − πmZik2] = 0, then

nS−1n G0Ω−1GS−10n −→ E[σ2i z
∗
i z
∗0
i ] = E[σ−2i ziz

0
i].

Then it suffices for Assumption 1 to assume that E[σ−2i ziz
0
i] is nonsingular.

Asymptotic normality will lead to different convergence rates for linear combinations

of the coefficients. In the linear model example just considered, where β = (β01, β
0
2)
0, it

will be the case that

S0n(β̂ − β) =

Ã √
n[(β̂1 − β1) + π021(β̂2 − β2)]

μn(β̂2 − β2)

!

is jointly asymptotically normal. Thus, the coefficients β̂2 of the endogenous variables

converge at rate 1/μn but the coefficients of included exogenous variables β̂1 need not

converge at rate 1/
√
n. Instead, it is the linear combination β̂1 + π021β̂2 that converges

[14]



at rate 1/
√
n. Note that β1 + π021β2 is the coefficient of z1i in the reduced form equation

for yi. Thus, it is the reduced form coefficient that converges to the truth at rate 1/
√
n.

In general, all the structural coefficients may converge at the rate 1/μn. In that case the

asymptotic variance matrix of μn(β̂ − β0) will be singular with rank equal to p2. Wald

tests of up to p2 linear combinations can still have the usual asymptotic distribution, but

tests of more than p2 linear combinations would need to account for singularity of the

asymptotic variance of μn(β̂ − β0).

The many weak moment asymptotic variance is larger than the usual one when m

grows at the same rate as μ2n, e.g. when μ2n = m. In the linear model this corresponds

to a reduced form

x2i = π21z1i +

√
m√
n
z2i + ηi2.

This sequence of models is a knife-edge case where the additional variance due to many

instruments is the same size as the usual one. If μ2n grew faster than m the usual variance

would dominate while if μ2n grew slower thanm the additional term would dominate in the

asymptotic variance. The case with μ2n growing slower thanm is ruled out by Assumption

1 but is allowed in some work on the linear model, e.g. see Chao and Swanson (2004)

and Hansen, Hausman and Newey (2008).

One specification where μ2n and m grow at the same rate has

z2i = C
m−p1X
j=1

Z2ij/
√
m,E[Z2iZ

0
2i] = Im−p1,

where C is an unknown constant. In that case the reduced form is

x2i = π21z1i +
m−p1X
j=1

C√
n
Z2ij + ηi2.

This is a many weak instrument specification like that considered by Chao and Swanson

(2004, 2005).

Despite the knife-edge feature of these asymptotics, we find in simulations below

that using the asymptotic variance estimate provides greatly improved approximation

in a wide range of cases. Given these favorable results one might expect that the new

variance estimator provides an improved approximation more generally than just when

[15]



m grows at the same rate as μ2n. Hansen, Hausman and Newey (2008) did find such

a result for the Bekker (1994) variance in a homoskedastic linear model, and the new

variance here extends that to GEL and heteroskedasticity, so we might expect a similar

result here. Showing such a result is beyond the scope of this paper though we provide

some theoretical support for the linear model example in the next Section.

5 Asymptotic Variances

To explain and interpret the results we first give a formal derivation of the asymptotic

variance for GEL and jackknife GMM. We begin with jackknife GMM because it is

somewhat easier to work with. The usual Taylor expansion of the first-order condition

∂Q̆(β̆)/∂β = 0 gives

S0n(β̆ − β0) = −H̄−1nS−1n ∂Q̆(β0)/∂β, H̄ = nS−1n ∂2Q̆(β̄)/∂β∂β0S−10n ,

where β̄ is an intermediate value for β, being on the line joining β̆ and β0 (that actually

differs from row to row of H̄). Under regularity conditions it will be the case that

H̄
p−→ HW = lim

n−→∞
nS−1n G0WGS−10n ,

where we assume that Ŵ estimates a matrix W in such a way that the remainders

are small and that the limit of nS−1n G0WGS−10n exists. The asymptotic distribution of

S0n(β̆ − β) will then equal the asymptotic distribution of −H−1
W nS−1n ∂Q̆(β0)/∂β.

The estimation of the weighting matrix will not affect the asymptotic distribution,

so that differentiating the jackknife GMM objective function and replacing Ŵ with its

limit W , gives

nS−1n ∂Q̆(β0)/∂β =
X
i6=j

S−1n G0
iWgj/n+ op(1)

= (1− n−1)
√
nS−1n G0W

√
nĝ(β0) +

X
j<i

ψJ
ij/n+ op(1),

ψJ
ij = S−1n (Gj −G)0Wgi + S−1n (Gi −G)0Wgj ,

where the second equality holds by adding and subtractingG toGi. The
√
nS−1n G0W

√
nĝ(β0)

term is the usual GMM one, having asymptotic varianceHΩ = limn−→∞ nS−1n G0WΩWGS−10n ,
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assumed to exist. The other term
P

j<i ψ
J
ij/n is a degenerate U-statistic, a martingale

sum that turns out to be asymptotically normal under regularity conditions, as in Lemma

A10 of the Appendix. Its asymptotic variance will be the limit of

E[ψJ
ijψ

J 0
ij ]/2 = S−1n {E[(Gj −G)0Wgig

0
iW (Gj −G)] +E[(Gj −G)0Wgig

0
jW (Gi −G)]}S−10n

= S−1n {E[(Gj −G)0WΩW (Gj −G)] +E[G0
jWgig

0
jWGi]}S−10n

= S−1n (E[G
0
jWΩWGj]−G0WΩWG+E[G0

jWgig
0
jWGi])S

−10
n .

This limit is equal to

ΛJ = lim
n−→∞

E[ψJ
ijψ

J 0
ij ]/2 = lim

n−→∞
S−1n (E[G

0
jWΩWGj] +E[G0

jWgig
0
jWGi])S

−10
n .

The U-statistic term is uncorrelated with the usual GMM term, so by the central limit

theorem, nS−1n ∂Q̆(β0)/∂β
d−→ N(0, HΩ + ΛJ). It then will follow that

S0n(β̆ − β0)
d−→ N(0, VJ), VJ = H−1

W HΩH
−1
W +H−1

W ΛJH
−1
W ,

a result that was previously derived for the JIVE2 estimator by Chao and Swanson

(2004).

For GEL we will focus on the asymptotic variance of the CUE because the explicit

form of the CUE simplifies the discussion. The other GEL estimators will have the same

asymptotic variance, essentially because Q̂(β) will be quadratic in ĝ(β) near β0.

To derive the CUE asymptotic variance we expand the first-order conditions simi-

larly to jackknife GMM. That gives an analogous expression for S0n(β̂ − β0) with the

CUE objective function Q̂(β) replacing the jackknife GMM objective Q̆(β). It will turn

out that nS−1n ∂2Q̂(β̄)/∂β∂β0S−10n
p−→ H from Assumption 1, so that the Hessian term is

the same for the CUE as for jackknife GMM. However, the other term in the variance

will be different. To derive it, recall the definitions of Bj and Ui from Section 2, and

note that the columns of Ui are the population residuals from least squares regression of

columns of Gi −G on gi. Assuming we can differentiate under the integral we have

∂Ω(β0)
−1

∂βj
= −Ω−1

"
∂Ω(β0)

∂βj

#
Ω−1 = −BjΩ−1 − Ω−1Bj0.

[17]



Then differentiating the CUE objective function with Ω(β)−1 replacing Ω̂(β)−1 we have

nS−1n
∂Q̂(β0)

∂β
= nS−1n

∂

∂β

n
ĝ(β)0Ω−1ĝ(β) + ĝ(β0)

0Ω(β)−1ĝ(β0)
o
|β=β0/2

= S−1n
1

n

nX
i,j=1

(G+ Ui)
0Ω−1gj

=
√
nS−1n G0Ω−1

√
nĝ(β0) +

X
j<i

ψij/n+ S−1n

nX
i=1

U 0
iΩ
−1gi/n,

ψij = S−1n (Uj
0Ω−1gi + U 0

iΩ
−1gj).

By the projection residual form of Ui, each component of Ui is uncorrelated with every

component of gi. Then by the law of large numbers, S
−1
n

Pn
i=1 U

0
iΩ
−1gi/n

p−→ 0. Also

note that E[ψijψ
0
ij]/2 = S−1n E[U 0

iΩ
−1Ui]S

−10
n . It then follows similarly to the jackknife

GMM that nS−1n ∂Q̂(β0)/∂β
d−→ N(0, H + Λ), Λ = limn−→∞ S−1n E[U 0

iΩ
−1Ui]S

−10
n . Then

it follows that

S0n(β̂ − β0)
d−→ N(0, V ), V = H−1 +H−1ΛH−1.

We now show that GEL is asymptotically efficient relative to the jackknife GMM,

i.e. that V ≤ VJ in the positive semidefinite sense, when the jackknife GMM has W =

Ω−1. Let ∆ij = ψJ
ij − ψij. Under W = Ω−1 each element of ∆ij depends on the data

only through (1, g0i)
0(1, g0j). Therefore, by each element of Ui uncorrelated with every

component of gi, it follows that E[ψij∆
0
ij] = 0. Therefore we have

E[ψJ
ijψ

J 0
ij ] = E[(ψij +∆ij)(ψij +∆ij)

0] = E[ψijψ
0
ij] +E[∆ij∆

0
ij] ≥ E[ψijψ

0
ij],

so that

Λ = lim
n−→∞

1

2
E[ψijψ

0
ij] ≤

1

2
lim

n−→∞
E[ψJ

ijψ
J 0
ij ] = ΛJ .

Thus we have

V = H−1 +H−1ΛH−1 ≤ H−1 +H−1ΛJH
−1 = VJ ,

showing the asymptotic efficiency of GEL relative to a jackknife GMM estimator with

W = Ω−1.

The linear model provides an example of the asymptotic variance, where from the

earlier notation,

Bj = −Ω−1E[ZiZ
0
iηijεi], U

j
i = −ZiΥij +E[ZiΥij] + uij, uij = −Ziηij +Bj0Ziεi.
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Then for ui = [u
1
i , ..., u

p
i ] we have, by Υi = Snzi/

√
n

S−1n E[U 0
iΩ
−1Ui]S

−10
n = S−1n E[u0iΩ

−1ui]S
−10
n +E[{Ziz

0
i −E[Ziz

0
i]}0Ω−1{Ziz

0
i −E[Ziz

0
i]}]/n.

The second term will be small as long as m grows slowly enough relative to n (when Zij

is uniformly bounded m/n −→ 0 will suffice), so that

Λ = lim
n−→∞

S−1n E[u0iΩ
−1ui]S

−10
n .

For instance, in the homoskedastic case whereE[ε2i |Zi] = σ2ε , E[ηiη
0
i|Zi] = Ση, E[εiηi|Zi] =

σηε, we have ui = −Zi(η
0
i − σ0ηεεi/σ

2
ε), so that

S−1n E[u0iΩ
−1ui]S

−10
n = S−1n E[(ηi − σηεεi/σ

2
ε)(ηi − σηεεi/σ

2
ε)
0Z 0iΩ

−1Zi]S
−10
n

= S−1n (Ση − σηεσ
0
ηε/σ

2
ε)E[Z

0
i(σ

2
εI)

−1Zi]S
−10
n

= mS−1n (σ
2
εΣη − σηεσ

0
ηε)S

−10
n /σ4ε .

Then, assuming E[ziZ
0
i]E[Ziz

0
i] −→ E[ziz

0
i] = σ2εH and

√
mS−1n −→ S0, the asymptotic

variance matrix for S0n(β̂ − β0) will be

V = H−1 +H−1S0(σ
2
εΣη − σηεσ

0
ηε)S

0
0H

−1/σ4ε .

This variance for GEL is identical to the asymptotic variance of LIML under many weak

instrument asymptotics derived by Stock and Yogo (2005a). Thus we find that in the

linear homoskedastic model GEL and LIML have the same asymptotic variance under

many weak moment asymptotics. As shown by Hansen, Hausman and Newey (2008),

the Bekker (1994) standard errors are consistent under many weak instruments, so that

S0nV̂ Sn/n will have the same limit as the Bekker standard errors in a homoskedastic linear

model. Since S0nV̂ Sn/n will also be consistent with heteroskedasticity, one can think of V̂

as an extension of the Bekker (1994) variance estimator to GEL with heteroskedasticity.

It is interesting to compare the asymptotic variance V of the CUE with the usual

asymptotic variance formula H−1 for GMM. Whenm grows slower than μ2n or ∂gi(β0)/∂β

is constant V = H−1, but otherwise the variance here is larger than the standard formula.

For further comparison we consider a corresponding variance approximation Vn for β̂
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for a sample size of size n. Replacing H by Hn = nS−1n G0Ω−1GS−10n and Λ by Λn =

S−1n E[U 0
iΩ
−1Ui]S

−10
n , and premultiplying by (S0n)

−1 and postmultiplying by S−1n gives the

variance approximation for sample size n of

Vn = S−10n (H−1
n +H−1

n ΛnH
−1
n )S

−1
n

= (nG0Ω−1G)−1 + (nG0Ω−1G)−1E[U 0
iΩ
−1Ui](nG

0Ω−1G)−1

= n−1{(G0Ω−1G)−1 + (G0Ω−1G)−1(E[U 0
iΩ
−1Ui]/n)(G

0Ω−1G)−1}

The usual variance approximation for β̂ is (G0Ω−1G)−1/n. The approximate variance Vn

includes an additional term which can be important in practice. When V ar(Ω−1/2∂gi(β0)/∂β)

is large relative to G0Ω−1G (condition 2 of Section 4), E[U 0
iΩ
−1Ui] may be very large rel-

ative to G0Ω−1G, leading to the additional term being important, even when n is large.

It is interesting to note that the usual term is divided by n and the additional term by

n2. In asymptotic theory with fixed m this makes the additional term a ”higher-order”

variance term. Indeed, by inspection of Donald and Newey (2003), one can see that the

additional term corresponds to a higher order variance term involving estimation of G.

There are also additional higher order terms that come from the estimation of the weight

matrix, but the Jacobian term dominates when identification is not strong. For example,

in the linear homoskedastic example suppose that E[ε3i |Zi] = 0 and E[ε
4
i |Zi] = E[ε4i ], and

let κ = E[ε4i ]/(E[ε
2
i ]). For An = E[ziZ

0
i]E[Ziz

0
i] the higher-order variance approximation

for GEL from Donald and Newey (2003) is

Vn = σ2εA
−1
n /n+ (m/n)σ2εA

−1
n (Ση − σηεσ

0
ηε/σ

2
ε)A

−1
n /n

+[(5− κ) + ρ3(0)(3− κ)]σ2εA
−1
n E[Z 0iZiΥ

2
i ]A

−1
n /n2.

The last term corresponds to weight matrix estimation and will tend to be small when Υi

is small, as it is under the asymptotics we consider. In this sense the many weak moment

asymptotics accounts well for variability of the derivative of the moment conditions but

takes no account of variability of the weight matrix. Also, it is interesting to note that

this last term will be asymptotically small relative to the second even when m does not

grow at the same rate as μ2n. For example, if zi is bounded and μjn = μn for each j, then
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Υ2
i ≤ Cμn/

√
n, so as long as μn grows slower than

√
n the third (weight matrix) term

will be small relative to the second (Jacobian) term. Here the new variance estimator

corresponds to the higher-order variance, showing that it provides an improved variance

approximation more generally than in the knife-edge case where m and μ2n grow at the

same rate.

6 Large Sample Theory

We give results for GEL, leaving a precise treatment of jackknife GMM to another paper.

It is helpful to strengthen Assumption 1. For a matrix A let kAk = trace(A0A)1/2 denote

its Euclidean norm and for symmetric A let ξmin(A) and ξmax(A) denote its smallest and

largest eigenvalues, respectively. Also, let δ(β) = S0n(β − β0)/μn, where we suppress an

n subscript on δ(β) for notational convenience.

Assumption 2: i) Assumption 1 i) is satisfied; ii) There is C > 0 with kδ(β)k ≤

C
√
n kḡ(β)k /μn for all β ∈ B iii) there is C > 0 and M̂ = Op(1) such that with

probability approaching one, kδ(β)k ≤ C
√
n kĝ(β)k /μn + M̂ for all β ∈ B;

This condition implies global identification of β0. We also need conditions on conver-

gence of ĝ(β), as imposed in the following condition.

Assumption 3: gi(β) is continuous in β and there is C > 0 such that i) supβ∈B

E[{gi(β)0gi(β)}2]/n −→ 0; ii) 1/C ≤ ξmin(Ω(β)) and ξmax(Ω(β)) ≤ C for all β ∈ B;

iii) supβ∈B kΩ̂(β) − Ω(β)k p−→ 0; iv) |a0[Ω(β̃) − Ω(β)]b| ≤ C kak kbk
°°°β̃ − β

°°° for all
a, b ∈ <m, β̃, β ∈ B; v) for every C̃ > 0 there is C and M̂ = Op(1) such that for

all β̃, β ∈ B,
°°°δ(β̃)°°° ≤ C̃, kδ(β)k ≤ C̃,

√
n
°°°ḡ(β̃)− ḡ(β)

°°° /μn ≤ C
°°°δ(β̃ − β)

°°° and
√
n
°°°ĝ(β̃)− ĝ(β)

°°° /μn ≤ M̂
°°°δ(β̃ − β)

°°° .
These conditions restrict the rate at which m can grow with the sample size. If

E[gij(β)
4] is bounded uniformly in j, m, and β then a sufficient condition for kΩ̂(β) −

Ω(β)k p−→ 0 at each β is that m2/n −→ 0. Uniform convergence may require further

conditions.
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For GEL estimators other than the CUE we need an additional condition.

Assumption 4: β̂ is the CUE or i) ρ(v) is three times continuously differentiable and

ii) there is γ > 2 such that n1/γ(E[supβ∈B kgi(β)kγ])1/γ
q
m/n −→ 0.

When β̂ is not the CUE this condition puts further restrictions on the growth rate

of m. If the elements of gi(β) were bounded uniformly in n then this condition is

m2/n1−2/γ −→ 0, that is only slightly stronger than m2/n −→ 0. The following is a

consistency result for CUE.

Theorem 1: If Assumptions 2 - 4 are satisfied then S0n(β̂ − β0)/μn
p−→ 0.

We also give more primitive regularity conditions for consistency for the linear model

example. Let η̃i be a vector of the nonzero elements of ηi andΣi = E[(εi, η̃
0
i)
0(εi, η̃

0
i)|Zi,Υi].

Assumption 5: The linear model holds, Υi = Snzi/
√
n, and there is a constant C

with E[ε4i |Zi,Υi] ≤ C, E[kηik4|Zi,Υi] ≤ C, kΥik ≤ C, ξmin(Σi) ≥ 1/C, E[ZiZ
0
i] = Im,

E[(Z 0iZi)
2]/n −→ 0, E[kzik4] < C, and either β̂ is the CUE or for γ > 2 we have

E[|εi|γ|Zi] ≤ C, E[kηikγ|Zi] ≤ C, n1/γ(E[kZikγ])1/γ
q
m/n −→ 0.

The conditions put restrictions on the rate at which m can grow with the sample size.

If Zij is bounded uniformly in j and m, then these conditions will hold for the CUE if

m2/n −→ 0 (for in that case, E[(Z 0iZi)
2]/n = O(m2/n) −→ 0) and if m2/n1−2/γ −→ 0

for other GEL estimators.

Theorem 2: If Assumptions 1 and 5 are satisfied then S0n(β̂ − β0)/μn
p−→ 0.

For asymptotic normality some additional conditions are needed.

Assumption 6: g(z, β) is twice continuously differentiable in a neighborhood N of

β0, (E[kgik4] +E[kGik4])m/n −→ 0, and for a constant C and j = 1, ..., p,

ξmax(E[GiG
0
i]) ≤ C, ξmax(E[

∂Gi(β0)

∂βj

∂Gi(β0)

∂βj

0
]) ≤ C,

√
n

°°°°°E[∂Gi(β0)

∂βj
]S−10n

°°°°° ≤ C.
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This condition imposes a stronger restriction on the growth rate of the number of

moment conditions than was imposed for consistency. If gij(β0) were uniformly bounded

a sufficient condition would be that m3/n −→ 0.

Assumption 7: If β̄
p−→ β0 then k

√
n[Ĝ(β̄)− Ĝ(β0)]S

−10
n k p−→ 0, k√n[∂Ĝ(β̄)/∂βk−

∂Ĝ(β0)/∂βk]S
−10
n k p−→ 0, k = 1, ..., p.

This condition restricts how the derivatives of the moments vary with the parameters.

It is automatically satisfied in the linear model. For the next Assumption let

Ω̂k(β) =
1

n

nX
i=1

gi(β)
∂gi(β)

∂βk

0
,Ωk(β) = E[Ω̂k(β)],

Ω̂kc(β) =
1

n

nX
i=1

gi(β)
∂2gi(β)

∂βk∂βc

0
,Ωkc(β) = E[Ω̂kc(β)],

Ω̂k,c(β) =
1

n

nX
i=1

∂gi(β)

∂βk

∂gi(β)

∂βc

0
,Ωk,c(β) = E[Ω̂k,c(β)].

Assumption 8: For all β on a neighborhood N of β0 and A equal to Ω
k,Ωkc,or Ωk,c;

i) supβ∈N
°°°Â(β)−A(β)

°°° p−→ 0, ii) |a0[A(β̃)−A(β)]b| ≤ C kak kbk
°°°β̃ − β

°°° .
This condition imposes uniform convergence and smoothness conditions similar to

those already required for Ω̂(β) and Ω(β) above.

Assumption 9: β̂ is the CUE or i) there is γ > 2 such that n1/γ(E[supβ∈B kgi(β)kγ])1/γ

(m+ μn)/
√
n −→ 0; and ii) μ2nE[d

4
i ]/n −→ 0 for

di = max
β∈B

max
j
{kgi(β)k , k∂gi(β)/∂βk ,

°°°∂2gi(β)/∂β∂βj°°°}.
This condition imposes some additional restrictions on the growth of m and μn. In

the primary case of interest where μ2n and m grow at the same rate then μ2n can be

replaced by m in this condition. If β̂ is not the CUE, m3 must grow slower than n. The

next condition imposes corresponding requirements for the linear model case.
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Assumption 10: The linear model holds, mE[kZik4]/n −→ 0, and β̂ is the CUE or

n1/γ(E[kZikγ])1/γ(m+ μn)/
√
n −→ 0 and μ2nE[kZik4]/n −→ 0.

Under these and other regularity conditions we can show that β̂ is asymptotically

normal and that the variance estimator is consistent. Recall the definition of Ui from

Section 2.

Theorem 3: If Assumption 1 is satisfied, S−1n E[U 0
iΩ
−1Ui]S

−10
n −→ Λ, and Assump-

tions 2 - 4 and 6-9 are satisfied or the linear model Assumptions 1, 5, and 10 are satisfied,

then for V = H−1 +H−1ΛH−1

S0n(β̂ − β0)
d−→ N(0, V ), S0nV̂ Sn/n

p−→ V.

Furthermore, if there is rn and c
∗ 6= 0 such that rnS−1n c −→ c∗ then

c0(β̂ − β0)q
c0V̂ c/n

d−→ N(0, 1).

This result includes the linear model case. The next result shows that χ2(m) asymp-

totic approximation for the Anderson-Rubin statistic is correct. Let qmα be the 1 − αth

quantile of a χ2(m) distribution.

Theorem 4: If i) mE[kgik4]/n −→ 0 and ξmin(Ω) ≥ C or the linear model holds

with E[ε4i |Zi] ≤ C, E[ε2i |Zi] ≥ C, E[ZiZ
0
i] = I, and mE[kZik4]/n −→ 0; ii) β̂ is the CUE

or there is γ > 2 such that n1/γE[kgikγ]m/
√
n −→ 0 then

Pr(AR(β0) ≥ qmα ) −→ α.

The last result shows that the Wald, LM, CLR, and overidentification statistics

described in Section 3 are asymptotically equivalent and have asymptotically correct

level under many weak moments, but that the likelihood ratio does not. Let T̂ =

n(β̂ − β0)
0V̂ −1(β̂ − β0).
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Theorem 5: If S−1n E[U 0
iΩ
−1Ui]S

−10
n −→ Λ and either Assumptions 1 - 4 and 6-9 are

satisfied or the linear model Assumptions 1, 5, and 10 are satisfied, then T̂
d−→ χ2 (p) ,

LM(β0) = T̂ + op(1),

Pr(2nQ̂(β̂) ≥ qm−pα ) −→ α,Pr(2n[Q̂(β0)− Q̂(β̂)] ≥ qpα) ≥ α+ o(1).

In addition, if there is C > 0 such that ξmin(μ
−2
n SnHVHS0n)−m/μ2n > C for all n large

enough then there is a bounded sequence {cn}, cn ≥ 0, that is bounded away from zero

such that

CLR(β0) = cnT̂ + op(1), q̂α(β0) = cnq
p
α + op(1).

and Pr(CLR(β0) ≥ q̂α(β0)) −→ α.

7 Monte Carlo Results

We first carry out a Monte Carlo for the simple linear IV model where the disturbances

and instruments have a Gaussian distribution. The parameters of this experiment are the

correlation coefficient ρ between the structural and reduced form errors, the concentration

parameter and the number of instruments m.

The data generating process is given by

yi = xiβ0 + εi

xi = z0iπ + ηi

εi = ρηi +
q
1− ρ2vi

ηi ∼ N (0, 1) ; vi ∼ N (0, 1) ; zi ∼ N (0, Im)

π =

s
CP

mn
ιm,

where ιm is an m-vector of ones. The concentration parameter in this design is equal

to CP . We generate samples of size n = 200, with values of CP equal to 10, 20 or

35; number of instruments m equal to 3, 10 or 15; values of ρ equal to 0.3, 0.5 or 0.9;

and β0 = 0. This design covers cases with very weak instruments. For example, when

CP = 10 and m = 15, the first stage F -statistic equals CP/m = 0.67.
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Table 1 presents the estimation results for 10, 000 Monte Carlo replications. We

report median bias and interquartile range (IQR) of 2SLS, GMM, LIML, CUE and the

Jackknife GMM estimator, denoted JGMM. The CUE is obtained by a standard iterative

minimization routine, taking the minimum obtained from five different starting values of

β, {−2,−1, ..., 2}. The results for 2SLS and GMM are as expected. They are upward

biased, with the bias increasing with the number of instruments, the degree of endogeneity

and a decreasing concentration parameter. LIML and CUE are close to being median

unbiased, although they display some small biases, accompanied by large interquartile

ranges, when CP = 10 and the number of instruments is larger than 3. JGMM displays

larger median biases than LIML and CUE in general, and especially in the very weak

instrument case when CP = 10 and m = 15, with this bias increasing with ρ. There is a

clear reduction in IQR for LIML, CUE and JGMM when both the number of instruments

and the concentration parameter increase, whereas the biases for 2SLS and GMM remain.

As expected, the IQR for JGMM is larger than the IQR for CUE, which in turn is

larger than that of LIML. The superior performance of LIML might be expected here

and in the Wald tests below, because it is a homoskedastic design and LIML imposes

homoskedasticity on the weighting matrix. Doing so is often thought to improve small

sample performance in homoskedastic cases.

Table 2 presents rejection frequencies of Wald tests at 5% nominal level. The purpose

here is to analyze our proposed general methods in this well-understood setting. The

estimators and standard errors utilized in the Wald tests are the two-step GMM estimator

with the usual standard errors (GMM), with the Windmeijer (2005) standard errors

(GMMC), the continuous updating estimator with the usual standard errors (CUE) and

with the many weak instruments standard errors (CUEC), and equivalent for JGMM.

For purposes of comparison we also give results for 2SLS and LIML with their usual

standard errors and LIML with Bekker (1994) standard errors (LIMLC), and the GEL-

LM statistic (LM) as defined in (3.5). We have also investigated the size properties of the

GEL-AR and GEL-CLR statistics as defined in (3.4) and (3.6) respectively, and found

them in these settings to be very similar to those of the LM statistic. They are therefore
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not reported separately.

Table 1a. Simulation results for linear IV model ρ = 0.3

CP = 10 CP = 20 CP = 35
Med Bias IQR Med Bias IQR Med Bias IQR

m = 3
2SLS 0.0509 0.3893 0.0312 0.2831 0.0184 0.2226
GMM 0.0516 0.3942 0.0307 0.2885 0.0186 0.2233
LIML -0.0016 0.4893 0.0027 0.3184 0.0020 0.2398
CUE -0.0031 0.4963 0.0034 0.3257 0.0013 0.2410
JGMM -0.0127 0.5665 -0.0123 0.3474 -0.0064 0.2495

m = 10
2SLS 0.1496 0.3059 0.0967 0.2486 0.0630 0.1996
GMM 0.1479 0.3153 0.0956 0.2562 0.0644 0.2056
LIML 0.0152 0.6060 0.0006 0.3846 -0.0001 0.2568
CUE 0.0230 0.6501 0.0002 0.4067 0.0007 0.2762
JGMM 0.0438 0.7242 -0.0117 0.4290 -0.0088 0.2785

m = 15
2SLS 0.1814 0.2645 0.1237 0.2281 0.0839 0.1863
GMM 0.1809 0.2772 0.1248 0.2397 0.0846 0.1981
LIML 0.0262 0.6605 -0.0024 0.4102 -0.0047 0.2729
CUE 0.0375 0.7178 -0.0008 0.4629 -0.0034 0.3126
JGMM 0.0781 0.7855 -0.0065 0.4769 -0.0104 0.3128

Notes: n = 200; β0 = 0; 10, 000 replications
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Table 1b. Simulation results for linear IV model, ρ = 0.5

CP = 10 CP = 20 CP = 35
Med Bias IQR Med Bias IQR Med Bias IQR

m = 3
2SLS 0.0957 0.3720 0.0498 0.2830 0.0300 0.2191
GMM 0.0961 0.3773 0.0501 0.2850 0.0296 0.2210
LIML 0.0053 0.4761 0.0028 0.3219 0.0018 0.2364
CUE 0.0082 0.4773 0.0031 0.3233 0.0009 0.2376
JGMM -0.0189 0.5886 -0.0227 0.3576 -0.0130 0.2514

m = 10
2SLS 0.2422 0.2768 0.1603 0.2302 0.1044 0.1910
GMM 0.2434 0.2900 0.1606 0.2360 0.1052 0.1969
LIML 0.0169 0.5640 0.0025 0.3641 -0.0016 0.2529
CUE 0.0212 0.6044 0.0045 0.3851 0.0035 0.2676
JGMM 0.0451 0.7086 -0.0137 0.4330 -0.0118 0.2875

m = 15
2SLS 0.3000 0.2492 0.2108 0.2114 0.1432 0.1831
GMM 0.3021 0.2615 0.2115 0.2233 0.1437 0.1911
LIML 0.0320 0.6377 0.0026 0.3920 -0.0022 0.2718
CUE 0.0484 0.7039 0.0081 0.4408 0.0003 0.3027
JGMM 0.1051 0.7808 -0.0027 0.4890 -0.0122 0.3207

Notes: n = 200; β0 = 0; 10, 000 replications
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Table 1c. Simulation results for linear IV model, ρ = 0.9

CP = 10 CP = 20 CP = 35
Med Bias IQR Med Bias IQR Med Bias IQR

m = 3
2SLS 0.1621 0.3254 0.0855 0.2601 0.0495 0.2077
GMM 0.1614 0.3313 0.0848 0.2650 0.0503 0.2106
LIML -0.0053 0.4490 -0.0061 0.3054 -0.0046 0.2283
CUE -0.0036 0.4559 -0.0038 0.3094 -0.0034 0.2291
JGMM -0.0536 0.6532 -0.0441 0.3863 -0.0268 0.2613

m = 10
2SLS 0.4348 0.1984 0.2842 0.1836 0.1870 0.1630
GMM 0.4363 0.2083 0.2853 0.1896 0.1856 0.1699
LIML -0.0036 0.4823 -0.0057 0.3264 -0.0049 0.2391
CUE -0.0034 0.5184 -0.0070 0.3477 -0.0059 0.2555
JGMM 0.0385 0.7737 -0.0347 0.4890 -0.0259 0.3155

m = 15
2SLS 0.5333 0.1682 0.3747 0.1588 0.2608 0.1435
GMM 0.5333 0.1800 0.3748 0.1686 0.2609 0.1517
LIML 0.0018 0.5117 -0.0035 0.3331 0.0041 0.2391
CUE 0.0066 0.5778 -0.0013 0.3705 0.0042 0.2655
JGMM 0.1186 0.7972 -0.0232 0.5377 -0.0182 0.3378

Notes: n = 200; β0 = 0; 10, 000 replications
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Table 2. Rejection frequencies of Wald tests for linear IV model

ρ = 0.3 ρ = 0.5
CP = 10 CP = 20 CP = 35 CP = 10 CP = 20 CP = 35

m = 3
2SLS 0.0451 0.0440 0.0477 0.0780 0.0653 0.0593
GMM 0.0489 0.0492 0.0535 0.0835 0.0674 0.0621
GMMC 0.0468 0.0463 0.0510 0.0806 0.0644 0.0579
LIML 0.0384 0.0392 0.0428 0.0535 0.0470 0.0446
LIMLC 0.0317 0.0329 0.0374 0.0439 0.0415 0.0413
CUE 0.0744 0.0638 0.0621 0.0902 0.0638 0.0600
CUEC 0.0348 0.0382 0.0418 0.0500 0.0433 0.0429
JGMM 0.1080 0.0734 0.0676 0.1085 0.0724 0.0672
JGMMC 0.0217 0.0282 0.0370 0.0366 0.0378 0.0401
LM 0.0477 0.0444 0.0440 0.0428 0.0455 0.0446

m = 10
2SLS 0.1148 0.0924 0.0793 0.2500 0.1833 0.1384
GMM 0.1423 0.1157 0.1001 0.2763 0.2089 0.1635
GMMC 0.1147 0.0910 0.0789 0.2291 0.1683 0.1305
LIML 0.0812 0.0663 0.0627 0.1015 0.0724 0.0587
LIMLC 0.0414 0.0367 0.0392 0.0585 0.0462 0.0423
CUE 0.3450 0.2277 0.1628 0.3080 0.2026 0.1470
CUEC 0.0587 0.0488 0.0450 0.0770 0.0532 0.0433
JGMM 0.3676 0.2513 0.1686 0.3657 0.2415 0.1629
JGMMC 0.0224 0.0327 0.0411 0.0472 0.0473 0.0458
LM 0.0398 0.0374 0.0363 0.0345 0.0356 0.0329

m = 15
2SLS 0.1641 0.1339 0.1080 0.4081 0.3037 0.2283
GMM 0.2056 0.1749 0.1425 0.4547 0.3494 0.2704
GMMC 0.1534 0.1269 0.1008 0.3701 0.2720 0.2034
LIML 0.0995 0.0894 0.0786 0.1285 0.0935 0.0749
LIMLC 0.0393 0.0397 0.0413 0.0594 0.0510 0.0473
CUE 0.4721 0.3450 0.2535 0.4628 0.3234 0.2376
CUEC 0.0709 0.0637 0.0536 0.1001 0.0701 0.0509
JGMM 0.4668 0.3544 0.2397 0.4810 0.3487 0.2475
JGMMC 0.0244 0.0341 0.0420 0.0581 0.0571 0.0531
LM 0.0318 0.0317 0.0323 0.0342 0.0337 0.0299

Notes: n = 200; H0 : β0 = 0; 10, 000 replications, 5% nominal size
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Table 2 continued. Rejection frequencies of Wald tests for linear IV model

ρ = 0.9
CP = 10 CP = 20 CP = 35

m = 3
2SLS 0.1898 0.1274 0.0969
GMM 0.1940 0.1312 0.1007
GMMC 0.1818 0.1217 0.0933
LIML 0.0799 0.0637 0.0556
LIMLC 0.0767 0.0625 0.0551
CUE 0.0967 0.0769 0.0675
CUEC 0.0779 0.0648 0.0564
JGMM 0.1265 0.0769 0.0676
JGMMC 0.0708 0.0543 0.0482
LM 0.0448 0.0451 0.0459

m = 10
2SLS 0.7315 0.5252 0.3572
GMM 0.7446 0.5423 0.3847
GMMC 0.7034 0.4850 0.3251
LIML 0.0937 0.0739 0.0612
LIMLC 0.0789 0.0663 0.0571
CUE 0.2159 0.1462 0.1138
CUEC 0.0833 0.0645 0.0527
JGMM 0.3848 0.2520 0.1698
JGMMC 0.1107 0.0747 0.0614
LM 0.0334 0.0336 0.0345

m = 15
2SLS 0.9329 0.7935 0.6130
GMM 0.9388 0.8092 0.6483
GMMC 0.9165 0.7535 0.5663
LIML 0.1062 0.0788 0.0662
LIMLC 0.0827 0.0661 0.0596
CUE 0.3350 0.2209 0.1712
CUEC 0.0887 0.0665 0.0559
JGMM 0.5054 0.3625 0.2545
JGMMC 0.1497 0.0936 0.0744
LM 0.0314 0.0271 0.0281

Notes: n = 200; H0 : β0 = 0; 10, 000 replications, 5% nominal size
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The LIML Wald test using the Bekker standard errors (LIMLC) has rejection fre-

quencies very close to the nominal size, correcting the usual asymptotic Wald test which

tends to be oversized with an increasing number of instruments. The LM-statistic shows

a tendency to be undersized with an increasing number of instruments. The results for

the rejection frequencies of the Wald test show that even with low numbers of instru-

ments the corrected standard errors for the continuous updating estimator produce large

improvements in the accuracy of the approximation. When the instruments are not too

weak, i.e. when CP = 20 and larger, the observed rejection frequencies are very close

to the nominal size for all values of m, whereas those based on the usual asymptotic

standard errors are much larger than the nominal size. When we consider the ”diagonal”

elements, i.e. increasing the number of instruments and the concentration parameter

at the same time, we see that the CUEC Wald test performs very well in terms of size.

Similar improvements are found for the JGMMCWald test, although this test overrejects

more when ρ = 0.9 and m = 15.

We next analyze the properties of the CUE using the many weak instrument as-

ymptotics for the estimation of the parameters in a panel data process, generated as in

Windmeijer (2005):

yit = β0xit + uit; uit = ηi + vit; i = 1, ..., n; t = 1, ..., T ;

xit = γxit−1 + ηi + 0.5vit−1 + εit; ηi ∼ N (0, 1) ; εit ∼ N (0, 1) ;

vit = δiτtωit; ωit ∼
³
χ21 − 1

´
; δi ∼ U [0.5, 1.5] ; τt = 0.5 + 0.1 (t− 1) .

Fifty time periods are generated, with τt = 0.5 for t = −49, ..., 0 and xi,−49 ∼ N
³

ηi
1−γ ,

1
1−γ2

´
,

before the estimation sample is drawn. n = 250, T = 6, β0 = 1 and 10, 000 replications

are drawn. For this data generating process the regressor xit is correlated with the un-

observed constant heterogeneity term ηi and is predetermined due to its correlation with

vit−1. The idiosyncratic shocks vit are heteroskedastic over time and at the individual

level, and have a skewed chi-squared distribution. The model parameter β0 is estimated

by first-differenced GMM (see Arellano and Bond (1991)). As xit is predetermined the
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sequential moment conditions used are

gi (β) = Z 0i∆ui (β) ,

where

Zi =

⎡⎢⎢⎢⎣
xi1 0 0 · · · 0 · · · 0
0 xi1 xi2 · · · 0 · · · 0
. . . · · · . · · · .
0 0 0 · · · xi1 · · · xiT−1

⎤⎥⎥⎥⎦ ,

∆ui (β) =

⎡⎢⎢⎢⎢⎣
∆ui2 (β)
∆ui3 (β)

...
∆uiT (β)

⎤⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣

∆yi2 − β∆xi2
∆yi3 − β∆xi3

...
∆yiT − β∆xiT

⎤⎥⎥⎥⎥⎦ .
This results in a total of 15 moment conditions in this case, but only a maximum of 5

instruments for the cross section in the last time period.

The first two sets of results in Table 3 are the estimation results for values of γ = 0.40

and γ = 0.85 respectively. When γ = 0.40 the instruments are relatively strong, but

they are weaker for γ = 0.85. The reported empirical concentration parameter is an

object corresponding to the reduced form of this panel data model and is equal to 261

when γ = 0.4 and 35 when γ = 0.85. This is estimated simply from the linear reduced

form estimated by OLS and ignores serial correlation and heteroskedasticity over time.

This CP is therefore only indicative and does not play the same role as in the linear

homoskedastic IV model. Median bias and interquartile range (IQR) are reported for the

standard linear one-step and two-step GMM estimators, the CUE and JGMM. When

γ = 0.40, median biases are negligible for GMM, CUE and JGMM, with comparable

interquartile ranges. When γ = 0.85 and the instruments are weaker, the linear GMM

estimators are downward biased, whereas the CUE and JGMM are median unbiased but

exhibit a larger interquartile range than the linear GMM estimators.
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Table 3. Simulation results for panel data model, N = 250, T = 6

γ = 0.40 (CP = 261) γ = 0.85 (CP = 35) γ = 0.85 (CP = 54)
Med Bias IQR Med Bias IQR Med Bias IQR

GMM1 -0.0082 0.0797 -0.0644 0.2077 -0.0836 0.1743
GMM2 -0.0047 0.0712 -0.0492 0.1952 -0.0608 0.1627
CUE 0.0002 0.0734 0.0010 0.2615 -0.0068 0.2218
JGMM 0.0003 0.0737 0.0018 0.2707 -0.0038 0.2280
Instr: xit−1, ..., xi1 xit−1, ..., xi1 xit−1, ..., xi1; yit−2, ..yi1

Figure 1 presents p-value plots for the Wald tests for the hypothesis H0 : β0 =

1 when γ = 0.85, based on one-step GMM estimates (WGMM1), on two-step GMM

estimates (WGMM2), on the Windmeijer (2005) corrected two-step Wald (WGMM2C), on

the CUE using the conventional asymptotic variance (WCUE), on the CUE using the

variance estimate V̂ described in Section 2 (WCUEC), and equivalently on the JGMM

(WJ and WJC). Further displayed is the p-value plot for the LM statistic (LM). It is

clear that the usual asymptotic variance estimates for the CUE and JGMM are too small.

This problem is similar to that of the linear two-step GMM estimator, leading to rejection

frequencies that are much larger than the nominal size. In contrast, use of the variance

estimators under many weak instrument asymptotics leads to rejection frequencies that

are very close to the nominal size.

The third set of results presented in Table 3 is for the design with γ = 0.85, but

with lags of the dependent variable yit included as sequential instruments (yi,t−2, ..., yi1),

additional to the sequential lags of xit. As there is feedback from yit−1 to xit and xit is

correlated with ηi the lagged values of yit could improve the strength of the instrument

set. The total number of instruments increases to 25, with a maximum of 11 for the cross

section in the final period. The empirical concentration parameter increases from 35 to

54. The GMM estimators are more downward biased when the extra instruments are

included. The CUE and JGMM are still median unbiased and their IQRs have decreased

by 15%. As the p-value plot in Figure 2 shows, use of the proposed variance estimators

result in rejection frequencies that are virtually equal to the nominal size. Although

WGMM2C had good size properties when using the smaller instrument set, use of the

additional instruments leads to rejection frequencies that are larger than the nominal
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Fig. 1. P-value plot, γ = 0.85, H0 : β0 = 1, Panel data model
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Fig. 2. P-value plot, γ = 0.85, H0 : β0 = 1, Panel data model, additional instruments.
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size.

When further investigating the size properties of the AR and CLR tests, we find that

the behaviour of the CLR test is virtually indistinguishable from that of the LM test,

whereas the AR test tends to have rejection frequencies that are slightly smaller than

the nominal size, especially with the larger instrument set. For the power of these tests

in the latter example, we find that the CLR and LM tests have identical power, which is

slightly less than that of WCUEC , with the AR test having much lower power.

8 Conclusion

We have given a new variance estimator for GEL that is consistent under standard

asymptotics and also accounts for many weak moment conditions. This approximation

is shown to perform well in a simple linear IV and panel data Monte Carlo.

One possible topic for future research is higher order asymptotics when m grows

so slowly that the standard asymptotic variance formula is correct. As discussed in

the paper, we conjecture that the new variance estimator would provide an improved

approximation in a range of such cases. Hansen, Hausman and Newey (2008) have

shown such a result for the Bekker (1994) variance in the homoskedastic linear model.

Another interesting topic is the choice of moment conditions under many weak mo-

ment conditions. Donald, Imbens, and Newey (2003) give a criteria for moment choice

for GMM and GEL that is quite complicated. Under many weak moment conditions

this criteria should simplify. It would be useful in practice to have a simple criteria for

choosing the moment conditions.

A third topic for future research is the extension of these results to dependent obser-

vations. It appears that the variance estimator for the CUE would be the same except

that Ω̂ would include autocorrelation terms. It should also be possible to obtain sim-

ilar results for GEL estimators based on time smoothed moment conditions, like those

considered in Kitamura and Stutzer (1997).
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1 Appendix: Proofs.

Throughout the Appendices, let C denote a generic positive constant that may be dif-

ferent in different uses. Let CS, M, and T denote the Cauchy-Schwartz, Markov, and

triangle inequalities respectively. Let S denote the Slutzky Lemma and CMT the Con-

tinuous Mapping Theorem. Also, let CM denote the conditional Markov inequality that

if E[|An||Bn] = Op(εn) then An = Op(εn) and let w.p.a.1 stand for ”with probability

approaching one.” The following standard matrix result is used repeatedly.

Lemma A0: If A and B are symmetric, positive semidefinite matrices then

|ξmin(A)− ξmin(B)| ≤ kA−Bk , |ξmax(A)− ξmax(B)| ≤ kA−Bk .

Also, if
°°°Â−A

°°° p−→ 0, ξmin(A) ≥ 1/C, and ξmax(A) ≤ C, then w.p.a.1 ξmin(Â) ≥

1/2C, ξmax(Â) ≤ 2C.

1.1 Consistency Proofs for General CUE

For Lemmas A1 and A10, let Yi, Zi, (i = 1, ..., n) be i.i.d. m× 1 random vectors with 4th

moments, that can depend on n, but where we suppress an n subscript for notational

convenience. Also, let

Ȳ =
nX
i=1

Yi/n, μY = E[Yi],ΣY Y = E[YiY
0
i ],ΣY Z = E[YiZ

0
i]

[1]



and let objects with Z in place of Y be defined in the corresponding way.

Lemma A1: If (Yi, Zi), (i = 1, ..., n), are i.i.d., ξmax(AA
0) ≤ C, ξmax(A

0A) ≤ C,

ξmax(ΣY Y ) ≤ C, ξmax(ΣZZ) ≤ C,m/a2n −→ 0, an/n ≤ C, E[(Y 0
i Yi)

2]/na2n −→ 0,

E[(Z 0iZi)
2]/na2n −→ 0, nμ0Y μY /a

2
n −→ 0, nμ0ZμZ/a

2
n −→ 0, then

nȲ 0AZ̄/an = tr (AΣ
0
Y Z) /an + nμ0YAμZ/an + op(1).

Proof: Let Wi = AZi. Then AΣ0Y Z = Σ0YW , AμZ = μW ,

ξmax(E[WiW
0
i ]) = ξmax(AΣZZA

0) ≤ Cξmax(AA
0) ≤ C,

E[(W 0
iWi)

2]/na2n = E[(Z 0iA
0AZi)

2]/na2n ≤ CE[(Z 0iZi)
2]/na2n −→ 0.

Thus the hypotheses and conclusion are satisfied with W in place of Z and A = I.

Therefore, it suffices to show the result with A = I.

Note that

E[(Y 0
i Zi)

2] ≤ E[(Y 0
i Yi)

2] +E[(Z 0iZi)
2],

E[Y 0
i ZjZ

0
jYi] = E[Y 0

iΣZZYi] ≤ CE[Y 0
i Yi] = Ctr(ΣY Y ) ≤ Cm,

|E[Y 0
i ZjY

0
jZi]| ≤ C(E[Y 0

i ZjZ
0
jYi] +E[Y 0

jZiZ
0
iYj]) ≤ Cm.

For the moment suppose μY = μZ = 0. LetWn = nȲ 0Z̄/an.ThenE[Wn] = E[Y 0
i Zi]/an =

tr (ΣY Z) /an and

E[Wn]
2/n ≤ E

h
(Y 0

i Zi)
2
i
/na2n ≤ {E[(Y 0

i Yi)
2] + E[(Z 0iZi)

2]}/na2n −→ 0.

We also have

E[W 2
n ] = E

⎡⎣X
i,j,k,c

Y 0
i ZjY

0
kZc/n

2a2n

⎤⎦ = E
h
(Y 0

i Zi)
2
i
/na2n + (1− 1/n){E[Wn]

2

+E[Y 0
i ZjY

0
jZi]/a

2
n +E[Y 0

i ZjZ
0
jYi]/a

2
n} = E[Wn]

2 + o(1),

so that by M,

Wn = tr (Σ
0
Y Z) /an + op(1).

[2]



In general, when μY or μZ are nonzero, note that E[{(Yi−μY )0(Yi−μY )}2] ≤ CE[(Y 0
i Yi)

2]

and ξmax(V ar(Yi)) ≤ ξmax(ΣY Y ), so the hypotheses are satisfied with Yi − μY replacing

Yi and Zi − μZ replacing Yi and Zi respectively. Also,

Wn = nȲ 0Z̄/an = n
³
Ȳ − μY

´0
(Z̄ − μZ)/an + nμ0Y (Z̄ − μZ)/an (1.1)

+n(Ȳ − μY )
0μZ/an + nμ0Y μZ/an.

Note that

E
∙n
nμ0Y (Z̄ − μZ)/an

o2¸
= nμ0Y (ΣZZ−μZμ0Z)μY /a2n ≤ nμ0YΣZZμY /a

2
n ≤ Cnμ0Y μY /a

2
n −→ 0.

so by M, the second and third terms in eq. (1.1) (with Y and Z interchanged) are op(1).

Also, tr(μZμ
0
Y )/an = ann

−1(nμ0Y μZ/a
2
n) −→ 0. Applying the result for the zero mean

case then gives

Wn = tr(Σ0Y Z−μZμ0Y )/an+nμ0Y μZ/an+op(1) = tr(Σ0Y Z)/m+nμ0Y μZ/m+op(1). Q.E.D.

It is useful to work with a reparameterization

δ = S0n(β − β0)/μn.

For notational simplicity we simply change the argument to denote the reparameter-

ized functions, e.g. Q̂(δ) will denote Q̂(β0 + μnS
−10
n δ). Let Q̂∗(δ) = ĝ(δ)0Ω̂(δ)−1ĝ(δ)/2

be the objective function for quadratic ρ(v), Q̃(δ) = ĝ(δ)0Ω(δ)−1ĝ(δ)/2, and Q(δ) =

ḡ(δ)0Ω(δ)−1ḡ(δ)/2 +m/2n.

Lemma A2: If Assumption 3 is satisfied then for any C > 0, supβ∈B,kδk≤C μ
−2
n n|Q̂∗(δ)−

Q(δ)| p−→ 0.

Proof: Note that by Assumption 3 ii), μ−2n nE[kĝ(0)k2] = μ−2n tr(Ω(β0)) ≤ C, so by

Assumption 3 v) and T,

sup
kδk≤C

kĝ(δ)k ≤ kĝ(0)k+ sup
kδk≤C

kĝ(δ)− ĝ(0)k = Op(μn/
√
n).

[3]



Let â(δ) = μ−1n
√
nΩ(δ)−1ĝ(δ). By Assumption 3 ii)

kâ(δ)k2 = μ−2n nĝ(δ)0Ω(δ)−
1
2Ω(δ)−1Ω(δ)−

1
2 ĝ(δ) ≤ Cμ−2n n kĝ(δ)k2 ,

so that supkδk≤C kâ(δ)k = Op(1). Also, by Assumption 3 iii) we have

¯̄̄
ξmin(Ω̂(δ))− ξmin(Ω(δ))

¯̄̄
≤ sup

kδk≤C

°°°Ω̂(δ)− Ω(δ)
°°° p−→ 0,

so that ξmin(Ω̂(δ)) ≥ C, and hence ξmax(Ω̂(δ)
−1) ≤ C for all kδk ≤ C, w.p.a.1. Therefore,

μ−2n n
¯̄̄
Q̂∗(δ)− Q̃(δ)

¯̄̄
≤

¯̄̄
â(δ)0

h
Ω̂(δ)− Ω(δ)

i
â(δ)

¯̄̄
+
¯̄̄
â(δ)0

h
Ω̂(δ)− Ω(δ)

i
Ω̂(δ)−1

h
Ω̂(δ)− Ω(δ)

i
â(δ)

¯̄̄
≤ kâ(δ)k2

µ°°°Ω̂(δ)− Ω(δ)
°°°+ C

°°°Ω̂(δ)− Ω(δ)
°°°2¶ p−→ 0.

Next, let a(δ̃, δ) = μ−1n
√
nΩ(δ)−1ḡ(δ̃) and Q(δ̃, δ) = ḡ(δ̃)0Ω(δ)−1ḡ(δ̃)/2+m/2n. By As-

sumption 3, supkδk≤C,kδ̃k≤C
°°°a(δ, δ̃)°°° ≤ C. Then by Assumption 3 iv), for kδk ≤ C,

°°°δ̃°°° ≤
C, it follows by μnS

−1
n bounded,

μ−2n n
¯̄̄
Q(δ̃, δ̃)−Q(δ̃, δ)

¯̄̄
=

¯̄̄
a(δ̃, δ̃)0

h
Ω(δ̃)− Ω(δ)

i
a(δ̃, δ)

¯̄̄
≤ C

°°°μnS−10n (δ̃ − δ)
°°° ≤ C

°°°δ̃ − δ
°°° .

Also, by T and Assumption 3, for kδk ≤ C,
°°°δ̃°°° ≤ C,

μ−2n n
¯̄̄
Q(δ̃, δ)−Q(δ, δ)

¯̄̄
≤ Cμ−2n n(

°°°ḡ(δ̃)− ḡ(δ)
°°°2 + kḡ(δ)k °°°ḡ(δ̃)− ḡ(δ)

°°°) ≤ C
°°°δ̃ − δ

°°° .
Then by T it follows that μ−2n n

¯̄̄
Q(δ̃)−Q(δ)

¯̄̄
= μ−2n n

¯̄̄
Q(δ̃, δ̃)−Q(δ, δ)

¯̄̄
≤ C

°°°δ̃ − δ
°°° .

Therefore, μ−2n nQ(δ) is equicontinuous on
°°°δ̃°°° ≤ C, kδk ≤ C.An analogous argument with

â(δ̃, δ) = μ−1n
√
nΩ(δ)−1ĝ(δ̃) and Q̃(δ̃, δ) = ĝ(δ̃)0Ω(δ)−1ĝ(δ̃) replacing a(δ̃, δ) and Q(δ̃, δ)

respectively implies that μ−2n n
¯̄̄
Q̃(δ̃)− Q̃(δ)

¯̄̄
= μ−2n n

¯̄̄
Q̃(δ̃, δ̃)− Q̃(δ, δ)

¯̄̄
≤ M̂

°°°δ̃ − δ
°°° on°°°δ̃°°° ≤ C, kδk ≤ C, with M̂ = Op(1), giving stochastic equicontinuity of μ

−2
n nQ̃(δ).

Since μ−2n nQ̃(δ) and μ−2n nQ(δ) are stochastically equicontinuous, it suffices by Newey

(1991, Theorem 2.1) to show that μ−2n nQ̃(δ) = μ−2n nQ(δ)+op(1) for each δ. Apply Lemma

A1 with Yi = Zi = gi(δ), A = Ω(δ)−1, and an = μ2n. By Assumption 3, ξmax(A
0A) =

[4]



ξmax(AA
0) = ξmax(Ω(δ)

−2) ≤ C, ξmax(ΣY Y ) = ξmax(Ω(δ)) ≤ C, E[(Y 0
i Yi)

2]/na2n =

E[{gi(δ)0gi(δ)}2]/nμ4n −→ 0, and nμ0Y μY /a
2
n ≤ Cnḡ(δ)0Ω(δ)−1ḡ(δ)/μ4n = C (nQ(δ)/μ2n −m/μ2n)

/μ2n −→ 0 where the last follows by equicontinuity of μ−2n nQ(δ). Thus, the hypotheses

of Lemma A1 are satisfied. Note that AΣ0Y Z = AΣZZ = AΣY Y = mIm/μ
2
n, so by the

conclusion of Lemma A1

μ−2n nQ̃(δ) = tr(Im)/μ
2
n + μ−2n nḡ(δ)0Ω(δ)−1ḡ(δ) + op(1) = μ−2n nQ(δ) + op(1).

Q.E.D.

Let P̂ (β, λ) =
Pn

i=1 ρ(λ
0gi(β))/n.

Lemma A3: If Assumptions 3 and 4 are satisfied then w.p.a.1 β̂ = argminβ∈B Q̂(β),

λ̂ = argmaxλ∈L̂n(β̂) P̂ (β̂, λ), and λ̃ = argmaxλ∈L̂(β0) P̂ (β0, λ) exist,
°°°λ̃°°° = Op(

q
m/n),°°°λ̂°°° = Op(

q
m/n),

°°°ĝ(β̂)°°° = Op(
q
m/n), and Q̂∗(β̂) ≤ Q̂∗(β0) + op(m/n).

Proof: Let bi = supβ∈B kgi(β)k. A standard result gives maxi≤n bi = Op(n
1/γ(E[bγi ])

1/γ).

Also, by Assumption 4 there exists τn such that
q
m/n = o(τn) and τn = o(n−1/γ(E[bγi ])

−1/γ).

Let Ln = {λ : kλk ≤ τn}. Note that

sup
λ∈Ln,β∈B,i≤n

|λ0gi(β)| ≤ τnmaxi≤n bi = Op(τnn
1/γ(E[bγi ])

1/γ) −→ 0.

Then there is C such that w.p.a.1, for all β ∈ B, λ ∈ Ln, and i ≤ n, we have

Ln ⊂ L̂(β),−C ≤ ρ2(λ
0gi(β)) ≤ −C−1, |ρ3(λ0gi(β))| ≤ C.

By a Taylor expansion around λ = 0 with Lagrange remainder, for all λ ∈ Ln

P̂ (β, λ) = −λ0ĝ(β) + λ0
"

nX
i=1

ρ2(λ̄
0gi(β))gi(β)gi(β)

0/n

#
λ,

where λ̄ lies on the line joining λ and 0. Then by Lemma A0, w.p.a.1 for all β ∈ B and

λ ∈ Ln,

−λ0ĝ(β)− C kλk2 ≤ P̂ (β, λ) ≤ −λ0ĝ(β)− C−1 kλk2 ≤ kλk kĝ(β)k− C−1 kλk2 .
(1.2)

[5]



Let g̃ = ĝ(β0) and λ̃ = argmaxλ∈Ln P̂ (β0, λ). By ξmax (Ω (β0)) ≤ C it follows that

E
h
kg̃k2

i
= tr (Ω) /n ≤ Cm/n, so by M, kg̃k = Op

³q
m/n

´
. By the right hand in-

equality in eq. (1.2),

0 = P̂ (β0, 0) ≤ P̂ (β0, λ̃) ≤
°°°λ̃°°° kg̃k− C−1

°°°λ̃°°°2
Subtracting C−1

°°°λ̃°°°2 from both sides and dividing through by C−1
°°°λ̃°°° gives

°°°λ̃°°° ≤ C kg̃k = Op

µq
m/n

¶
.

Since
q
m/n = o(τn) it follows that w.p.a.1, λ̃ ∈ int(Ln), and is therefore a local maximum

of P̂ (β0, λ) in L̂ (β). By concavity of P (β0, λ) in λ, a local maximum is a global maximum,

i.e.

P̂ (β0, λ̃) = max
λ∈L̂(β0)

P̂ (β0, λ) = Q̂(β0).

Summarizing, w.p.a.1 λ̃ = argmaxλ∈L̂(β0) P̂ (β0, λ) exists and
°°°λ̃°°° = Op

³q
m/n

´
. Also,

plugging λ̃ back in the previous inequality gives

Q̂(β0) = Op(m/n).

Next, let Q̂τn(β) = maxλ∈Ln P̂ (β, λ). By continuity of gi(β) and ρ(v) and by the

theorem of the maximum Q̂τn(β) is continuous on B, so β̂τn = argminβ∈B Q̂τn(β) exists

by compactness of B. Let ĝτn = ĝ(β̂τn). By the left-hand inequality in eq. (1.2), for all

λ ∈ Ln

−λ0ĝτn − C kλk2 ≤ P̂ (β̂τn , λ) ≤ Q̂τn(β̂τn) ≤ Q̂τn(β0) ≤ Q̂(β0) = Op(m/n).
(1.3)

Consider λ = −(ĝτn/ kĝτnk)τn. Plugging this in eq. (1.3) gives

τn kĝτnk− cτ 2n = Op(m/n).

Note that for n large enough, m/n ≤ Cτ 2n, so that dividing by τ
2
n

kĝτnk ≤ Op

³
τ−1n m/n

´
+ Cτn = Op(τn)

[6]



Consider any αn −→ 0 and let λ̆ = −αnĝτn. Then
°°°λ̆°°° = op(τn) so that λ̆ ∈ Ln w.p.a.1

Substituting this λ̆ in the above inequality gives

αn kĝτnk2 − Cα2n kĝτnk
2 = αn(1− Cαn) kĝτnk2 = Op

µ
m

n

¶
.

Note that 1−Cαn → 1, so that this inequality implies that αn kĝτnk2 = Op (m/n) . Since

αn goes to zero as slowly as desired, it follows that

°°°ĝ(β̂τn)°°° = kĝτnk = Op

µq
m/n

¶
.

Let λ̂ = argmaxλ∈Ln P̂ (β̂τn, λ). It follows exactly as for λ̃, with β̂τn replacing β0, that°°°λ̂°°° = Op(
q
m/n) and w.p.a.1, λ̂ = argmaxλ∈L̂(β) P̂ (β̂τn, λ), so that

Q̂τn(β̂τn) = P̂ (β̂τn, λ̂) = max
λ∈L̂(β)

P̂ (β̂τn , λ) = Q̂(β̂τn).

Then w.p.a.1, by the definition of Q̂τn(β) and β̂τn , for all β ∈ B,

Q̂(β̂τn) = Q̂τn(β̂τn) ≤ Q̂τn(β) = max
λ∈Ln

P̂ (β, λ) ≤ Q̂(β).

Thus, w.p.a.1 we can take β̂ = β̂τn .

Now expand around λ = 0 to obtain, for ĝi = gi(β̂) and Ω̂ = Ω̂(β̂), w.p.a.1,

Q̂(β̂) = P̂ (β̂, λ̂) = −ĝ0λ̂− 1
2
λ̂0Ω̂λ̂+ r̂, r̂ =

1

6

X
ρ3(λ̄

0ĝi)(λ̂
0ĝi)

3/n,

where
°°°λ̄°°° ≤ °°°λ̂°°° and r̂ = 0 for the CUE (where ρ(v) is quadratic). When β̂ is not the

CUE, w.p.a.1

|r̂| ≤
°°°λ̂°°°max

i
biCλ̂

0Ω̂(β̂)λ̂ ≤ Op(
q
m/nn1/γ (E[bγi ])

1/γ)C
°°°λ̄°°°2 = op(m/n).

Also, λ̂ satisfies the first order conditions
Pn

i=1 ρ1(λ̂
0ĝi)ĝi/n = 0. By an expansion ρ1(λ̂

0ĝi) =

−1− λ̂0ĝi + ρ3(v̄i)(λ
0ĝi)

2/2 where v̄i lies in between 0 and λ0ĝi and either ρ3(v̄i) = 0 for

the CUE or maxi≤n |v̄i| ≤ maxi≤n |λ̂0ĝi| ≤ τn −→ 0. Expanding around λ = 0 gives

0 = −ĝ − Ω̂λ̂+ R̂, R̂ =
1

2

nX
i=1

ρ3(v̄i)(λ̂
0ĝi)

2ĝi/n = 0.

[7]



Then either R̂ = 0 for the CUE or we have

°°°R̂°°° ≤ Cmax
i

bi|ρ3(v̄i)|λ̂0Ω̂λ̂ = Op(n
1/γ(E[bγi ])

1/γm/n) = op(
q
m/n).

solving for λ̂ = Ω̂−1(−ĝ + R̂) and plugging into the expansion for Q̂(β̂) gives

Q̂(β̂) = −ĝ0Ω̂−1(−ĝ + R̂)− 1
2
(−ĝ + R̂)0Ω̂−1(−ĝ + R̂) + op(m/n)

= Q̂∗(β̂)− R̂0Ω̂−1R̂/2 + op(m/n) = Q̂∗(β̂) + op(m/n).

An exactly analogous expansion, replacing β̂ with β0, gives

Q̂(β̂) = Q̂∗(β0) + op(m/n).

Then by the definition of β̂,

Q̂∗(β̂) = Q̂(β̂) + op(m/n) ≤ Q̂(β0) + op(m/n) = Q̂∗(β0) + op(m/n).Q.E.D.

Lemma A4: If Assumptions 2 - 4 are satisfied then
°°°δ̂°°° = Op(1).

Proof: By Lemma A3, w.p.a.1
°°°ĝ(β̂)°°° = Op(

q
m/n), so that Assumption 2 iii) and

m/μ2n ≤ C,

°°°δ̂°°° ≤ Cμ−1n
√
n
°°°ĝ(β̂)°°°+Op(1) = Op(

√
m/μn) +Op(1) = Op(1).Q.E.D.

Proof of Theorem 1: By Lemma A3 and m/μ2n ≤ C it follows that, parameterizing

in terms of δ = S0n(β − β0)/μn (where δ0 = 0),

μ−2n nQ̂∗(δ̂) ≤ μ−2n nQ̂∗(0) + op(1).

Consider any ε, γ > 0. By Lemma A4 there is C such that Pr(A1) ≥ 1 − ε/3 for A1 =

{
°°°δ̂°°° ≤ C}. In the notation of Lemma A2 letA2 = {supkδk≤C μ−2n n

¯̄̄
Q̂∗(δ)−Q(δ)

¯̄̄
< γ/3}

and A3 = {μ−2n nQ̂∗(δ̂) ≤ μ−2n nQ̂∗(0) + γ/3} By Lemma A2, for all n large enough

Pr(A2) ≥ 1− ε/3 and by Lemma A3 Pr(A3) ≥ 1− ε/3. Then Pr(A1 ∩A2 ∩A3) ≥ 1− ε,

and on A1 ∩A2 ∩A3,

[8]



μ−2n nQ(δ̂) ≤ μ−2n nQ̂∗(δ̂) + γ/3 ≤ μ−2n nQ̂∗(0) + 2γ/3 ≤ μ−2n nQ(0) + γ = m/μ2n + γ,

where the second inequality follows by δ̂ ∈ A3. Subtracting m/μ2n from both sides it

follows that A implies μ−2n nḡ(δ̂)0Ω(δ̂)−1ḡ(δ̂) ≤ γ. Since ε, γ can be any positive constants,

we have μ−2n nḡ(δ̂)0Ω(δ̂)−1ḡ(δ̂)
p−→ 0. Then, by Assumption 2 ii) and 3 ii),

μ−2n nḡ(δ̂)0Ω(δ̂)−1ḡ(δ̂) ≥ Cμ−2n nḡ(β̄)0ḡ(β̄) ≥ C
°°°δ̂°°°2 ,

so that
°°°δ̂°°° p−→ 0. Q.E.D.

1.2 Conditions for the Linear Model

Lemma A5: If Assumption 5 is satisfied then ξmin(E[(yi − x0iβ)
2|Zi,Υi]) ≥ C. Also, for

Xi = (yi, x
0
i)
0, E[kXik4|Zi,Υi] ≤ C.

Proof: Let ∆ = β0 − β and ∆̃ the elements of ∆ corresponding to the vector η̃i of

nonzero elements of ηi from Assumption 5. Then yi − x0iβ = εi + η̃0i∆̃+Υ0
i∆, so that

E[(yi−x0iβ)
2|Zi,Υi] ≥ E[(εi+ η̃0i∆̃)

2|Zi,Υi] = (1, ∆̃
0)Σi(1, ∆̃

0)0 ≥ ξmin(Σi)(1+ ∆̃0∆̃) ≥ C,

giving the first conclusion. Also, E[kxik4|Zi,Υi] ≤ CE[kηik4|Zi,Υi]+CE[kΥik4|Zi,Υi] ≤

C and E[y4i |Zi,Υi] ≤ CE[kxik4kβ0k4|Zi,Υi] + E[ε4i |Zi,Υi] ≤ C, giving the second con-

clusion. Q.E.D.

Lemma A6: If Assumption 5 is satisfied then there is a constant C such that for

every β ∈ B and m, C−1Im ≤ Ω(β) ≤ CIm.

Proof: By Lemma A4 C−1 ≤ E[(yi−x0iβ)
2|Zi] ≤ C, so that the conclusion follows by

Im = E[ZiZ
0
i] and Ω(β) = E[ZiZ

0
iE[(yi − x0iβ)

2|Zi]]. Q.E.D.

Lemma A7: If Assumption 5 is satisfied then Assumption 3 v) is satisfied,

kn−1Pi Ziz
0
i −E[Ziz

0
i]k

p−→ 0, and kn−1Pi Ziη
0
ik = Op(

q
m/n).

[9]



Proof: For the last conclusion, by E[η0iηi|Zi] ≤ C we have

E[

°°°°°n−1X
i

Ziη
0
i

°°°°°
2

] = n−1E[Z 0iZiη
0
iηi] ≤ Cn−1E[Z 0iZi] = Cm/n,

so the last conclusion follows by M. For the second to last conclusion, we have

E[

°°°°°n−1X
i

Ziz
0
i −E[Ziz

0
i]

°°°°°
2

] ≤ E[Z 0iZiz
0
izi]/n ≤

q
E[kZik4]/n

q
E[kzik4]/n −→ 0,

so it also follows by M.

Next, by Assumption 5 Lemma A6 we have

kE[Ziz
0
i]k

2
= tr

n
E[ziZ

0
i](E[ZiZ

0
i])
−1E[Ziz

0
i]
o
≤ tr(E[ziz

0
i]) ≤ C.

Then we have by CS, Υi = Snzi/
√
n, G = −E[Ziz

0
i]S

0
n/
√
n

μ−1n
√
n
°°°ḡ(β̃)− ḡ(β)

°°° = μ−1n
√
n
°°°G(β̃ − β)

°°° = °°°E[Ziz
0
i]
³
δ̃ − δ

´°°°
≤ kE[Ziz

0
i]k
°°°δ̃ − δ

°°° ≤ C
°°°δ̃ − δ

°°° .
Also, by Ĝ = Ĝ(β) not depending on β, by kS−10n k ≤ C/μn, and by T,

°°°Ĝ√nS−10n

°°° ≤ °°°°° 1√nXi Ziη
0
iS
−10
n

°°°°°+
°°°°°1nXi Ziz

0
i −E[Ziz

0
i]

°°°°°+ kE[Ziz
0
i]k

= Op(

√
n

μn

r
m

n
) + op(1) +O(1) = Op(1),

so that for M̂ =
°°°Ĝ√nS−10n

°°° = Op(1), by CS,

μ−1n
√
n
°°°ĝ(β̃)− ĝ(β)

°°° = μ−1n
√
n
°°°Ĝ(β̃ − β)

°°° = °°°Ĝ√nS−10n (δ̃ − δ)
°°° ≤ M̂

°°°δ̃ − δ
°°° .Q.E.D.

Lemma A8: If Assumption 5 is satisfied then Assumption 3 iii) and Assumption 8

i) are satisfied.

Proof: Let Xi = (yi, x
0
i)
0 and α = (1,−β0)0, so that yi − x0iβ = X 0

iα. Note that

Ω̂(β)− Ω(β) =
p+1X
k,c=1

F̂kcαkαc, F̂kc =
nX
i=1

ZiZ
0
iXikXic/n−E[ZiZ

0
iXikXic].

[10]



Then E[X2
ikX

2
ic|Zi] ≤ C by Lemma A4 so that

E[
°°°F̂kc

°°°2] ≤ CE[(Z 0iZi)
2E[X2

ikX
2
ic|Zi]]/n ≤ CE[(Z 0iZi)

2]/n −→ 0.

Then supβ∈B
°°°Ω̂(β)− Ω(β)

°°° p−→ 0 follows by B bounded. The other parts of Assumption

8 i) follow similarly upon noting that

Ω̂k(β)− Ωk(β) =
p+1X
c=1

F̂kcαc, Ω̂
k,c(β)− Ωk,c(β) = F̂kc, Ω̂

kc(β) = Ωkc(β) = 0.Q.E.D.

Lemma A9: If Assumption 5 is satisfied, then Assumption 3 iv) Assumption 8 ii)

are satisfied.

Proof: Let Σ̃i = E[XiX
0
i|Zi], which is bounded by Lemma A5. Then by α = (1,−β)

bounded on B we have |α̃0Σ̃iα̃ − α0Σ̃iα| ≤ C
°°°β̃ − β

°°°. Also, E[(a0Zi)
2] = a0E[ZiZ

0
i]a =

kak2. Therefore,

|a0Ω(β̃)b− a0Ω(β)b| = |E[(a0Zi)(b
0Zi)E[(X

0
iα̃)

2 − (X 0
iα)

2|Zi]]|

≤ E[|a0Zi| |b0Zi| |α̃0Σ̃iα̃− α0Σ̃iα|] ≤ CE[(a0Zi)
2]1/2E[(b0Zi)

2]1/2kβ̃ − βk ≤ Ckakkbkkβ̃ − βk.

We also have

|a0Ωk(β̃)b− a0Ωk(β)b| = |2E[(a0Zi)(b
0Zi)E[xikX

0
i(α̃− α)|Zi]]|

≤ CE[|a0Zi| |b0Zi|E[|xij|kXik|Zi]]kβ̃ − βk

≤ Ckakkbkkβ̃ − βk.

The other parts of Assumption 8 ii) follow by Ωk,c(β) and Ωkc(β) not depending on β.

Q.E.D.

Proof of Theorem 2: The result will follow by Theorem 1 upon showing that

Assumptions 2 and 3 are true. We now verify Assumption 2. Assumption 2 i) holds by

hypothesis. For Assumption 2 ii), note that by G = −E[Ziz
0
i]S

0
n/
√
n,

μ−1n
√
nḡ(β) =

√
nG(β − β0)/μn = −

√
nGS−10n δ.

[11]



Then by nS−1n G0GS−10n ≥ CnS−1n G0Ω−1GS−10n and Assumption 1 we have

μ−1n
√
n kḡ(β)k =

³
δ0
h
nS−1n G0GS−10n

i
δ
´1/2
≥ C kδk .

Next, let R̂ =
P

i (Ziz
0
i − E[Ziz

0
i]) /n, and note that

ĝ(β) = ĝ(β0)−
1

n

X
i

Zix
0
i(β−β0) = ĝ(β0)−

1

n

X
i

Ziη
0
i(β−β0)+μnn

−1/2(−R̂+E[Ziz
0
i])δ.

By Lemma A7,
°°°R̂°°° p−→ 0, so that by T and CS, w.p.a.1,°°°(−R̂+E[Ziz

0
i])δ

°°° ≥ kE[Ziz
0
i]δk−

°°°R̂δ°°° ≥ (C − °°°R̂°°°) kδk ≥ C kδk .

Also, as previously discussed, μ−1n
√
n kĝ(β0)k = Op (1) and by Lemma A7 μ

−1
n

√
n kPi Ziη

0
i/nk =

Op (1) , so that by B compact

M̂ = μ−1n
√
n sup
β∈B

°°°°°ĝ(β0)− 1nXi Ziη
0
i(β − β0)

°°°°° = Op(1).

Then by T it follows that w.p.a.1 for all β ∈ B,

kδk ≤ C
°°°(−R̂+E[Ziz

0
i])δ

°°° ≤ μ−1n
√
n kĝ(β)k+ M̂,

giving Assumption 2 iii).

Next, Assumption 3 i) holds by Lemma A5 and E[(Z 0iZi)
2]/n −→ 0, ii) by Lemma

A6, iii) by Lemma A9, iv) by Lemma A8, and v) by Lemma A7. Q.E.D.

1.3 Asymptotic Normality

The next result is a general result on asymptotic normality of the sum of a linear and a

quadratic form. Let Xi denote a scalar random variable where we also suppress depen-

dence on n, let Zi and Yi be m×1 random vectors as in Lemma A1, Ψ = ΣZZΣY Y +Σ2ZY ,

ξ̄Z = ξmax(ΣZZ), and ξ̄Y = ξmax(ΣY Y ).

Lemma A10: If (Xi, Yi, Zi), (i = 1, ..., n) are i.i.d., E[Xi] = 0, E [Zi] = E [Yi] =

0, ΣZZ and ΣY Y exist, nE[X
2
i ] → A, n2 tr(Ψ) → Λ, nE[X4

i ] −→ 0, mn4ξ̄2Z ξ̄
2
Y −→ 0,

n3(ξ̄2ZE[kYik
4] + ξ̄2YE[kZik4]) −→ 0, and n2E[kYik4]E[kZik4] −→ 0 then

nX
i=1

Xi +
X
i6=j

Z 0iYj
d−→ N(0, A+ Λ).

[12]



Proof: Let wi = (Xi, Yi, Zi) and for any j < i, ψij = Z 0iYj + Z 0jYi. Note that

E[ψij|wi−1, ..., w1] = 0, E[ψ
2
ij] = E[(Z 0iYj)

2 + (Z 0jYi)
2 + 2Z 0iYjZ

0
jYi] = 2tr(Ψ).

We have

nX
i=1

Xi +
X
i6=j

Z 0iYj =
nX
i=2

(Xi +Bin) +X1, Bin =
X
j<i

ψij = (
X
j<i

Zj)
0Yi + (

X
j<i

Yj)
0Zi.

Note that E [X2
1 ] = (nE[X

2
i ])/n −→ 0, so X1

p−→ 0 by M. Also, E [XiBin] = 0 and

E
h
B2
in

i
= E

⎡⎣X
j,k<i

ψijψik

⎤⎦ = (i− 1)E[ψ2ij] = 2(i− 1) tr(Ψ).
Therefore

sn =
nX
i=2

E[(Xi +Bin)
2] = (n− 1)E[X2

i ] + 2
nX
i=2

(i− 1) tr(Ψ) (1.4)

=
n− 1
n

nE[X2
i ] +

Ã
n2 − n

n2

!
n2 tr(Ψ) −→ A+ Λ.

Next, note that

E[B2
in|wi−1, ..., w1] = T1i + T2i + 2T3i, T1i = (

X
j<i

Z 0j)ΣY Y (
X
j<i

Zj),

T2i = (
X
j<i

Y 0
j )ΣZZ(

X
j<i

Yj), T3i = (
X
j<i

Y 0
j )ΣZY (

X
j<i

Zj).

We also have

T3i −E[T3i] = T31i + T32i + T33i, T31i =
X
j<i

Rj, Rj = [Y
0
jΣZYZj − tr(Σ2ZY )],

T32i =
X
k<i

Sk, Sk = (
X
j<k

Yj)
0ΣZYZk, T33i =

X
j<k<i

Y 0
kΣZYZj.

By E[(Y 0
i , Z

0
i)
0(Y 0

i , Z
0
i)
0] being p.s.d. it follows that |Y 0

jΣZYZj| ≤ (Y 0
jΣZZYj+Z

0
jΣY YZj)/2.

Note that

E[(Y 0
jΣZYZj)

2] ≤ CE[(Y 0
jΣZZYj)

2] + CE[(Z 0jΣY YZj)
2] ≤ Cξ̄2ZE[kYjk

4] + Cξ̄2YE[kZjk4].

Note that
Pn

i=2 T31i =
Pn

i=2(n− i+ 1)Ri so that

E[

Ã
nX
i=2

T31i

!2
] ≤ E[(Y 0

jΣZYZj)
2]

nX
i=2

(n− i+ 1)2 ≤ Cn3{ξ̄2ZE[kYjk
4] + ξ̄2YE[kZjk4]} −→ 0,

[13]



so that
Pn

i=2 T31i
p−→ 0 by M. We also have,

E[Y 0
iΣZYΣZZΣY ZYi] ≤ ξ̄ZE[Y

0
iΣZYΣY ZYi] = ξ̄Ztr(ΣY ZΣY YΣZY ) ≤ ξ̄Z ξ̄Y tr(ΣY ZΣZY )

≤ ξ̄2Z ξ̄Y tr(ΣY ZΣ
−1
ZZΣZY ) ≤ ξ̄2Z ξ̄Y tr(ΣY Y ) ≤ mξ̄2Z ξ̄

2
Y ,

so that E[S2i ] ≤ (i− 1)mξ̄2Z ξ̄
2
Y . In addition E[Si|wi−1, ..., w1] = 0, so that

E[

Ã
nX
i=3

T32i

!2
] = E[{

nX
i=3

(n− i+ 1)Si}2] =
nX
i=3

(n− i+ 1)2E[S2i ]

≤
nX
i=3

(n− i+ 1)2(i− 1)mξ̄2Z ξ̄
2
Y ≤ mn4ξ̄2Z ξ̄

2
Y −→ 0,

and hence
Pn

i=3 T32i
p−→ 0. It follows analogously that

Pn
i=3 T33i

p−→ 0, so by T,
Pn

i=3{T3i−

E[T3i]}
p−→ 0. By similar arguments we have

Pn
i=2{Tri − E[Tri]}

p−→ 0, (r = 1, 2), so by

T,
nX
i=2

(E[B2
in|wi−1, ..., w1]− E[B2

in])
p−→ 0.

Note also that E[X2
i ] = E[X2

i | wi−1, ..., w1] and that

nX
i=2

E[XiBin|wi−1, ..., w1] =
nX
i=2

X
j<i

E
h
Xi

³
Z 0iYj + Z 0jYi

´
| wi−1, ..., w1

i

=
nX
i=2

{E[XiZ
0
i]

⎛⎝X
j<i

Yj

⎞⎠+E[XiY
0
i ]

⎛⎝X
j<i

Zj

⎞⎠}
= E[XiZ

0
i]
n−1X
i=1

(n− i)Yi +E[XiY
0
i ]

n−1X
i=1

(n− i)Zi.

Therefore

E

⎡⎣Ã nX
i=2

E[XiBin|wi−1, ..., w1]

!2⎤⎦
≤ C(E[XiY

0
i ]ΣZZE[YiXi] +E[XiZ

0
i]ΣY YE[ZiXi])

n−1X
i=1

(n− i)2

≤ Cn3ξ̄Y ξ̄ZE[X
2
i ] ≤ Cξ̄Y ξ̄Zn

2 = C(mn4ξ̄2Y ξ̄
2
Z)
1/2/m1/2 −→ 0.

Then by M, we have
nX
i=2

E[XiBin | wi−1, ..., w1]
p−→ 0.
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By T it then follows that

nX
i=2

{E
h
(Xi +Bin)

2 | wi−1, ..., w1
i
−E

h
(Xi +Bin)

2
i
} (1.5)

=
nX
i=2

³
E
h
B2
in | wi−1, ..., w1

i
−E[B2

in]
´
+ 2

nX
i=2

E[XiBin | wi−1, ..., w1]
p−→ 0

Next, note that

nX
i=2

E[(
X
j<i

Y 0
jZi)

4] =
nX
i=2

X
j,k,c,m<i

E[Y 0
jZiY

0
kZiY

0
cZiY

0
mZi]

=
nX
i=2

{3
X

j 6=k<i
E[Z 0iYjY

0
jZiZ

0
iYkY

0
kZi] +

X
j<i

E[(Z 0iYj)
4
]}

= E[(Z 01ΣY YZ1)
2]

nX
i=2

3(i− 1)(i− 2) +E[(Z 01Y2)
4
]

nX
i=2

(i− 1)

≤ n3ξ̄2YE[kZik4] + n2E[kZik4]E[kYik4] −→ 0.

It follows similarly that
Pn

i=2E[(
P

j<i Z
0
jYi)

4] −→ 0. Then by T,

nX
i=2

E[B4
in] ≤

nX
i=2

{CE[(
X
j<i

Y 0
jZi)

4] + CE[(
X
j<i

Z 0jYi)
4]} −→ 0.

Therefore,

nX
i=2

E
h
(Xi +Bin)

4
i
≤ CnE[X4

i ] + C
nX
i=1

E[B4
in]→ 0. (1.6)

The conclusion then follows from eqs. (1.4), (1.5), and (1.6) and the martingale central

limit theorem applied to
Pn

i=2(Xi +Bin). Q.E.D.

We again consider the parameterization where δ = S0n(β − β0)/μn and β = β0 +

μnS
−10
n δ. We will let a δ subscript denote derivatives with respect to δ, e.g. so that

giδk = ∂gi(0)/∂δk = GiS
−10
n ekμn, where ek is the k

th unit vector. Also let Ω̃ = Ω̂(β0),

Ω̃k =
Pn

i=1 gig
0
iδk
/n, Ωk = E[Ω̃k], B̃k = Ω̃−1Ω̃k, and Bk = Ω−1Ωk .

Lemma A11: If Assumptions 1-4 and 6-9 are satisfied then

√
mkΩ̃− Ωk p−→ 0, μn

√
mkΩ̃k − Ωkk p−→ 0,

√
mkB̃k −Bkk p−→ 0.

[15]



Proof: Note that μnS
−1
n is bounded, so that kgiδkk ≤ C kGik . Then by standard argu-

ments and Assumption 6,

E[mkΩ̃− Ωk2] ≤ CmE[kgik4]/n −→ 0, E[mkΩ̃k − Ωkk2] ≤ CmE[kgiδkk2kgik2]/n −→ 0,

so the first two conclusions hold byM. Also, note thatΩk0Ωk ≤ CΩk0Ω−1Ωk ≤ CE[giδkg
0
iδk
],

so that by Assumption 6, ξmax
³
Ωk0Ωk

´
≤ C. Also, Bk0Bk ≤ CΩk0Ωk ≤ CE[giδkg

0
iδk
].

Then w.p.a.1,

√
mkB̃k −Bkk ≤

√
mk(Ω̃k0 − Ωk0)Ω̃−1k+

√
mkBk0(Ω− Ω̃)Ω̃−1k

≤ C
√
mkΩ̃k − Ωkk+ C

√
mkΩ̃− Ωk p−→ 0. Q.E.D.

Lemma A12: If Assumption 1-4 and 6-9 are satisfied then,

nS−1n
∂Q̂(β0)

∂β
= μ−1n n

∂Q̂(0)

∂δ
d−→ N(0, H + Λ) = N(0, HV H).

Proof: Let g̃ = ĝ(β0), g̃δk = ∂ĝ(0)/∂δk =
P

iGiS
−10
n ekμn/n, ḡδk = E[∂gi(0)/∂δk] =

GS−10n ekμn, Û
k = g̃δk − ḡδk − B̃k0g̃, and let λ̃ be as defined in Lemma A3. Consider an

expansion ρ1(λ̃
0gi) = −1 − λ̃0gi + ρ3(v̄i)(λ̃

0gi)
2/2, where |v̄i| ≤

¯̄̄
λ̃0gi

¯̄̄
. By the envelope

theorem and by Q̂(δ) = Q̂(β0 + μnS
−10
n δ)

ne0kS
−1
n ∂Q̂(β0)/∂β = n[∂Q̂(β0)/∂β]

0S−10n ek = μ−1n n
∂Q̂

∂δk
(0)

= μ−1n
X
i

λ̃0giδkρ1(λ̃
0gi) = −μ−1n ng̃0δk λ̃− μ−1n nλ̃0Ω̃kλ̃+ r̂,

r̂ = μ−1n
X
i

λ̃0giδkρ3 (v̄i)
³
λ̃0gi

´2
/2.

By Lemma A3,
°°°λ̃°°° = Op

³q
m/n

´
. Note that either β is the CUE or maxi≤n |v̄i| ≤

°°°λ̃°°° b̂
for b̂ = maxi≤n kgik , and that b̂ = Op(n

1/γ(E[bγi ])
1/γ) by a standard result. Therefore, by

Assumption 9, either β̂ is the CUE or maxi≤n |v̄i| ≤ Op(
q
m/n)b̂ = Op(n

1/γ(E[bγi ])
1/γ
q
m/n)

p−→ 0. It follows that maxi≤n ρ3
³
ξ̄0igi

´
≤ C w.p.a.1 and, by ξmax

³
Ω̃
´
= Op(1),

√
m/μn ≤

C, and Assumption 9 that either r̂ = 0 for the CUE or

|r̂| ≤ μ−1n C
°°°λ̃°°° b̂nξ̄0Ω̃ξ̄ = Op(μ

−1
n m3/2n1/γ(E[bγi ])

1/γ/
√
n) = Op(n

1/γ(E[bγi ])
1/γm/

√
n)

p−→ 0.

[16]



As in Lemma A3, w.p.a.1 λ̃ satisfies the first-order conditions

X
i

ρ1
³
λ̃0gi

´
gi/n = 0.

Plugging in the expansion for ρ1(λ̃
0gi) and solving give

λ̃ = −Ω̃−1g̃ + R̂, R̂ = Ω̃−1
X

i
ρ3 (v̄i) gi

³
λ̃0gi

´2
/n.

Either R̂ = 0 for the CUE or by ξmax(Ω̃
−1) ≤ C and ξmax(Ω̃) ≤ C w.p.a.1,

°°°R̂°°° ≤ Cmax
i≤n

kgik λ̃0Ω̃λ̃ ≤ Cb̂
°°°λ̃°°°2 = Op(n

1/γ(E[bγi ])
1/γm/n).

Now, plug λ̂ back in the expression for ∂Q̂(0)/∂δk to obtain

μ−1n n
∂Q̂

∂δk
(0) = μ−1n ng̃0δkΩ̃

−1g̃ − μ−1n ng̃0B̃kΩ̃−1g̃ + r̂

+μ−1n ng̃0δkR̂− μ−1n nR̂0Ω̃kR̂+ μ−1n nR̂
³
Ω̃k + Ω̃k0

´
Ω̃−1g̃.

Note that by Assumption 6 and μnS
−1
n bounded, E[kgiδkk

2] = tr(E[giδkg
0
iδk
]) ≤

Cmξmax(E[GiG
0
i]) ≤ Cm. Therefore, kg̃δk − ḡδkk = Op(

q
m/n).We also have kμ−1n

√
nḡδkk ≤

k√nGS−10n k ≤ C, so that kḡδkk = O(μn/
√
n). Therefore, by

√
m/μn ≤ C and T,

kg̃δkk = Op(μn/
√
n), so by CS

¯̄̄
μ−1n ng̃0δkR̂

¯̄̄
≤ μ−1n n kg̃δkk

°°°R̂°°° = Op

³√
nn1/γ(E[bγi ])

1/γm/n
´

p−→ 0.

Let Ω̃k,k =
P

i giδkg
0
iδk
/n and Ωk,k = E

h
giδkg

0
iδk

i
. By Assumption 6 and M we have°°°Ω̃k,k − Ωk,k

°°° p−→ 0, so by Lemma A0, Assumption 6 and μnS
−1
n bounded, w.p.a1

ξmax(Ω̃
k,k) ≤ ξmax(Ω

k,k) + 1 ≤ Cξmax(E[GiG
0
i]) + 1.

Therefore, M̂ =
q
ξmax(Ω̃)ξmax(Ω̃k,k) = Op(1), so that for any a, b, by CS,

¯̄̄
a0Ω̃kb

¯̄̄
≤ [a0Ω̃ab0Ω̃k,kb]1/2 ≤ M̂ kak kbk .

Then

¯̄̄
μ−1n nR̂0Ω̃kR̂

¯̄̄
≤ M̂μ−1n n

°°°R̂°°°2 = Op

³
μ−1n {n1/γ(E[bγi ])1/γm/

√
n}2

´
p−→ 0.

[17]



We also have
°°°Ω̃−1g̃°°° = Op

³q
m/n

´
, so that by

√
m/μn ≤ C,

¯̄̄
μ−1n nR̂

³
Ω̃k + Ω̃k0

´
Ω̃−1g̃

¯̄̄
≤ CM̂μ−1n n

°°°R̂°°° °°°Ω̃−1g̃°°° = Op

³
n1/γ(E[bγi ])

1/γm/
√
n
´

p−→ 0.

By T it now follows that

μ−1n n
∂Q̂

∂δk
(0) = μ−1n ng̃0δkΩ̃

−1g̃ − μ−1n ng̃0B̃kΩ̃−1g̃ + op(1)

= ḡ0δkΩ̃
−1g̃ + Ûk0Ω̃−1g̃ + op(1),

where Ûk = g̃δk−ḡδk−B̃k0g̃. ForBk defined preceding Lemma A11 let Ũk = g̃δk−ḡδk−Bk0g̃.

Note that nkg̃k2 = Op(m). By Lemma A11 and m/μ2n ≤ C we have

nμ−1n |(Ûk0Ω̃−1 − Ũk0Ω̃−1)g̃| ≤ Cnμ−1n |g̃0(B̃k −Bk)Ω̃−1g̃| ≤ Cnμ−1n kg̃k2kB̃k −Bkk p−→ 0.

Note also that by the usual properties of projections and Assumption 6, nE[
°°°Ũk

°°°2] ≤
CE[kgiδkk

2] ≤ Cm, so that nμ−1n |Ũk0(Ω−1−Ω̃−1)g̃| p−→ 0. Similarly we have μ−1n ḡ0δk(Ω̃
−1−

Ω−1)g̃
p−→ 0, so that by T

nμ−1n
∂Q̂

∂δk
(0) = nμ−1n (ḡδk + Ũk)0Ω−1g̃ + op(1).

It is straightforward to check that for Ui defined in Section 2 we have

Ũk = n−1
nX
i=1

UiS
−10
n ekμn, ḡδk = GS−10n ekμn.

Then stacking over k gives

nμ−1n
∂Q̂

∂δ
(0) = nS−1n [G

0Ω−1g̃ + n−1
nX
i=1

U 0
iΩ
−1g̃] + op(1). (1.7)

For any vector λ with kλk = 1 let Xi = λ0S−1n G0Ω−1gi, Yi = Ω−1gi, Zi = UiS
−10
n λ/n, and

A = λ0Hλ. Then from the previous equation we have

nμ−1n λ0
∂Q̂

∂δ
(0) =

nX
i=1

Xi +
nX

i,j=1

Y 0
i Zi + op(1).

Note that E[Z 0iYi] = 0 by each component of Ui being uncorrelated with every component

of gi. Also, by kS−1n k ≤ C/μn,

nE[|Y 0
i Zi|2] ≤ CE[

°°°g0iΩ−1Ui

°°°2]/nμ2n ≤ C(E[kgik4] +E[kGik4])/nμ2n −→ 0.

[18]



Then
Pn

i=1 Z
0
iYi

p−→ 0 by M. Then by eq. (1.7),

nμ−1n λ0
∂Q̂(0)

∂δ
=

nX
i=1

Xi +
X
i6=j

Z 0iYj + op(1).

Now apply Lemma A10. Note that ΣY Y = Ω−1 and ΣZY = 0, so that Ψ = ΣZZΣY Y =

n−2E[UiS
−10
n λλ0S−1n U 0

i ]Ω
−1. By Assumption 1 and the hypothesis of Theorem 3, we have

nE[X2
i ] = nλ0S−1n G0Ω−1GS−10n λ −→ λ0Hλ = A,

n2tr(Ψ) = λ0S−1n E[U 0
iΩ
−1Ui]S

−10
n λ −→ λ0Λλ.

Also, note that ξmax(S
−10
n λλ0S−1n ) ≤ C/μ2n, so that ξ̄Z ≤ C/μ2nn

2.We also have k√nS−1n G0Ω−1k ≤

C by Assumption 1 and ξmax(Ω
−1) ≤ C. Then

nE[|Xi|4] ≤ nE[
°°°λ0√nS−1n G0Ω−1gi

°°°4]/n2 ≤ CE[kgik4]/n −→ 0,

mn4ξ̄2Y ξ̄
2
Z ≤ Cmn4/(μ2nn

2)2 ≤ Cm/μ4n −→ 0,

n3(ξ̄2ZE[kYik
4] + ξ̄2YE[kZik4]) ≤ n3C(E[kgik4] +E[kGik4])/μ4nn4 −→ 0,

n2E[kYik4]E[kZik4] ≤ n2CE[kgik4](E[kgik4] +E[kGik4])/μ4nn4 −→ 0.

The conclusion then follows by the conclusion of Lemma A10 and the Cramer-Wold

device. Q.E.D.

Lemma A13: If Assumptions 1-4 and 6-9 are satisfied then there is an open convex

set Nn such that 0 ∈ Nn and w.p.a.1 δ̂ ∈ Nn, Q̂(δ) is twice continuous differentiable on

Nn, and for any δ̄ that is an element of Nn w.p.a.1,

nS−1n [∂
2Q̂(δ̄)/∂β∂β0]S−10n = μ−2n n∂2Q̂(δ̄)/∂δ∂δ0

p−→ H

Proof: By Theorem 1 δ̂
p−→ 0. Then there is ζn −→ 0 such that w.p.a.1 δ̄ ∈ Nn = {δ :

kδk < ζn}. By Assumption 3, for all δ ∈ Nn

μ−1n
√
n kĝ(δ)− ĝ(0)k ≤ M̂ kδk ≤ M̂ζn

p−→ 0.

As previously shown, μ−1n
√
n kĝ(0)k = Op

³
μ−1n
√
n
q
m/n

´
= Op(1), so sup

δ∈Nn

μ−1n
√
n kĝ(δ)k =

Op(1) by T. Now let τn to go to zero slower than μn/
√
n but faster than

[19]



n−1/γE[supβ∈B kgi(β)kγ]−1/γ, which is possible by Assumption 9, and let Ln = {λ : kλk ≤

τn}. Then maxi≤n supβ∈B,λ∈Ln |λ0gi(β)|
p−→ 0 similarly to the proof of Lemma A3. For

all δ ∈ Nn let λ̂ (δ) = argmax
λ∈Ln

P̂ (δ, λ) . By an argument similar to the proof of Lemma

A3, an expansion of S
³
δ, λ̂(δ)

´
around λ = 0 gives

0 = P̂ (δ, 0) ≤ P̂
³
δ, λ̂(δ)

´
= ĝ(δ)0λ̂ (δ) +

1

2
λ̂ (δ)0

"
nX
i=1

ρ2(λ
0gi(δ))gi(δ)gi(δ)

0/n

#
λ̂ (δ)

≤ kĝ(δ)k
°°°λ̂(δ)°°°− C

°°°λ̂(δ)°°°2 .
Adding C

°°°λ̂(δ)°°°2 and dividing through by C °°°λ̂(δ)°°° gives
°°°λ̂(δ)°°° ≤ C kĝ(δ)k ≤ C sup

δ∈Nn

kĝ(δ)k = Op

³
μn/
√
n
´
. (1.8)

It follows that w.p.a.1 λ̂(δ) ∈ intLn for all δ ∈ Nn. Since a local maximum of a concave

function is a global maximum, w.p.a.1 for all δ ∈ Nn,

Q̂(δ) = P̂ (δ, λ̂(δ)).

Furthermore w.p.a.1 the first-order conditions

nX
i=1

ρ1
³
λ̂ (δ)0 gi(δ)

´
gi(δ)/n = 0

will be satisfied for all δ, so that by the implicit function theorem λ̂(δ) is twice continu-

ously differentiable in δ ∈ Nn and hence so is Q̂(δ).

Here let ĝi = gi(δ̄), ĝ = ĝ(δ̄), λ̂ = λ̂(δ̄), Ω̂ = −Pn
i=1 ρ2(λ̂

0ĝi)ĝiĝ
0
i/n, ĝiδk = ∂gi(δ̄)/∂δk,

ĝδk = ∂ĝ(δ̄)/∂δk, Ω̂
k = −Pi ρ2

³
λ̂0ĝi

´
ĝiĝ

0
iδk
/n. Then expanding ρ1(λ̂

0ĝi) = −1+ρ2(v̄i)λ̂0ĝi,

for |v̄i| ≤
¯̄̄
λ̂0ĝi

¯̄̄
, and letting Ω̄k = −Pi ρ2 (v̄i) ĝiĝ

0
iδk
/n, the implicit function theorem gives

λ̂δk =
∂λ̂

∂δk
(δ̄) = Ω̂−1

"X
i

ρ1
³
λ̂0ĝi

´
ĝiδk/n− Ω̂kλ̂/n.

#
= −Ω̂−1

h
ĝδk +

³
Ω̄k0 + Ω̂k

´
λ̂
i
,

Also, for Ω̄ = −Pi ρ2 (v̄i) ĝiĝ
0
i/n, the first order conditions 0 =

P
i ρ1(λ̂

0ĝi)ĝi/n = −ĝ−Ω̄λ̂

imply that

λ̂ = −Ω̄−1ĝ.
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Next, by the envelope theorem it follows that

Q̂δk

³
δ̄
´
=
X
i

ρ1
³
λ̂0ĝi

´
λ̂0ĝiδk/n.

Let ĝiδkδc = ∂2gi(δ̂)/∂δk∂δc, ĝδkδc = ∂2ĝ(δ̂)/∂δk∂δc, Ω̂
k,c = −Pi ρ2(λ̂

0ĝi)ĝiδk ĝ
0
iδc
/n, Ω̄kc =

−Pi ρ2 (v̄i) ĝiĝ
0
iδkδc

/n. Differentiating again

Q̂δkδc

³
δ̄
´
=

X
i

[ρ1
³
λ̂0gi

´ ³
λ̂0δk ĝiδc + λ̂0ĝiδkδc

´
+ ρ2

³
λ̂0ĝi

´ ³
λ̂0δk ĝi + λ̂0ĝiδk

´
λ̂0ĝiδc]/n

= n−1
X
i

h³
−1 + ρ2 (v̄i) λ̂

0ĝi
´ ³

λ̂0δk ĝiδc + λ̂0ĝiδkδc
´i
− λ̂0δkΩ̂

cλ̂− λ̂0Ω̂k,cλ̂

= −λ̂0δk ĝδc − λ̂0ĝδkδc − λ̂0(Ω̄c + Ω̂c0)λ̂δk − λ̂0
³
Ω̄kc + Ω̂k,c

´
λ̂.

Substituting in the formula for λ̂δk and then λ̂ we obtain

Q̂δkδc

³
δ̄
´
= ĝ0δkΩ̂

−1ĝδc + λ̂0
³
Ω̄k + Ω̂k0

´
Ω̂−1ĝδc − λ̂0ĝδkδc + λ̂0(Ω̄c + Ω̂c0)Ω̂−1ĝδk (1.9)

+λ̂0(Ω̄c + Ω̂c0)Ω̂−1
³
Ω̄k0 + Ω̂k

´
λ̂− λ̂0

³
Ω̄kc + Ω̂k,c

´
λ̂

= ĝ0δkΩ̂
−1ĝδc + ĝ0Ω̄−1ĝδkδc − ĝ0Ω̄−1

³
Ω̄k + Ω̂k0

´
Ω̂−1ĝδc − ĝ0Ω̄−1(Ω̄c + Ω̂c0)Ω̂−1ĝδk

+ĝ0Ω̄−1(Ω̄c + Ω̂c0)Ω̂−1
³
Ω̄k0 + Ω̂k

´
Ω̄−1ĝ − ĝ0Ω̄−1

³
Ω̄kc + Ω̂k,c

´
Ω̄−1ĝ.

Next, let Ω̆k =
P

i ĝiĝ
0
iδk
/n. Note that |1 + ρ2(v̄i)| ≤ C|v̄i| ≤ C|λ̂0ĝi|, so that by CS

and M,

°°°Ω̄k − Ω̆k
°°° ≤ C

X
i

|v̄i| kĝik kĝiδkk /n ≤
Ã
C
X
i

v̄2i /n

!1/2 ÃX
i

kĝik2 kĝiδkk
2 /n

!1/2

≤ C
³
λ̂0Ω̂λ̂

´1/2 "X
i

³
kĝik4 + kĝiδkk

4
´
/n

#1/2
= Op({μ2nE[d4i ]/n}1/2)

p−→ 0.

Also, for Ωk(δ) = E[gi(δ)giδk(δ)
0], by Assumption 8 i) and S−1n μn bounded we have°°°Ω̆k − Ωk(δ̄)

°°° p−→ 0. Then by T, °°°Ω̄k − Ωk(δ̄)
°°° p−→ 0.

Let Ωk,c(δ) = E[giδk(δ)giδc(δ)
0] and Ωkc(δ) = E[gi(δ)giδkδc(δ)

0]. Then it follows by argu-

ments exactly analogous to those just given that°°°Ω̂− Ω(δ̄)
°°° p−→ 0,

°°°Ω̄− Ω(δ̄)
°°° p−→ 0,

°°°Ω̂k − Ωk(δ̄)
°°° p−→ 0,°°°Ω̂k,c − Ωk,c(δ̄)

°°° p−→ 0,
°°°Ω̄kc − Ωkc(δ̄)

°°° p−→ 0.
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Next, as previously shown, μ−1n
√
n
°°°ĝ(δ̄)°°° = Op(1). It follows similarly from Assump-

tion 7 that

μ−1n
√
n
°°°∂ĝ(δ̄)/∂δ°°° = √n °°°Ĝ(β̄)S−10n

°°° = √n °°°Ĝ(β0)S−10n

°°°+ op(1).

Then by Assumption 6 E[kGik2] ≤ Cm, so by M,

³√
n
°°°[Ĝ(β0)−G]S−10n

°°°´2 = Op

³
E[kGik2]

´
/μ2n = Op(1).

Also by Assumptions 1 and 3 we have
√
n kGS−10n k ≤ C. Then by T and Assumption 1,

√
n
°°°Ĝ(β0)S−1n °°° ≤ √n °°°[Ĝ(β0)−G]S−10n

°°°+√n °°°GS−10n

°°° = Op(1).

Then by T it follows that

μ−1n
√
n
°°°∂ĝ(δ̄)/∂δ°°° = Op(1).

By similar arguments it follows by Assumption 6 that

μ−1n
√
n
°°°∂2ĝ(δ̄)/∂δ∂δk°°° = Op(1).

Next, for notational convenience let Ω̃ = Ω(δ̄) and Ω̃k = Ωk(δ̄). By Assumption 2

ξmax(Ω̃
−1) ≤ C so that ξmax(Ω̃

−2) ≤ C. It follows as previously that ξmax(Ω̄
−2) ≤ C, and

ξmax(Ω̂
k0Ω̄−2Ω̂k) ≤ C w.p.a.1, so that

°°°Ω̄−1Ω̂kΩ̄−1 − Ω̃−1Ω̃kΩ̃−1
°°° ≤ °°°Ω̄−1Ω̂k(Ω̄−1 − Ω̃−1)

°°°+ °°°Ω̂−1(Ω̂k − Ω̃k)Ω̃−1
°°°

+
°°°(Ω̂−1 − Ω̃−1)Ω̃kΩ̃−1

°°° p−→ 0.

Then by Assumption 8 it follows that

μ−2n n
¯̄̄
ĝ0Ω̄−1Ω̄kΩ̂−1ĝδc − ĝ0Ω̃−1Ω̃kΩ̃−1ĝδc

¯̄̄
≤ Op(1)

°°°Ω̄−1Ω̄kΩ̂−1 − Ω̃−1Ω̃kΩ̃−1
°°° p−→ 0.

Therefore, we can replace Ω̄ and Ω̂ by Ω̃ in the third term in eq. (1.9) without affecting

its probability limit. Let Q̃k,c(δ) denote the expression following the second equality in

eq. (1.9), with Ω̃ replacing Ω̄ and Ω̂ throughout. Then applying a similar argument to
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the one just given to each of the six terms following the second equality in eq. (1.9), it

follows by T that

μ−2n n
¯̄̄
Q̂δkδc

³
δ̄
´
− Q̃k,c(δ̄)

¯̄̄
p−→ 0.

Next, we will show that

μ−2n n
¯̄̄
Q̃k,c(δ̄)− Q̃k,c(0)

¯̄̄
p−→ 0.

Working again with the third term, let F (δ) = Ω(δ)−1Ωk(δ)Ω(δ)−1. It follows from

Assumptions 3 and 8 similarly to previous that for any a and b,
¯̄̄
a0[F (δ̄)− F (0)]b

¯̄̄
≤

C kak kbk
°°°δ̄°°° . Also, by Assumptions 3 and 7 we have μ−1n √n °°°ĝ(δ̄)− ĝ(0)

°°° p−→ 0 and

μ−1n
√
n
°°°ĝδk(δ̄)− ĝδk(0)

°°° p−→ 0. It then follows by CS and T that

μ−2n n
¯̄̄
ĝ(δ̄)0F (δ̄)ĝδk(δ̄)− ĝ(0)0F (0)ĝδk(0)

¯̄̄
≤ μ−2n nC(

°°°ĝ(δ̄)°°° °°°ĝδk(δ̄)°°° °°°δ̄°°°+ °°°ĝ(δ̄)− ĝ(0)
°°° °°°ĝδk(δ̄)°°°

+ kĝ(0)k
°°°ĝδk(δ̄)− ĝδk(0)

°°°) p−→ 0.

Applying a similar argument for each of the other six term and using T gives

μ−2n n
¯̄̄
Q̃k,c(δ̄)− Q̃k,c(0)

¯̄̄
p−→ 0. It therefore suffices to show that μ−2n nQ̃k,c(0)

p−→ Hkc.

Next, let Ωk = Ωk(β0), Ω
kc = Ωkc(β0), Ω

k,c = Ωk,c(β0), g̃ = ĝ(β0), g̃δk = ∂ĝ(0)/∂δk,

and g̃δkδc = ∂2ĝ(0)/∂δc∂δk. Note that

Q̃k,c(0) = g̃0δkΩ
−1g̃δc + g̃0Ω−1g̃δkδc − g̃0Ω−1

³
Ωk + Ωk0

´
Ω−1g̃δc − g̃0Ω−1(Ωc + Ωc0)Ω−1g̃δk

+g̃0Ω−1(Ωc + Ωc0)Ω−1
³
Ωk0 + Ωk

´
Ω−1g̃ − g̃0Ω−1

³
Ωkc + Ωk,c

´
Ω−1g̃.

Consider once again the third term in Q̃k,c(0), that is g̃
0Ag̃δc whereA = −Ω−1

³
Ωk + Ωk0

´
Ω−1.

Now apply Lemma A1 with Yi = gi, Zi = GiS
−10
n μnek, and an = μ2n to obtain

μ−2n ng̃0Ag̃δc = −tr(Ω−1
³
Ωk + Ωk0

´
Ω−1Ωc0)/μ2n + op(1).

Let Hn = nS−1n G0Ω−1GS−10n . Then applying a similar argument to each term in Q̃k,c(0)
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gives

μ−2n nQ̃k,c(0) = Hnk,c + μ−2n tr[Ω−1Ωk,c0 + Ω−1Ωkc0 − Ω−1
³
Ωk + Ωk0

´
Ω−1Ωc0

−Ω−1(Ωc + Ωc0)Ω−1Ωk0 + Ω−1(Ωc + Ωc0)Ω−1
³
Ωk0 + Ωk

´
−Ω−1

³
Ωkc + Ωk,c

´
] + op(1)

= Hnk,c + μ−2n tr[Ω−1(Ωk,c0 − Ωk,c) + Ω−1(Ωkc0 − Ωkc)

−Ω−1
³
Ωk + Ωk0

´
Ω−1Ωc0 + Ω−1(Ωc + Ωc0)Ω−1Ωk] + op(1).

By tr(AB) = tr(BA) for any conformable matrices A and B, we have

tr[(Ω−1Ωc0)(Ω−1Ωk)] = tr(Ω−1ΩkΩ−1Ωc0)

Also, for a symmetric matrix A, tr(AB) = tr(B0A) = tr(AB0), so that

tr(Ω−1Ωk,c0) = tr(Ω−1Ωk,c), tr(Ω−1Ωkc0) = tr(Ω−1Ωkc),

tr[Ω−1(ΩcΩ−1Ωk)] = tr[Ω−1(Ωk0Ω−1Ωc0)].

Then we have μ−2n nQ̃k,c(0) = Hnk,c + op(1), so that the conclusion follows by T. Q.E.D.

Lemma A14: If Assumptions 1-4 and 6-9 are satisfied then nS−1n D̂(β̂)0Ω̂−1D̂(β̂)S−10n
p−→

H + Λ = HVH.

Proof: For ĝi = gi(β̂), an expansion like those above gives ρ1(λ̂
0ĝi) = −1 − λ̂0ĝi +

ρ3(v̄i)(λ̂
0ĝi)

2, so that w.p.a.1

1

n

X
i

ρ1(λ̂
0ĝi) = −1− λ̂0ĝ + r, |r| ≤ Cmax

i
|ρ3(v̄i)|λ̂0Ω̂(β̂)λ̂ ≤ C

°°°λ̂°°°2 .
By

°°°λ̂°°° = Op(
q
m/n) and kĝk = Op(

q
m/n) we have

¯̄̄
λ̂0ĝ

¯̄̄
= Op(m/n)

p−→ 0. Also,

|r| = Op(m/n)
p−→ 0, so that by T,

1

n

X
i

ρ1(λ̂
0ĝi)

p−→ −1. (1.10)

Next, consider the expansion ρ1(λ̂
0ĝi) = −1+ρ2(v̄i)λ̂0ĝi as in the proof of Lemma A13.

As discussed there λ̂ satisfies the first order condition 0 =
P

i ρ1(λ̂
0ĝi)ĝi/n = −ĝ − Ω̄λ̂
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for Ω̄ = −Pi ρ2(v̄i)ĝiĝ
0
i/n, so that for ĝiδk = ∂ĝi(δ̂)/∂δk, ĝδk = ∂ĝ(δ̂)/∂δk, and Ω̄k =

−Pi ρ2(v̄i)ĝ
0
iĝiδk/n we have

λ̂ = −Ω̄−1ĝ,
X
i

ρ1(λ̂
0ĝi)ĝiδk/n = −ĝδk − Ω̄k0λ̂ = −ĝδk + Ω̄k0Ω̄−1ĝ.

Also, note that for Ū =
Pn

i=1 Ui/n, we have ŪS
−10
n ekμn = g̃δk − ḡδk − Ωk0Ω−1g̃. Then, in

terms of the notation of Lemma A13, it follows similarly to the arguments given there

that "
1

n

X
i

ρ1(λ̂
0ĝi)

#2
e0knS

−1
n D̂(β̂)0Ω̂−1D̂(β̂)S−10n ec

= μ−2n n(ĝ0δkΩ̂
−1ĝδc − ĝδkΩ̂

−1Ω̄c0Ω̄−1ĝ − ĝ0Ω̄−1Ω̄kΩ̂−1ĝδc + ĝ0Ω̄−1Ω̄kΩ̂−1Ω̄c0Ω̄−1ĝ)

= μ−2n n(g̃0δkΩ
−1g̃δc − g̃δkΩ

−1Ωc0Ω−1g̃ − g̃0Ω−1ΩkΩ−1g̃δc + g̃0Ω−1ΩkΩ−1Ωc0Ω−1g̃) + op(1)

= μ−2n n(g̃δk − Ωk0Ω−1g̃)0Ω−1(g̃δc − Ωc0Ω−1g̃) + op(1)

= ne0kS
−1
n (G+ Ū)0Ω−1(G+ Ū)S−10n ec + op(1).

Note that by Assumption 1, nS−1n G0Ω−1GS−10n −→ H. Also, ξmax(E[UiS
−10
n ece

0
cS
−1
n U 0

i ]) ≤

C/μ2n, so that

E[(ne0kS
−1
n G0Ω−1ŪS−10n ec)

2] = ne0kS
−1
n G0Ω−1E[UiS

−10
n ece

0
cS
−1
n U 0

i ]Ω
−1GS−10n ek

≤ Cne0kS
−1
n G0Ω−2GS−10n ek/μ

2
n ≤ CHnkk/μ

2
n −→ 0.

Now apply Lemma A1 to ne0kS
−1
n Ū 0Ω−1ŪS−10n ec, for A = Ω−1, Yi = UiS

−10
n ekμn, Zi =

UiS
−10
n ecμn, and μ2n = an. Note that ξmax(A

0A) = ξmax(AA
0) = ξmax(Ω

−2) ≤ C. Also,

by S−1n μn bounded, ξmax(ΣY Y ) ≤ ξmax(E[UiU
0
i ]) ≤ C and ξmax(ΣZZ) ≤ C. Furthermore,

m/a2n = m/μ4n −→ 0, an/n = μ2n/n ≤ C, μY = μZ = 0, and

E[(Y 0
i Yi)

2]/na2n ≤ CE[kUik4]/na2n ≤ CE[kgik4 + kGik4]/na2n −→ 0.

Then by the conclusion of Lemma A1,

ne0kS
−1
n Ū 0Ω−1ŪS−10n ec = nȲ 0AZ̄/an = tr (AΣ

0
Y Z) /an + op(1)

= tr(Ω−1E[UiS
−10
n ece

0
kS
−1
n U 0

i ]) + op(1)

= e0kS
−1
n E[U 0

iΩ
−1Ui]S

−10
n ec + op(1)

p−→ Λkc.
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Then by T,

e0knS
−1
n D̂(β̂)0Ω̂−1D̂(β̂)S−10n ec

p−→ Hkc + Λkc.

The conclusion then follows by applying this result for each k and c. Q.E.D.

Proof of Theorem 3: Let Yn = nμ−1n ∂Q̂(0)/∂δ. Then expanding the first-order

conditions as outlined in Section 5 gives

0 = nμ−1n
∂Q̂(δ̂)

∂δ
= nμ−1n

∂Q̂(0)

∂δ
+ nμ−2n

∂2Q̂(δ̄)

∂δ∂δ0
μnδ̂.

By Lemma 13 nμ−2n ∂2Q̂(δ̄)/∂δ∂δ0 is nonsingular w.p.a.1. Then by CMT, Lemmas A12,

A13, and S,

μnδ̂ = S0n(β̂ − β0) =

"
nμ−2n

∂2Q̂(δ̄)

∂δ∂δ0

#−1
nμ−1n

∂Q̂(0)

∂δ
= H−1Yn + op(1).

Then by Lemma A12 and S,

S0n(β̂ − β0)
d−→ H−1N(0,H + Λ) = N(0, V ).

Also, by Lemmas A13 and A14,

nS−1n ĤS−10n = μ−2n n
∂2Q̂(δ̂)

∂δ∂δ0
p−→ H,nS−1n D̂0Ω̂−1D̂S−10n

p−→ HVH.

Also, Ĥ is nonsingular w.p.a.1, so that

S0nV Sn/n = (nS
−1
n ĤS−10n )−1nS−1n D̂0Ω̂−1D̂S−10n (nS−1n ĤS−10n )−1

p−→ H−1HVHH−1 = V.

To prove the last conclusion, note that rnS
−1
n c −→ c∗ and S imply that

rnc
0(β̂ − β0) = rnc

0S−10n S0n(β̂ − β0)
d−→ N(0, c∗0V c∗),

r2nc
0V̂ c/n = rnc

0S−10n (S0nV̂ Sn/n)S
−1
n crn

p−→ c∗0V c∗.

Therefore by CMT and S,

c0(β̂ − β0)q
c0V̂ c/n

=
rnc

0S−10n S0n(β̂ − β0)r
r2nc

0S−10n

³
S0nV̂ Sn/n

´
S−1n c

d−→ N(0, c∗0V c∗)√
c∗0V c∗

= N(0, 1).
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For the linear model we proceed by verifying all of the hypotheses of the general

case. Note that gi(β) = Zi(yi−x0iβ) is twice continuously differentiable and that its first

derivative does not depend on β, so Assumption 7 is satisfied. Also, by Lemma A5,

(E[kgik4] +E[kGik4])m/n ≤ CE[kZik4]m/n −→ 0,

ξmax(E[GiG
0
i]) ≤

pX
j=1

ξmax(E[ZiZ
0
ix
2
ij]) ≤ Cξmax(CIm) ≤ C,

so that Assumption 6 is satisfied. Assumption 8 is satisfied by Lemmas A8 and A9.

Assumptions 2 - 4 were shown to hold in the proof of Theorem 2. Assumption 9 can be

shown to be satisfied similarly to the proof of Theorem 2. Q.E.D.

1.4 Large Sample Inference Proofs

The following result improves upon Theorem 6.2 of Donald, Imbens, and Newey (2003).

Let g̃ = ĝ(β0) by only requiring that m/n −→ 0 in the case where the elements of gi are

uniformly bounded.

Lemma A15: If E[(g0iΩ
−1gi)

2
]/mn −→ 0 then

ng̃0Ω−1g̃ −m√
2m

d−→ N(0, 1).

Proof: Note that E[g0iΩ
−1gi] = m so that by M,Pn

i=1 g
0
iΩ
−1gi/n−m√
2m

= Op({E[{g0iΩ−1gi}2]/nm}1/2)
p−→ 0.

Now apply Lemma A9 with Yi = Zi = Ω−1/2gi/
√
n(2m)1/4, so that ξ̄Z = ξ̄Y = n−1(2m)−1/2.

Note thatΨ = ΣY YΣZZ+Σ
2
Y Z = 2Im/n

22m = Im/n
2m, so that n2tr(Ψ) = n2tr(Im/n

2m) =

1. Also note that

mn4ξ̄2Z ξ̄
2
Y = m/4m2 −→ 0, n3(ξ̄2ZE[kYik

4] + ξ̄2YE[kZik4])

≤ n32{n−2(2m)−1E[{g0iΩ−1gi}2/n22m]} −→ 0,

n2E[kYik4]E[kZik4] = n2{E[{g0iΩ−1gi}2]n−2(2m)−1}2 −→ 0.

It then follows by Lemma A10 that
P

i6=j g
0
iΩ
−1gj/

√
2m

d−→ N(0, 1), so the conclusion

follows by T. Q.E.D.
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Proof of Theorem 4: By an expansion in λ around λ = 0 we have

Q̂(β0) = −λ̃0g̃ − λ̃0Ω̄λ̃/2,

where Ω̄ = −Pi ρ2(v̄i)gig
0
i/n, v̄i = ξ̄0gi, and

°°°ξ̄°°° ≤ °°°λ̃°°°. Also, by an expansion around 0
we have ρ1(λ̃

0gi) = −1+ρ2(v̆i)λ̃0gi with |v̆i| ≤
¯̄̄
λ̃0gi

¯̄̄
, so that for Ω̆ = −Pi ρ2(v̆i)gig

0
i/n the

first order conditions for λ̃ give 0 = −g̃ − Ω̆λ̃. Note that for ∆n = n1/γ (E [bγi ])
1/γ

q
m/n

we have

maxi≤n |1 + ρ2(v̆i)| ≤ C
°°°λ̃°°°maxi≤n gi = Op(∆n).

Let Ω̃ =
P

i gig
0
i/n. By Lemma A0 ξmax(Ω̃) ≤ C w.p.a.1, so that for any a, b,

¯̄̄
a0
³
Ω̆− Ω̃

´
b
¯̄̄
≤

X
i

|1 + ρ(v̆i)| |a0gi| |b0gi| /n

≤ Op(∆n)
q
a0Ω̃ab0Ω̃b = Op(∆n) kak kbk .

It follows similarly that

¯̄̄
a0
³
Ω̆− Ω̃

´
b
¯̄̄
≤ Op(∆n) kak kbk .

It then follows from ∆n −→ 0, similarly to Lemma A0, that ξmin(Ω̆) ≥ C w.p.a.1., so

λ̃ = −Ω̆−1g̃. Plugging into the above expansion gives

Q̂(β0) = g̃0Ω̆−1g̃ − g̃0Ω̆−1Ω̄Ω̆−1g̃/2.

As above ξmin(Ω̃) ≥ C w.p.a.1, so that
°°°Ω̃−1g̃°°° ≤ C kg̃k = Op(

q
m/n) and

°°°Ω̃−1g̃°°° =
Op(

q
m/n). Therefore, by ∆n

√
m −→ 0,

¯̄̄
g̃0(Ω̆−1 − Ω̃−1)g̃

¯̄̄
=
¯̄̄
g̃0Ω̆−1(Ω̃− Ω̆)Ω̃−1)g̃

¯̄̄
≤ Op(∆n)Op(m/n) = op(

√
m/n).

It follows similarly that
¯̄̄
g̃0(Ω̆−1Ω̄Ω̆−1 − Ω̃−1)g̃

¯̄̄
= op(

√
m/n), so that by T,

Q̂(β0) = g̃0Ω̃−1g̃/2 + op(
√
m/n).

It follows by mE[kgik4]/n −→ 0 that
°°°Ω̃− Ω

°°° = op(1/
√
m), so that g̃0Ω̃−1g̃ = g̃0Ω−1g̃ +

op(
√
m/n), and, by T,

Q̂(β0) = g̃0Ω−1g̃/2 + op(
√
m/n).
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It then follows that

2nQ̂(β0)−m√
m

− ng̃0Ω−1g̃ −m√
m

=
2n√
m

h
Q̂(β0)− g̃0Ω−1g̃/2

i
= op(1).

Then by Lemma A15 and S we have

2nQ̂(β0)−m√
m

d−→ N(0, 1).

Also, by standard results for the chi-squared distribution, asm −→∞ the 1−αth quantile

qmα of a χ
2(m) distribution has the property that [qmα −m]/

√
2m converges to the 1−αth

quantile qα of N(0, 1). Hence we have

Pr(2nQ̂(β0) ≥ qmα ) = Pr

Ã
2nQ̂(β0)−m√

2m
≥ qmα −m√

2m

!
−→ α. Q.E.D.

Proof of Theorem 5: Let B̂ = nS−1n D̂(β0)
0Ω̂(β0)

−1D̂(β0)S
−10
n and B = HVH. It

follows from Lemma A14, replacing β̂ with β0, that B̂
p−→ B. By the proof of Theorem

3, S, and CM we have

T̂ = (β̂ − β0)
0Sn(S

0
nV̂ Sn/n)

−1S0n(β̂ − β0) = Y 0
nB

−1Yn + op(1)
d−→ χ2(p).

Then by Lemma A12

LM(β0) = n
∂Q̂(β0)

∂β

0

S−10n B̂−1nS−1n
∂Q̂(β0)

∂β
= Y 0

n(B + op(1))
−1Yn = Y 0

nB
−1Yn + op(1).

Therefore we have LM(β0) = T̂ + op(1).

Next, by an expansion, for H̄ = nS−1n ∂2Q̂(β̄)/∂β∂β0S−10n ,

2n[Q̂(β0)− Q̂(β̂)] = n(β̂ − β0)
0[∂2Q̂(β̄)/∂β∂β0](β̂ − β0)

= (β̂ − β0)
0SnH̄S0n(β̂ − β0),

where β̄ lies on the line joining β̂ and β0 and H̄
p−→ H by Lemma A13. Then by the

proof of Theorem 3 and the CMT,

2n[Q̂(β0)− Q̂(β̂)] = {Y 0
nH

−1 + op(1)} {H + op(1)} {H−1Yn + op(1)}

= Y 0
nH

−1Yn + op(1).
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It follows that 2n[Q̂(β0)− Q̂(β̂)] = Op(1), so that

2n[Q̂(β0)− Q̂(β̂)]/
√
m− p

p−→ 0.

Therefore, it follows as in the proof of Theorem 4 that

2nQ̂(β̂)− (m− p)√
m− p

=
2nQ̂(β0)− (m− p)√

m− p
+ op(1)

=

s
m

m− p

2nQ̂(β0)−m√
m

+
p√

m− p
+ op(1)

d−→ N(0, 1).

Next, note that H−1 ≤ V in the p.s.d. sense so that V −1 ≤ H. It follows that

Y 0
nH

−1Yn ≥ Y 0
nB

−1Yn
d−→ χ2(p).

Then Pr( 2n[Q̂(β0)− Q̂(β̂)] > qpα) = Pr(Y
0
nH

−1Yn > qpα) + o(1) ≥ α.

Next, in considering the CLR test, for notational convenience evaluate at β0 and

drop the β argument, e.g. so that R̂ = R̂(β0). By have B̂
p−→ B it follows that B̂ ≥

(1 − ε)B w.p.a.1 for all for ε > 0. Also by m/μ2n bounded, for any C there is ε small

enough so that (1 − ε)C − εm/μ2n is positive and bounded away from zero, i.e. so that

(1 − ε)C − εm/μ2n ≥ C (the C’s are different). Then by hypothesis and multiplying

through by 1− ε and subtracting εm/μ2n from both sides it will be the case that

ξmin(μ
−2
n Sn(1− ε)BS0n)−

³
m/μ2n

´
≥ (1− ε)C − εm/μ2n ≥ C.

Then, w.p.a.1

F̂ =
R̂−m

μ2n
= ξmin(μ

−2
n SnB̂S

0
n)−m/μ2n ≥ ξmin(μ

−2
n Sn(1− ε)BS0n)−

³
m/μ2n

´
≥ C.

Also, by the proof of theorem 4,

AR−m

μ2n
=

√
m

μ2n

AR−m√
m

p−→ 0.

Therefore we have, w.p.a.1,

AR− R̂

μ2n
=

AR−m

μ2n
− F̂ ≤ −C.
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It follows that w.p.a.1,

AR

R̂
=
(AR−m)/μ2n +m/μ2n

F̂ +m/μ2n
≤ C/2 +m/μ2n

C +m/μ2n
≤ 1− C.

Therefore by R̂ ≥ Cμ2n +m −→∞, w.p.a.1,

R̂³
AR− R̂

´2 = 1

R̂

1³
1−AR/R̂

´2 p−→ 0.

Note that AR− R̂ < 0 w.p.a.1, so that
¯̄̄
AR− R̂

¯̄̄
= R̂−AR. Also, similarly to Andrews

and Stock (2006), by a mean value expansion
√
1 + x = 1 + (1/2) (x+ o(1)) , so that

ˆCLR =
1

2

(
AR− R̂+

∙³
AR− R̂

´2
+ 4LM · R̂

¸1/2)

=
1

2

⎧⎪⎪⎨⎪⎪⎩AR− R̂+
¯̄̄
AR− R̂

¯̄̄⎡⎢⎣1 + 4LM · R̂³
AR− R̂

´2
⎤⎥⎦
1/2
⎫⎪⎪⎬⎪⎪⎭

=
1

2

⎧⎪⎨⎪⎩AR− R̂+
¯̄̄
AR− R̂

¯̄̄⎡⎢⎣1 + 2LM R̂³
AR− R̂

´2 (1 + op(1))

⎤⎥⎦
⎫⎪⎬⎪⎭

= ˆLM
R̂

R̂−AR
(1 + op(1)).

Let rn = ξmin(SnBS
0
n/μ

2
n). Then rn−m/μ2n ≥ C by hypothesis. Then R̂/μ2n = rn+op(1),

as shown below. It then follows that

R̂

R̂−AR
=

R̂/μ2n
(R̂−m)/μ2n − (AR−m)/μ2n

=
rn + op(1)

rn −m/μ2n + op(1)
=

rn
rn −m/μ2n

+ op(1).

It then follows that

CLR =

Ã
rn

rn −m/μ2n

!
LM + op(1).

Carrying out these same arguments with qm−ps + qps replacing AR it follows that

q̂s =
1

2

(
qm−ps + qps − R̂+

∙³
qm−ps + qps − R̂

´2
+ 4qps · R̂

¸1/2)

=

Ã
rn

rn −m/μ2n

!
qps + op(1),

giving the conclusion with cn = rn/(rn −m/μ2n).

[31]



It now remains to show that R̂/μ2n = rn + op(1). Note that for S̄n = Sn/μn,

R̂/μ2n = min
kxk=1

x0S̄nB̂S̄
0
nx, rn = min

kxk=1
x0S̄nBS̄

0
nx.

By Assumption 1 we can assume without loss of generality that μn = μ1n and

S̄n = S̃ndiag(1, μ2n/μn, ..., μpn/μn).

Let ej denote the j
th unit vector and consider xn such that x

0
nSnej = 0, (j = 2, ..., p), and

kxnk = 1. Then by S̃n bounded and CS,
°°°x0nS̄n°°° =

°°°°°°x0nS̃n
⎡⎣e1 + pX

j=2

(μjn/μn)ej

⎤⎦°°°°°° =
°°°x0nS̃ne1°°° ≤ °°°S̃n°°° ≤ C.

Also, by B̂
p−→ B there is C such

°°°B̂°°° ≤ C and ξmin(B̂) ≥ 1/C. w.p.a.1. Let x̂ =

argminkxk=1 x
0S̄nB̂S̄

0
nx and x∗n = argminkxk=1 x

0S̄nBS̄
0
nx. Then w.p.a.1,

C−1
°°°x̂0S̄n°°°2 ≤ R̂/μ2n ≤ x0nS̄nB̂S̄

0
nxn ≤ C,C−1

°°°x∗0n S̄n°°°2 ≤ rn ≤ x0nS̄nBS̄
0
nxn ≤ C,

so that there is C̄ such that w.p.a.1,°°°x̂0S̄n°°° ≤ C̄,
°°°x∗0n S̄n°°° ≤ C̄.

Consider any ε > 0. By B̂
p−→ B, w.p.a.1

°°°B̂ −B
°°° ≤ ε/C̄2. Then, w.p.a.1,

R̂/μ2n ≤ x∗0n S̄nB̂S̄nx
∗
n = rn + x∗0n S̄n(B̂ −B)S̄nx

∗
n ≤ rn +

¯̄̄
x∗0n S̄n(B̂ −B)S̄nx

∗
n

¯̄̄
≤ rn +

°°°x∗0n S̄n°°°2 °°°B̂ −B
°°° ≤ rn + C̄2(ε/C̄2) = rn + ε.

rn ≤ x̂0S̄nBS̄nx̂ = R̂/μ2n + x̂0S̄n(B − B̂)S̄nx̂ ≤ R̂/μ2n + ε.

Thus, w.p.a.1, rn − R̂/μ2n ≤ ε and R̂/μ2n − rn ≤ ε, implying
¯̄̄
R̂/μ2n − rn

¯̄̄
≤ ε , showing¯̄̄

R̂/μ2n − rn
¯̄̄

p−→ 0. Q.E.D.
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