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We study generalized metric spaces, which were introduced by Branciari (2000). In particular, generalized metric spaces do
not necessarily have the compatible topology. Also we prove a generalization of the Banach contraction principle in complete
generalized metric spaces.

1. Introduction

In 2000, Branciari in [1] introduced a very interesting concept
whose name is “]-generalized metric space.”

Definition 1 (see Branciari [1]). Let 𝑋 be a set, let 𝑑 be a
function from𝑋×𝑋 into [0,∞), and let ] ∈ N.Then (𝑋, 𝑑) is
said to be a ]-generalized metric space if the following hold:

(N1) 𝑑(𝑥, 𝑦) = 0 if and only if 𝑥 = 𝑦 for any 𝑥, 𝑦 ∈ 𝑋;

(N2) 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥) for any 𝑥, 𝑦 ∈ 𝑋;

(N3) 𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑢
1
) + 𝑑(𝑢

1
, 𝑢
2
) + ⋅ ⋅ ⋅ + 𝑑(𝑢], 𝑦) for any

𝑥, 𝑢
1
, 𝑢
2
, . . . , 𝑢], 𝑦 ∈ 𝑋 such that 𝑥, 𝑢

1
, 𝑢
2
, . . . , 𝑢], 𝑦

are all different.

Example 2. Every metric space (𝑋, 𝑑) is a 1-generalized
metric space.

A 2-generalized metric space is also said to be a general-
ized metric space.

Definition 3 (see Branciari [1]). Let 𝑋 be a set and let 𝑑 be a
function from 𝑋 × 𝑋 into [0,∞). Then (𝑋, 𝑑) is said to be
ageneralized metric space if the following hold:

(G1) 𝑑(𝑥, 𝑦) = 0 if and only if 𝑥 = 𝑦 for any 𝑥, 𝑦 ∈ 𝑋.

(G2) 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥) for any 𝑥, 𝑦 ∈ 𝑋.

(G3) 𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑢) + 𝑑(𝑢, V) + 𝑑(V, 𝑦) for any 𝑥, 𝑢, V, 𝑦 ∈
𝑋 such that 𝑥, 𝑢, V, 𝑦 are all different.

The concept of “generalized metric space” is very similar
to that of “metric space.” However, it is very difficult to treat
this concept because𝑋 does not necessarily have the topology
which is compatible with 𝑑; see Example 7. So this concept is
very interesting to researchers. See also [2, 3].

Motivated by the above, in this paper, we study general-
ized metric spaces. In particular, generalized metric spaces
do not necessarily have the compatible topology. Also we
prove a generalization of the Banach contraction principle in
complete generalized metric spaces.

2. ]-Generalized Metric Space

Throughout this paper we denote by N the set of all positive
integers.

In this section, we study ]-generalized metric space. In
particular, we give examples in order to understand this
concept deeply.

Lemma 4. Let (𝑋, 𝜌) be a bounded metric space and let𝑀 be
a real number satisfying

sup {𝜌 (𝑥, 𝑦) : 𝑥, 𝑦 ∈ 𝑋} ≤ 𝑀. (1)
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Let𝐴 and𝐵 be two subsets of𝑋with𝑋 = 𝐴∪𝐵 and𝐴∩𝐵 = ⌀.
Define a function 𝑑 from𝑋 × 𝑋 into [0,∞) by

𝑑 (𝑥, 𝑥) = 0

𝑑 (𝑥, 𝑦) = 𝑑 (𝑦, 𝑥) = 𝜌 (𝑥, 𝑦) if 𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵

𝑑 (𝑥, 𝑦) = 𝑀 otherwise.

(2)

Then (𝑋, 𝑑) is a generalized metric space.

Proof. (N1) and (N2) are obvious. Let us prove (N3). Let
𝑥, 𝑦, 𝑢, V ∈ 𝑋 be all different. Put

𝑡 = 𝑑 (𝑥, 𝑢) + 𝑑 (𝑢, V) + 𝑑 (V, 𝑦) . (3)

In the case where 𝑡 ≥ 𝑀, (N3) holds because 𝑑(𝑥, 𝑦) ≤ 𝑀.
In the other case, where 𝑡 < 𝑀, without loss of generality, we
may assume 𝑥 ∈ 𝐴. Then we have V ∈ 𝐴 and 𝑢, 𝑦 ∈ 𝐵 from
the definition of 𝑑. Hence,

𝑑 (𝑥, 𝑦) = 𝜌 (𝑥, 𝑦) ≤ 𝜌 (𝑥, 𝑢) + 𝜌 (𝑢, V) + 𝜌 (V, 𝑦)

= 𝑑 (𝑥, 𝑢) + 𝑑 (𝑢, V) + 𝑑 (V, 𝑦) .
(4)

Thus (N3) holds.

Definition 5. Let (𝑋, 𝑑) be a ]-generalizedmetric space.Then
a net {𝑥

𝛼
} is said to converge to 𝑥 if and only if lim

𝛼
𝑑(𝑥, 𝑥

𝛼
) =

0.

Definition 6. Let𝑋 be a topological spacewith topology 𝜏. Let
𝑑 be a function from𝑋 × 𝑋 into [0,∞) satisfying (N1)–(N3)
with some ] ∈ N. Then 𝜏 is compatible with 𝑑 if and only if
the following are equivalent for any net {𝑥

𝛼
} in𝑋 and 𝑥 ∈ 𝑋:

(a) lim
𝛼
𝑑(𝑥, 𝑥

𝛼
) = 0.

(b) {𝑥
𝛼
} converges to 𝑥 in 𝜏.

The following is a very important example.

Example 7. Let

𝑋 = {(0, 0)} ∪ ((0, 1] × [0, 1]) . (5)

Define a function 𝑑 from𝑋 × 𝑋 into [0,∞) by

𝑑 (𝑥, 𝑥) = 0

𝑑 ((0, 0) , (𝑠, 0)) = 𝑑 ((𝑠, 0) , (0, 0)) = 𝑠, if 𝑠 ∈ (0, 1]

𝑑 ((𝑠, 0) , (𝑝, 𝑞))

= 𝑑 ((𝑝, 𝑞) , (𝑠, 0)) =
𝑠 − 𝑝

 + 𝑞, if 𝑠, 𝑝, 𝑞 ∈ (0, 1]

𝑑 (𝑥, 𝑦) = 3, otherwise.
(6)

Then the following hold:

(i) (𝑋, 𝑑) is not a metric space;
(ii) (𝑋, 𝑑) is a generalized metric space;

(iii) 𝑋 does not have a topology which is compatible with
𝑑.

Proof. Since

𝑑 ((0, 0) , (1, 0)) + 𝑑 ((1, 0) , (1, 1))

= 1 + 1 = 2 < 3 = 𝑑 ((0, 0) , (1, 1)) ,

(7)

(𝑋, 𝑑) is not a metric space. Define a metric 𝜌 on𝑋 by

𝜌 ((𝑠, 𝑡) , (𝑝, 𝑞)) =
𝑠 − 𝑝

 +
𝑡 − 𝑞

 , (8)

for (𝑠, 𝑡), (𝑝, 𝑞) ∈ 𝑋. Put

𝐴 = {(0, 0)} ∪ ((0, 1] × (0, 1]) , 𝐵 = (0, 1] × {0} . (9)

Then 𝑑 is equal to the 𝑑 defined by Lemma 4 with 𝑀 = 3.
Therefore, (𝑋, 𝑑) is a generalized metric space. In order to
show (iii), we will show that the following does not hold.

If a net {𝑥
𝛼
}
𝛼∈𝐷

converges to 𝑥 and for every
𝛼 ∈ 𝐷 a net {𝑥

(𝛼,𝛽)
}
𝛽∈𝐸
𝛼

converges to 𝑥
𝛼
, then

{𝑥
(𝛼,𝛾)
}
(𝛼,𝛾)∈𝐷×∏{𝐸

𝛼
:𝛼∈𝐷}

has a subnet converging to 𝑥;
see [4, page 77].

We have that {(1/ℓ, 0)}
ℓ
converges to (0, 0) and {(1/ℓ, 1/𝑚)}

𝑚

converges to (1/ℓ, 0) for every ℓ ∈ N. However, since
𝑑((0, 0), (1/ℓ, 1/𝑚)) = 3 for (ℓ, 𝑚) ∈ N2, a net
{(1/ℓ, 1/𝛾(ℓ))}

(ℓ,𝛾)
does not converge to (0, 0).Therefore there

does not exist a topology which is compatible with 𝑑.

Remark 8. For (𝛼, 𝛾) ∈ 𝐷 × ∏{𝐸
𝛼
: 𝛼 ∈ 𝐷}, 𝑥

(𝛼,𝛾)
= 𝑥
(𝛼,𝛾(𝛼))

.
For (𝛼

1
, 𝛾
1
), (𝛼
2
, 𝛾
2
) ∈ 𝐷 × ∏{𝐸

𝛼
: 𝛼 ∈ 𝐷}, (𝛼

1
, 𝛾
1
) ≤ (𝛼

2
, 𝛾
2
)

if and only if 𝛼
1
≤ 𝛼
2
and 𝛾
1
(𝛼) ≤ 𝛾

2
(𝛼) for any 𝛼 ∈ 𝐷.

Remark 9. Indeed, let 𝜏 be the topology induced by a subbase:

{𝑆 (𝑥, 𝑟) : 𝑥 ∈ 𝑋, 𝑟 > 0} , (10)

where 𝑆(𝑥, 𝑟) = {𝑦 ∈ 𝑋 : 𝑑(𝑥, 𝑦) < 𝑟}. Since

𝑆 ((0, 0) , 2) ∩ 𝑆 ((1, 0) , 2)

= ([0, 1] × {0}) ∩ ({(0, 0) , (1, 0)} ∪ ((0, 1] × (0, 1]))

= {(0, 0) , (1, 0)} ,

(11)

we have

𝑆 ((0, 0) , 2) ∩ 𝑆 ((1, 0) , 1) = {(1, 0)} . (12)

Hence {(1, 0)} is an open neighborhood of (1, 0). So a
sequence {(1, 1/𝑛)} does not converge to (1, 0) in 𝜏. Since
lim
𝑛
𝑑((1, 0), (1, 1/𝑛)) = 0, 𝜏 is not compatible with 𝑑.
We can easily make an example of a ]-generalized metric

space which is not a 𝜇-generalized metric space for 𝜇 < ].

Example 10. Put 𝑋 = N and let ] ∈ N satisfy ] ≥ 2. Define a
function 𝑑 from𝑋 × 𝑋 into [0,∞) by

𝑑 (𝑥, 𝑥) = 0,

𝑑 (1, 𝑠) = 𝑑 (𝑠, 1) = ] + 1, if 𝑠 ∈ N \ {1, 2} ,

𝑑 (𝑥, 𝑦) = 1, otherwise.

(13)

Then the following hold:
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(i) (𝑋, 𝑑) is not a 𝜇-generalized metric space for 𝜇 ∈ N

with 𝜇 < ];
(ii) (𝑋, 𝑑) is a 𝜇-generalized metric space for 𝜇 ∈ N with
𝜇 ≥ ].

Proof. (N1) and (N2) obviously hold. Let 𝜇 ∈ N satisfy 𝜇 < ].
Since

𝜇+1

∑

𝑗=1

𝑑 (𝑗, 𝑗 + 1) = 𝜇 + 1 < ] + 1 = 𝑑 (1, 𝜇 + 2) , (14)

(N3) does not hold. So (𝑋, 𝑑) is not a 𝜇-generalized metric
space. Let 𝜇 ∈ N satisfy 𝜇 ≥ ]. Let 𝑥, 𝑢

1
, 𝑢
2
, . . . 𝑢
𝜇
, 𝑦 ∈ 𝑋 be

all different. Then we have

𝑑 (𝑥, 𝑦) ≤ ] + 1 ≤ 𝜇 + 1 ≤ 𝑑 (𝑥, 𝑢
1
)

+ 𝑑 (𝑢
1
, 𝑢
2
) + ⋅ ⋅ ⋅ + 𝑑 (𝑢

𝜇
, 𝑦) .

(15)

Thus (N3) holds.Hence (𝑋, 𝑑) is a𝜇-generalizedmetric space.

We give some definitions. The reason of these definitions
is that (𝑋, 𝑑) does not necessarily have the topology which
is compatible with 𝑑. So (𝑋, 𝑑) does not necessarily have the
uniformity which is compatible with 𝑑.

Definition 11. Let (𝑋, 𝑑) be a ]-generalized metric space.

(a) A sequence {𝑥
𝑗
} is said to be Cauchy if and only if

lim
𝑗
sup
𝑚>𝑗
𝑑(𝑥
𝑗
, 𝑥
𝑚
) = 0.

(b) 𝑋 is said to be complete if and only if every Cauchy
sequence converges to some point in𝑋.

(c) 𝑋 is said to beHausdorff if and only if lim
𝑗
𝑑(𝑥, 𝑥

𝑗
) =

lim
𝑗
𝑑(𝑦, 𝑥

𝑗
) = 0 implies 𝑥 = 𝑦.

Lemma 12. Let (𝑋, 𝑑) be a ]-generalized metric space and let
𝑥, 𝑢
1
, . . . , 𝑢], 𝑦 ∈ 𝑋 such that 𝑥, 𝑢

1
, . . . , 𝑢] are all different and

𝑢
1
, . . . , 𝑢], 𝑦 are all different. Then

𝑑 (𝑥, 𝑦) ≤ 𝑑 (𝑥, 𝑢
1
) + 𝑑 (𝑢

1
, 𝑢
2
) + ⋅ ⋅ ⋅ + 𝑑 (𝑢], 𝑦) (16)

holds.

Proof. In the case where 𝑥 = 𝑦, the conclusion obviously
holds from (N1). In the other case, where 𝑥 ̸= 𝑦, the
conclusion obviously holds from (N3).

3. The CJM Fixed Point Theorem

In this section, we generalize the CJM fixed point theorem;
see Ćirić [5], Jachymski [6], and Matkowski [7, 8].

Theorem 13. Let (𝑋, 𝑑) be a complete ]-generalized metric
space and let𝑇 be aCJM contraction on𝑋; that is, the following
hold:

(i) for every 𝜀 > 0, there exists 𝛿 > 0 such that 𝑑(𝑥, 𝑦) <
𝜀 + 𝛿 implies 𝑑(𝑇𝑥, 𝑇𝑦) ≤ 𝜀 for any 𝑥, 𝑦 ∈ 𝑋;

(ii) 𝑥 ̸= 𝑦 implies 𝑑(𝑇𝑥, 𝑇𝑦) < 𝑑(𝑥, 𝑦) for any 𝑥, 𝑦 ∈ 𝑋.

Then 𝑇 has a unique fixed point 𝑧 of 𝑇. Moreover,
lim
𝑗
𝑑(𝑇
𝑗
𝑥, 𝑧) = 0 for any 𝑥 ∈ 𝑋.

Proof. We first note that 𝑇 is nonexpansive by (ii); that is

𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝑑 (𝑥, 𝑦) (17)

for any 𝑥, 𝑦 ∈ 𝑋. Fix 𝑢 ∈ 𝑋 and define a sequence {𝑢
𝑗
} in 𝑋

by 𝑢
𝑗
= 𝑇
𝑗
𝑢 for 𝑗 ∈ N. We next show that {𝑢

𝑗
} converges to a

fixed point of 𝑇, dividing the following three cases:

(a) there exists 𝑛 ∈ N such that 𝑢
𝑛+1
= 𝑢
𝑛
;

(b) 𝑢
𝑗+1

̸= 𝑢
𝑗
for all 𝑗 ∈ N and there exist 𝑚, 𝑛 ∈ N such

that𝑚 + 2 ≤ 𝑛 and 𝑢
𝑚
= 𝑢
𝑛
;

(c) 𝑢
1
, 𝑢
2
, . . . are all different.

In the first case,𝑢
𝑛
is a fixed point of𝑇. By (N1), {𝑢

𝑗
} converges

to 𝑢
𝑛
. In the second case, from (ii), we have {𝑑(𝑢

𝑗
, 𝑢
𝑗+1
)} is

strictly decreasing. So, since 𝑢
𝑚+1

= 𝑢
𝑛+1

, we have

𝑑 (𝑢
𝑚
, 𝑢
𝑚+1
) = 𝑑 (𝑢

𝑛
, 𝑢
𝑛+1
) < 𝑑 (𝑢

𝑚
, 𝑢
𝑚+1
) . (18)

This is a contradiction. Thus, the second case cannot be
possible. In the third case, from (ii), we have {𝑑(𝑢

𝑗
, 𝑢
𝑗+𝑘
)} is

strictly decreasing for any 𝑘 ∈ N. So {𝑑(𝑢
𝑗
, 𝑢
𝑗+𝑘
)} converges

to some 𝜀
1
≥ 0. Then we note that 𝑑(𝑢

𝑗
, 𝑢
𝑗+𝑘
) > 𝜀
1
for every

𝑗 ∈ N. Arguing by contradiction, we assume 𝜀
1
> 0. From (i),

there exists 𝛿
1
> 0 such that

𝑑 (𝑥, 𝑦) < 𝜀
1
+ 𝛿
1

implies 𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝜀
1
. (19)

From the definition of 𝜀
1
, there exists 𝑛 ∈ N such that

𝑑(𝑢
𝑛
, 𝑢
𝑛+𝑘
) < 𝜀

1
+ 𝛿
1
. Then we have 𝑑(𝑢

𝑛+1
, 𝑢
𝑛+𝑘+1

) ≤ 𝜀
1
.

This is a contradiction. Therefore we obtain 𝜀
1
= 0. That is,

lim
𝑗
𝑑(𝑢
𝑗
, 𝑢
𝑗+𝑘
) = 0 holds for any 𝑘 ∈ N. Thus

lim
𝑗→∞

max {𝑑 (𝑢
𝑗
, 𝑢
𝑗+𝑘
) : 𝑘 = 1, 2, . . . , ] + 1} = 0 (20)

holds. Fix 𝜀
2
> 0. Then, by (i), there exists 𝛿

2
∈ (0, 𝜀

2
) such

that

𝑑 (𝑥, 𝑦) < 𝜀
2
+ 2]𝛿
2

implies 𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝜀
2
. (21)

Let ℓ ∈ N such that

max {𝑑 (𝑢
𝑗
, 𝑢
𝑗+𝑘
) : 𝑘 = 1, 2, . . . , ] + 1} < 𝛿

2
, (22)

for all 𝑗 ∈ N with 𝑗 ≥ ℓ. We will show

𝑑 (𝑢
ℓ
, 𝑢
ℓ+𝑚
) < 𝜀
2
+ ]𝛿
2
, (23)

for𝑚 ∈ N by induction. For𝑚 = 1, 2, . . . , ] + 1, we have

𝑑 (𝑢
ℓ
, 𝑢
ℓ+𝑚
) < 𝛿
2
< 𝜀
2
+ ]𝛿
2
, (24)

and, thus, (23) holds. We assume (23) holds for some 𝑚 ∈ N

with𝑚 > ]. We have, by (N3),

𝑑 (𝑢
ℓ+], 𝑢ℓ+𝑚)

≤

]

∑

𝑗=1

𝑑 (𝑢
ℓ+𝑗
, 𝑢
ℓ+𝑗−1

) + 𝑑 (𝑢
ℓ
, 𝑢
ℓ+𝑚
)

< ]𝛿
2
+ 𝜀
2
+ ]𝛿
2
= 𝜀
2
+ 2]𝛿
2
.

(25)
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Hence 𝑑(𝑢
ℓ+]+1, 𝑢ℓ+𝑚+1) ≤ 𝜀2. We put

𝛼 =

{{{{{

{{{{{

{

𝑑 (𝑢
ℓ
, 𝑢
ℓ+]+1) if ] = 1

𝑑 (𝑢
ℓ
, 𝑢
ℓ+1
) + 𝑑 (𝑢

ℓ+1
, 𝑢
ℓ+]+1) if ] = 2

ℓ+]−2

∑

𝑗=ℓ

𝑑 (𝑢
𝑗
, 𝑢
𝑗+1
) + 𝑑 (𝑢

ℓ+]−1, 𝑢ℓ+]+1) if ] > 2.
(26)

We note 𝛼 < ]𝛿
2
. By (N3), we have

𝑑 (𝑢
ℓ
, 𝑢
ℓ+𝑚+1

) ≤ 𝛼 + 𝑑 (𝑢
ℓ+]+1, 𝑢ℓ+𝑚+1) < ]𝛿

2
+ 𝜀
2
. (27)

Thus, (23) holds for𝑚 := 𝑚 + 1. So, by induction, (23) holds
for every𝑚 ∈ N. Therefore we have shown

lim
ℓ→∞

sup
ℓ<𝑚

𝑑 (𝑢
ℓ
, 𝑢
𝑚
) ≤ 𝜀
2
+ ]𝛿
2
< (] + 1) 𝜀

2
. (28)

Since 𝜀
2
> 0 is arbitrary, we obtain that {𝑢

𝑗
} is Cauchy. Since

𝑋 is complete, {𝑢
𝑗
} converges to some point 𝑧 ∈ 𝑋. We have

by Lemma 12 and the nonexpansiveness of 𝑇

𝑑 (𝑧, 𝑇𝑧)

≤ (𝑑 (𝑧, 𝑢
𝑚+1
) +

]−1

∑

𝑗=1

𝑑 (𝑢
𝑚+𝑗
, 𝑢
𝑚+𝑗+1

) + 𝑑 (𝑢
𝑚+], 𝑇𝑧))

≤ (𝑑 (𝑧, 𝑢
𝑚+1
) +

]−1

∑

𝑗=1

𝑑 (𝑢
𝑚+𝑗
, 𝑢
𝑚+𝑗+1

) + 𝑑 (𝑢
𝑚+]−1, 𝑧)) ,

(29)

for sufficiently large 𝑚 ∈ N. As 𝑚 tends to ∞, we obtain
𝑑(𝑧, 𝑇𝑧) = 0. Thus, 𝑧 is a fixed point of 𝑇. The uniqueness
of the fixed point is obviously followed by (ii).

Remark 14. In [9], there is another fixed point theoremwhich
is independent of Theorem 13.

By Theorem 13, we obtain a generalization of the Banach
contraction principle [10, 11].

Corollary 15 (see Branciari [1]). Let (𝑋, 𝑑) be a complete ]-
generalized metric space and let 𝑇 be a contraction on 𝑋; that
is, there exists 𝑟 ∈ [0, 1) such that

𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝑟𝑑 (𝑥, 𝑦) , (30)

for any 𝑥, 𝑦 ∈ 𝑋. Then 𝑇 has a unique fixed point 𝑧 of 𝑇.
Moreover, lim

𝑗
𝑑(𝑇
𝑗
𝑥, 𝑧) = 0 for any 𝑥 ∈ 𝑋.

Remark 16. The authors in [12] stated the proof in [1] is
incorrect and gave a proof under the assumption that (𝑋, 𝑑)
is Hausdorff and ] = 2. See also [13].

In order to show that Theorem 13 is a generalization of
Theorem 3.1 in [14], we prove the following. See also [15].The
idea on the proof of the following proposition appears in [16,
17].

Proposition 17. Let (𝑋, 𝑑) be a ]-generalizedmetric space and
let𝑇 be amapping on𝑋. Assume that there exist functions 𝜑, 𝜓
from [0,∞) into [0,∞) such that the following hold:

(i) 𝜓(𝑑(𝑇𝑥, 𝑇𝑦)) ≤ 𝜓(𝑑(𝑥, 𝑦)) − 𝜑(𝑑(𝑥, 𝑦)) for any 𝑥, 𝑦 ∈
𝑋;

(ii) 𝜓 is nondecreasing;
(iii) inf 𝜑([𝑠, 𝑡]) > 0 for any 𝑠, 𝑡 ∈ (0,∞) with 𝑠 < 𝑡.

Then 𝑇 is a CJM contraction.

Proof. Since 𝜑(𝑡) > 0 for any 𝑡 ∈ (0,∞), (ii) of the definition
of CJM contraction obviously holds. We will show (i) of the
definition of CJM contraction. Fix 𝜀 > 0. From (iii), we can
put

𝜂 := inf {𝜑 (𝑡) : 𝜀 ≤ 𝑡 ≤ 𝜀 + 1} > 0. (31)

We choose 𝛿 ∈ (0, 1) such that

𝜓 (𝜀 + 𝛿) < lim
𝑡→ 𝜀+0

𝜓 (𝑡) + 𝜂. (32)

Let𝑥, 𝑦 ∈ 𝑋 satisfy𝑑(𝑥, 𝑦) < 𝜀+𝛿. In the casewhere𝑑(𝑥, 𝑦) =
0, we have 𝑑(𝑇𝑥, 𝑇𝑦) = 0 because 𝑥 = 𝑦. In the case where
0 < 𝑑(𝑥, 𝑦) ≤ 𝜀, we have

𝜓 (𝑑 (𝑇𝑥, 𝑇𝑦))

≤ 𝜓 (𝑑 (𝑥, 𝑦)) − 𝜑 (𝑑 (𝑥, 𝑦)) < 𝜓 (𝑑 (𝑥, 𝑦)) ≤ 𝜓 (𝜀) ,

(33)

which implies 𝑑(𝑇𝑥, 𝑇𝑦) < 𝜀. In the other case, where
𝑑(𝑥, 𝑦) > 𝜀, we have

𝜓 (𝑑 (𝑇𝑥, 𝑇𝑦))

≤ 𝜓 (𝑑 (𝑥, 𝑦)) − 𝜑 (𝑑 (𝑥, 𝑦)) ≤ 𝜓 (𝜀 + 𝛿) − 𝜂

< lim
𝑡→ 𝜀+0

𝜓 (𝑡) + 𝜂 − 𝜂 = lim
𝑡→ 𝜀+0

𝜓 (𝑡) ,

(34)

which implies 𝑑(𝑇𝑥, 𝑇𝑦) ≤ 𝜀. Hence we have 𝑑(𝑇𝑥, 𝑇𝑦) ≤ 𝜀
in all cases. Therefore 𝑇 is a CJM contraction.
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