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Abstrat 

Many fxed-point theorems are essentially topologial in nature. Among them 

are the Banah ontration mapping theorem on metri spaes and the fxed-
point theorem for Sott-ontinuous mappings on omplete partial orders. The 

latter theorem is fundamental in denotational semantis sine semanti operators 

in most programming language paradigms satisfy its requirements. The use of 

negation in logi programming and non-monotoni reasoning, however, renders 

some semanti operators to be non-monotoni, hene disontinuous with respet 

to the Sott topology, and therefore invalidates the standard approah, so that 

alternative methods have to b e sought. In this thesis, we investigate topologial 

methods, inluding generalized metri fxed-point theorems, and their appliabil-
ity to the analysis of semanti operators in logi programming and non-monotoni 

reasoning. 

In the frst part of the thesis, we present w eak versions of the Banah ontra-
tion mapping theorem for single-valued and multivalued mappings, and investi-
gate relationships b e t ween the underlying spaes. In the seond part, we apply 

the obtained results to several semanti paradigms in logi programming and 

non-monotoni reasoning. These investigations will also lead to a learer under-
standing of some of the relationships between these semanti paradigms and of the 

general topologial strutures whih underly the b e h a viour of the orresponding 

semanti operators. \e will also obtain some results related to termination prop-
erties of normal logi programs, larify some of the relationships between diferent 

semanti approahes in non-monotoni reasoning, and will establish some results 

onerning the onversion of logi programs into artifial neural networks. 
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Chapter 0  

Introdution  

Through the use of the fxed-point theorem for Sott-ontinuous funtions, The-
orem 1.1.3, topologial onsiderations naturally ome into view in the area of 

denotational semantis. Sine in most programming paradigms semanti opera-
tors are Sott-ontinuous, hene monotoni, this theorem yields least fxed points 

for these operators, and these fxed p o i n ts are interpreted as the denotational 

semantis of the programs in question. This is also the ase for logi programs 

without negation, alled defnite logi programs. 

In order to inrease expressiveness and fexibility, h o wever, it is desirable that 

negation may be used in logi programming. Standard semanti operators in this 

paradigm, though, are either not monotoni or, if they are monotoni, they are 

not Sott-ontinuous, hene do not in general ahieve their least fxed p o i n ts as 

the limit of a sequene of iterations as in the Sott-ontinuous ase. The above 

mentioned approah using Theorem 1.1.3 is therefore invalid and other methods 

have to be sought, whih inlude (1) the use of alternative semanti operators as 

e.g. in [Fit85, GRS91, GL88, HS99a], (2) restriting the syntax of the programs 

under onsideration as e.g. in [AB\88, Cav89, Prz88, SH97], and (3) applying 

alternative fxed-point theorems as e.g. in [Fit85, K K M 9 3 , KM98, PCR00, HS00]. 

\e will touh all three approahes in this thesis while our main fous is on (3). 

In the ase that a semanti operator is monotoni, but not Sott-ontinuous, 

then a theorem for monotoni operators on hain-omplete partial orders, Theo-
rem 1.1.7, is the main alternative and has indeed been employed in the ontext of 

logi programming and non-monotoni reasoning, e.g. for the Fitting semantis 

[Fit85], f. Chapter 6, and for the well-founded semantis [GRS91]. Some seman-
ti operators, however, among them the immediate onsequene operator and the 

Gelfond-Lifshitz operator [GL91], are non-monotoni and neither Theorem 1.1.3 

nor Theorem 1.1.7 an b e applied. A natural alternative fxed-point theorem in 

this ase is the Banah ontration mapping theorem, Theorem 1.2.2, on metri 

spaes. 

Sine it is not a priori lear whether the spaes on whih the semanti oper-
ators at are metrizable in a way suh that the operators are ontrations and 

satisfy the hypotheses of the Banah ontration mapping theorem, it is natural 

to ask for fxed-point theorems whih are more general, i.e. at on generalized 
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CHAPTER 0. INTRODUTION  

metri spaes. The development of suh fxed-point theorems, the analysis of the 

respetive underlying spaes, and investigations onerning their appliability t o 

logi programming semantis form the heart of this thesis. 

There are several ways how to generalize the notion of a metri suh that a 

version of the Banah ontration mapping theorem an b e retained, inluding 

generalized ultrametris, quasimetris and disloated metris. 

Generalized ultrametris have their origin in valuation theory, and difer from 

onventional ultrametris in that the distane funtion maps not into the reals 

but into a more general partially ordered set. A numb e r of fxed-point theorems 

for these spaes have been obtained and been introdued to the area of logi pro-
gramming [PC90, PCR93, KKM93, SH97, BMPC99, HS99b, PCR00, PCR00b, 

PCR00a], f. also Theorem 1.3.4. 

Quasimetris [Smy91, BvBR96, Rut96], and quasi-uniformities [FL82, S m y87], 

whih are non-symmetri distanes, have reently been studied extensively in 

the Topology in Computer Siene ommunity. Due to their strong relationships 

with order strutures, a fxed point theorem whih reoniles Theorems 1.1.3 and 

1.2.2 has b e e n obtained [Smy87, Rut96], f. Theorem 1.6.3. Logi programming 

semantis in the ontext of quasimetris was studied in [Sed97, HS99]. 

Disloated metris were studied under the notion of metri domains in 

[Mat86], where also a fxed-point theorem was given whih generalizes the Banah 

ontration mapping theorem, f. Theorem 1.4.6. They difer from onventional 

metris in that the distane b e t ween a p o i n t and itself may b e non-zero. The 

slightly stronger notions of partial and weak partial metris have reently b e e n 

studied further [Mat92, Mat94, O'N95, EH98, He99, \a00]. 

Apart from the quest for generalized metri fxed-point theorems whih an 

b e applied to the semanti analysis of logi programs, some investigations using 

general topologial approahes have been undertaken in the literature. This an be 

traed bak to [Bat89, BS89b, BS89a], where the query topology on the spae of all 

Herbrand interpretations was introdued. This topology was later on generalized 

to arbitrary preinterpretations [Sed95] and alled the atomi topology. The atomi 

topology is a Cantor topology and an be haraterized using logial notions, and 

it sems to b e a very appropriate topology for normal logi programs and the 

results presented in this thesis support this laim. In fat, all models obtained by 

iterating non-monotoni operators in this thesis are limits in the atomi topology 

of these iterates. 

Topologial approahes to the fxed-point semantis of normal logi programs 

enable us to better understand the b e h a viour of semanti operators whih arise 

in this ontext. In fat, it is lear that a (topologial) spae of interpretations 

together with suh an operator an b e understood as a topologial dynamial 

system, in a naive sense. Suh a p o i n t of view was hinted at in [SH97, SH99], 

but further results remain to b e obtained, and this presents a whole bundle of 

new projets. \e will not follow t h i s line of thought here but refer the reader to 

[BDJ+99] for motivational bakground. 

7  



CHAPTER 0. INTRODUTION  

Topologial results in logi programming semantis also allow u s to establish 

theoretial relationships b e t ween the theories of logi programming and of ar-
tifial neural networks [HK94, HSK99]. \e present only some basi results in 

Chapter 9, and the study of these relationships again presents a projet in its 

own right. 

From a more general perspetive, topologial investigations in theoretial om-
puter siene are a natural tool to build a bridge between disrete and ontinuous 

paradigms, whih is an objet of study in many felds right now. The author 

hopes that the work presented in this thesis will b e a valuable ontribution to 

this disussion. 

Some of the work in this thesis has already been presented at onferenes and 

workshops, see e.g. [HS99a, HS99b, HS99, HS00, SH97, SH99]. All the material 

has been rearranged, expanded, and brought i n to a more general ontext. All re-
sults in this thesis whih are not my o wn are indiated as suh b y giving referene 

to the literature. 

0.1 Struture of the Thesis 

The thesis is divided into two parts. 

Part I ontains an overview of fxed-point theorems on generalized metri 

spaes, both for single-valued (Chapter 1) and for multivalued mappings (Chapter 

2), and a disussion of relationships between underlying spaes (Chapter 3). This 

part assumes no knowledge in logi programming and should b e of independent 

interest. 

Part I I fouses on appliations of results from Part I and some other results 

related to logi programming semantis. After some general onsiderations on 

topologial strutures for normal logi programs (Chapter 4), we disuss sev-
eral semanti paradigms, inluding the supported model semantis (Chapter 5), 

some semanti approahes related to the Fitting semantis (Chapter 6), the sta-
ble model semantis (Chapter 7), and the perfet and weakly perfet model se-
mantis (Chapter 8). After some onsiderations onerning relationships between 

logi programming and artifial neural networks (Chapter 9), we lose with some 

general onlusions (Chapter 10). 

In Chapters 1 and 2, we present fxed-point theorems for single-valued and 

multivalued mappings on generalized metris. Although most of these theorems 

are already known from the literature, we inlude new alternative proofs and 

some general investigations onerning the underlying spaes. 

Chapter 3 investigates possibilities for onversion b e t ween some of the spaes 

from Chapters 1 and 2. \e obtain new alternative proofs for some of the fxed-
point theorems of the earlier hapters, a deeper insight into their relationships, 

and general methods for asting spaes of interpretations into generalized metris, 

whih will be of use in the seond part of the thesis. 
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CHAPTER 0. INTRODUTION  

Chapter 4 reviews the Sott topology and the atomi topology on spaes of 

interpretations. The atomi topology is then generalized to many-valued logis 

leading to a very general framework for topologial investigations of many-valued 

semanti operators. 

In Chapter 5, we fous on the supported model semantis and in partiular 

on uniquely determined programs, i.e. programs whih have unique supported 

models. Step-by-step we relax syntatial and semi-syntatial onditions, leading 

to a hierarhy of lasses of programs generalizing the ayli programs. As these 

lasses beome more general we in turn apply more and more general fxed-point 

theorems from Chapter 1, eah appliation leading to a unique fxed-point f o r t h e 

investigated programs, and to methods for obtaining these as topologial limits. 

An approah using three-valued logis in the style of [Fit85] is employed in 

Chapter 6. Again, we obtain a hierarhy of lasses of programs whih i s s h o wn to 

oinide with the one presented in Chapter 5. 

Chapter 7 investigates the stable model semantis, both in the disjuntive 

and the non-disjuntive ase. Relationships b e t ween the stable model semantis 

and the supported model semantis are obtained, and a multivalued fxed-point 

theorem from Chapter 2 is applied. 

The perfet and the weakly perfet model semantis are studied from a topo-
logial point of view in Chapter 8. The lasses desribed in Chapters 5 and 6 are 

loated with respet to these semantis and generalized. 

The main body of the thesis loses in Chapter 9 where relationships between 

logi programs and artifial neural networks, using topologial methods, are stud-
ied. In partiular, we address the problem of onverting normal logi programs 

into neural networks. 

Eah hapter ontains a Summary and Further Work setion at the end, 

and fnal onlusions will b e given in Chapter 10. \e proeed now with some 

preliminaries and notation. 

0.2 Notation 

Most of the notation and notions whih appear in the thesis will be introdued in 

the main text when they are needed for the frst time. For easy referene, an index 

is inluded at the end of the thesis, whih  o n tains pointers to the defnitions. \e 

note that some of the terminology will b e overloaded, i.e. the same notion may 

have slightly diferent meanings in diferent ontexts, to keep onsisteny with 

the literature. This should pose no partiular problem if are is taken as to whih 

kind of spae one is urrently working with. It will b e onvenient now to make 

some general omments on notation and onventions whih will b e employed in 

the sequel. 

The set of natural numbers will b e denoted by N , and of real numbers by 

+
J; by J we denote the set of all positive r e a l numbers inluding zero. Ordinals  

will usually be denoted by Greek letters, and the frst infnite ordinal by w. Eah 
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CHAPTER 0. INTRODUTION  

ordinal is identifed with the set of all its predeessors, i.e. for eah ordinal o we 

have {p I p  o  } = {p I p E o}, and using this onvention, we identify w with N . 

If o is a suessor ordinal, we denote its predeessor by o- 1, and the suessor 

of an arbitrary ordinal o will be denoted by o  1.  

If f : X - } is a funtion and A � X, we set f(A) = {f(a) I a E A}. 

Ordinal powers of funtions are defned as follows. Let f : X - X be a 

funtion on a set X, and let x E X. \e defne f (x) = x and for eah suessor 

++1(xordinal o 1  w  e defne f ) = f(f+(x)). If o is a limit ordinal, we will require 

several methods in the sequel how t o d e f n e f+(x), and we will defne these on the 

spot for the respetive ontext. Thus, if we defne f+(x) for eah limit ordinal o, 

it will be unambiguous in eah ase what all ordinal powers of the given funtion 

f are. 

A partially ordered set (A,:) is direted if for all x, y E A there exists z E A 

suh that x : z and y : z. For eah p E A w e defne tp = {, E A I p : ,}. 

A net (x,),EA 

is a net in the topologial sense i.e. the index set A is direted, 

and the index set will be omitted, i.e. the net will be written as (x,) or even just 

x, 

when the meaning is lear from the ontext; the notation (x,)A 

will also b e 

used. For eah , E A, x, 

is alled an element of the net (x,)A. G iv en a net (x,)A 

and an element p E A, we all the subnet (x,),>f 

= (x,)hf 

of (x,)A 

a tail of 

(x,)A. 

A net with index set equal to w, or equivalently N , is alled a sequene. A 

transfnite sequene is a net where the index set is an ordinal. A hain is a 

linearly ordered family of elements of a given partially ordered set. An w-hain 

is a sequene whih is a hain. 

If X is a set and f : X - X is a funtion then eah x E X with f(x) = x 

is alled a fxed point of f . If X arries a partial order :, then eah x E X with 

f(x) : x is alled a pre-fxed p oint of f . If f is a mapping from X to the powerset 

2x of X, then f is alled a multivalued mapping on X. In this ase, eah x E X 

with x E f(x) is alled a fxed point of f . E a  h single-valued mapping f on a set 

X an b e identifed with a multivalued mapping by identifying eah f(x) E X 

with {f(x)} E 2x . \e will assume throughout that multivalued mappings are 

non-empty, i.e. that f(x)  = 0 for all x E X. 

A distane funtion on a set X is a mapping from X x X to a given set 

A, where A will always b e either the set of real numbers J or some partially 

ordered set. A generalized ultrametri is a distane funtion whih maps into a 

partially ordered set and satisfes some speif further onditions whih will b e 

given in Defnition 1.3.1. In ontrast to this, a generalized metri is a distane 

funtion whih either maps into J and satisfes the triangle inequality (Miv) 

of Defnition 1.2.1, or whih maps into a partially ordered set and satisfes the 

orresponding strong triangle inequality (Uiv) of Defnition 1.3.1. This usage of 

the term generalized is not entirely onsistent, but is adopted here in order to 

ompromise between established notation and onveniene: The term generalized 

ultrametri refers to a speif struture (Defnition 1.3.1) and is standard. The 

term generalized metri refers to all notions appearing in this thesis whih an 
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b e understood as generalizations of metris (or ultrametris) in a naive sense. 

This ontrasts to the use of this notion in some of the literature where the term 

generalized metri refers to quasi-pseudo-metris only, see Defnition 1.2.1. 

\e will usually denote distane funtions with d, unless the requirement t h a t 

self-distanes of p o i n ts are zero is dropped ((Mi) in Defnition 1.2.1, (Uii) in 

Defnition 1.3.1), in whih ase we will usually denote them by f to help the 

reader. All generalized metri spaes are supposed to be non-empty. 

Some of the major fxed-point theorems will be given names for onveniene. 

Theorem 1.1.3, for example, will b e alled the Kleene theorem, and it will b e 

referred to as either the Kleene theorem, or the Kleene theorem, Theorem 1.1.3, 

or more simply, with a slight abuse of language, the Kleene theorem 1.1.3. Other 

named theorems will be referred to analogously. It is not laimed that the names 

given to theorems in this thesis are historially orret, see [LNS82]. 

Notation for logi programming basially follows [Llo88]. 

Given a frst order language £, a normal logi program, referred to as logi 

program or simply program, is a fnite set of lauses of the form 

�(A + L1 

� � � � � Ln), 

where n E N may difer b e t ween lauses, A is an atom in £ and L1, . . . , L n 

are 

literals, i.e. atoms or negated atoms, in £. As is ustomary in logi programming, 

we will write suh a lause as 

A + L1, . . . , L n, 

and A is alled the head of the lause, eah Li 

is alled a body literal of the lause 

and their onjuntion L1, . . . , L n 

is alled the body of the lause. \e allow n = 0, 

by an abuse of notation, in whih ase the body is empty and the lause is alled a 

unit lause or a fat. \ e will oasionally use the notation A + body for lauses, 

i.e. body in this ase stands for the onjuntion of the body literals of the lause. 

If no negation symbol ours in a logi program, it is alled a defnite or positive 

logi program. A v ariable in a lause is said to be loal if it ours in the body of 

the lause, but not in the orresponding head. 

0.2.1 Program The following is an example of a normal logi program: 

distlist([ ]) + 

distlist([HIT ]) + distlist(T ), -memb er(H , T ) 

memb er( X, [XIT ]) + 

memb er(X, [HIT ]) + memb er(X , T ) 

In the above example, upperase letters denote variable symbols. The onstant 

symb o l [ ] is interpreted as the empty list and [HIT ] as a list with head H and 

tail T , hene [.I.] is a funtion symbol with arity 2. The intended meaning of the 

program is that member(x, l) is true if x is an element of the list l, and distlist(l) 
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is true if l is a list of mutually distint elements. Under a logi programming 

system like Prolog, the above program an indeed be used to hek whether a list 

onsists of mutually distint elements. 

Given a preinterpretation J for a frst order language £ underlying a given 

logi program P , the set of all ground instanes of atoms ourring in P , under 

J , will be denoted by BpP,  

, or just by Bp 

if this will ause no misunderstandings. 

In the ase of J being the Herbrand preinterpretation orresponding to £, w e will 

all Bp 

the Herbrand base of P . The set of all ground instanes of lauses in P 

(with respet to an arbitrary, but fxed preinterpretation J) will b e denoted by 

ground(P ). The set of all interpretations of P under J will be denoted by IpP,  

or 

simply by Ip . Eah I E Ip 

is identifed with the set of all ground atoms whih 

are true with respet to I, i.e. we identify Ip 

with the p ower set 2Bp , and for 

eah I E Ip 

we have {A E Bp 

I I I= A} = {A E Bp 

I A E I}. Due to this 

identifation, the set Ip 

arries a natural order struture, namely set-inlusion. 

If I is an interpretation of a program P , w e denote its omplement Bp 

\ I by 

I. 

Given a program P , the language underlying P is the frst order language 

with onstant, funtion, and prediate symbols being, respetively, the onstant, 

funtion, and prediate symbols ourring in P ; if no onstant s y m bol is present, 

however, we add the symb o l 0 as a onstant symb o l to the language. If we state 

that J is an (arbitrary) preinterpretation it is always assumed that J is suitable for 

the program in question, i.e. it is a preinterpretation for the language underlying 

the program. 

0.2.2 Defnition Given a logi progam P and a preinterpretation J , we defne 

the single-step operator or immediate onsequene operator TpP,  

, or simply Tp , 

as a mapping from Ip 

to Ip 

as follows. For eah I E Ip 

we set Tp (I) to b e the 

set of all A E Bp 

for whih there exists a lause A + L1, . . . , L n 

in ground(P ), 

suh that I I= L1 

Ln. 

The usefulness of the operator Tp 

in the semanti analysis of logi programs 

rests on the fat that the models of P are exatly the pre-fxed points of Tp 

[Llo88]. 

A model of P is alled a supported model (or model of the Clark ompletion1 of 

P [Cla78]) if it is a fxed p o in t of Tp 

[AB\88]. 

A level mapping for a program P is a mapping l : Bp 

- o, where o is an 

ordinal. If o = w, l is alled an w-level mapping. \e always assume that a level 

mapping is extended to ground literals by setting l(-A) = l(A) for all A E Bp . 

\e fnally remark that the term semantis in this thesis refers to delarative 

or denotational semantis, and we will use the term proedural semantis if we 

want to refer to the proedural, or operational aspets. 

1 The orrespondene between supported models and models of the Clark ompletion is in 

fat via a standard identifation. 
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Chapter 1 

Fixed-point Theorems for 

Single-valued Mappings 

\e present fxed-point theorems whih will be applied in Part II of the thesis, and 

some further results. Setion 1.1 ontains the fundamental fxed-point theorems 

on partially ordered sets whih play a entral role in the denotational semantis 

of logi programs. Setion 1.2 introdues generalized metris where the distane 

funtions map into the real numbers, and realls the Banah ontration map-
ping theorem. Setion 1.3 realls the PrieB-Crampe and Ribenboim theorem on 

generalized ultrametri spaes, inluding an alternative proof, and disusses its 

relation to the Banah ontration mapping theorem. Setion 1.4 disusses the 

orresponding fxed-point theorem by Matthews on disloated metris and some 

topologial matters onerning these spaes. The latter two theorems are then 

merged in Setion 1.5, and fnally, in Setion 1.6, the Rutten-Smyth theorem on 

quasimetris is disussed. 

1.1 Partial Orders 

The set of all interpretations of a logi program, with respet to a given prein-
terpretation, is essentially a p o werset. \ith the subset ordering, it beomes a 

omplete lattie. \e present two lassial fxed-point theorems on weaker order 

strutures, whih play a fundamental role in logi programming semantis. 

1.1.1 Defnition A partially ordered set (D, :) is alled an w-omplete partial 

order (w-po) if 

(1) there exists l E D suh that for all a E D we have l : a (l is alled the 

bottom element of D) and 

(2) if a : a1 

: . . . is an w-hain in D, th en supiEN 

ai 

exists in D. 

1.1.2 Defnition Let D and E be w-pos and let f : D - E b e a funtion. 

(1) f is alled monotoni if a : b implies f(a) : f(b) for all a, b E D. 
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(2)  f is alled w-ontinuous if it is monotoni and for every w-hain a : a1 

: . . . 

we have f(supiEN 

ai) = supiEN 

f(ai). 

The following theorem is of fundamental importane in the theory of denota-
tional semantis. 

1.1.3 Theorem (Kleene theorem) Let D be an w-po and let f : D - D 

be an w-ontinuous funtion. Then f has a least fxed p oin t a. Furthermore, 

a = sup fn(l).nEN 

Proof: \e s k eth the well-known proof. The sequene (fn(l))nEN 

is an inreasing 

hain, hene has a supremum a. By ontinuity o f f , w e obtain f(a) = a, hene a 

is a fxed point whih turns out to b e least sine for any other fxed point b of f 

we obtain fn(l) : b by an easy indution argument. • 

If P is a defnite logi program, then the hypotheses of Theorem 1.1.3 are 

satisfed by the operator Tp 

, w h i  h i s w ell-known [Llo88]. In Part II of the thesis, 

we will study programs with negation, in whih ase semanti operators are not 

neessarily w-ontinuous, and sometimes not even monotoni, so that Theorem 

1.1.3 annot be applied. 

The notion of w-ontinuity is a weak version of Sott-ontinuity, whih is 

usually defned on Sott-Ershov domains, introdued next. 

1.1.4 Defnition A partially ordered set (D, i) is alled a (Sott-Ershov) do-
main with set D 

of ompat elements (see [SHLG94]), if the following onditions 

hold: 

(i) (D, i) is a omplete partial order (po), that is, D has a bottom element 

l, and the supremum sup A exists for all direted subsets A of D. 

(ii) The elements a E D 

are haraterized as follows: whenever A is direted 

and a i sup A, then a i x for some x E A. 

(iii) For eah  x E D, the set approx(  x) = {a E D 

I a i x} is direted and 

x = sup approx(  x) (this property is alled algebraiity of D). 

(iv) If the subset  A of D is onsistent (there exists x E D suh that a i x 

for all a E A), then sup A exists in D (this property is alled onsistent 

ompleteness of D). 

\e will usually denote the order relation by i if the order struture under on-
sideration is a domain. 

Several important fats emerge from these onditions, inluding the existene 

of funtion spaes (the ategory of domains is artesian losed). Moreover, the 

ompat elements provide an abstrat notion of omputability. Domains were 

introdued independently by D.S. Sott and Y.L. Ershov as a means of provid-
ing strutures for modelling omputation, and to provide spaes to support the 
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denotational semantis approah to understanding programming languages, see 

[SHLG94]. 

The standard topology on a domain is the Sott topology, defned as follows. 

1.1.5 Defnition Let (D, i) b e a domain. The set {t I  E D} is a base for a 

topology, alled the Sott topology on D. A funtion f : D - D is alled Sott-
ontinuous if it is ontinuous with respet to the Sott topology. Equivalently 

(see [SHLG94]), f is Sott ontinuous if and only if it is monotoni and for eah 

direted set A D we have sup f(A) = f(sup A). 

It is lear that every domain is a po and every po is an w-po. Likewise, 

every Sott-ontinuous funtion on a domain is also w-ontinuous. Theorem 1.1.3 

is often stated in less general form on domains for Sott-ontinuous funtions, or 

even on omplete latties. 

If an operator is monotoni but not Sott-ontinuous, the existene of a least 

fxed point an still be guaranteed, although not as the limit of an w-hain. 

1.1.6 Defnition A partial order D is alled hain-omplete if every hain in D 

has a supremum. 

1.1.7 Theorem (Knaster-Tarski theorem) Let (D, :) b e a hain-omplete 

partial order, let f : D - D be monotoni, and let a E D be suh th a t a : f(a). 

Then f has a least fxed p o in t x above a and there exists a least ordinal I suh 

that f 1(a) = x. 

Proof: \e sketh the well-known proof. For any limit ordinal o defne f+(a) = 

sup{ff(a) I p o}, from whih we obtain a transfnite inreasing sequene of 

iterates of f . L et I be an ordinal whose ardinality is greater than the ardinality 

of D. T hen f 1(a) m ust be a fxed point of f whih is above a. • 

\e fnd it onvenient to introdue names for Theorems 1.1.3 and 1.1.7, al-
though this is not always done. \e will all Theorem 1.1.3 the Kleene theorem, 

and Theorem 1.1.7 the Knaster-Tarski theorem. \e would like to note that this 

notation is not standard, but will be very onvenient in the sequel. 

1.2 Metris 

\e introdue some notions of generalized metris and state the Banah ontra-
tion mapping theorem for onventional metris. 

1.2.1 Defnition Let X b e a set and let f : X x X - J
+ b e a funtion, alled 

a distane funtion. Consider the following onditions: 

(Mi) For all x E X, f(x, x) = 0. 

(Mii) For all x, y E X, if f(x, y) = f(y, x ) = 0 then x = y. 
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notion satisfes (Mi) (Mii) (Miii) (Miv) (Miv') 

metri x x x x 

ultrametri x x x (x) x 

pseudometri x x x 

pseudo-ultrametri x x (x) x 

quasimetri x x x 

quasi-ultrametri x x (x) x 

disloated metri x x x 

disloated ultrametri x x (x) x 

disloated quasimetri x x 

disloated quasi-ultrametri x (x) x 

quasi-pseudo-metri x x 

quasi-pseudo-ultrametri x (x) x 

Table 1.1: Generalized metris: Defnition 1.2.1. 

(Miii) For all x, y E X, f(x, y) = f(y, x ). 

(Miv) For all x, y, z E X, f(x, y) : f(x, z) f(z, y ). 

(Miv') For all x, y, z E X, f(x, y) : max{f(x, z), f (z, y )}. 

If f satisfes onditions (Mi) to (Miv), then it is alled a metri. If it satisfes 

onditions (Mi), (Miii) and (Miv), it is alled a pseudometri. If it satisfes (Mii), 

(Miii) and (Miv), we w ill  a ll it a disloated metri (or simply d-metri). A quasi-
metri satisfes onditions (Mi), (Mii) and (Miv). Condition (Miv) will be alled 

the triangle inequality. I f a (pseudo-, quasi-, d-) metri satisfes the strong trian-
gle inequality (Miv'), then it is alled a (pseudo-, quasi-, d-) ultrametri. These 

defnitions are listed in Table 1.1; an x indiates that the respetive ondition is 

satisfed. (x) indiates that the respetive ondition is automatially satisfed. 

1.2.2 Theorem (Banah ontration mapping theorem) Let (X , d ) be a 

omplete metri spae, 0 : , 1 and let f : X - X b e a funtion whih 

is a ontration with ontrativity fator ,, i.e. satisfes d(f(x), f (y)) : ,d(x, y) 

for all x, y E X (with x = y). Then f has a unique fxed p oin t whih an b e 

obtained as the limit of the sequene (fn(x)) for any x E X. 

Proof: \e sketh the well-known proof. For any x E X, the sequene (fn(x)) is 

a Cauhy sequene whih onverges to a unique limit x by ompleteness of the 

spae. Sine f is a ontration, it is ontinuous, hene x is a fxed point of f , 

and is easily shown to be unique. • 

It is well-known that the requirement , 1 annot b e relaxed in general, as 

an b e seen from the funtion  
x 

1 for x 2 1
xf : J - J : x- 

2 otherwise, 
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whih satisfes the ondition d(f(x), f (y)) d(x, y) for all x, y E J with x = y, 

where d is the natural metri on J, but has no fxed point sine f(x) > x for all 

x E J. If X is ompat, however, the requirement on , an b e relaxed. 

1.2.3 Theorem Let (X , d ) b e a ompat metri spae and let f : X - X be a 

funtion whih is stritly ontrating , i.e. satisfes d(f(x), f (y)) d(x, y) for all 

x, y E X with x = y. T hen f has a unique fxed p o in t. 

Proof: The funtion d(x) = d(x, f(x)) is ontinuous sine f is ontinuous. 

Therefore, it ahieves a minimum m on X. Assume d(x ) = m > 0. Then 

d(f(x )) = d(f(x ), f (f(x ))) d(x , f (x )) = d(x ) = m whih is a ontra-
dition. Hene m = 0 and f has a fxed p o in t. 

Assume x and y are fxed points of f and x = y. Then d(x, y) = 

d(f(x), f (y)) d(x, y) whih is a ontradition. Therefore, the fxed p o i n t of 

f is unique. • 

The above result an b e found e.g. in [DG82]. 

1.3 Generalized Ultrametris 

The origin of generalized ultrametris lies in valuation theory. They difer from 

onventional metris in that the distane funtion takes values in general partially 

ordered sets instead of the real numbers. \e introdue generalized ultrametris 

and disloated generalized ultrametris, state the PrieB-Crampe and Ribenboim 

theorem 1.3.4 whih is the analogue on these spaes of the Banah ontration 

mapping theorem 1.2.2, and study the notion of spherial ompleteness of gener-
alized ultrametri spaes in how it relates to ompleteness and ompatness for 

onventional metris. \e also give a onstrutive proof of a part of the PrieB-
Crampe and Ribenboim theorem. 

1.3.1 Defnition Let X b e a set and let r b e a partially ordered set with least 

element 0. \e all (X , f , r) (or simply (X , f )) a generalized ultrametri spae 

(gum) if f : X x X - r is a funtion suh that for all x, y, z E X and all I E r 

we have: 

(Ui) f(x, y) = 0 implies x = y. 

(Uii) f(x, x) = 0. 

(Uiii) f(x, y) = f(y, x ). 

(Uiv) If f(x, y) : I and f(y, z ) : I, th en f(x, z) : I. 

If f satisfes onditions (Ui), (Uiii) and (Uiv), but not neessarily (Uii), we all 

(X , f ) a disloated generalized ultrametri spae or simply a d-gum spae, f. Table 

1.2. Condition (Uiv) will be alled the strong triangle inequality for gums. 

\e will oasionally refer to the set r a s the distane set of (X , f ). 
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notion satisfes  (Ui) (Uii) (Uiii) (Uiv) 

generalized ultrametri (gum) x x x x 

disloated generalized ultrametri (d-gum) x x x 

Table 1.2: (Disloated) generalized ultrametris: Defnition 1.3.1. 

It is lear that every (onventional) ultrametri spae is also a generalized 

ultrametri spae. 

The following defnitions prepare Theorem 1.3.4 and are taken from [PCR00a]. 

1.3.2 Defnition Let (X , f , r) b e a d-gum spae. For 0 = I E r and x E X, 

the set B1 

(x) = {y E X I f(x, y) : I} is alled a (I-)ball in X with entre or 

midpoint x. A d-gum spae is alled spherially omplete if, for any  hain C, with  
respet to set-inlusion, of non-empty balls in X, we have C = 0. A funtion 

f : X - X is alled 

(1)  non-expanding if f(f(x), f (y)) : f(x, y) for all x, y E X, 

(2)  stritly ontrating on orbits if f(f 2(x), f (x)) f(f(x), x ) for every x E X 

with x = f(x), and 

(3)  stritly ontrating if f(f(x), f (y))  f(x, y) for all x, y E X with x = y. 

The requirement in the defnition of spherial ompleteness that all balls are 

non-empty an b e dropped when working in a gum instead of a d-gum, sine in 

the frst ase all balls are always non-empty. 

\e will need the following observations, whih are well-known for ordinary 

ultrametri spaes, see [PCR93]. 

1.3.3 Lemma Let (X , f , r) b e a d-gum spae. For o, p  E r and x, y E X the 

following statements hold. 

(1) If o : p and B+(x) n Bf(y) = 0, then B+(x) Bf(y). 

(2) If B+(x) n B+(y) = 0, then B+(x) = B+(y). In partiular, eah element of a 

ball is also its entre. 

(3)  B0(xPy)(x) = B0(xPy)(y). 

Proof: Let a E B+(x) and b E B+(x) n Bf(y). Then f(a, x) : o and f(b, x) : o, 

hene f(a, b) : o : p. Sine f(b, y) : p, we have f(a, y) : p, hene a E Bf(y), 

whih proves the frst statement. The seond follows by symmetry and the third 

by replaing f(x, y) by o and applying (2). • 

For the following, see [PCR00]. \e will give s e v eral alternative proofs later. 
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1.3.4 Theorem (Prie:-Crampe and Ribenboim theorem) Let (X , d ) be a 

spherially omplete generalized ultrametri spae and let f : X - X b e non-
expanding and stritly ontrating on orbits. Then f has a fxed point. Moreover, 

if f is stritly ontrating on X, th en f has a unique fxed p o in t. 

Note that every ompat ultrametri spae is spherially omplete by the 

fnite intersetion property. The onverse is not true: let X be an infnite set and 

take d(x, y) = 1 if x = y and d(x, x) = 0 for all x. Then (X , d ) is not ompat 

but spherially omplete. The relationship b e t ween spherial ompleteness and 

ompleteness is given by the next proposition. Similar investigations have b e e n 

undertaken in [PC90] in the ase of totally ordered distane sets. 

1.3.5 Proposition Let (X , d ) b e an ultrametri spae. If X is spherially om-
plete then it is omplete. The onverse does not hold in general. 

Proof: Assume that (X , d ) is spherially omplete and that (xn) is a Cauhy 

sequene in (X , d ). Then, for every k E N , there exists a least nk 

E N suh that 

for all n, m 2 nk 

we have d(xn, x m) : 

k
1 . \e note that nk 

inreases with k. Now   
onsider the set of balls B = B i (xnk 

) I k E N . By (Uiv), B is a dereasing hain 

k 

of balls and has non-empty intersetion B by spherial ompleteness of (X , d ). 

Let a E B. Then it is easy to see that (xn) onverges to a (hene B = {a} is a 

one-point set sine limits in (X , d ) are unique) and therefore (X , d ) i s omplete. 

In order to show that the onverse does not hold in general, defne an ultra-
-min{mPn} if n = m andmetri d on N as follows. For n, m E N , let d(n, m) = 1 2 

d(n, n) = 0 for all n E N . The topology indued by d is then the disrete topology 

on N , and the Cauhy sequenes with respet to d are exatly the sequenes whih 

are eventually onstant. So (N , d ) is omplete. Now onsider the hain of balls Bn 

of the form {m E N I d(m, n) : 1 2 

-n}. Then we obtain Bn 

= {m I m 2 n} for 

all n E N . So Bn 

= 0. • 

Note also that with the notation from the seond part of the proof, the su-
essor funtion n - n 1 is stritly ontrating, but does not have a fxed point. 

By Proposition 1.3.5 and the remarks preeding it, we obtain that the notion of 

spherial-ompleteness is stritly less general than ompleteness, and is stritly 

more general than ompatness. 

\e will now follow a line of thought from [PC90], only slightly hanged (the 

original version was for linearly ordered distane set), and with the proofs adapted 

to the more general setting. 

1.3.6 Defnition Let (xÆ)Æk0 

b e a (possibly transfnite) sequene of elements 

of a gum (X , d ). Then (xÆ) is said to b e pseudo-onvergent if for all o p 

I f we have d(xf, x 1) d(x+, x f). The transfnite sequene (JÆ)Æ+1k0 

with 

JÆ 

= d(xÆ, x Æ+1) is then stritly monotoni dereasing. If f is a limit ordinal, 

then any x E X with d(x, xÆ) : JÆ 

for all Æ f is alled a pseudo-limit of the 

transfnite sequene (xÆ)Æk 0 

. 
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The spae (X , d ) is alled trans-omplete if every pseudo-onvergent transfnite 

sequene (xÆ)Æk 0 

, where f is a limit ordinal, has a pseudo-limit in X. 

1.3.7 Proposition If x is a pseudo-limit of (xÆ)Æk 0 

, where f is a limit ordinal, 

then the set of all pseudo-limits of (xÆ) is given by Lim(xÆ) = {z E X I d(x, z) 

JÆ 

for all Æ f }. 

Proof: Let z E Lim(xÆ). Sine d(z, x ) JÆ 

and d(x, xÆ) : JÆ 

we obtain 

d(z, x Æ) : JÆ 

for all Æ. Conversely, let z b e a pseudo-limit of (xÆ). Sine 

d(x, xÆ+1), d (z, x Æ+1) : JÆ+1 

for all Æ f, we obtain d(x, z) : JÆ+1 

JÆ 

for 

all Æ f . • 

1.3.8 Proposition A generalized ultrametri spae is spherially omplete if and 

only if it is trans-omplete. 

Proof: Let X b e trans-omplete and let B b e a dereasing hain of balls in X. 

\ithout loss of generality assume that B does not have a minimal element and is 

in fat stritly dereasing. Then we an selet a oinitial subhain (BÆ)Æk 0 

of B, 

where f is a limit ordinal, i.e. (BÆ)Æk 0 

is a transfnite sequene of balls. Sine this 

transfnite sequene is stritly dereasing, we know that for every Æ there exists 

xÆ 

E BÆ 

\ BÆ+1, and the transfnite sequene (xÆ)Æk 0 

is pseudo-onvergent, hene 

has a pseudo-limit x. Sine d(x, xÆ) : d(xÆ, x Æ+1) and xÆ, x Æ+1 

E BÆ 

we obtain 

x E BÆ 

for all Æ, hene x E B. 

Conversely, let X b e spherially omplete and let (xÆ) b e pseudo-onvergent. 

Let JÆ 

= d(xÆ, x Æ+1) and BÆ 

= B;Æ 

(xÆ). For o p we have xf 

E B+ 

n Bf 

and 

therefore that (BÆ) is a dereasing hain of balls by Lemma 1.3.3. By spherial 

ompleteness, there is some x E BÆ 

whih is a pseudo-limit of (xÆ). • 

\e an now give a onstrutive proof of the seond part of Theorem 1.3.4 

under the restrition that r is linearly ordered. The proof is inspired by [KKM93], 

f. also Setion 2.2. 

1.3.9 Theorem Let (X , d, r) b e a spherially omplete generalized ultrametri 

spae where r is linearly ordered and let f : X - X b e stritly ontrating on 

X. Then f has a unique fxed p o in t. 

Proof: Choose some x E X and let x1 

= f(x ). \e indutively defne a transf-
nite sequene as follows. Our indution hypothesis is that for all ordinals p  o
the sequene (xf)fk + 

is pseudo-onvergent. \e also assume, without loss of gen-
erality, that none of the xf 

is a fxed point of f . 

If o = p 1 1 is the suessor of a suessor ordinal, then let x+ 

= 

f(xf+1). Sine f is stritly ontrating, the obtained sequene (xf)f<+ 

is pseudo-
onvergent. 

If o is a limit ordinal, then (xf)fk + 

is pseudo-onvergent by the indution 

hypothesis. Then hoose x+ 

to b e one of its pseudo-limits, whih is possible by 
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Proposition 1.3.8, and let I1  I2  o. T h e n by the indution hypothesis 

d(x12 , x +) : d(x12 

, x 12+1)

 d(x1i , x 12). 

So the resulting sequene is also pseudo-onvergent. 

If o = p  1 is the suessor of a limit ordinal, where xf 

is onstruted as 

in the previous paragraph, then let x+ 

= f(xf). \e have to show that for all 

I1  I 2 

: p we have d(x12 , x +)  d(x1i , x 12 

). 

First assume that I2 

is a limit ordinal. For every I 1 I2 

we obtain 

d(x1+1, x +) d(x1, x f) : d(x1, x 12) sine f is stritly ontrating and by the 

indution hypothesis, and d(x1+1, x 12 

) d(x1, x 12) by the following argument: 

d(x1+1, x 12) : J1+1 

J1 

= d(x1 

, x 1+1), hene x1 

E B;,+i(x1+1) = (x12)B;,+i

whih suÆes. By (Uiv) we onlude that d(x12 , x +)  d(x1 

, x 12) as required. 

It remains to show the ase where I2 

is a suessor ordinal. \e obtain 

d(x12 , x +)  d(x12-1, x f)

 d(x1i , x 12) 

sine f is stritly ontrating and by the indution hypothesis. 

\e onstruted a transfnite sequene (x+) whih is pseudo-onvergent. \e 

also obtain a orresponding sequene J+ 

in r, where J+ 

= d(x+, x ++1), whih is 

stritly dereasing. If we assume that no point i n ( x+) is a fxed point, then there 

must be an ordinal I suh that J+ 

= 0 for all o > I , where 0 is the least element 

of r. This, however, ontradits the assumption that no p o i n t in (x+) is a fxed 

point. 

In order to fnish the proof, we need to show uniqueness of the fxed point. 

Suppose y is another fxed p o in t of f . Then d(x, y) = d(f(x), f (y)) d(x, y) 

whih is a  o n tradition. Hene the fxed p o i n t is unique. • 

An alternative onstrutive proof is given in Setion 1.5. 

1.4 Disloated Metris 

Disloated metris were studied under the name of metri domains in [Mat86]. \e 

proeed now with the defnitions needed for stating the Matthews theorem, whih 

is the generalized Banah ontration mapping theorem on these spaes, that is, 

we will defne onvergene, Cauhy sequenes and ompleteness for disloated 

metris as in [Mat86]. As it turns out, these notions an b e arried over diretly 

from onventional metris. Then, we will investigate the topologial struture 

underlying the notion of disloated metri, whih will lead to a proof of the 

Matthews theorem whih is in the spirit of the proof of the Banah ontration 

mapping theorem. 

1.4.1 Defnition A sequene (xn) in a d-metri spae (X , f ) onverges with re-
spet to f (or in f) if there exists an x E X suh that f(xn, x ) onverges to 0 as 

n - . I n this ase, x is alled a limit of (xn) (in f). 
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1.4.2 Proposition Limits in d-metri spaes are unique. 

Proof: Let x and y be limits of the sequene (xn). By properties (Miii) and (Miv) 

of Defnition 1.2.1, it follows that f(x, y) : f(xn, x ) f(xn, y ) - 0 as n - . 

Hene f(x, y) = 0 and by property (Mii) of Defnition 1.2.1 it follows that x = y. 

• 

1.4.3 Defnition A sequene ( xn) in a d-metri spae is alled a Cauhy sequene 

if for eah E > 0 there exists n E N suh that for all m, n 2 n we have 

f(xm, x n)  E . 

1.4.4 Proposition Every onvergent sequene in a d-metri spae is a Cauhy 

sequene. 

Proof: Let (xn) b e a sequene whih onverges to some x, and let E > 0 be 

Earbitrarily hosen. Then there exists n E N with f(xn, x ) 

2 

for all n 2 n . For 

Em, n 2 n we then obtain f(xm, x n) : f(xm, x ) f(x, xn) 2 

2 

= E. Hene (xn) 

is a C auhy sequene. • 

1.4.5 Defnition A d-metri spae (X , f ) is alled omplete if every Cauhy 

sequene in X onverges with respet to f. A funtion f : X - X is alled a 

ontration if there exists 0 : , 1 suh that f(f(x), f (y)) : ,f(x, y) for all 

x, y E X. 

1.4.6 Theorem (Matthews theorem) Let (X , f ) b e a omplete d-metri 

spae and let f : X - X b e a ontration. Then f has a unique fxed p o in t. 

A proof of this theorem was given in [Mat86], and we will from now on refer to 

it as the Matthews theorem. \ e will give an alternative proof later whih is more 

in the spirit of the proof of the original Banah ontration mapping theorem. 

\e will now investigate a topologial point of view of disloated metris fol-
lowing the outline given by the defnitions at the beginning of this setion. Sine 

onstant sequenes do not in general onverge in d-metri spaes, a  o n ventional 

topologial approah is not feasible, and notions of neighb o u r h o o d s ,  o n vergene 

and ontinuity will have to b e modifed. 

Disloated Neighbourhoods 

1.4.7 Defnition An (open E-)ball in a d-metri spae (X , f ) with entre x E X 

is a set BE(x) = {y E X I f(x, y)  E} where E > 0. 

Note that balls may b e e m p t y in d-metri spaes. In fat, the above defnition 

of ball does not imply that the entre of a ball is ontained in the ball itself: 

the point may b e disloated from the ball, and hene our usage of the term 

�disloated". 
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1.4.8 Proposition Let (X , f ) b e a d-metri spae. 

(a) The following three onditions are equivalent: 

(i) For all x E X, w e have f(x, x) = 0. 

(ii) f is a metri. 

(iii) For all x E X and all E > 0, we have BE(x) = 0. 

(b) The spae (X 

' , f ), where X 

' = {x E X I f(x, x) = 0 }, is a metri spae. 

Proof: (a) That (i) implies (ii) is obvious, as is (ii) implies (iii). \e show (iii) 

implies (i). Sine BE(x) = 0 for all E > 0, there exists, for eah E > 0, some y E X 

with f(x, y) E. But, for all y E X, we have f(x, x) : 2 f(x, y), and hene 

f(x, x)  E for all E > 0. Therefore, f(x, x) = 0. 

(b) Obviously, ( X 

' , f ) is a d-metri spae. The assertion now follows immediately 

from (a). • 

\e proeed with the investigation of disloated metris from a topologial 

point of view. 

1.4.9 Defnition Let X b e a set. A relation Æ X x  (X) (written infx) is 

alled a d-membership relation (on X) if it satisfes the following property for all 

x E X and A,B X: 

x Æ A and A B implies x Æ B. (1.1) 

\e say x is below A" if x Æ A. 

The below"-relation is a generalization of the membership relation from set-
theory, whih will allow u s to defne a suitable notion of neighb o u r h o o d . 

1.4.10 Defnition Let X b e a set, let Æ be a d-membership relation on X and 

let Ux 

= 0 b e a olletion of subsets of X for eah x E X. \e all (Ux, Æ ) 

a d-neighbourhood system (d-nbhood system) for x if it satisfes the following 

onditions. 

(Ni) If U E Ux, then x Æ U . 

(Nii) If U, V E Ux, then U n V E Ux. 

(Niii) If U E Ux, then there is a V U with V E Ux 

suh that for all y Æ V we 

have U E Uy. 

(Niv) If U E Ux 

and U V , then V E Ux. 

Eah U E Ux 

is alled a d-neighbourhood (d-nbhood) of x. Finally, l e t X be a set, 

let Æ b e a d-membership relation on X and, for eah x E X, let (Ux, Æ ) be a 

d-nbhood system for x. Then (X, U , Æ ) (or simply X) is alled a d-topologial 

spae, where U = {Ux 

I x E X}. 
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Note that points may h a ve e m p t y d-nbhoods and that Defnition 1.4.10 is ex-
atly the defnition of a topologial neighbourhood system if Æ is the membership 

relation E. 

Proposition 1.4.11, next, shows that d-nbhood systems arise naturally from 

d-metris. 

1.4.11 Proposition Let (X , f ) b e a d-metri spae. Defne the d-membership 

relation Æ as the relation {(x, A) I there exists E > 0 for whih BE(x) A}. F or 

eah x E X, let Ux 

b e the olletion of all subsets A of X suh that x Æ A. Then 

(Ux, Æ ) i s a d-nbhood system for x for eah x E X. 

Proof: It is easy to see that Æ is indeed a d-membership relation.  

(Ni) is obvious. Note that we also have the reverse property: if x Æ U , th en U E U x.  

(Nii) If x Æ U, V , then there are balls A, B with entre x suh that A U and  

B V . \ithout loss of generality let A b e the smaller of the balls A and B.  

Then A = A n B U n V .  

(Niii) Let U E U x, that is, x Æ U . Then there is a ball B with entre x suh that  

B U and B E U x. N o w let y Æ B be arbitrary. \ e h a ve to show th a t y Æ U . But  

y Æ B implies that there is a ball B 

' with entre y suh that y Æ B 

' B U . So  

y Æ U .  

(Niv) This is obvious sine x Æ U V implies x Æ V . •  

\e note that if (X , f ) is a metri spae, then the above onstrution yields 

the usual topology assoiated with a metri. 

The set of balls of a d-metri does not in general yield a onventional topology. 

In this respet, the axioms defning a disloated metri are diferent from those 

defning a partial metri in [Mat92, Mat94], whih are as follows. 

1.4.12 Defnition Let X b e a set and let p : X x X - J
+ b e a funtion. \e 

all p a partial metri on X if it satisfes the following axioms. 

(Pi) For all x, y E X, x = y if and only if p(x, x) = p(x, y) = p(y, y ). 

(Pii) For all x, y E X, p(x, x) : p(x, y). 

(Piii) For all x, y E X, p(x, y) = p(y, x ). 

(Piv) For all x, y, z E X, p(x, z) : p(x, y) p(y, z ) - p(y, y ). 

A weak partial metri is a distane funtion satisfying onditions (Pi), (Piii) 

and (Piv) of Defnition 1.4.12, i.e. ondition (Pii) of small self-distanes is not 

required. These spaes were studied e.g. in [EH98, He99, O'N95], and we note 

that [O'N95] works with partial metris where negative distanes are allowed. 

It is easy to see that any (weak) partial metri is a d-metri. Furthermore, the 

set of balls with respet to a ( w eak) partial metri does indeed yield a topology, 

and strong relationships between the topologies arising from partial metris and 

topologies disussed in domain theory an be established. \e refer the reader to 
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[Mat92, Mat94, EH98, \a00] for a omprehensive disussion of these matters 

sine our main onern here is with the more general notion of disloated metri. 

\e will not follow the lines mentioned in this paragraph sine disloated metris 

will suÆe for the purpose of our appliations. 

1.4.13 Proposition Any d-ultrametri satisfes (Pii), (Piii) and (Piv), but not 

neessarily (Pi). 

Proof: Let (X , f ) b e a d-ultrametri spae and let x, y, z E X.  

(Pii) By the strong triangle inequality, we obtain f(x, x) : max{f(x, y), f (y, x )}  

and by symmetry we obtain the desired inequality.  

(Piii) follows from (Miii).  

(Piv) By the strong triangle inequality, w e obtain f(x, z) : max{f(x, y), f (y, z )}.  

\ithout loss of generality, we an assume that f(x, y) 2 f(y, z ). Sine by (Pii)  

we have f(y, y ) : f(y, z ), we obtain f(x, z) : f(x, y) : f(x, y) f(y, z ) - f(y, y ).  

Let X b e a set and defne f on X x X to b e identially 1. Then f is a d-
ultrametri on X whih does not satisfy (Pi). • 

Convergene and Continuity 

One the notion of d-nbhood is defned, it is straightforward to adapt the notion 

of onvergene to d-topologial spaes. 

1.4.14 Defnition Let (X, U , Æ ) b e a d-topologial spae and let x E X. A 

(topologial) net (x,) d-onverges to x E X if for eah d-nbhood U of x we have 

that x, 

is eventually in U , that is, there exists some , suh that x, 

E U for eah 

, > , . 

Note that if for some x E X we have 0 E Ux, then the onstant sequene 

(x) does not d-onverge. In fat, if 0 E Ux, then no net in X d-onverges to x. 

Note also that the notion of onvergene obtained in Defnition 1.4.14 is a natural 

generalization of onvergene with respet to a d-metri, and we investigate this 

next. 

1.4.15 Proposition Let (X , f ) be a d-metri spae and let (X, U , Æ ) be the d-
topologial spae obtained from it via the onstrution in Proposition 1.4.11. Let 

(xn) be a sequene in X. Then (xn)  o n verges in f if and only if (xn) d-onverges 

in (X, U , Æ ). 

Proof: Let (xn) b e onvergent in f to some x E X, so that f(xn, x ) - 0 as 

n - , and let U b e a d-nbhood of x. Then there exists E > 0 suh that 

BE(x) U . Sine f(xn, x ) - 0, there exists n suh that xn 

E BE(x) U for all 

n > n and hene (xn) d-onverges to x. 

Conversely, l e t ( xn) be d-onvergent to some x E X, that is, for eah d-nbhood 

U of x there exists n suh that xn 

E U for eah n > n . F or eah E > 0, BE(x) is a 
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d-nbhood of x. Sine E an be hosen arbitrarily small, we m ust have f(xn, x ) - 0 

as n - , as required. • 

\e proeed with defning ontinuity on d-topologial spaes. 

1.4.16 Defnition Let X and } be d-topologial spaes and let f : X - } be a 

funtion. Then f is d-ontinuous at x E X if for eah d -n bhood V of f(x ) in } 

there is a d-nb h o o d U of x in X suh that f(U) V . \e say f is d-ontinuous 

on X if f is d-ontinuous at eah x E X. 

The following theorem shows that the notion of d-onvergene  a n b e  hara-
terized via nets, by analogy with onventional topology. 

1.4.17 Theorem Let X and } b e d-topologial spaes and let f : X - } be 

a funtion. Then f is d-ontinuous if and only if for eah net (x,) in X whih 

d-onverges to some x E X, ( f(x,)) is a net in } whih d-onverges to f(x ) E } . 

Proof: Let f be d-ontinuous at x and let x, 

be a net whih d-onverges to x . 

Let V b e a d-nbhood of f(x ). Then there exists a d-nbhood U of x suh that 

f(U) V . Sine x, 

is eventually in U , we obtain that f(x,) is eventually in V , 

and hene f(x,) d-onverges to f(x ). 

Conversely, i f f is not d-ontinuous at x , then for some d-nb h o o d V of f(x ) 

and for all U E U we have f(U) V . T h us for eah U E U there is an xu 

E Ux0 

x0 

with f(xu) E V . Then (xu) is a net in X whih d-onverges to x whilst f(xu) 

does not d-onverge to f(x ). • 

\e h a ve generalized onvergene from d-metris to d-topologies. However, we 

still lak a notion of ontinuity in terms of d-metris. \e will investigate this 

next, and this will enable us to give a proof of the Matthews theorem 1.4.6 whih 

is analogous to the standard proof of the Banah ontration mapping theorem. 

1.4.18 Proposition Let (X , f ) and ( } , f 

' ) be d-metri spaes, let f : X - } be 

a funtion and let (X, U , Æ ) and (}, V, Æ 

' ) b e the d-topologial spaes obtained 

from (X , f ), respetively (} , f 

' ), via the onstrution in Proposition 1.4.11. Then 

f is d-ontinuous at x E X if and only if for eah E > 0 there exists a Æ > 0 su h 

that f(BÆ(x )) BE(f(x )). 

Proof: Let f b e d-ontinuous at x E X and let E > 0. Then BE(f(x )) is a 

d-nbhood of f(x ). By defnition of d-ontinuity, there exists a d-nb h o o d U of 

x with f(U) BE(f(x )). But sine U is a d-nbhood of x , there exists a ball 

BÆ(x ) U and therefore f(BÆ(x )) f(U) BE(f(x )). 

Conversely, assume that the E-Æ-ondition on f holds and let V be a d-nbhood 

of f(x ). Then there exists E > 0 w ith BE(f(x )) V and Æ > 0 w ith f(BÆ(x )) 

BE(f(x )) V . Sine BÆ(x ) is a d-nbhood of x we obtain d-ontinuity o f f . • 

1.4.19 Proposition Let (X , f ) b e a d-metri spae, let f : X - X b e a on-
tration with ontrativity fator , and let (X, U , Æ ) b e t h e d-topologial spae 
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CHAPTER 1. FIXED-POINT THEOREMS FOR SINGLE-VALUED MAPPINGS  

obtained from (X , f ) via the onstrution in Proposition 1.4.11. Then f is d-
ontinuous. 

EProof: Let x E X and let E > 0 b e arbitrarily hosen. For Æ = 

, +1 

, we ob-
Etain d(f(x), f (x )) : ,d(x, x ) : , 

, +1 

E for all x E BÆ 

(x ), and therefore 

f (BÆ 

(x )) BE 

(f(x )) as required. • 

Proof of Theorem 1.4.6: \ith our preparations, the proof follows the proof of 

the Banah ontration mapping theorem on metri spaes, and we only sketh 

the details here. 

Let x E X b e arbitrarily hosen. Then the sequene (fn (x)) is a Cauhy n EN 

sequene and onverges in (X , f ) to some p o in t y. Sine f is a ontration, it is 

also d-ontinuous by Proposition 1.4.19 from whih we obtain y = lim fn (x) = 

f(lim fn -1(x)) = f(y) b y Theorem 1.4.17. Uniqueness follows sine if z is a fxed 

point o f f , then f(x, z) = f(f(x), f (z)) : ,f(x, z) and therefore f(x, z) = 0, and 

hene x = z by (Mii). • 

1.5 Disloated Generalized Ultrametris 

The following theorem gives a partial unifation of the Matthews theorem 1.4.6 

and the PrieB-Crampe and Ribenb o i m theorem 1.3.4. The proof of the latter 

theorem given in [PCR93] in fat arries over diretly to our more general setting 

of d-gums. 

1.5.1 Theorem Let (X , f , r) b e a spherially omplete d-gum spae and let 

f : X - X b e non-expanding and stritly ontrating on orbits. Then f has a 

fxed point. If f is stritly ontrating on X, then the fxed point is unique. 

Proof: Assume that f has no fxed p o in t. Then for all x E X we have 

f(x, f(x)) = 0 . \ e defne the set B by B = {B0 (xP, (x ))(x) I x E X}, and note that 

eah ball in this set is non-empty. \ e also note that B0 (xP, (x ))(x) = B0 (xP, (x ))(f(x)) 

by Lemma 1.3.3. Now let C b e a maximal hain in B. Sine X is spherially 

omplete, there exists z E C. \e show that B0 (z P, (z ))(z) B0 (xP, (x )) 

for all 

x E X and hene, by maximality, that B0 (z P, (z ))(z) is the smallest ball in the 

hain. Let B0 (xP, (x ))(x) E C. Sine z E B0 (xP, (x ))(x), and noting our earlier obser-
vation that B0 (xP, (x ))(x) = B0 (xP, (x ))(f(x)) for all x, we get f(z, x ) : f(x, f(x)) 

and f(z, f (x)) : f(x, f(x)). By non-expansiveness of f , we get f(f(z), f (x)) : 

f(z, x ) : f(x, f(x)). It follows by (Uiv) that f(z, f (z)) : f(x, f(x)) and there-
fore that B0 (z P, (z ))(z) B0 (xP, (x ))(x) by Lemma 1.3.3 for all x E X, sine x was 

hosen arbitrarily. N o w, sine f is stritly ontrating on orbits, f(f(z), f 

2(z)) 

f(z, f (z)), and therefore z E B0 (, (z )P, 

2 (z ))(f(z)) c B0 (z P, (z ))(f(z)). By Lemma 

1.3.3, this is equivalent t o B0 (, (z )P, 

2 (z ))(f(z)) c B0 (z P, (z ))(z), whih is a ontradi-
tion to the maximality o f C. So f has a fxed point. 

Now let f b e stritly ontrating on X and assume that x, y are two dis-
tint fxed points of f . Then we get f(x, y) = f(f(x), f (y)) f(x, y) whih is 

impossible. So the fxed p o i n t of f is unique in this ase. • 
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\e next give a onstrutive proof of a speial ase of Theorem 1.5.1. 

1.5.2 Theorem Let (X , d, r) b e a spherially omplete disloated generalized 

ultrametri spae with r = {2-+ I o : I} for some ordinal I. \e order r by 

2-+ 2-f if p  o , and denote 2-1 by 0. If f : X - X is any stritly ontrating 

funtion on X, then f has a unique fxed p o in t. 

Proof: Let x E X. T hen f(x) E f(X) and d(f(x), x ) : 2- sine 2- is the max-
imum distane possible b e t ween any two p o i n ts in X. Now, d(f(f(x)), f (x)) : 

2-1 : 2- sine f is stritly ontrating, and by (Uiv) it follows that d(f 2(x), x ) : 

2- . By the same argument, we obtain d(f 3(x), f 

2(x)) : 2-2 : 2-1 and therefore 

d(f 3(x), f (x)) : 2-1. In fat, an easy indution argument along these lines shows 

that d(fn+1(x), f 

m(x)) : 2-m for m : n. Again by (Uiv), we obtain that the 

sequene of balls of the form B2-n (fn(x)) is a desending hain (with respet to 

set-inlusion) if n is inreasing, and therefore has non-zero intersetion B sine 

X is spherially omplete. \e therefore onlude that there is x E B with 

d(x , f 

n(x)) : 2-n for eah n E N . 

For eah n E N we argue as follows. Sine d(f(x ), f 

n+1(x))  d(x , f 

n(x)) : 

2-n n+1(x)) : 2-(n+1) : 2-nand d(x , f , w e obtain d(f(x ), x ) : 2-n. Sine this 

is the ase for all n E N , we obtain d(f(x ), x ) : 2- . 

It is straightforward to ast the above observations into a transfnite indution 

argument, and we obtain the following onstrution: 

Choose x E X arbitrarily. F or eah ordinal o : I, w e defne f+(x) as follows. If 

o is a suessor ordinal, then f+(x) = f(f+-1(x)) as usual. If o is a limit ordinal, 

then we  hoose f+(x) as som e x+ 

whih has the property that d(x+, f 

f(x)) : 2-f , 

and the existene of suh an x+ 

is guaranteed by spherial ompleteness of X. 

The resulting transfnite sequene f+(x) has the property that 

d(f++1(x) d(f 1+1(x), f 

+(x)) : 2-+ for all o : I. Consequently, , f 

1(x)) = 

2-1 = 0, and therefore f 1(x) must be a fxed point of f . 

Finally, x1 

= f 1(x) an be the only fxed point of f . To see this, suppose 

y = x1 

is another fxed p o in t of f . Then we obtain f(y, x 1)  f(y, x 1), from the 

fat that f is stritly ontrating, whih is impossible. • 

Another alternative proof of this theorem will be given at the end of Setion 

3.4. 

1.6 Quasimetris 

Quasimetris are a onvenient w ay of reoniling metri and order strutures. \e 

give the relevant defnitions in order to state the Rutten-Smyth theorem 1.6.3, 

in the form in whih it appears in [Rut96]. A more general version was given in 

[Smy87] on quasi-uniformities. 

1.6.1 Defnition A sequene (xn) in a quasimetri spae (X , d ) is a (forward) 

Cauhy sequene if, for all E > 0, there exists n E N suh that for all n 2 m 2 n 
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we have d(xm, x n) E. A Cauhy sequene (xn) onverges to x E X if, for all 

y E X, d(x, y) = lim d(xn, y ). Finally, X is alled CS-omplete if every Cauhy 

sequene in X onverges. 

Note that limits of Cauhy sequenes in quasimetri spaes are unique. Given 

a quasimetri spae (X , d ), d indues a partial order :d 

on X by setting x :d 

y 

if and only if d(x, y) = 0. If (X , d ) is a quasimetri spae, then (X , d 

*) is a metri 

spae, where d*(x, y) = max{d(x, y), d (y, x )}. 

1.6.2 Defnition Let X be a quasimetri spae. A funtion f : X - X is alled 

(1)  CS-ontinuous if, for all Cauhy sequenes (xn) in X with lim xn 

= x, ( f(xn)) 

is a C auhy sequene and lim f(xn) = f(x), 

(2)  non-expanding if d(f(x), f (y)) : d(x, y) for all x, y E X, and 

(3)  ontrative if there exists some 0 :  1 suh that d(f(x), f (y)) :  d(x, y) 

for all x, y E X. 

Contrative mappings are not neessarily CS-ontinuous as was p o i n ted out 

in [Rut96], where a lso a p ro o f o f th e following theorem an b e found. 

1.6.3 Theorem (Rutten-Smyth theorem) Let (X , d ) b e a CS-omplete 

quasimetri spae and let f : X - X b e non-expanding. 

(1) If f is CS-ontinuous and there exists x E X with x :d 

f(x), then f has a 

fxed point, and this fxed p o i n t i s least above x with respet to :d. 

(2) If f is CS-ontinuous and ontrative, then f has a unique fxed p o in t. 

Moreover, in both ases the fxed point an be obtained as the limit of the Cauhy 

sequene (fn(x)), where in (1) x is the given p oin t, and in (2) x an b e hosen 

arbitrarily. 

Let (X, :) be a partially ordered set. Defne a funtion d< 

: X x X - J
+ by 

0  if x : y
d<(x, y) = 

1  otherwise. 

Then it is easily heked that (X , d <) is a quasi-ultrametri spae, and d< 

is alled 

the disrete quasimetri on X. Note that :d� 

and : oinide for a g i v en partial 

order :. 

By virtue of this defnition and the defnition of :d 

for a given quasimetri d, 

Part (1) of Theorem 1.6.3 generalizes the Kleene theorem 1.1.3. Part (2) general-
izes the Banah ontration mapping theorem 1.2.2, f. also [Rut96, Smy87] and 

Proposition 2.4.4. 
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spae name of theorem referene numb e r symb o l 

w-po Kleene 1.1.3 K 

hain-omplete Knaster-Tarski 1.1.7 KT 

partial order 

omplete metri Banah 1.2.2 B 

ompat metri  1.2.3 p 

gum PrieB-Crampe and 1.3.4 PCR 

Ribenb o i m 

d-metri Matthews 1.4.6 M 

d-gum  1.5.1 dPCR 

quasimetri Rutten-Smyth 1.6.3 RS 

Table 1.3: Summary of single-valued fxed-point theorems. 

Figure 1.1: Dependenies between fxed-point theorems from Chapter 1. If a the-
orem is depited lower in the diagram, this means that it is more general. See 

Table 1.3 for the abbreviations. 

1.7 Summary and Further Work 

\e have presented a numb e r of theorems on diferent order strutures and gen-
eralized metris, whih are olleted in Table 1.3. 

The dependenies b e t ween these theorems are depited in Figure 1.1, where 

the letters abbreviate the theorems as listed in Table 1.3. The abbreviation �pu" 

stands for the fat that stritly ontrating funtions on ompat ultrametri 

spaes have unique fxed p o i n ts, whih is an easy orollary of Theorem 1.2.3. 

\e note that the PrieB-Crampe and Ribenboim theorem 1.3.4 an b e proven 

using the Knaster-Tarski theorem 1.1.7, analogous to a proof in [EH98] of the 

Banah ontration mapping theorem 1.2.2 from the Kleene theorem 1.1.3, see 

Setion 3.3. Also, the disloated PrieB-Crampe and Ribenb o i m theorem 1.5.1, 

respetively the Matthews theorem, an b e proven using the non-disloated ver-
sion, i.e. the PrieB-Crampe and Ribenboim theorem 1.3.4, respetively the Banah 

ontration mapping theorem 1.2.2, see Setions 3.4 and 3.1, respetively. 

\e list a numb e r of questions arising from our results. 
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Question 1.1 Is there a reasonable notion of d-open set orresponding to the 

notions of d-neighbourhood, d-onvergene and d-ontinuity as in 

Setion 1.4? 

Question 1.2 \hat are neessary and suÆient onditions suh that a spherially 

omplete gum is ompat? 

Question 1.3 Is there a quasimetri version of the PrieB-Crampe and Ribenboim 

theorem 1.3.4? 

Question 1.4 \hih of the theorems in Figure 1.1 allow for ommon generaliza-
tions? 
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Chapter 2 

Fixed-point Theorems for 

Multivalued Mappings 

\e briefy present fxed-point theorems for multivalued mappings on partial or-
ders and generalized metris, and study some of the relationships between them. 

It turns out that many fxed-point theorems from Chapter 1 an b e arried over 

to a multivalued setting. In Setion 2.1, we arry over the Knaster-Tarski theorem 

1.1.7. In Setion 2.2, we present a m ultivalued version of the Banah ontration 

mapping theorem 1.2.2. Setion 2.3 is onerned with multivalued variants of the 

PrieB-Crampe and Ribenboim theorem and Setion 2.4 introdues a theorem for 

multivalued mappings on quasimetris whih reoniles the theorems on partial 

orders and metris analogous to the Rutten-Smyth theorem 1.6.3. 

2.1 Partial Orders 

\e review a multivalued version of the Knaster-Tarski theorem 1.1.7 due to 

[KM98]. A multivalued Kleene theorem will be presented in Setion 2.4. 

2.1.1 Defnition Let T : X - 2x b e a multivalued mapping defned on X. An 

orbit of T is a net (xi)iE+ 

in X, where o denotes an ordinal, suh t h a t xi+1 

E T (xi) 

for all i E o. An orbit (xi)iE+ 

of T is alled an w-orbit if o is the frst limit ordinal, 

w. An orbit (xi)iE+ 

of T will b e said to b e eventually onstant if there is a tail 

(xi)f<i 

of (xi)iE+ 

whih is onstant in that xi 

= xj 

for all i, j E o satisfying 

p : i, j. 

If T : X - 2x is a m ultivalued mapping and x is a fxed point of T , then we 

obtain an orbit of T whih i s e v entually onstant b y setting x = x = x1 

= x2 

. . . . 

Conversely, suppose that (xi)iE+ 

is an orbit of T with the property t h a t xi+1 

= xi 

for all i E o satisfying p : i, for some ordinal p E o. Then xf 

= xf+1 

E T (xf) 

and we h a ve a fxed point xf 

of T . T h us, having a fxed point a n d h a ving an orbit 

whih is eventually onstant are essentially equivalent onditions on T . 
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2.1.2 Defnition A multivalued mapping T defned on a partially ordered set 

X will b e said to b e monotoni if, for all x, y E X satisfying x : y and for all 

a E T (x), there exists b E T (y) su h that a : b. 

2.1.3 Defnition An orbit (xi)iE+ 

of T is said to be inreasing if we have xi 

: xj 

for all i, j E o satisfying i : j, and is said to b e eventually inreasing if some 

tail of the orbit is inreasing. Finally, an inreasing orbit (xi)iE+ 

of T is said to 

be tight if, for all limit ordinals p E o, w e have xf 

= sup {xi 

I i p }. 

Suppose that (xi)iE+ 

is an inreasing orbit of T and that p E o is a limit 

ordinal. Then xf+1 

is an element of T (xf) suh that xi 

: xf+1 

for all i p , and 

of ourse sup{xi 

I i p } : xf 

: xf+1 

if the supremum exists. In partiular, any 

inreasing orbit (xi)iE+ 

whih is tight (if suh exists) must satisfy the following 

ondition: 

For any limit ordinal p, there exists x (= xf+1) E T (sup{xi 

I i p }) 

suh that sup{xi 

I i p } : x. (2.1) 

This ondition is a slight v ariant of a ondition whih w as identifed in [KM98] 

as a suÆient ondition for the existene of fxed points of monotoni multivalued 

mappings. In fat, the following result was established in [KM98], exept that it 

was formulated for dereasing orbits and infma and we h a ve  hosen to work with 

the dual notions instead, to maintain onsisteny. 

2.1.4 Theorem (Knaster-Tarski multivalued) Let X b e a omplete partial 

order and let T : X - 2x b e a multivalued mapping whih is non-empty, mono-
toni and satisfes (2.1). Then T has a fxed p o in t. 

\e omit details of the proof of this result exept to observe that, starting with 

the b o tto m element x = l of X, the ondition (2.1) permits the onstrution, 

transfnitely, of a tight orbit (xi) of T . Sine this an b e arried out for ordinals 

whose underlying ardinal is greater than that of X, we are fored to onlude 

that (xi) is eventually onstant and therefore that T has a fxed p o in t. 

Noting that sup{xi 

I i p } = sup{xi+1 

I i p }, one an view (2.1) shemat-
ially as the statement �sup{T (xi) I i p} : T (sup{xi 

I i p})" and it an 

therefore be thought of as a rather natural, weak ontinuity ondition on T whih 

is automatially satisfed by any monotoni single-valued mapping T on a po. 

The question of when the orbit onstruted in the previous paragraph beomes 

onstant in w steps as in the single-valued Kleene theorem 1.1.3 is a question of 

ontinuity and will be taken up in Setion 2.4. 

Theorem 2.1.4 was established in [KM98] in order to show the existene of 

(onsistent) answer sets for a lass of disjuntive programs alled signed programs, 

see Setion 7.3. At the end of Setion 7.3, we w ill g iv e examples whih sh o w th a t 

it sometimes is neessary to work transfnitely in pratie, a point w h i  h justifes 

the name �Knaster-Tarski theorem" applied to Theorem 2.1.4. 
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Thus, to summarize, monotoniity o f T together with (2.1) appears to give, for 

multivalued mappings, an exat analogue of the fxed-point theory for monotoni 

single-valued mappings due to Knaster-Tarski. Moreover, there are appliations to 

the semantis of disjuntive programs whih parallel those made in the standard, 

non-disjuntive ase. 

2.2 Metris 

\e present a result due to [KKM93] w h i  h i s a m ultivalued version of the Banah 

ontration mapping theorem 1.2.2. 

2.2.1 Defnition Let (X , d ) be a metri spae. A multivalued mapping T : X -
2x is alled a ontration if there exists a real numb e r k 1 suh that for every 

x E X, for every y E X, and for all a E T (x), there exists b E T (y) suh that 

d(a, b) : kd (x, y). 

The following result is taken from [KKM93]. An alternative proof will be given 

in Setion 2.4. 

2.2.2 Theorem (Banah multivalued) Assume that X is a omplete metri 

spae, and that T i s a m ultivalued ontration on X suh that, for every x E X, 

the set T (x) is losed and non-empty. Then T has a fxed p o in t. 

This theorem was established with a speif objetive in view, namely, t o s h o w 

the existene of answer sets for disjuntive logi programs whih are ountably 

stratifed [KKM93]. 

2.3 Generalized Ultrametris 

\e present multivalued versions of the PrieB-Crampe and Ribenb o i m theorem 

1.3.4. 

2.3.1 Defnition Let (X , d, r) b e a generalized ultrametri spae (so that r is 

a partially ordered set). A multivalued mapping T on X is alled stritly on-
trating , respetively, non-expanding if, for all x, y E X with x = y and for 

every a E T (x), there exists an element b E T (y) suh that d(a, b) d(x, y), 

respetively, d(a, b) : d(x, y). 

The mapping T is alled stritly ontrating on orbits, if for every x E X 

and for every a E T (x) with a = x, there exists an element b E T (a) with 

d(a, b)  d (a, x). 

For T : X - 2x , let Ix 

= {d(x, y) I y E T (x)} and, for a subset � r, 

denote by Min � the set of all minimal elements of �. 

The following theorem was proved in [PCR00]. Although we know of no 

speif appliation of it, we believe it will prove to b e useful by virtue of the 

general nature of the set r. 
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2.3.2 Theorem (Prie:-Cramps and Ribenboim multivalued) Let (X , d ) 

b e a spherially omplete generalized ultrametri spae. Let T : X - 2x be 

non-empty, non-expanding and stritly ontrating on orbits. Moreover, assume 

that for every x E X, Min Ix 

is fnite and that every element of Ix 

has a lower 

bound in Min Ix. Then T has a fxed point. 

The following ideas were onsidered in [KKM93]. \e show that the notions 

defned there basially oinide with those from generalized ultrametris. 

2.3.3 Defnition A semigroup is a set V together with an assoiative binary 

operation : V x V - V . If is also ommutative, then the semigroup is alled 

ommutative or Abelian. A semigroup is alled a semigroup with 0 if there exists 

an element 0 E V suh that 0 u = u  0= u for all u E V . 

By an ordered semigroup with 0 w e mean a semigroup with 0 on whih there 

is an ordering : satisfying: 0 : v for all v E V , and if v1 

: v2 

and v1 

' : v2
' , then 

v 

' v2
' .v1 1 

: v2 

2.3.4 Defnition Let V b e an ordered Abelian semigroup with 0 and let X be 

an arbitrary set. A g-metri on X is a mapping d : X x X - V whih satisfes 

the following onditions for all x, y, z E X. 

1. d(x, y) = 0 if and only if x = y. 

2. d(x, y) = d(y, x ). 

3. d(x, y) : d(x, z) d(z, y ). 

A pair (X , d ) onsisting of a set X and a g-metri d on X is alled a g-metri 

spae. 

In [KKM93], g-metris were alled generalized metris, but we have hanged 

the notation sine the notion of generalized metri is used diferently in this 

thesis. \e will in fat not work with g-metris in the sequel sine the strongly 

related generalized ultrametris will suÆe for our purposes. \e investigate this 

relationship next; the following defnitions are again taken from [KKM93]. 

2.3.5 Defnition Let V denote the set of all expressions of the type 0 or 2-+ , 

where o is a ountable ordinal. An order is defned on V by: 0 : v for every 

v E V , and 2-+ : 2-f if and only if p : o. As a semigroup operation u v, we 

2-+ -(++1)will use the maximum max(u, v). It will be onvenient to write 

1
2 

= 2 . 

2.3.6 Defnition Assume that o is either a ountable ordinal or w1, the frst 

unountable ordinal, and that v = ( vf)fk + 

is a dereasing family of elements of 

V . Let X b e a g-metri spae, and let (xf)fk + 

b e a family of elements of X. 

(i) (xf) is said to v-luster to x E X if, for all p, we have d(xf, x ) vf 

whenever p  o . 
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(ii) (xf) is said to b e v-Cauhy if, for all p and I, we have d(xf, x 1 

) vf 

whenever p  I  o . 

(iii)  X is said to be omplete if for every v, every v-Cauhy family v-lusters to 

some element in X. 

(iv) A set A X will b e alled omplete if for every v, whenever a v-Cauhy 

family onsists of elements of A, it v-lusters to some element of A. 

A strong relationship b e t ween the notion of ompleteness of g-metris with 

the notion of trans-ompleteness, Defnition 1.3.6, for generalized ultrametris 

is obvious. \e show that they oinide by showing equivalene b e t ween om-
pleteness for g-metris and spherial ompleteness for generalized ultrametris, 

f. Proposition 1.3.8. G )
2.3.7 Defnition A mapping T : X - 2x is alled a 

1
2 

-ontration if, for every 

x E X, for every y E X and for every a E T (x), there exists b E T (y) suh that 

d(a, b) : 

1
2 

d(x, y). 

The following theorem was proved in [KKM93]. 

2.3.8 Theorem Let X b e a omplete g-metri spae, let T b e a multivalued G
1 

)
2 

-ontration on X suh that T (x) is not empty for some x E X (i.e. T is not 

identially empty), and suppose that for every x E X the set T (x) is omplete. 

Then T has a fxed p o in t. 

\e present some results relating the results just given to the notion of spherial 

ompleteness we disussed earlier. 

Let (X , d ) b e a g-metri spae with respet to V as given in Defnition 2.3.5. 

Then d is in fat a generalized ultrametri spae and vie-versa. 

2.3.9 Proposition Let (X , d ) b e a omplete g-metri spae with respet to V . 

Then X is spherially omplete as an ultrametri spae. G )
Proof: Let B = Bv1 

(xf) b e a dereasing hain of balls in X, and without 

fk + 

loss of generality assume that it is stritly dereasing and that o is a limit ordinal. 

\e have to show that B = 0. L et v = ( vf)f. S in e B is a hain, it is easy to see 

that (xf+1)f 

is v-Cauhy and therefore, by ompleteness of X, (xf+1) v-lusters 

to some x E X. By defnition, this means that d(xf+1, x )  vf 

and therefore that 

x E Bv1 

(xf+1) = Bv1 

(xf) for all p. T hus, x E B. • 

2.3.10 Proposition Let (X , d, V ) b e a spherially omplete generalized ultra-
metri spae. Then X is omplete as a g-metri spae. 
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Proof: Let v= (vf) b e a dereasing family of elements of V whih is, without 

loss of generality, stritly dereasing, and let (xf) b e v-Cauhy. For v E v, e.g. ( )
v = 2 

-+ , let v 

' denote 2-(++1). T hen B = 

� (xf) is a dereasing hain of balls Bv
1 f 

in X. By spherial ompleteness, it has non-empty i n tersetion. Choose x E B. 

Then for all p we obtain d (xf, x ) : v 

' vf, i.e. (xf) v-lusters to x. •f

This means, by virtue of Theorem 2.3.2, that we an reformulate the assump-
tions in Theorem 2.3.8 and thereby obtain the following theorem whih in fat is 

a speial ase of [PCR00, (3.4)]. 

2.3.11 Theorem Let X be a spherially omplete generalized ultrametri spae 

(with respet to V ) and let T b e m ultivalued, non-empty and stritly ontrating 

on X and s.t. T (x) is spherially omplete for all x E X. Then T has a fxed 

point. 

2.4 Quasimetris 

\e study a multivalued version of the Rutten-Smyth theorem 1.6.3, whih will 

lead to a m ultivalued version of the Kleene theorem 1.1.3. 

2.4.1 Defnition Let (X , d ) be a quasimetri spae. A multivalued mapping T : 

X - 2x is alled a ontration if there exists a , with 0 : , 1 su h that, for all 

x, y E X and for all a E T (x), there exists b E T (y) satisfying d(a, b) : ,d(x, y). 

\e say that T is non-expanding if, for all x, y E X and for all a E T (x), there 

exists b E T (y) satisfying d(a, b) : d(x, y). 

These defnitions are learly extensions of well-known defnitions made for 

single-valued mappings, and indeed ollapse to them in the ase that T is single-
valued. An obvious and natural defnition of ontinuity of T is the following: 

for every Cauhy sequene (xn) in X with limit x and for every hoie of yn 

E 

T (xn), we have that (yn) is a Cauhy sequene and lim yn 

E T (x). In fat, the 

weaker defnition following, whih is implied by the one just given, suÆes for our 

purposes and will be used throughout. 

2.4.2 Defnition Let T : X - 2x b e a m ultivalued mapping defned on a quasi-
metri spae (X , d ). \e say that T is ontinuous if we have lim xn 

E T (lim xn) 

for every w-orbit (xn) of T whih is a Cauhy sequene. 

Again, this defnition ollapses to a natural one in the ase that T is 

single-valued. In fat, if T is single-valued, it simply states the ondition that 

lim T (xn) = lim xn+1 

= lim xn 

= T (lim xn) for every w-orbit whih is a Cauhy 

sequene, whih i s a w eaker ondition than that of CS-ontinuity as in Defnition 

1.6.2(1). 

Finally, i f ( X , d ) is a quasimetri spae, we defne the assoiated partial order 

:d 

on X by x :d 

y if and only if d(x, y) = 0 , f. Setion 1.6. 
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CHAPTER 2. FIXED-POINT THEOREMS FOR MULTIVALUED MAPPINGS  

The main result of this setion is the following theorem, whih generalizes the 

Rutten-Smyth theorem 1.6.3. 

2.4.3 Theorem (Rutten-Smyth multivalued) Let (X , d ) b e a CS-omplete 

quasimetri spae and let T : X - 2x denote a non-empty and ontinuous 

multivalued mapping on X. Then T has a fxed p o i n t if either of the following 

two onditions holds: 

(a)  T is a ontration. 

(b)  T is non-expanding and there is x E X and x1 

E T (x ) suh that d(x , x 1) = 

0 i.e. x :d 

x1. 

Proof: (a) Let x E X. Sine T (x ) = 0, we an hoose x1 

E T (x ). Sine T is 

a ontration, there is x2 

E T (x1) su h that d(x1, x 2) : kd (x , x 1). Applying this 

argument repeatedly, we obtain a sequene (xn) suh that for all n 2 0 we have 

xn+1 

E T (xn) and d(xn+1, x n+2) : kd (xn, x n+1). Thus, (xn) is an w-orbit. Using 

the triangle inequality, w e obtain 

m-1 m-1

d(xn, x n+m) : 

 
d(xn+i, x n+i+1) : 

 
kn+id(x , x 1) : 

kn 

d(x , x 1). 

1 - k 

i=  i= 

Thus, (xn) is a (forward) Cauhy sequene in X and therefore is an w-orbit of T 

whih is Cauhy. Sine X is omplete, (xn) has a lim it x . N ow, by ontinuity of 

T , we obtain x E T (x ) and x is a fxed point of T , as required. 

(b) Let x E X and x1 

E T (x ) satisfy d(x , x 1) = 0. Sine T is non-expanding, 

there is x2 

E T (x1) with d(x1, x 2) : d(x , x 1) = 0. Indutively, we obtain a  k-1sequene (xn) suh that xn+1 

E T (xn) and d(xn, x n+k) : d(xn+i, x n+i+1) = i= 

0. Hene, (xn) is an orbit of T whih is forward Cauhy and therefore has a limit 

x . By ontinuity of T again, we see that x is a fxed point of T . • 

The proof given here of Part (a) of Theorem 2.4.3 is, up to the last step, exatly 

the same as the frst half of the proof of the multivalued Banah ontration 

mapping theorem 2.2.2 established in [KKM93], exept that we are working with 

a quasimetri rather than with a metri and therefore are needs to b e taken 

that no use is made of symmetry. On the other hand, the proof we give next of 

Theorem 2.2.2, whih roughly orresponds to the seond half of the proof given 

in [KKM93], is shorter and tehnially somewhat simpler than the proof given in 

[KKM93]. 

\e s h o w next that Theorem 2.4.3 inludes both the multivalued Banah  o n -
tration mapping theorem of [KKM93] just mentioned, and also a natural exten-
sion of the Kleene theorem 1.1.3 to multivalued mappings, see Theorem 2.4.6. As 

stated earlier, this unifation is in diret analogy with the single-valued ase. 

Proof of Theorem 2.2.2 \e show that the ondition that T (x) is losed for 

every x together with that of T b e i n g a  o n tration implies that T is ontinuous, 

and the result then follows from Part (a) of Theorem 2.4.3. 
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CHAPTER 2. FIXED-POINT THEOREMS FOR MULTIVALUED MAPPINGS  

First note that (X , d ) b e i n g a omplete metri spae means that (X , d ) is 

omplete as a quasimetri spae, and obviously T satisfes (a) of Theorem 2.4.3. 

Now suppose that (xn) is an orbit of T whih i s a f o r w ard Cauhy sequene and 

hene a Cauhy sequene; we want to show that x E T (x ), where x is the 

limit of (xn). 

Sine T is a ontration, for every n there exists yn 

E T (x ) suh that 

d(xn+1, y n) : kd (xn, x ). Therefore, d(yn, x ) : d(yn, x n+1) d(xn+1, x ) : 

kd (xn, x ) d(xn+1, x ). Hene, we have yn 

- x . But eah yn 

E T (x ), and 

T (x) is losed for every x. Consequently, the limit x of the sequene yn 

also 

belongs to T (x ). So, x E T (x ), and it follows that T is ontinuous as required. 

• 

\e next turn our attention to demonstrating that Theorem 2.4.3 ontains a 

version of the Kleene theorem for multivalued mappings. It will b e neessary to 

make some preliminary observations, as follows, onerning partially ordered sets 

and the quasimetris they arry. \e refer to [Rut96] for these results. 

2.4.4 Proposition Let (X, :) b e a partial order and let (X , d ) denote the as-
soiated quasimetri spae, i.e. d = d< 

as in Setion 1.6. Then the following 

hold. 

(i) A non-empty multivalued mapping T : X - 2x is monotoni if and only if 

it is non-expanding. 

(ii) A sequene (xn) in X is eventually inreasing in (X, :) if and only if it is a 

Cauhy sequene in (X , d ). 

(iii) The partially ordered set (X, :) is w-omplete if and only if (X , d ) is om-
plete as a quasimetri spae. Furthermore, in the presene of either form of 

ompleteness, the limit of any Cauhy sequene is the least upper bound of 

any inreasing tail of the sequene. 

Notie that neither Part (iii) of this result nor the next defnition assumes the 

presene of a bottom element. 

2.4.5 Defnition Let the partial order (X, :) be w-omplete and let T : X - 2x 

b e a non-empty multivalued mapping on X. \ e say that T is w-ontinuous if T 

is monotoni and, for any w-orbit (xn) of T whih is eventually inreasing, we 

have sup(xn) E T (sup(xn)), where the supremum is taken over any inreasing tail 

of (xn). 

\e obtain fnally the following Kleene theorem for multivalued mappings as 

an easy orollary of our Theorem 2.4.3. Some of its appliations will be disussed 

in Setion 7.3. 

2.4.6 Theorem (Kleene multivalued) Let (X, :) be an w-omplete partial 

order (with bottom element) and let T : X - 2x b e a non-empty, w-ontinuous 

multivalued mapping on X. Then T has a fxed point. 
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spae name of theorem referene numb e r 

w-po Kleene multivalued 2.4.6 

po Knaster-Tarski multivalued 2.1.4 

omplete metri Banah multivalued 2.2.2 

gum PrieB-Crampe and 2.3.2 

Ribenb o i m m ultivalued 

quasimetri Rutten-Smyth multivalued 2.4.3 

Table 2.1: Summary of multivalued fxed-point theorems. 

Proof: Sine (X, :) is w-omplete, the assoiated quasimetri spae (X , d ) (i.e. 

d = d< 

as in Setion 1.6) is omplete by Proposition 2.4.4. Furthermore, T is 

monotoni, sine it is w-ontinuous, and is therefore non-expanding by Proposi-
tion 2.4.4 again. On taking x = l and x1 

E T (x ) arbitrarily, we have x and 

x1 

satisfying d(x , x 1) = 0. The result will therefore follow from Part (b) of The-
orem 2.4.3 as soon as we have established that T is ontinuous in the sense of 

Defnition 2.4.2. 

Let (xn) be any w-orbit of T whih is a Cauhy sequene. Then (xn) is even-
tually inreasing and, by w-ontinuity o f T , w e have sup(xn) E T (sup(xn)), where 

the supremum is taken over any inreasing tail of (xn). In other words, we have 

lim xn 

E T (lim xn) and hene we have the ontinuity o f T that we require. • 

The Kleene theorem for single-valued mappings T asserts that the fxed point 

produed by the usual proof is the least fxed point o f T . This assertion does not 

immediately arry over to the ase of multivalued mappings T without additional 

assumptions. One suh simple, though rather strong, ondition is the following: 

for eah x E X, assume that T (x) has a least element Nx 

and that Nx 

: Ny 

whenever x : y. T o see that this suÆes, suppose that x is any fxed point o f T , 

and onstrut the orbit (xn) of T by setting x = l and xn+1 

= Nxn 

for eah n. 

Then (xn) onverges to a fxed point x. Noting that l : x and that Nx 

: x, we 

see that xn 

: x for all n. Hene, x : x. 

2.5 Summary and Further Work 

\e summarize the fxed-point theorems presented in this hapter in Table 2.1, 

and note that these theorems have orresponding versions in the single-valued 

ase whih have been arried over. The obvious task of arrying over further 

single-valued fxed-point theorems along the same lines remains and should pose 

no partiular diÆulties. 

\e note that in the appliations in Part II of the thesis, all gums will always 

have some ordinal, in reverse order, as distane set as in Defnition 2.3.5, see 

also Setions 3.2 and 3.3. This is aused by the fat that the gums arising in our 

appliations are derived from level mappings whih are themselves mappings into 

ordinals. 
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\e will employ m ultivalued mappings in the ontext of disjuntive logi pro-
grams in Setion 7.3, where multivalued mappings naturally arise as semanti 

operators. In [ZR97a, ZR97b, ZR98], the authors avoid using multivalued map-
pings in the same ontext by using operators on p o werdomains instead. And in-
deed, the monotoniity notions used in this hapter orrespond to p o werdomain 

onstrutions, more speifally to the Hoare p o werdomain [SHLG94], whih is 

an alternative to the Smyth p o werdomain employed in [ZR98]. Details of these 

relationships remain to b e worked out. 
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Chapter 3 

Conversions b e t ween Spaes 

\e study relationships b e t ween the diferent spaes from Chapters 1 and 2. In 

partiular, we will fous on the representation of some of the spaes by others, 

whih will in some ases lead to alternative proofs for the respetive fxed-point 

theorems. 

In Setion 3.1, we will establish relationships b e t ween onventional metris 

and disloated metris. \e will obtain several methods of obtaining disloated 

metris from metris, some of whih will b e applied in Part I I of the thesis, 

and we will show how the Matthews theorem 1.4.6 an b e derived from the 

Banah ontration mapping theorem 1.2.2. In Setion 3.2, we will see how Sott-
Ershov domains an be ast into generalized ultrametri spaes, whih will also be 

applied in Part II of the thesis. In Setion 3.3 we will ast generalized ultrametri 

spaes into domains and derive another alternative proof of the PrieB-Crampe and 

Ribenboim theorem. Finally, in Setion 3.4, we will study relationships b e t ween 

gums and d-gums analogous to Setion 3.1. 

\e w ould like to note that quasimetris are strongly related to partial orders, 

and we refer to [Smy87, Smy91, BvBR96, Rut96] for these matters sine we will 

not make any speif use of these relationships in the sequel. 

3.1 Metris and Disloated Metris 

In this setion, we w i l l i n vestigate relationships between onventional metris and 

d-metris. First note that if f is a ontration with ontrativity fator , on a 

d-metri X, w e have f(f(x), f (x)) : ,f(x, x) for all x E X. Sine the requirement 

f(x, x) = 0 for all x E X renders a d-metri to b e a metri, we are interested in 

understanding the funtion u0 

: X - J defned by u0(x) = f(x, x). 

3.1.1 Defnition Let (X , f ) b e a d-metri spae. The funtion u0 

: X - J : 

x - f(x, x) is alled the disloation funtion of f. 

Depending on the ontext, disloation funtions are sometimes alled weight 

funtions, e.g. in [Mat94, \a00]. 

43  



 

 

 

   

 

 

  

  

 

 

CHAPTER 3. CONVERSIONS BETWEEN SPAES  

3.1.2 Lemma Let (X , f ) be a d-metri spae. Then u0 

: X - J is d-ontinuous. 

Proof: Realling the observations following Defnition 1.4.14, let x E X and let 

(x,) b e a net in X whih d-onverges to x, that is, for eah E > 0 there exist , 

suh that f(x,, x )  E for all , > , . Sine u0(x,) = f(x,, x ,) : 2f(x,, x ) for all 

,, w e obtain u0(x,) - 0 for inreasing ,. It remains to show t h a t u0(x) = 0, and 

this follows from u0(x) = f(x, x) : 2f(x,, x ), sine the latter term tends t o 0 f o r 

inreasing ,. • 

The following is a general result whih shows how d-metris an b e obtained 

from onventional metris. 

3.1.3 Proposition Let (X , d ) b e a metri spae, let u : X - J
+ b e a funtion 

and let T : J
+ x J

+ - J
+ b e a symmetri operator whih satisfes the triangle 

inequality. Then (X , f ) with 

f(x, y) = d(x, y) T (u(x), u (y)) 

is a d-metri spae and u0(x) = T (u(x), u (x)) for all x E X. In partiular, if  

T (x, x) = x for all x E J
+ , then u0  u.  

Proof: (Mii) If f(x, y) = 0, then d(x, y) T (u(x), u (y)) = 0. Hene d(x, y) = 0  

and x = y.  

(Miii) Obvious by symmetry of d and T .  

(Miv) Obvious sine d and T satisfy the triangle inequality. •  

Completeness also arries over if some ontinuity onditions are imposed. 

3.1.4 Proposition Using the notation of Proposition 3.1.3, let u b e ontinuous 

as a funtion from (X , d ) to J
+ (endowed with the usual topology), and let T 

b e ontinuous as a funtion from the topologial produt spae (J+ )2 to J
+ , 

satisfying the additional property T (x, x) = x for all x. If (X , d ) is a omplete 

metri spae, then (X , f ) is a omplete d-metri spae. 

Proof: Let (xn) b e a Cauhy sequene in (X , f ). Thus, for eah E > 0, there 

exists n E N suh that for all m, n 2 n we have d(xm, x n) : d(xm, x n) 
T (u(xm), u (xn)) = f(xm, x n) E. So (xn) is also a Cauhy sequene in (X , d ) 

and therefore has a unique limit x in (X , d ). In partiular, we have xn 

- x in 

(X , d ) and also u(xn) - u(x) and T (u(xn), u (x)) - T (u(x), u (x)) = u(x). \e 

have to show that f(xn, x ) onverges to 0 as n - . For all n E N we obtain 

f(xn, x ) = d(xn, x ) T (u(xn), u (x)) - u(x) = u0(x), and it remains to show th a t 

f(x, x) = 0 . But this follows from the fat that (xn) is a Cauhy sequene, sine 

this implies that u(xn) = u0(xn) = f(xn, x n) - 0 as n - , h en e b y ontinuity 

of u we obtain u(x) = 0. • 

\e an also obtain a partial onverse of Proposition 3.1.3. 
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CHAPTER 3. CONVERSIONS BETWEEN SPAES  

3.1.5 Proposition Let (X , f ) be a d-metri spae whih satisfes ondition (Piv) 

from Defnition 1.4.12 and let T : J
+ x J

+ - J
+ b e a symmetri operator suh 

that T (x, x) = x for all x E J
+ and whih satisfes the inequality 

T (x, y) 2 T (x, z) T (z, y ) - T (z, z ) 

for all x, y, z E J
+ . Then (X , d ) w ith 

d(x, y) = f(x, y) - T (u0(x), u 0(y)) 

is a pseudometri spae. 

Proof: (Mi) For all x E X we have d(x, x) = f(x, x) - u0(x) = 0.  

(Miii) Obvious by symmetry of f and T .  

(Miv) For all x, y E X we obtain  

d(x, y) = f(x, y) - T (u0(x), u 0(y)) 

: f(x, z) f(z, y ) - f(z, z ) - (T (u0(x), u 0(z)) T (u0(z), u 0(y)) - u0(z)) 

= f(x, z) - T (u0(x), u 0(z)) f(z, y ) - T (u0(z), u 0(y)) 

= d(x, z) d(z, y ) 

• 

An example of a natural operator T whih satisfes the requirements of Propo-
sitions 3.1.3, 3.1.4 and 3.1.5 is 

1 

T : J
+ x J

+ - J
+ : ( x, y) - (x y),

2

f. [Mat92]. 

\e disuss a few more examples of d-metris whih are partly taken from 

[Mat92]. 

3.1.6 Example Let d b e the metri d(x, y) = 

1
2 

Ix - yI on J
+ , let u : J

+ - J
+ 

b e the identity funtion, and defne T (x, y) = 

2
1 (x y). Then f as defned in 

Proposition 3.1.3 is a d-metri and f(x, y) = 

1
2 

Ix - yI 

1
2 

(x y) = max{x, y} for 

all x, y E J
+ . 

3.1.7 Example Let I be the set of all losed intervals on J. T hen d : Ix  I - J
+ 

defned by 

1 

d([a, b], [, d]) = (Ia - I Ib - dI)
2 

is a metri on I. Let u : I - J
+ b e defned by 

u([a, b]) = b - a 

and let T b e defned as in Example 3.1.6. Then the onstrution in Proposition 

3.1.3 yields a d-metri f suh that 

f([a, b], [, d]) = max{b, d} -min{a, } 
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for all [a, b], [, d] E I . 

Indeed, we obtain 

1 1 1 1 

f([a, b], [, d]) = d([a, b], [, d]) b - a d -  

2 2 2 2 

1 

= (Ib - dI b d Ia - I - a - )
2 

1 1 

= (Ib - dI  ( b d)) (Ia - I - (a ))
2 2 

= max{b, d} -min{a, }. 

3.1.8 Example (J+ , f ) where f : ( x, y) - x y is a disloated metri spae. 

The following proposition gives an alternative w ay of obtaining d-ultrametris 

from ultrametris. \e will apply this in Setion 5.2. 

3.1.9 Proposition Let (X , d ) be an ultrametri spae and let u : X - J
+ be a 

funtion. Then (X , f ) with 

f(x, y) = max{d(x, y), u (x), u (y)} 

is a d-ultrametri and f(x, x) = u(x) for all x E X. If u is ontinuous as a funtion 

from (X , d ), then ompleteness of (X , d ) implies ompleteness of (X , f ). 

Proof: (Mii) and (Miii) are obvious. 

(Miv 

' ) \e obtain for all x, y, z E X 

f(x, y) = max{d(x, y), u (x), u (y)} 

: max{d(x, z), d (z, y ), u (x), u (y)} 

: max{d(x, z), u (x), u (z), d (z, y ), u (y)} 

= max {f(x, z), f (z, y )}. 

For ompleteness, let (xn) b e a C a u  hy sequene in (X , f ). Then (xn) is a Cauhy 

sequene in (X , d ) and onverges to some x E X. \e then obtain f(xn, x ) = 

max{d(xn, x ), u (xn), u (x)} - u(x) as n - . As in the proof of Proposition 

3.1.4 we obtain u(x) = 0 whih ompletes the proof. • 

\e i n vestigate the relationship between the Matthews theorem 1.4.6 and the 

Banah ontration mapping theorem 1.2.2. 

3.1.10 Proposition Let (X , f ) b e a d-metri spae and defne d : X x X - J 

by d(x, y) = f(x, y) for x = y and d(x, x) = 0 for all x E X. Then d is a metri. 

Proof: \e obviously have d(x, x) = 0 for all x E X. If d(x, y) = 0 then either 

x = y or f(x, y) = 0, and from the latter we also obtain x = y. Symmetry is lear. 

\e want to show that d(x, y) : d(x, z) d(z, y ) for all x, y, z E X. If d(x, z) = 

f(x, z) and d(z, y ) = f(z, y ) then the inequality is lear. If d(x, z) = 0 then x = z 

and the inequality redues to d(x, y) : d(x, y) whih holds. If d(z, y ) = 0 then 

z = y and the inequality redues to d(x, y) : d(x, y) whih holds. • 
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3.1.11 Proposition Let (X , f ) b e a d-metri spae and defne d : X x X - J 

by d(x, y) = f(x, y) for x = y and d(x, x) = 0 for all x E X. If the metri d is 

omplete, so is f, and if f is a ontration relative t o f then f is also a ontration 

relative t o d. 

Proof: If (xn) is a Cauhy sequene in f, then for all E there exists n suh that 

f(xk, x m) E for all k , m 2 n . Consequently, we also obtain d(xk, x m) E for 

all k , m 2 n , and sine d is omplete, the sequene (xn) onverges in d to some 

x and d(xn, x ) - 0 as n - . It remains to show that f(xn, x ) - 0 as n - . 

\e onsider two ases. 

(1) Assume that the sequene (xn) is suh that there exists n with xm 

= x 

for all m 2 n . Then f(xm, x ) = d(xm, x ) for all m 2 n , i.e. f(xm, x ) - 0, and 

hene f(xn, x ) - 0. 

(2) Assume that there exist infnitely many nk 

E N suh that xnk 

= x. Sine 

(xn) is a Cauhy sequene with respet to f we obtain f(xnk 

, x )  Efor all E > 0, 

i.e. f(x, x) = 0. Hene f(xn, x ) = d(xn, x ) for all n E N as required. 

Let x, y E X and assume f(f(x), f (y)) : ,f(x, y) for some 0 : , 1. If 

f(x) = f(y) then d(f(x), f (y)) = 0, hene d(f(x), f (y)) : ,d(x, y). If f(x) = 

f(y) then x = y and so d(f(x), f (y)) = f(f(x), f (y)) : ,f(x, y) = ,d(x, y) as 

required. • 

3.1.12 Proposition Let (X , f ) b e a omplete d-metri spae and defne d : 

X x X - J by d(x, y) = f(x, y) for x = y and d(x, x) = 0 for all x E X. Then 

the metri d is omplete, and if f is a ontration relative to d then f is not 

neessarily a  o n tration relative t o f. 

Proof: Let (xn) be a Cauhy sequene in d. If ( xn) e v entually beomes onstant, 

the sequene obviously onverges in d. So assume this is not the ase, and it 

an b e noted that then the sequene (xn) ontains infnitely many mutually dis-
tint points. Indeed it is easy to see that otherwise (xn) would not b e a Cauhy 

sequene. Now defne a subsequene (yn) whih is obtained from (xn) by remov-
ing multiple ourrenes of p o i n ts in (xn): For eah n E N let yn 

= xk 

where 

k is minimal with the property that for all m n we have xk 

= ym. Sine 

(yn) is a subsequene of the Cauhy sequene (xn) we obtain that (yn) is also a 

Cauhy sequene. Now f o r a n y t wo elements y, z in the sequene (yn) w e have that 

d(y, z ) = f(y, z ) b y defnition of d, and hene (yn)  o n verges in f to some y E X. 

Hene (yn) also onverges in d to y . \e show next that (xn) onverges to y in 

d. Let E > 0 be arbitrarily hosen. Sine xn 

is a Cauhy sequene with respet to 

Ed there exists an index n1 

suh that d(xk, x m) 

2 

for all k , m 2 n1. Sine (yn) 

onverges to y in f, we also know that there is an index n2 

with yn2 

= xn3 

for 

Esome index n3 

suh that n3 

2 n1 

and d(yn2 

, y ) 

2 

. For all xn 

with n 2 n3 

we 

then obtain d(xn, y ) : d(xn, x ) d(xn3 

, y )  Eas required. n3 

Let X = {0, 1} and defne a mapping f : X - X by f(x) = 0 for all x E X. 

Let f be onstant equal to 1. Then f is a omplete d-metri and f is a ontration 
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relative to d. However f(f(0), f (1)) = f(0, 1), so f is not a ontration relative 

to f. • 

\e  a n n o w prove the Matthews theorem 1.4.6 by using the Banah ontra-
tion mapping theorem 1.2.2. 

Alternative proof of Theorem 1.4.6 Let (X , f ) be a omplete d-metri spae 

and f a  o n tration relative t o f. Defne d as above. Then d is a omplete metri 

and f is a ontration relative t o d. So f has a unique fxed point b y the Banah 

ontration mapping theorem. • 

3.2 Domains as Generalized Ultrametri Spaes 

It is our intention here to ast domains into ultrametri spaes. Usually, domains 

are endowed with the Sott topology, w h i  h is one of the T (but not T1) topologies 

of interest in theoretial omputer siene. However, as we will see, domains an 

b e e n d o wed with the struture of a spherially omplete ultrametri spae. This is 

not something normally onsidered in domain theory. However, given that there 

are many ultrametris whih are useful in theoretial omputer siene, it suggests 

that a study of the properties of generalized ultrametri spaes, as arried out e.g. 

in [Kuh99, Rib96, BMPC99, PC90, PCR93, PCR00, PCR00b, PCR00a], from 

this viewpoint i s worthy of onsideration. 

\e n o w ast an arbitrary domain into an ultrametri spae. For this purpose, 

let I denote an arbitrary ountable ordinal, and let r1 

denote the set {2-+ I o 
-+ 2-fI} of symb o ls 2 ordered by 2-+ if and only if p  o. 

3.2.1 Defnition Let r : D 

- I b e a funtion, alled a rank funtion, form 

r1+1 

and denote 2-1 by 0. Defne dr 

: D x D - r1+1 

by dr(x, y) = inf {2-+ I  i 

x if and only if  i y for every  E D 

with r()  o}. 

Then (D , d r) is an ultrametri spae said to b e indued by r. The defnition 

of dr 

is a variation of a onstrution made by M.B. Smyth in [Smy91, Example 

5], and applied to level mappings in logi programming in [Sed97]. Indeed, the 

intuition behind dr 

is that two elements x and y of the domain D are �lose" if 

they dominate the same ompat elements up to a ertain rank (and hene agree 

in this sense up to this rank); the higher the rank giving agreement, the loser 

are x and y. F urthermore, (D , d r) is spherially omplete. The proof of this laim 

does not make use of the existene of a bottom element o f D, so this requirement 

an b e omitted. The main idea of the proof is aptured in the following lemma 

whih shows that hains of balls give r i s e t o  hains of elements in the domain. It 

depends on the following elementary fats, see also Lemma 1.3.3. 

3.2.2 Fat (1) If I : Æ and x E BÆ(y), then B1 

(x) BÆ(y). Hene every point 

of a b a ll is also its entre. 

(2) If B1 

(x) c BÆ(y), then Æ : I (thus I  Æ, if r is totally ordered). 
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CHAPTER 3. CONVERSIONS BETWEEN SPAES  

It will simplify notation in the following proof to denote the ball B2-a (x) by 

B+(x). 

3.2.3 Lemma Let Bf(y) and B+(x) b e arbitrary balls in (D , d r). Then the fol-
lowing statements hold. 

(1) For any z E Bf(y), we have { E approx(  z) I r() p} = { E approx(  y) I 

r()  p }. 

(2)  Bf 

= sup { E approx(y) I r()  p} and B+ 

= sup{ E approx(  x) I r()  o} 

both exist. 

(3)  Bf 

E Bf(y) and B+ 

E B+(x). 

(4) \henever B+(x) Bf(y), we have Bf 

i B+. 

Proof: (1) Sine dr(z, y ) : 2-f, the frst statement f o l l o ws immediately from the 

defnition of dr. 

(2) Sine the set { E approx(z) I r()  p} is bounded by z, for any z and p, th e 

seond statement follows immediately from the onsistent ompleteness of D. 

(3) By defnition, we obtain Bf 

i y. Sine Bf 

and y agree on all  E D 

with 

r()  p , the frst statement in (3) holds, and the seond similarly. 

(4) First note that x E Bf(y), so that Bf(y) = Bf(x) and the hypothesis an be 

written as B+(x) Bf(x). \e onsider two ases. 

(i) If p : o, then using (1) and noting again that x E Bf(y) we get Bf 

= sup{ E 

approx(  y) I r() p} = sup{ E approx(  x) I r() p} i sup{ E approx(x) I 

r()  o } = B+ 

as required. 

(ii) If o p, then we annot have B+(x) c Bf(x) and we therefore obtain 

B+(x) = Bf(x) and onsequently B+(Bf) = Bf(Bf) = Bf(B+) using (3). \ith 

the argument of (i) and noting this time that y E B+(x), it follows that B+ 

i Bf. 

\e want to show that B+ 

= Bf. Assume in fat that B+ 

� Bf. Sine any 

point of a ball is its entre, we an take z = Bf 

in (2), twie, to obtain Bf 

= 

sup{ E approx(Bf) I r() p} and B+ 

= sup{ E approx(  Bf) I r() o}. 

Thus, the supposition B+ 

� Bf 

means that sup{ E approx(Bf) I r() o} � 

sup{ E approx(  Bf) I r() p}. Sine { E approx(  Bf) I r() o} { E 

approx(  Bf) I r() p}, there must b e some d E { E approx(Bf) I r() p} 

with d i sup{ E approx(Bf) I r() o} = B+. Thus, there is an element 

d E D 

with r(d) p satisfying d i B+ 

and d i Bf. This ontradits the fat 

that dr(B+, B f) : 2-f . Hene, B+ 

� Bf, and sine B+ 

i Bf, it follows that 

B+ 

= Bf 

and therefore that Bf 

i B+ 

as required. • 

3.2.4 Theorem The ultrametri spae (D , d r) is spherially omplete. 

Proof: By the previous lemma, every hain (B+(x+)) of balls in D gives rise to a 

hain (B+) in D in reverse order. Let B = sup B+. N ow let B+(x+) be an arbitrary 

ball in the hain. It suÆes to show that B E B+(x+). Sine B+ 

E B+(x+), we 
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have dr(B+, x +) : 2-+. But dr 

is a generalized ultrametri and so it suÆes to 

show that dr(B , B +) : 2-+. For every ompat element  i B+, we have  i B 

by onstrution of B. Now let  i B with  E D 

and r() o. \e have to 

show that  i B+. Sine  is ompat and  i B, there exists Bf 

in the hain 

with  i Bf. If B+(x+) Bf(xf), then Bf 

i B+ 

by Lemma 3.2.3 and therefore 

 i B+. If Bf(xf) c B+(x+), then o p, and sine  i Bf,  is an element of 

the set { E approx(  xf) I r()  o} = { E approx(x+) I r() o}. Sine B+ 

is 

the supremum of the latter set, we have  i B+ 

as required. • 

This result will be applied in Setion 5.1. 

3.3 Generalized Ultrametri Spaes as Domains 

\e will give an alternative proof of the PrieB-Crampe and Ribenb o i m theorem 

whih is inspired by [EH98], where the Banah  o n tration mapping theorem 1.2.2 

was proven from the Kleene theorem 1.1.3. \e will prove the PrieB-Crampe and 

Ribenboim theorem using the Knaster-Tarski theorem 1.1.7. For this purpose, we 

will again impose the ondition on the generalized ultrametri spae (X , d, r), 

that r is of the form {2-+ I o : I} for some ordinal I, ordered as in Setion 3.2 

and in Defnition 2.3.5 by 2-+ : 2-f if p : o. Suh a generalized ultrametri 

spae will heneforth be alled a gum with ordinal distanes. Reall that we denote 

2-1 by 0. 

The main tehnial tool whih was employed in [EH98] is the spae of for-
mal balls assoiated with a given metri spae. \e will extend this notion to 

generalized ultrametris. 

Let (X , d, r) be a generalized ultrametri spae with ordinal distanes and let 

B 

' X be the set of all pairs (x, o) w ith x E X and o E r. \e defne an equivalene 

relation r on B 

' X by setting (x1, o 1) r (x2, o 2) if and only if o1 

= o2 

and 

d(x1, x 2) : o1. The quotient spae BX = B 

'X/ r will b e alled the spae of 

formal balls assoiated with (X , d, r), and arries an ordering i whih is well-
defned (on representatives of equivalene lasses) by (x, o) i (y, p ) if and only 

if d(x, y) : o and p : o. \e denote the equivalene lass of (x, o) by [(x, o)], 

and note of ourse that the use of the same symb o l i b e t ween equivalene lasses 

and their representatives should not ause onfusion. 

3.3.1 Proposition The set BX is partially ordered by i. Moreover, X is spher-
ially omplete if and only if BX is hain-omplete. 

Proof: Let X b e spherially omplete and let [(xf, p )] be an asending hain in 

BX. Then Bf(xf) is a hain of balls in X with non-empty intersetion, and let 

x E Bf(xf). Then d(xf, x ) : p for all p. Hene the hain [(xf, p )] in BX has 

[(x, 0)] as an upper bound. Now onsider the set A of all o E r suh that [(x, o)] 

is an upper b o u n d of [(xf, p )]. Sine we are working with ordinal distanes only, 

the set A has a supremum I, and hene [(x, I)] is a least upper bound of the 

hain [(xf, p )]. 

50  



�

�
 

 

 

 
 

 

  

  

  

 

 

 

      

   

   

 

CHAPTER 3. CONVERSIONS BETWEEN SPAES  

Now let BX b e  hain-omplete and let (Bf(xf)) , where A r, be a hain 

fEA

of balls in X. Then [(xf, p )] is an asending hain in BX and has a least upper 

bound (x, I), and hene B1(x) Bf(xf). • 

3.3.2 Proposition The funtion l : X - B X : x - [(x, 0)] is injetive and l(X) 

is the set of all maximal elements of BX. 

Proof: Injetivity of l follows from (Ui). The observation that the maximal el-
ements of BX are exatly the elements of the form [(x, 0)] ompletes the proof. 

• 

Given a stritly ontrating mapping f on a generalized ultrametri spae 

(X , d, r) with ordinal distanes, we defne a funtion Bf : BX - B X by 

f(x), 2-(++1)G ) G ) 

if 2-+ = 0 

x, 2 

-+ -
(f(x), 0) if 2-+ = 0. 

3.3.3 Proposition If f is stritly ontrating, then Bf is monotoni. 

Proof: Let (x, 2-+) i (y, 2-f), so that d(x, y) : 2-+ and o : p. If 2-+ = 0, 

2-+there is nothing to show, so assume = 0. It only remains to show that 

: 2-(++1)d(f(x), f (y)) , whih holds sine f is stritly ontrating, and that 

o  1 : p  1 if 2-f = 0, and that o  1: p if 2-f = 0 and o = p, whih are 

easy to see. • 

Alternative proof of Theorem 1.3.4 Let (X , d, r) b e a spherially omplete 

generalized ultrametri spae with ordinal distanes, and let f : X - X be 

stritly ontrating. Then BX is a hain-omplete partially ordered set, and Bf 

is a monotoni mapping on BX. F or B E B X, w e denote by tB the upper one 

of B , that is, the set of all B E B X with B i B. 

Let x E X b e arbitrarily hosen, assume without loss of generality that 

x = f(x), and let o b e an ordinal suh that d(x, f(x)) = 2-+. Then (x, 2-+) i G )
f(x), 2-(++1) , and by monotoniity of Bf we obtain that Bf maps t [(x, 2-+)] 

into itself. Sine t [(x, 2-+)] is a hain-omplete partial order with bottom element 

[(x, 2-+)], we obtain by the Knaster-Tarski theorem 1.1.7 that Bf has a least fxed 

point i n t [(x, 2-+)] whih we will denote by B . 

It is lear by defnition of Bf that B must b e maximal in BX, and hene is 

of the form [(x , 0)]. From Bf [(x , 0)] = [(x , 0)] we obtain f(x ) = x , so that x 

is a fxed point of f . 

Now assume that y = x is another fxed p o in t of f . Then d(x , y ) = 

d(f(x ), f (y)) d(x , y ) sine f is stritly ontrating. This ontradition es-
tablishes that f has no fxed p o in t other than x . • 
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3.4 Generalized Ultrametris and Disloated 

Generalized Ultrametris 

\e investigate the relationship between the PrieB-Crampe and Ribenboim theo-
rem 1.3.4 and it's disloated version, Theorem 1.5.2. 

3.4.1 Proposition Let (X , f ) be a disloated generalized ultrametri spae and 

defne d : X xX - J by d(x, y) = f(x, y) for x = y and d(x, x) = 0 for all x E X. 

Then d is a generalized ultrametri. 

Proof: The proof is straightforward following Proposition 3.1.10. • 

3.4.2 Proposition Let (X , f ) be a disloated generalized ultrametri spae and 

defne d : X x X - J by d(x, y) = f(x, y) for x = y and d(x, x) = 0 for all 

x E X. If d is spherially omplete then f is spherially omplete, and if f is 

stritly ontrating relative t o f then f is also stritly ontrating relative t o d. 

Proof: \e frst show that non-empty balls in f ontain all their midpoints. So 

let {y I f(x, y) : o} b e some non-empty ball in f with midpoint x. Then there 

exists some z E {y I f(x, y) : o} and we obtain f(x, x) : f(x, z) by (Uiv) and 

sine f(x, z) : o we have x E { y I f(x, y) : o}. Hene, every non-empty ball in 

f is also a ball with respet to d. 

Now let B b e a hain of non-empty balls in f. Then B is also a  hain of balls 

in d and has non-empty intersetion by spherial ompleteness of d as required. 

Let x, y E X with x = y and assume f(f(x), f (y)) f(x, y). If f(x) = f(y) 

then d(f(x), f (y)) = 0, hene d(f(x), f (y))  d(x, y). If f(x) = f(y) then x = y 

and so d(f(x), f (y)) = f(f(x), f (y))  f(x, y) = d(x, y) a s required. • 

3.4.3 Proposition Let (X , f ) b e a spherially omplete disloated generalized 

ultrametri spae and defne d : X x X - J by d(x, y) = f(x, y) for x = y and 

d(x, x) = 0 for all x E X. Then d is spherially omplete, and if f is stritly 

ontrating relative to d then f is not neessarily stritly ontrating relative to 

f. 

Proof: Let B b e a hain of balls in d. If B ontains a ball B = {x} for some 

x E X, then x is in the intersetion of the hain. So assume that all balls in B 

ontain more than one point. 

Now let B1(xm) = {x I d(x, xm) : I} be a ball in B and let xm 

= z E B1(xm). 

Then f(xm, x m) : f(xm, z ) = d(xm, z ) : o, hene B1(xm) = {x I f(x, xm) : I}. 

It follows that B is also a hain of balls in f and has non-empty intersetion as 

required. 

Let X = {0, 1} and defne a mapping f : X - X by f(x) = 0 for x E X. Let 

f be onstant equal to 1. Then (X , f, {0, 1}), where 0 1 is spherially omplete 

and f is stritly ontrating relative to d. However f(f(0), f (1)) = f(0, 1), so f 

is not stritly ontrating relative t o f. • 
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\e an now use Theorem 1.3.4 to give a n easy proof of Theorem 1.5.2. 

Alternative proof of Theorem 1.5.2 Using Proposition 3.4.1, we obtain a 

generalized ultrametri spae (X , d ), whih is spherially omplete by Proposition 

3.4.3. By Proposition 3.4.2, the funtion f is stritly ontrating relative to d. 

Hene, by Theorem 1.3.4, f has a unique fxed p o in t. • 

\e lose by giving two onstrutions of d-gums from gums. 

3.4.4 Proposition Let (X , d , r) be a generalized ultrametri spae with ordinal 

distanes and let u : X - r b e a funtion. Then the distane funtion 

f(x, y) = sup{d(x, y), u (x), u (y)} = max{d(x, y), u (x), u (y)} 

is a disloated generalized ultrametri on X. 

Proof: (Ui) and (Uiii) are trivial. For (Uiv) see the proof of Proposition 3.1.9. • 

This result will be applied in Setion 5.4. 

3.4.5 Proposition Let (X , d , r) be a generalized ultrametri spae with ordinal 

distanes, let z E X, and defne a funtion 

f : X x X - r : ( x, y) - max{d(x, z), d (y, z )}. 

Then (X , f , r) is a disloated generalized ultrametri spae. Furthermore, if 

(X , d ) is spherially omplete, then so is (X , f ). 

Proof: Clearly, f is a d-gum. For spherial ompleteness, note that every non-
empty ball in (X , f ) ontains z whih suÆes. • 

This result will be applied in Setion 5.5. 

3.5 Summary and Further Work 

\e h a ve  o vered two main themes in this hapter, whih are (1) the relationships 

b e t ween the disloated and non-disloated versions of the Banah ontration 

mapping theorem 1.2.2 and the PrieB-Cramps and Ribenboim theorem 1.3.4, re-
sulting in alternative proofs of the Matthews theorem 1.4.6 and Theorem 1.5.1, 

overed in Setions 3.1 and 3.4 and (2) relationships b e t ween Sott-Ershov do-
mains and generalized ultrametri spaes, overed in Setions 3.2 and 3.3. 

The proof of the Matthews theorem 1.4.6 in Setion 3.1 involved the asting of 

a d-metri into a metri, hene impliitly allows to introdue a metrizable topol-
ogy on the d-metri spae. In Setion 1.4, in the paragraph after Defnition 1.4.12, 

we noted that partial and weak partial metris, whih are also d-metris, allow f o r 

a natural topology obtained from open balls. Thus we h a ve t wo natural topologies 

on partial and weak partial metris, and an obvious question is how these two 
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relate. Further investigations on (weak) partial metri spaes are urrently b e -
ing undertaken by diferent authors, e.g. in [EH98, \a00], and domain-theoreti 

arguments naturally ome into view in this ontext. 

Generalized ultrametris have, to the best of our knowledge, not b e e n stud-
ied in the ontext of domain theory beforehand. Setions 3.2 and 3.3 provide a 

frst step towards suh investigations. The domain-theoreti proof of the PrieB-
Crampe and Ribenboim theorem 1.3.4 in Setion 3.3, for example, suggests the 

possibility of a domain-theoreti treatment of non-monotoni operators in logi 

programming, possibly related to the work of [RZ98, Z R 9 7 a , Z R 9 7 b , ZR98], where 

the operator orresponding to the stable model semantis [GL88], f. Chapter 7, 

is studied from a domain-theoreti p o i n t of view. In the publiations just men-
tioned, operators in three-valued logi as in [Fit85] play an important role, and 

they will also b e onsidered in this thesis in Chapter 6. 

\e fnally note that the onstrutions used for asting domains into general-
ized ultrametris as in Setion 3.2, and for asting generalized ultrametris into 

hain-omplete partial orders as in Setion 3.3, are not inverse to eah other, and 

it remains to be investigated under what onditions inverses an be found. 
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Chapter 4 

Topologies for Logi 

Programming Semantis 

If P is a defnite logi program, then the operator Tp 

is ontinuous in the Sott 

topology on Ip 

, and has a least fxed point due to the Kleene theorem 1.1.3. This 

fxed p o i n t orresponds very well to the proedural semantis of the program 

under logi programming systems like Prolog [Llo88]. In the ase of normal pro-
grams, the single-step operator is no longer monotoni, and the Sott topology 

is insuÆent for analyzing its behaviour. An alternative t o t h e Sott topology in 

this ase is the Cantor topology on Ip 

, also alled the atomi topology Q. The 

results presented in this part of the thesis support the laim that Q is the major 

alternative  hoie of a topology for logi programming semantis. 

In Setion 4.1, we will shortly review the Sott topology on Ip 

in the form in 

whih it was presented in [Sed95]. In Setion 4.2, we disuss the atomi topology 

and present some frst results whih support the laim that it is a highly suitable 

topology for our analysis. In Setion 4.3, we w i l l i n trodue a generalization of the 

atomi topology for multi-valued logis. 

In this hapter, we will work under fxed but arbitrary preinterpretations. 

4.1 Sott Topology (Positive Atomi Topology) 

\e shortly review the Sott topology on the spae of all interpretations of a 

program. For proofs of the results in this setion, see [Sed95]. 

4.1.1 Defnition Let P b e a logi program. The set {Q(A) I A E Bp 

} with 

Q(A) = {I E Ip 

I A E I} is a subbase of a topology, the positive atomi topology 

Q+ on Ip 

. 

Note that a basi open set in Q+ is of the form Q(A1) n n Q (An), whih 

we will write as Q(A1, . . . , A n). If Bp 

is ountable, e.g. in the ase when the 

preinterpretation is Herbrand, we note that Q+ is seond ountable. 

The topology Q+ an b e haraterized by onvergene using the following 

proposition. 
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4.1.2 Proposition A net (I,) onverges in Q+ to I E Ip 

if and only if every 

element of I is eventually an element of I,, i.e. if and only if for eah A E Bp 

there exists , suh that A E I, 

for all , 2 , . 

4.1.3 Proposition The positive atomi topology Q+ on Ip 

oinides with the 

Sott topology on Ip 

. 

4.1.4 Proposition Let (In) b e a sequene in Ip 

. Then the following hold. 

(1) (In) has a greatest limit in Q+, denoted by gl(In). 

(2) gl(In) = {A E Bp 

I A E In 

eventually}. 

(3) If (In) is eventually monotoni inreasing, say (Ik)k>k0 

is monotoni inreas- 
ing, then gl(In) = k>k0 

Ik. 

If P is a defnite program, then the operator Tp 

is Sott-ontinuous on Ip 

, 

hene admits a least fxed point Np 

by the Kleene theorem 1.1.3. The supported 

model Np 

is also the least model of P and is interpreted as the intended mean-
ing of P , sine it orresponds very well to the proedural b e h a viour under logi 

programming systems [Llo88]. 

In the speial ase of Herbrand preinterpretations, the positive atomi topol-
ogy is alled the positive query topology, whih was introdued and analyzed in 

[Bat89, BS89b, BS89a], and only later on generalized to arbitrary preinterpreta-
tions. 

4.2 Cantor Topology (Atomi Topology) 

\e introdue the atomi topology due to [Sed95] and prove some frst results 

whih support the laim that it is a very suitable topology for the analysis of 

non-monotoni semanti operators. 

4.2.1 Defnition Let P be a logi program. The set {Q(A) I A E Bp 

} {Q(-A) I 

A E Bp 

}, where Q(A) = {I E Ip 

I A E I} and Q(-A) = {I E Ip 

I A E I}, is a 

subbase of a topology, the atomi topology Q on Ip 

. 

The atomi topology was frst developed, analyzed, and applied in the speial 

ase of Herbrand preinterpretations in [Bat89, BS89b, BS89a], where it was alled 

the query topology, and later on generalized to arbitrary preinterpretations in 

[Sed95]. 

Note that the basi open sets of Q are of the form Q(A1)n�  �nQ(Ak)nQ(-B1 

)n 

n Q(-B1), whih we will write as Q(A1, . . . , A k, -B1, . . . , -B1). Clearly, Q is 

fner than Q+ and is seond ountable if the domain of the preinterpretation is 

ountable. 

The atomi topology an be haraterized by onvergene using the following 

result due to [Sed95]. 
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CHAPTER 4. TOPOLOGIES FOR LOGI PROGRAMMING SEMANTIS  

4.2.2 Proposition A net (I,) onverges in Q to I E Ip 

if and only if every 

element i n I is eventually in I, 

and every element not in I is eventually not in I,, 

i.e. for eah A E I there exists , suh that for all , 2 , we have A E I, 

and for 

eah A E Bp 

with A E I there exists ,1 

suh that for all , 2 ,1 

we have A E I,. 

\e reall two further results on the atomi topology due to [Sed95]. 

4.2.3 Proposition The atomi topology on Ip 

oinides with the produt topol-
ogy on 2Bp , where 2 = {0, 1} is endowed with the disrete topology. 

4.2.4 Theorem (Ip 

, Q ) is a totally disonneted ompat Hausdorf spae. It is 

also seond ountable and metrizable if the domain of the hosen preinterpretation 

is ountable. It is homeomorphi to the Cantor set in the real line, if Bp 

is 

ountably infnite. 

\e will now present some results whih underline the importane of the atomi 

topology as an alternative t o t h e Sott topology in a non-monotoni ontext. 

4.2.5 Theorem Let P b e a normal logi program. 

(1) If for some I E Ip 

the sequene (T 

n(I)) onverges in Q to some N , then N p 

is a model for P . 

(2) If the sequene (T 

n(I)) does not onverge in Q for any I E Ip 

, then P has p 

no supported model. 

Proof: Suppose T p
n(I) - N in Q for some I E Ip 

. \e have to show that 

Tp 

(N) N . Let A E Tp 

(N). By defnition of Tp 

, there exists a ground instane 

A + A1, . . . , A ki 

, -B1, . . . , -B1i 

of a lause in P with Ak 

E N and B1 

E N for 

k = 1, . . . , k 1, l = 1, . . . , l 1. By Proposition 4.2.2, there is an n E N , suh that 

for all n 2 n , Ak 

E T 

n(I) and B1 

E T 

n(I) for all k , l . By defnition of Tp 

and p p 

the above lause we have that A E T 

m(I) for all m 2 n  1. Hene, A E T 

n(I)p p 

eventually and therefore, by Proposition 4.2.2 again, A E N , whih proves the 

frst statement. 

Now, if N is a supported model for P , then (T 

n(N)) is onstant with value p 

N , so the seond statement is trivially true. • 

Let P b e a normal logi program and let I E Ip 

b e suh that the sequene 

(T 

n(I)) onverges in Q to some N E Ip 

. Then by Theorem 4.2.5, N is a model for p 

P . If, furthermore, Tp 

is ontinuous in Q, or at least ontinuous at N , th en N = 

lim T p
n+1(I) = lim Tp 

(T p
n(I)) = Tp 

(lim T p
n(I)) = Tp 

(N). So N is a supported 

model in this ase. 

Continuity of the immediate onsequene operator is studied in detail in 

[Sed95], and we borrow the following result, whih will b e of use in Chapter 

9. 

4.2.6 Theorem Let P b e a normal logi program. Then Tp 

is ontinous in Q if 

and only if, for eah I E Ip 

and for eah A E Bp 

with A E Tp 

(I), either there is no 
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CHAPTER 4. TOPOLOGIES FOR LOGI PROGRAMMING SEMANTIS  

lause in P with head A or there is a fnite set S(I, A ) = {A1, . . . , A k, B 1, . . . , B k 

} 

of elements of Bp 

with the following properties: 

(i) A1, . . . , A k 

E I and B1, . . . , B k 

E I. 

(ii) Given any lause C with head A, at least one -Ai 

or at least one Bj 

ours 

in the body of C. 

As a orollary, one obtains that programs without loal variables have ontin-
uous single-step operators, and also that the single-step operator is not in general 

ontinuous for arbitrary programs. 

4.2.7 Theorem Let P b e a normal logi program and let I E Ip 

b e suh that 

the sequene (In), with In 

= T 

n(I ), onverges in Q to some N E Ip 

. If, for every p 

A E N , no lause whose head mathes A ontains a loal variable, then N is a 

supported model. 

Proof: \e have to show that N Tp 

(N). So let A E N . By onvergene in Q 

and Proposition 4.2.2, there exists n E N suh that A E T 

n(I ) for all n 2 n . p 

By hypothesis, there are only fnitely many lauses in ground(P ) with head A. 

Let C b e the (fnite) set of all atoms ourring in positive b o d y literals and D 

the (fnite) set of all atoms ourring in negative b o d y literals of those lauses. 

Let C1 

= C n N and D1 

= D \ N . Sine In 

-N in Q, there is an n1 

E N suh G )
that C1 

In 

and D1 

Bp 

\ In 

for all n 2 n1. Sine A E Tp 

Imax{n0 

Pni} , there 

is a lause A + A1, . . . , A ki 

, -B1, . . . , -B1i 

in ground(P ) with Ak 

E C1 

N and 

B1 

E D1 

Bp 

\ N for k = 1 , . . . , k 1, l = 1 , . . . , l 1. Hene A E Tp 

(N) as required. 

• 

In the sequel, it will often be neessary to tranfnitely iterate the operator Tp 

before a fxed point is reahed. The following result is an obvious, but fundamental 

generalization of Theorem 4.2.5. 

4.2.8 Theorem Let P be a normal logi program and let I E Ip 

and defne, for 

eah limit ordinal o, � � ( )
T 

+(I) = A E Bp 

I A is eventually in T 

f(I) .p p 

fk + 

If, for some limit ordinal I , the tranfnite sequene (T 

1 (I))1k 1 

onverges in Q,p 

0 

then the limit of this sequene is a model of P . 

Proof: The proof is a straightforward adaptation of the proof of Theorem 4.2.5 

and is omitted. • 
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4.3 Generalized Atomi Topologies 

\e generalize the atomi topology to multivalued logis. 

In the following, let P b e a normal logi program. \e onsider logis, un-
derlying P , with fnitely many truth values t , t 1, . . . , t n-1. A n interpretation un-
der suh a logi is a tuple I = (I , . . . , I n-1) where eah Ii 

is a set of ground 

atoms from P suh that all Ii 

are mutually disjoint and Ii 

= Bp 

, where Bp 

is the set of all ground atoms from the frst order language underlying P . For 

every i = 0 , . . . , n - 1, eah atom in Ii 

has truth value ti 

under I, and we write 

v1(A) = ti 

for A E Ii. The truth value t will be abbreviated as t and we say that 

an atom A with v1(A) = t is true in I. The funtion v : Ip 

x Bp 

: ( I, A ) - v1(A), 

expanded to formulas as seond arguments using suitable truth tables for the 

logial onnetives, is alled the valuation funtion of the logi. The set of all 

interpretations of P will be denoted by Ip Pn 

. 

4.3.1 Defnition An interpretation I E Ip Pn 

is alled a model of P if v1(C) = t 

for every ground instane C of any lause in P . 

\e defne a topology on Ip Pn 

as follows. 

4.3.2 Defnition Identify Ip Pn 

with the set {v1 

: I E Ip Pn 

}. There obviously is 

a bijetive orrespondene b e t ween the two sets by eah I orresponding to v1 . 

Endowing {t , . . . , t n-1} with the disrete topology, w e obtain a produt topology 

Q on Ip Pn 

whih will be alled the generalized atomi topology. 

Topologial Properties 

The following two propositions follow from well-known results from elementary 

topology [\il70]. Note that Q is a topology of p o i n twise onvergene sine it is 

a produt topology of the disrete topology on a fnite set. 

4.3.3 Proposition For A E Bp 

and ti 

a truth value, let Q(A, ti) = {I E Ip Pn 

I 

v1(A) = ti}. Then Q is the topology generated by the subbase {Q(A, ti) I A E 

Bp 

, i E { 0, . . . , n - 1}}. 

4.3.4 Proposition A net I, 

in Ip Pn 

onverges in Q if and only if for every A E Bp 

there exists some ,A 

suh that v1> 

(A) is onstant for all , 2 ,A. In this ase, the 

limit I of the net I, 

is given by v1(A) = v1>A 

(A) for eah A E Bp 

. 

\e immediately obtain that Q is indeed a generalization of Q. 

4.3.5 Proposition If the hosen logi is the lassial (two-valued) logi, then Q 

oinides with the atomi topology Q on Ip Pn 

= IpP 2 

= Ip 

. 

The following theorem also follows from the fat that Q is a produt topology 

of the disrete topology on a fnite set. 
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4.3.6 Theorem The generalized atomi topology Q is a totally disonneted 

ompat Hausdorf topology. It is seond ountable if the domain of the hosen 

preinterpretation is ountable. 

Consequene Operators 

4.3.7 Defnition An operator T on Ip Pn 

is alled a onsequene operator for 

P if for every I E Ip Pn 

the following ondition holds: For every ground lause 

A + body in P , where vT (1)(A) = ti, say, and v1 

(body) = tj, say, we have that 

the truth table for ti 

+ tj 

yields the truth value true. 

Obviously, the single-step operator Tp 

for normal logi programs P is a on-
sequene operator. 

4.3.8 Theorem Let T be a onsequene operator for P and let I E Ip Pn 

. If T 

m(I) 

onverges in Q to some N E Ip Pn 

, then N is a model of P . If, furthermore, T is 

ontinuous in Q, then N is a fxed p o in t of T . 

Proof: Let Im 

= T 

m(I) for eah m and let A E Bp 

with vM (A) = ti. Then we 

obtain v1ki 

(A) = ti 

for all k1 

2 k for some k E N by onvergene in Q. Let 

A + body be a ground lause in P . S in e T is a onsequene operator, we obtain 

that for any k2 

> k , v1k2 

(body) m ust have some value tj 

suh that ti 

+ tj 

yields 

truth value true. Sine body is a fnite onjuntion of ground atoms, and sine 

Im 

onverges in Q, there must therefore exist some l E N , hosen large enough, 

suh that for all l 2 l , v1z(body) evaluates to some tj 

whih is independent of l 

and suh that ti 

+ tj 

yields truth value true. Consequently, again by  o n vergene 

in Q, the lause A + body evaluates to true under N . Sine the lause was 

arbitrarily hosen, N is a model of P . 

T 

n+1(IIf T is ontinuous in Q, w e obtain N = lim ) = T (lim T 

n(I)) = T (N). 

• 

4.3.9 Corollary Let T be a onsequene operator, P be a normal logi program, 

and N be a fxed point of T . Then N is a model of P . 

Proof: Sine the sequene T 

n(N) is onstant, it follows by Theorem 4.3.8 that 

N is a model of P . • 

Continuity 

4.3.10 Defnition Let A E Bp 

and denote by BA 

the set of all b o d y atoms of 

lauses with head A that our in ground(P ). A onsequene operator T is alled 

loal if for every A E Bp 

and any two interpretations I, E Ip Pn 

whih agree on 

all atoms in BA, we have vT (1)(A) = vT (K)(A). 
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The restrition of being loal imposed on a onsequene operator is very weak 

and is obviously satsifed by the single-step operator in lassial two-valued logi. 

The following defnition, whih gives a ondition whih is weaker than the 

absene of loal variables, an be found in [Sed95, Defnition 2]. 

4.3.11 Defnition Let C be a lause in P and A E Bp 

suh that A unifes with 

the head of C. The lause C is said to be of fnite type relative to A if C has only 

fnitely many diferent ground instanes with head A. The program P will be said 

to be of fnite type relative to A if eah lause in P is of fnite type relative t o A, 

i.e. if the set of all lauses in ground(P ) with head A is fnite. Finally, P will be 

said to be of fnite type if P is of fnite type relative t o A for every A E Bp 

. 

4.3.12 Proposition Let P b e a normal logi program of fnite type and let T 

b e a loal onsequene operator for P . Then T is ontinuous in Q. 

Proof: Let I E Ip Pn 

b e an interpretation and let G2 

= Q(A, ti) b e a subbasi 

neighbourhood of T (I) in Q, and note that G2 

is the set of all E Ip Pn 

suh that 

vK 

(A) = ti. \ e need to fnd a neighbourhood G1 

of I suh that T (G1) G2. 

Sine P is of fnite type, the set BA 

is fnite. Hene the set G1 

= 

Q(B , v 1 

(B)) is a fnite intersetion of open sets and therefore open. Sine BEBA 

eah E G1 

agrees with I on BA, we obtain vT (K)(A) = vT (1)(A) = ti 

for eah 

E G1 

by loality o f T . Hene, T (G1) G2. • 

4.4 Summary and Further Work 

\e h a ve desribed diferent topologies on the spae of all interpretations of a logi 

program: the Sott topology, the atomi topology, and generalized atomi topolo-
gies. From this p o i n t of view this spae, together with some semanti operator 

assoiated with a given program, an b e interpreted as a topologial dynamial 

system, in a naive sense, and allows us to study these operators in a topologial 

ontext instead of an order-theoreti one as in the lassial ase. Suh a p o i n t o f 

view will be put to work e.g. in Chapter 9, where we will establish some onne-
tions between logi programming and artifial neural networks. 

The atomi topology provides a very natural notion of onvergene on the 

spae of all interpretations, and in fat it is diÆult to imagine a reasonable notion 

of onvergene in this ontext whih is not losely related to the haraterization 

in Proposition 4.2.2. As we will see in Chapter 5, if a net onverges with respet to 

any of the generalized metris studied in this thesis, then this net also onverges 

with respet to Q, although not vie-versa in general. So all the topologies whih 

apture the onvergene notions assoiated with these generalized metris will be 

topologies whih are fner than the atomi topology. 

The generalized atomi topology of Setion 4.3 will not b e put to muh 

use in the sequel. The general observations made, however, open up the pos-
sibility of studying non-monotoni semanti operators on many-valued logis, 
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whih is something whih has, to our knowledge, not b e done before, as seman-
ti operators on many-valued logis are usually designed to b e monotoni, as in 

[My84, Fit85, PP90, GRS91, And97, BFMS98, Nai98, CS00]. As a frst step to-
wards suh i n vestigations, it should be useful to study these monotoni operators 

in the ontext of generalized atomi topologies. 
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Chapter 5 

Supported Model Semantis 

In this hapter, we w i l l s h o w that some of the fxed-point theorems from Chapter 

1 are appliable to the single-step operator Tp 

under some onditions on the pro-
grams P . In partiular, we will apply the PrieB-Crampe and Ribenboim theorem 

1.3.4 (Setion 5.1), the Matthews theorem 1.4.6 (Setion 5.3) and Theorem 1.5.1 

(Setions 5.4 and 5.5). Sine all these fxed-point theorems yield, if appliable, 

the existene of a unique fxed point for Tp 

, the onditions whih will be imposed 

on the programs in order to apply the theorems will always have the efet that 

the programs under onsideration have unique supported models, i.e. are uniquely 

determined [BS89b]. Suh lasses of programs for whih all programs in the lass 

have a unique supported model, will be alled unique supported m o del lasses, and 

examples are the ayli programs [Cav89, Bez89, AB90], the loally hierarhial 

programs [Cav89, Cav91], and the aeptable programs [AP93, AP94, Mar95]. 

The latter lass is important sine it has a strong relationship to termination 

properties under SLDNF-resolution [AP93] and under Chan's onstrutive nega-
tion [Mar96], and we will devote Setion 5.2 to a more thorough study of these 

programs. 

\e begin with defning the lasses of programs whih will b e studied in this 

hapter. \e will work over arbitrary preinterpretations. 

5.0.1 Defnition A normal logi program P is alled loally hierarhial if there 

exists a level mapping l : Bp 

- o, for some ordinal o, suh that for eah lause 

A + L1, . . . , L n 

in ground(P ) and for all i = 1, . . . , n we have l(A) > l(Li). If l 

an b e hosen as an w-level mapping, then P is alled ayli. 

\e note that Program 0.2.1 is ayli. 

The onditions of being loally hierarhial or ayli are purely syntatial. 

In [AP93], these onditions have been relaxed to semi-syntati requirements 

by employing interpretations with ertain onditions. Our remaining defnitions 

follow these lines, and the following one is taken diretly from [AP93]. 

5.0.2 Defnition Let P b e a normal logi program and let p, q b e prediate 

symb o l s ourring in P . 
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1.  p refers to q if there is a lause in P with p in its head and q in its body. 

2.  p depends on q if (p, q) is in the refexive, transitive losure of the relation 

refers to. 

3. Negp 

denotes the set of prediate symb o l s in P whih our in a negative 

literal in the b o d y of a lause in P . 

4. Neg 

* denotes the set of all prediate symb o l s in P on whih the prediate p 

symb o l s in Neg depend. p 

5.  P 

- denotes the set of lauses in P whose head ontains a prediate symb o l 

from Neg 

* .p 

Let P be a normal logi program, let l : Bp 

- w b e a le v el mapping and let I be 

a model of P whose restrition to the prediate symb o l s in Neg 

* is a supported p 

model of P 

-. Then P is alled aeptable (with respet to l and I) p r o vided that 

the following ondition holds. 

For eah ground instane A + L1, . . . , L n 

of a lause in P 

and for all i E { 1, . . . , n } we have: (5.1) 

i-1 
if I I= Lj, then l(A) > l (Li). 

j=1 

\e reall the following example program from [AP93]. 

5.0.3 Program Suppose that Q is an ayli fnite graph. Then the program 

win(X) + move(  X , } ), -win(} ) 

move(  a, b) + for all (a, b) E Q 

is aeptable but not ayli. Again, upperase letters denote variable symbols, 

while lowerase letters denote onstant symb o l s . 

\e an further relax Defnition 5.0.2 as follows. 

5.0.4 Defnition A normal logi program P is alled <*-aessible if and only if 

there exists a level mapping l for P and a model I for P whose restrition to the 

prediate symbols in Neg 

* is a supported model of P 

-, suh that the following p 

ondition holds. For eah lause A + L1, . . . , L n 

in ground(P ), we either have 

I I= L1 

Ln 

and l(A) > l (Li) for all i = 1 , . . . , n or there exists i E { 1, . . . , n } 

suh that I I= Li 

and l(A) > l (Li). 

\e all P < 

* -aessible if it is <*-aessible and l is an w-level mapping. 

P is alled <-aessible if and only if there exists a level mapping l for P and 

a model I for P suh that the following ondition holds. Eah A E Bp 

satisfes 

either (i) or (ii): 
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(i) There exists a lause A + L1, . . . , L n 

in ground(P ) with head A suh that 

I I= L1 

Ln 

and l(A) > l (Li) for all i = 1 , . . . , n . 

(ii) For eah lause  A + L1, . . . , L n 

in ground(P ) with head A there exists 

i E { 1, . . . , n } suh that I I= Li, I I= A and l(A) > l (Li). 

\e all P < -aessible if it is <-aessible and l is an w-level mapping. 

5.1  Ayli Programs and Loally Hierarhial 

Programs 

In this setion, we will apply the Banah ontration mapping theorem 1.2.2 to 

ayli programs and the PrieB-Crampe and Ribenboim theorem 1.3.4 to loally 

hierarhial programs. \e will also show that the lass of all loally hierarhial 

programs, although syntatially very restrited, is omputationally adequate in 

the sense that eah partial reursive funtion an b e omputed, under SLDNF-
resolution, by suh a program, if the use of safe uts is allowed. 

\e begin our study of loally hierarhial programs by showing how suh a 

program P an b e endowed with a anonial level mapping lp 

whih is smallest 

in a ertain obvious sense. 

5.1.1 Constrution Let P b e a program whih is loally hierarhial with re-
spet to a level mapping l. \e defne a level mapping lp 

on Bp 

as follows. For 

every A E Bp 

whih does not o   u r as a head in ground(P ), let lp 

(A) = 0. For 

every A E Bp 

whih ours as the head of a unit lause but not as the head of 

any non-unit lause, let lp 

(A) = 0. N ow let A E Bp 

be suh th a t A is the head of 

some non-unit lause(s) in ground(P ). Let BA 

b e the olletion of body-literals 

ourring in these lauses. Note that BA 

is fnite for every A if P has no loal 

variables. Now suppose that for every B E BA, lp 

(B) is already defned. Let 

NA 

= supBEBA 

lp 

(B) and set lp 

(A) = NA  1, if NA 

is a suessor ordinal, and 

set lp 

(A) = NA, if NA 

is a limit ordinal. Then lp 

is obtained by transfnitely 

iterating this proedure. \e will refer to lp 

, as defned above, as the anonial 

lh-level mapping of P and, further, Ip 

will denote the smallest ordinal o suh 

that lp 

(A) E o for all A E Bp 

. 

5.1.2 Proposition Let P be a program whih is loally hierarhial with respet 

to some level mapping l. Then lp 

, as defned above, is a total funtion on Bp 

and 

P is loally hierarhial with respet to lp 

. Moreover, if P has no loal variables, 

then Ip 

: w and hene P is ayli. 

Proof: First we show that dom(lp 

) = Bp 

. Suppose there is A E Bp 

\ dom(lp 

). 

\ithout loss of generality w e an further suppose that l(A) is m inim al for A with 

this property. Then there must b e some B E BA 

with B E dom(lp 

), otherwise 

lp 

(A) is defned in the proess given in Constrution 5.1.1. Sine P is loally 
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hierarhial, we have l(B) l(A) whih ontradits the hoie of A with l(A) 

minimal. Therefore, lp 

is a (total) level mapping, and obviously P is loally 

hierarhial with respet to it. Finally, if P has no loal variables, then the set 

BA 

is fnite for every A E Bp 

, and so lp 

maps into w. Hene, Ip 

: w. • 

The onstrution above of the level mapping lp 

an b e used to determine 

whether or not a given program P is loally hierarhial, and the following orol-
lary is immediate. 

5.1.3 Corollary Let P be an arbitrary normal logi program. Then P is loally 

hierarhial if and only if dom(lp 

) = Bp 

, where lp 

is onstruted as in Constru-
tio n 5 .1 .1 . F urthermore, if P is loally hierarhial, it is loally hierarhial with 

respet to lp 

. 

5.1.4 Proposition Let P be a program whih is loally hierarhial with respet 

to a level mapping l. Then for every A E Bp 

, we have lp 

(A) : l(A). 

Proof: Suppose the onlusion is false. Thus, there is A E Bp 

with l(A)  lp 

(A), 

and suh that l(A) is minimal. Then, for all B E B A, w e have l(B)  l(A) beause 

P is loally hierarhial. Therefore, by minimality o f l(A), we have l(B) 2 lp 

(B) 

for all B E B A. By defnition of lp 

, we see that lp 

(A) = min {o I o > l p 

(B), B E 

BA} : min{o I o > l(B), B E BA} : l(A). From this we obtain lp 

(A) : l(A), 

giving the required ontradition. • 

Appliation of the PrieB-Crampe and Ribenboim Theorem 

\e regard Ip 

as a domain, under set inlusion, whose set of ompat elements is 

the set I 

of all fnite subsets of Bp 

, see Setion 3.2. 

5.1.5 Defnition Let P b e a normal logi program and let l : Bp 

- I be a 

level mapping. \e defne the rank funtion r1 

indued by l by setting r1(I) = 

max{l(A) I A E I} for every I E I, w ith I non-empty, and taking r1(0) = 0. T he 

generalized ultrametri obtained from a rank funtion in this way, see Defnition 

3.2.1, will be denoted by d1 

and alled the gum indued by l. 

Note that d1 

is spherially omplete by Theorem 3.2.4. 

The following proposition will make it easier to alulate distanes whih 

depend on r1. To simplify notation, defne £+ 

= {A E Bp 

I l(Bp 

)  o} for eah 

ordinal o. 

5.1.6 Proposition Let P b e a normal logi program, let l : Bp 

- I b e a level 

mapping for P and let I, J E Ip 

. Then d1(I, J ) = inf{2-+ I I n £ + 

= J n £ +}, 

i.e. d1(I, J ) = 2 

-+, where o is the least ordinal suh that I and J difer on some 

atom of level o. 
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Proof: Immediate by the observation that, for every I E Ip 

, I = sup{{A} I A E 

I}. • 

\e note that we ould have used the haraterization in Proposition 5.1.6 in 

order to defne d1 

more diretly. T h e generalized metri d1 

is in fat fundamental 

for the remaining hapter and will be the basis for the defnitions of the generalized 

metris employed in the sequel. 

Our main result in this setion is the following theorem. 

5.1.7 Theorem Let P b e a normal logi program whih is loally hierarhial 

with respet t o a l e v el mapping l : Bp 

- I. T hen Tp 

is stritly ontrating with 

respet to the generalized ultrametri d1 

indued by l, and Tp 

has a unique fxed 

point and hene P has a unique supported model. 

Proof: Let I1, I 2 

E Ip 

and suppose that d1(I1, I 2) = 2 

-+ .  

Case 1. o = 0.  

Let A E Tp 

(I1) with l(A) = 0. Sine P is loally hierarhial, A must b e the  

head of a unit lause in ground(P ). From this it follows that A E Tp 

(I2) also. By  

the same argument, if A E Tp 

(I2) with l(A) = 0, then A E Tp 

(I1). Therefore,  

Tp 

(I1) n £ 1 

= Tp 

(I2) n £ 1, a n d hene we have  

d1(Tp 

(I1), T p 

(I2)) : 2 

-1 2 

- = d1(I1, I 2) 

as required. 

Case 2. o > 0. 

In this ase, I1 

and I2 

difer on some element of Bp 

with level o, but agree on 

all ground atoms of lower level. Let A E Tp 

(I1) with l(A) : o. Then there is 

a lause A + A1, . . . , A ki 

, -B1, . . . , -B1i 

in ground(P ), where k1, l 1 

2 0, suh 

that for all k , j we have Ak 

E I1 

and Bj 

E I1. Sine P is loally hierarhial 

and I1 

n £ + 

= I2 

n £ +, it follows that for all k , j we have Ak 

E I2 

and Bj 

E I2. 

Therefore, A E Tp 

(I2). By the same argument, if A E Tp 

(I2) with l(A) : o, th en 

A E Tp 

(I1). Hene we have Tp 

(I1) n £ ++1 

= Tp 

(I2) n £ ++1, and it follows that 

(I2)) : 2 

-(++1) 2 

-+d1(Tp 

(I1), T p 

= d1(I1, I 2) 

as required. 

Thus, Tp 

is stritly ontrating. Therefore, by the PrieB-Crampe and Riben-
boim theorem 1.3.4, Tp 

has a unique fxed p o i n t and therefore P has a unique 

supported model as laimed. • 

In the ase that l is an w-level mapping, d1 

is a onventional ultrametri and 

the Banah ontration mapping theorem 1.2.2 an b e applied analogously to 

Theorem 5.1.7. 

5.1.8 Theorem Suppose P is ayli with level mapping l. Then Tp 

is a on-
tration with respet to the ultrametri d1 

with ontrativity fator 

1
2 

. Therefore, 

Tp 

has a unique fxed point by the Banah ontration mapping theorem 1.2.2, 

and hene P has a unique supported model. 
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\e note also that it was shown in [Sed97] that the onventional ultrametri 

d1, for an w-level mapping l, generates the atomi topology on Ip 

in the ase that 

£n 

is fnite for eah n E w. If this fniteness ondition is not imposed on the level 

mapping, then the topology generated by d1 

is fner than the atomi topology, 

whih means that the sequene (T 

n(I)), for eah I , whih onverges in p 

E Ip 

d1 

to the unique supported model of P by the proof of the Banah ontration 

mapping theorem 1.2.2 and Theorem 5.1.8, also onverges with respet to the 

atomi topology. 

In the ase of a loally hierarhial program P , w e an obtain a similar result 

by onsidering ordinal powers of Tp 

by setting T 

+(I), for eah limit ordinal o to p ( )
T 

fb e the set of all A E Bp 

suh that A is eventually in (I) , and obtain, p 

fk + 

by the alternative proof of the PrieB-Crampe and Ribenb o i m theorem given in 

Theorem 1.3.9, that the transfnite sequene onsisting of the ordinal p o wers of 

Tp 

at any given I E Ip 

onverges in Q to the unique supported model of P ; in 

fat this follows easily from the fat given in the proof of Theorem 1.3.9 that 

the transfnite sequene (T 

+) is pseudo-onvergent with respet to d1, and that G ) 

p 

T 

+ ++1d1 p 

, T is stritly dereasing and eventually 0 for inreasing o. p 

Computational Adequay of Loally Hierarhial Programs 

\e will show next that every partial reursive funtion an b e implemented by 

a loally hierarhial program with uts, and we will return to this in Chapter 6 

from a diferent perspetive. For details about SLDNF-resolution and about uts, 

see [Llo88]. 

For onveniene, we establish the following notation for every loally hierar-
hial program P . F or A E Bp 

, w e say that P I= A if and only if A E Np 

. \ e say 

that P fsLDNF 

A if and only if there is an SLDNF-derivation for P  {+ A}. R e-
all that an SLDNF-derivation founders [AP93] if a non-ground negative literal 

is seleted at some stage in the derivation. 

5.1.9 Theorem Let P b e a loally hierarhial program and let A E Bp 

with 

P fsLDNF 

A. Then P I= A. If Ip 

= w, and the SLDNF-derivation of P  {+ A} 

does not founder, then P fsLDNF 

A if and only if P I= A. In partiular, if P is 

without loal variables, then P I= A if and only if P fsLDNF 

A. 

Proof: By [Llo88, Proposition 14.2], Np 

is the unique model of the Clark om-
pletion omp(P ) [Cla78, AB\88] of P . By [Llo88, Theorem 15.4], the frst state-
ment immediately holds. Now let Ip 

= w and P I= A b e suh that the SLDNF-
derivation of P  {+ A} does not founder. Then, by [AP93, Corollay 4.11], all 

SLDNF-derivations of P  {+ A} are fnite and, therefore, P fsLDNF 

A whih 

proves the seond statement. If P is without loal variables, then P is ayli 

by Proposition 5.1.2 and obviously does not founder on any ground goal, whih 

ompletes the proof using the seond statement. • 

\e establish next the result that every partial reursive funtion an be om-
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puted by a loally hierarhial program with uts. \e take the p o i n t of view 

(following [Llo88]) that a ut does not afet the delarative semantis of a pro-
gram. \hen talking about SLDNF-resolution for loally hierarhial programs 

with uts, we assume that the seletion funtion always selets the leftmost lit-
eral and, as disussed in [Llo88], that the ut prunes" the searh tree. To obtain a 

well-defned proedural semantis of a given program, we assume that the topmost 

lause whose head unifes with a urrent goal is always seleted frst, as imple-
mented in standard Prolog systems. So, for what follows, SLDNF-resolution is 

performed in the way just desribed. 

For onveniene, we will denote ground terms by lowerase letters and vari-
ables by upperase letters when refering to a prediate. Thus, p(x1, . . . , x n, } ) 

means that all xi 

are ground and } is a variable. \e write (P , A ) fsLDNF 

B 

if P  {+ A} has an answer substitution e (via SLDNF-resolution) suh that 

Ae = B. 

5.1.10 Theorem Identify N with the set of terms {sn(0) I n E N } by identify-
ing s with the suessor funtion. Let f be an n-ary partial reursive funtion. 

Then there exists a loally hierarhial program P, 

with uts and an (n 1)-ary 

prediate symb o l p, 

suh that the following hold: 

1. A all to P, 

with goal p, 

(x1, . . . , x n, } ) or p, 

(x1, . . . , x n, y ) terminates via 

SLDNF-resolution if (x1, . . . , x n) E dom(f) and baktraking over the goal 

fails immediately. 

2. (P, 

, p , 

(x1, . . . , x n, } )) fsLDNF 

p, 

(x1, . . . , x n, y ) if a n d only if (x1, . . . , x n) E 

dom(f) and f(x1, . . . , x n) = y. 

3. For every p, 

(x1, . . . , x n, y ) E Bp 

the following are equivalent: 

(a) P I= p(x1, . . . , x n, y ) 

(b) P fsLDNF 

p(x1, . . . , x n, y ) 

() f(x1, . . . , x n) = y. 

Proof: \e follow [SSSS82] and [Llo88] with modifations where neessary. The 

proof is by indution on the numb e r q of appliations of omposition, primitive 

reursion, and minimalization needed to defne f . 

Suppose frst that q = 0. T hus f must be either the zero funtion, the suessor 

funtion, or a projetion funtion. 

Zero funtion 

Suppose that f is the zero funtion defned by f(x) = 0. Defne P, 

to be the 

program p, 

(X, 0) + . 

Suessor funtion 

Suppose that f is the suessor funtion defned by f(x) = x  1. Defne P, 

to be the program p, 

(X , s (X)) + . 

Projetion funtion 
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Suppose that f is the projetion funtion defned by f(x1, . . . , x n) = xj 

for 

some j E { 1, . . . , n }. Defne Pj 

to be the program p, 

(X1, . . . , X n, X j) + . 

Clearly, for eah of the basi funtions, the program P, 

, as defned, is loally 

hierarhial with the desired properties. 

Next, suppose that the partial reursive funtion f is defned by q > 0 appli-
ations of omposition, primitive reursion, and minimalization. 

Composition 

Suppose that f is defned by 

f(x1, . . . , x n) = h(g1(x1, . . . , x n), . . . , g m(x1, . . . , x n)) 

where g1, . . . , g m 

and h are partial reursive funtions. By the indution hypoth-
esis, orresponding to eah gi 

(or h), there is a loally hierarhial program Pgi 

(Ph) with uts and a prediate symb o l pgi 

(ph) satisfying the onlusions of the 

theorem. \e an suppose that the programs Pgi 

, . . . , P gm 

, P h 

do not have any 

prediate symbols in ommon. Defne P, 

to b e the union of these programs to-
gether with the lause 

p, 

(X1, . . . , X n,  ) + pgi 

(X1, . . . , X n, } 1), . . . , p gm 

(X1, . . . , X n, } m), 

h(}1, . . . , } m,  ), !. 

Obviously, P, 

is a loally hierarhial program with uts. Statement 1 is im-
mediate under the assertion of the indution hypothesis, as is the 'if'-part of 

statement 2. The 'only-if' part is shown as in [Llo88]. For statement 3, the equiv-
alene of 3a and 3 is immediate and the equivalene of 3b and 3 is shown in a 

manner analogous to that employed in [SSSS82]. 

Primitive reursion 

Suppose that f is defned by 

f(x1, . . . , x n, 0) = h(x1, . . . , x n) 

f(x1, . . . , x n, y  1) = g(x1, . . . , x n, y, f (x1, . . . , x n, y )) 

where h and g are partial reursive funtions. By the indution hypothesis, or-
responding to h (resp. g), there is a loally hierarhial program Ph 

(resp. Pg) 

with uts and a prediate symb o l ph 

(resp. pg) satisfying the onlusions of the 

theorem. \e an also suppose that Ph 

and Pg 

do not have a n y prediate symb o l s 

in ommon. Defne P, 

to be the union of Ph 

and Pg 

together with the lauses 

p, 

(X1, . . . , X n, 0,  ) + ph(X1, . . . , X n,  ), !. 

p, 

(X1, . . . , X n, s (} ),  ) + p, 

(X1, . . . , X n, } , U ), p g(X1, . . . , X n, }, U  ,  ), !. 

Obviously, P, 

is a loally hierarhial program with uts. The desired properties 

are proven along the same lines as for omposition. 

Minimalization 

Suppose that f is defned by f(x1, . . . , x n) = µy(g(x1, . . . , x n, y ) = 0) where 

g is a partial reursive funtion. By the indution hypothesis, orresponding to 
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g there is a loally hierarhial program Pg 

with uts and a prediate symb o l pg 

satisfying the onlusions of the theorem. Defne P, 

to b e Pg 

together with the 

lauses 

p, 

(X1, . . . , X n, 0) + pg(X1, . . . , X n, 0, 0), !. 

p, 

(X1, . . . , X n, s ( )) + r(X1, . . . , X n, ), p g(X1, . . . , X n, s ( ), 0), !. 

r(X1, . . . , X n, 0) + -pg(X1, . . . , X n, 0, 0). 

r(X1, . . . , X n, s ( )) + r(X1, . . . , X n, ), -pg(X1, . . . , X n, s ( ), 0). 

Obviously, P, 

is a loally hierarhial program with uts. Again, statements 1 

and 2 a r e proven along the same lines as for omposition by taking into aount 

the fat that, if pg 

o   u r s in a subgoal of the omputation, it is always ground. 

Note that r(x1, . . . , x n, z ) E Np1 

if and only if (x1, . . . , x n, k ) E dom(g) and 

g(x1, . . . , x n, k ) = 0 for every k z, and that the goal r(x1, . . . , x n, ) subse-
quently yields all answer substitutions  /z (z = 0 , 1, 2, . . . ) with ( x1, . . . , x n, k ) E 

dom(g) and g(x1, . . . , x n, k ) = 0 for all k  z, whih yields the equivalene of 3b 

and 3. To show the equivalene of 3a and 3, note that P I= r(x1, . . . , x n, z ) if 

and only if P I= pg(x1, . . . , x n, k , 0) for all k  z. So P I= p, 

(x1, . . . , x n, z ) if and 

only if P I= pg(x1, . . . , x n, z, 0) and P I= pg(x1, . . . , x n, k , 0) for all k z. Now 

suppose f(x1, . . . , x n) = z. Then by the indution hypothesis, the above yields 

that P I= p, 

(x1, . . . , x n, z ). Now suppose f(x1, . . . , x n) = z. \e onsider three 

ases: 

(1) g(x1, . . . , x n, z ) = 0. Then P I= p, 

(x1, . . . , x n, z ) immediately. 

(2) g(x1, . . . , x n, k ) = 0 for some k z . A gain P I= p, 

(x1, . . . , x n, z ) immediately. 

(3) (x1, . . . , x n, k ) E dom(g) for some k z. Then r(x1, . . . , x n, k ) ours as 

a subgoal of the omputation and, therefore, so does pg(x1, . . . , x n, k , 0). Note 

that g annot b e one of the basi funtions sine they are total. For the 

same reason, g annot b e defned by using omposition and primitive reursion 

on the basi funtions only. Consequently, at some point in the omputation, 

a subgoal p,0 

(x1, . . . , x n, y ) or p,0 

(x1, . . . , x n, } ) ours with f (x1, . . . , x n) = 

µy(g (x1, . . . , x n, y ) = 0) and (x1, . . . , x n) E dom(f ). There are two subases 

to onsider: 

(i) g (x1, . . . , x n, m ) = 0 for all m E N . It is easily seen that in this ase P,0 

will not terminate on the subgoal p,0 

(x1, . . . , x n, } ) and will fail on the subgoal 

p,0 

(x1, . . . , x n, y ). 

(ii) (x1, . . . , x n, m ) E dom(g ) for some m E N . The ondition of this ase is ex-
atly as in ase (3). 

Thus, the argument an b e repeated. Sine every partial reursive funtion is 

defned by using minimalization only fnitely often, the onlusion follows by in-
dution. • 

Theorem 5.1.10 shows that loally hierarhial programs with uts are om-
putationally adequate with respet to SLDNF-resolution as interpreter. \e note 

that the uts ourring in the proof are safe in the sense that they ut only 

branhes of the searh tree whih do not ontain any suess branhes. 
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5.2 Aeptable Programs  

Aeptable programs were frst studied in detail in [AP93] where they were shown 

to oinide, basially, with the programs whih are left-terminating. In [AP94, 

Apt95], they were further examined in the ontext of formal verifation under 

Prolog. The aeptable programs therefore form an important lass. However, 

in order to show from the defnition that a given program P is aeptable, it 

is neessary to determine a level mapping and a model for P whih satisfy the 

onditions of the defnition, see Defnition 5.0.2. But this may b e diÆult to do, 

and it is therefore desirable to simplify this task, if possible, and we will now take 

some steps in this simplifation proess by shedding light on the b e h a viour of 

the single-step operator in this ase. 

Most of the methods and results in this setion an easily b e arried over to 

the more general lasses of programs whih will be studied in the remaining part 

of the hapter. \e have deided to present them for the more speial ase of 

aeptable programs due to the importane of this lass of programs. 

A frst attempt at studying aeptable programs from a topologial perspe-
tive was made in [Fit94]. In this paper, a distane funtion d3 

assoiated with 

a given aeptable program was defned, whih ats on Ip 

. This distane fun-
tion turns out to b e a disloated metri, and our approah builds heavily on 

this distane funtion, showing that it an b e put to good use for studying, and 

haraterizing, aeptability. 

The single-step operator Tp 

is in fat a ontration with respet to d3 

if P 

is aeptable, and we will see that onvergene of iterates of Tp 

in the atomi 

topology follows from this, and the limit Np 

of the sequene of iterates of Tp 

will 

b e seen to be the unique supported model of P (Theorem 5.2.10). The existene 

of a unique supported model of an aeptable program was already established 

in [AP93], in the ase of Herbrand preinterpretations. It was obtained as the 

supremum of the iterates of the monotoni three-valued operator <p 

from [Fit85], 

f. Chapter 6. Our haraterization by means of Tp 

and Q simplifes this proess 

sine the single-step operator is easier and more natural to apply. 

The topologial haraterization of Np 

just desribed, will also easily allow 

us to establish the fat that a program P , whih is aeptable with respet to 

some model I and level mapping l, is also aeptable with respet to Np 

and l 

(Theorem 5.2.12). Even more, we will show that Np 

is the smallest of all models 

with respet to whih aeptability o f P an b e established (Corollary 5.2.13). 

At this stage, we know that onvergene in Q of iterates of Tp 

is a neessary 

ondition for aeptability of P . If this ondition is met, the limit Np 

thus ob-
tained is suitable for establishing aeptability if a orresponding level-mapping 

is found. And in fat, every level mapping whih renders P aeptable with re-
spet to some model, will also allow one to establish aeptability of P with 

respet to Np 

(Theorem 5.2.12). The set of all these possible level mappings will 

fnally turn out to ontain a pointwise least element (Theorem 5.2.21). For this 

level mapping, whih will be alled the anonial aeptable-level mapping lp 

for 

P , we will give an iterative onstrution, provided Np 

is known (Constrution 
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5.2.16). This onstrution, in fat, is appliable to all programs and depends on a 

given model of the program. In this general ase, however, the onstrution may 

only lead to a partial mapping. From this, again, we d e r i v e a neessary ondition 

for aeptability of P , namely that the onstrution of lp 

, using the model Np 

, 

yields a l e v el mapping whih is not partial (Proposition 5.2.17). 

The iterative methods for obtaining Np 

and lp 

then provide a means for 

haraterizing, and establishing, aeptability of a program in question. This is 

done by subsequently onduting the following steps (Theorem 5.2.19). (1) Obtain 

iterates of Tp 

. If they onverge in Q, all the limit Np 

. If they don't onverge, 

then P is not aeptable. (2) Obtain lp 

using Np 

. If lp 

is not total, then P is 

not aeptable. (3) Chek whether ondition (5.1) of Defnition 5.0.2 holds. If it 

holds, then P is aeptable. If it does not hold, then P is not aeptable. 

Conduting steps (1) and (2) above is by no means a trivial task and in fat 

is an undeidable problem. Our haraterization, however, sheds more light on 

the onept of aeptability and might b e an aid for determining aeptability 

if straightforward attempts fail. Simplifation of this proess is ahieved by a 

result whih allows to partition the program in question into subprograms in a 

way that subsequent establishment of aeptability of the subprograms suÆes 

for determining aeptability (Lemma 5.2.25 and Theorem 5.2.26). 

Finally, the results obtained will b e applied in order to show that both Np 

and lp 

are suitable for establishing termination of general non-ground queries. 

In order to simplify notation in this setion, we will abbreviate Neg* by N . p 

Remarks on Domains of Preinterpretation 

The hoie of a suitable domain of preinterpretation is essential in the sense that 

a program might be aeptable under some hosen domain, and not be aeptable 

under another. \e will illustrate this and the diÆulties involved by means of a 

few example programs. 

5.2.1 Program  Let P1 

be the following program. 

r(0) + -p(0), -r(0) 

p(0) + -q(X) 

q(0) + 

Here, P 

- = and P is aeptable with respet to the supported model 1 

P1 

{p(0), q (0)}, whose domain is the set {0, 1}, and the level mapping given by 

l(q(0)) = l(q(1)) = 0, l(p(0)) = l(p(1)) = 1, l(r(0)) = l(r(1)) = 2. However, P 

fails to have any supported models if the domain of preinterpretation ontains 

only the onstant and funtion symbols ourring in the program. 

5.2.2 Program Let P2 

be the following program. 

r(0) + -q(X), -r(0) 

q(0) + 
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The program P2 

is aeptable with respet to the domain {0}. H o wever, it has 

no supported model with respet to the set {0, 1} as domain of preinterpretation. 

Note that the programs P1 

and P2 

founder on some goals. 

Construtive negation in the sense of [Cha88] (f. also [Mar96]), as a way 

to resolve foundering, does not over the general ase either, due to the follow-
ing two assumptions made in the ited papers: Chan in [Cha88, p. 113] assumes, 

throughout, the onsisteny of the ompleted database, and also assumes [Cha88, 

p. 116] that the underlying language (i.e. the domain of preinterpretation) on-
tains infnitely many onstant symbols and funtion symb o l s . 

Consisteny of the ompleted database is dependent on the hosen domain 

of preinterpretation (restrited here through the presene of infnitely many  o n -
stant and funtion symb o l s ) and, in fat, under the assumption onerning the 

underlying language as above, we see that the ompleted database for program 

P2 

is not onsistent. 

Furthermore, onsider the following program. 

5.2.3 Program Let P3 

be the following program. 

r(0) + -q(X), r (0) 

q(0) + 

For program P3, the unique supported Herbrand model {q(0)} is ertainly the 

desired model. The program is also aeptable with respet to this model. 

However, the goal + r(0), whih is bounded, does not terminate under Chan's 

onstrutive negation. In [Mar96], however, it was shown that the set of all pro-
grams whih are aeptable with respet to some preinterpretation J whose do-
main ontains infnitely many onstants and funtions, oinides with the set of 

all programs whih terminate under Chan's onstrutive negation. Nevertheless, 

the result does not aount for programs whih are aeptable with respet to a 

domain ontaining fnitely many onstants and funtions, but not with respet 

to a domain whih is onstrained as for onstrutive negation. The Program P3 

displays this fat. 

In all previous examples, the Herbrand preinterpretation was too small to 

allow determination of aeptability. Our fnal program shows that in some ases 

it may even be too large. 

5.2.4 Program Let P4 

be the following program. 

r(0) + -q(X), r (0) 

q(f(0)) + 

Under the domain {fn(0) I n E N }, this program is not aeptable due to the 

existene of the funtion symb o l f , giving an instane of q(X) whih is false. 

However, P4 

is aeptable with respet to a preinterpretation whose domain is 

the one-point s e t {0} and where f is interpreted as the identity funtion on {0}. 
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In fat, this example shows that the result from [AP93] whih states that every 

program whih is aeptable with respet to a Herbrand preinterpretation has a 

unique supported Herbrand model, annot b e generalized to arbitrary preinter-
pretations in general. 

On the other hand, [AP93, Corollary 4.12] shows that every aeptable pro-
gram is left terminating, whilst [AP93, Theorem 4.18] ontains the result that ev-
ery left terminating non-foundering program is aeptable. Moreover, the proof 

given of this latter fat shows that one has aeptability with respet to some 

Herbrand model, where the underlying domain of preinterpretation is onstruted 

using only the variable and onstant s y m bols ourring in the program for suh 

programs, we suggest the terminology Herbrand-aeptable. Thus, an aeptable 

program whih fails to b e Herbrand-aeptable must founder on some ground 

query. Moreover, all the examples onsidered in [AP93] are Herbrand-aeptable. 

In the following, as already noted, we will work over arbitrary preinterpreta-
tions. 

Fitting's Approah 

As already noted, it was frst shown in [AP93] that every (Herbrand-) aeptable 

program has a unique supported model. In [Fit94], Fitting onsidered proving the 

same result by using metris and the Banah ontration mapping theorem. His 

method depends on the following defnitions. A partial level mapping is a partial 

mapping l : Bp 

- o, where o is an ordinal. Reall the notation £f 

for the set of 

all atoms A of level l(A) less than p. For the remainder of this setion, we will 

onsider only w-level mappings, i.e. o = N . 

5.2.5 Defnition Let P be a normal logi program with partial level mapping l. 

The pseudometri d assoiated with l on Ip 

is defned as follows. For J, E Ip 

let 

d(J, ) = inf{2 

-n I £ m 

n dom(l) n J = £m 

n dom(l) n for all m : n}, 

where £m, for all m E N , is taken with respet to a (total) level mapping l 

' whih 

extends l. 

By [Fit94], any pseudometri assoiated with a (partial) level mapping is 

omplete. 

If the level mapping is total, i . e . n o t a partial mapping, Defnition 5.2.5 oin-
ides with the metri d1 

of Proposition 5.1.6. 

5.2.6 Defnition Let P b e aeptable with respet to a level mapping l and a 

model I. \e defne the partial level mappings l1 

and l2 

as follows; reall that we 

write N instead of Neg 

* . p 

1. dom(l1) = N , l1(A) = l(A) for all ground literals A in N . 

2. dom(l2) = 

N , l2(A) = l(A) for all ground literals A not in N . 
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The assoiated pseudometris are denoted by d1 

and d2, respetively. Further-
more, we defne a funtion p : Ip 

- J by 

p(J) = inf {2 

-n I J n 

N n £ n 

I}. 

This form of p difers only slightly from that used in [Fit94] and an easily b e 

shown to be equivalent. Finally, f o l l o wing [Fit94] a g a i n , w e defne for all J, E Ip 

d3(J, ) = max{d1(J, I ), d 1(  ,I ), d 2(J, ), p (J), p ( )}. (5.2) 

\e note that this distane funtion d3 

depends b o t h on the level mapping l 

and on the interpretation I. \ e will disuss the intuition behind the defnition of 

d3 

after Proposition 5.2.8, whih w i l l p r o vide us with some understanding of this 

distane funtion. For the moment, we note that d3 

is a disloated metri, but 

that it is not in fat a metri. Indeed, let P be the program onsisting of the three 

unit lauses p(0) +, q (0) +, q (1) +, where 0 and 1 are onstant symb o l s . Then 

P is aeptable with respet to the Herbrand model I = {p(0), q (0), q (1)} and the 

zero level mapping l. A straightforward alulation shows that d3(J, 

I) = 1 for 

all J E Ip 

so that, in partiular, one has d3(
I, 

I) = 1 . Nevertheless, it will turn 

out to b e a useful tool in formulating some of our results. In fat, the following 

proposition, [Fit94, Proposition 7.1], does not need the assumption that d3 

is a 

metri and will be useful later. 

5.2.7 Proposition Let P be aeptable with respet to a level mapping l and a 

model I. Then for all J, E Ip 

we have d3(Tp 

(J), T p 

( )) : 

1
2 

d3(J, ). 

Applying the Matthews Theorem 

\e start by examining the relationship between the atomi topology Q and Fit-
ting's disloated metri d3. The following result will larify the b e h a viour of se-
quenes whih onverge in d3. 

5.2.8 Proposition Let P be aeptable with respet to a level mapping l and a 

model I. Let Jn 

b e a sequene whih onverges in d3 

to some J E Ip 

. Then the 

sequene Jn 

onverges to J in Q, and the following two onditions hold. 

(i) Jn 

n N onverges in Q to the model I n N of omp(P 

-). 

(ii) Jn 

n 

N onverges in Q to some I. 

Furthermore, we obtain J = ( I n N) . 

Proof: By hypothesis, we h a ve d3(Jn, J ) - 0 as n - . By defnition of d3 

this 

implies that d1(Jn, I ), d1(J, I ) and d2(Jn, J ) all tend to 0 as n - . Hene, by 

defnition of d1 

and d2, it follows that for all m E N there exists some n E N 

suh that for all n 2 n we have 

Jn 

n N n £ m 

= I n N n £ m, 

J n N n £ m 

= I n N n £ m 

and 

Jn 

n 

N n £ m 

= J n 

N n £ m. 
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From these equations, it follows that for all m E N there exists some n E N 

suh that for all n 2 n we have Jn 

n £ m 

= J n £ m 

whih proves onvergene of 

the sequene Jn 

to J in Q. 

\e also obtain that Jn 

n N and Jn 

n 

N onverge in Q to J n N respetively 

J n N . By defnition of d3 

we have d1(J, I ) = 0 whih implies that J nN = I nN . 

From the same defnition we obtain p(J) = 0 and therefore = J nN I whih 

ompletes the proof. • 

As a orollary from the proof of Proposition 5.2.8, we obtain that onvergene 

in d3 

is independent of the hoie of level mapping. 

\e are now in a position to better understand the intuition underlying the 

defnition of d3 

given in equation (5.2). Essentially, the terms d1(J, I ) and d1(  ,I ) 

in this equation ensure that if d3(J, ) is small, then both J and are �lose" 

(with respet to the pseudometri d1) to the hosen interpretation I, and this 

loseness depends only on the atoms ontained in N . Convergene in d3 

means 

that the sequene in question must tend towards the unique supported model 

I n N of P 

-. T h e remainder of the defnition onstrains what �loseness" means 

on 

N . The term d2(  ,J ) ensures that and J share �enough" elements (of 

suitable level), and the p-funtion fores both and J to be largely a subset of I 

on 

N . In terms of onvergene in d3, the distane funtion d3 

ould be understood 

as �fltering" a sequene towards a suitable subset of I, namely a subset whih 

oinides with I on N . 

5.2.9 Proposition The d-metri d3 

is omplete. 

Proof: Let Jn 

be a Cauhy sequene with respet to d3. B y defnition of d3, this 

implies that d1(Jmi 

, I ), d1(Jm2 

, I ), d2(Jmi 

, J ), p(Jmi 

) and p(Jm2 

) all tend to 0 m2 

for m1, m 2 

> m and inreasing m, and we obtain, as in the proof of Proposition 

5.2.8, that Jn 

onverges in Q to some J . An argument similar to that in the proof 

of Proposition 5.2.8 again shows that J is also the limit of Jn 

with respet to d3. 

• 

5.2.10 Theorem Let P b e aeptable with respet to a level mapping l and a 

model I, and let E Ip 

be arbitrary. T h e n T 

n( ) onverges in Q to the unique p 

supported model Np 

of P . 

Proof: The d-metri d3 

is omplete by Proposition 5.2.9, and Tp 

is a ontration 

with respet to d3 

by Proposition 5.2.7. So we an apply the Matthews theo-
rem 1.4.6, whih yields that the sequene T 

n( ) onverges in d3 

to the unique p 

supported model of P . Sine onvergene in d3 

implies onvergene in Q by P ropo-
sition 5.2.8, the proof is omplete. • 

Minimality of the Unique Supported Model 

\e will now p r o vide an alternative  haraterization of the model Np 

. Reall that 

we are working under a fxed but arbitrary preinterpretation. 
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5.2.11 Lemma Let P b e aeptable and let I b e the set of all models with 

respet to whih P an b e established to b e aeptable. Then Np 

n N = I n N 

for all I E I . In partiular, I n N = J n N for all I, J E I . F urthermore, we h a ve 

the minimality property Np 

I. 

Proof: The sequene Jn 

= T 

n(0) onverges with respet to d3 

and satisfes on-p 

ditions (i) and (ii) of Proposition 5.2.8 for all I E I . The frst statement follows 

then immediately from ondition (i) and the seond statement from ondition 

(ii). • 

The model thereby obtained will b e shown to b e suitable for demonstrating 

the aeptability of the program in question. \e will need this result for our 

haraterization of aeptability in Theorem 5.2.19, and it will also give us an 

alternative  haraterization of Np 

as an easy orollary. 

5.2.12 Theorem Let P b e aeptable with respet to a level mapping l and a 

model I. Then P is aeptable with respet to l and Np 

. 

Proof: Sine I n N = Np 

n N by Lemma 5.2.11, it remains to show that the 

aeptability ondition (5.1) from Defnition 5.0.2 holds. Again by the same result, 

it remains to show the ondition for all lauses whih are not in P 

-. Sine Np 

n 

N = I n N , and therefore these agree on all ground atoms whih our negatively 

in P , it suÆes to show that Np 

I, whih is the ase by Lemma 5.2.11. • 

5.2.13 Corollary Let P b e aeptable and let I b e the set of all models with 

respet to whih P an b e established to be aeptable. Then Np 

= I. 

Proof: This follows immediately from Lemma 5.2.11 and Theorem 5.2.12. • 

The Canonial Level Mapping for Aeptable Programs 

\e s h o w next how to obtain a level mapping for a given program whih is suitable 

for proving its aeptability. The onstrution is based on Constrution 5.1.1 for 

loally hierarhial programs. For this purpose, let P b e a program and I a 

model of P . \e will now give a program transformation whih yields a loally 

hierarhial program from P and I if P is aeptable with respet to I, allowing 

us to apply our earlier results. The program transformation is as follows: 

5.2.14 Program Transformation Let P b e a normal logi program and I a 

model of P . F or eah lause A + L1, . . . L n 

in ground(P ) determine the maximal 

i suh that I I= L1 

Li. Then replae the given lause with A + L1, . . . , L i+1 

if i = n and by A + L1, . . . , L n 

if i = n. The resulting ground program will b e 

alled P1 

. 

If P is aeptable with respet to I and l, then P1 

is loally hierarhial 

with respet to the w-level mapping l 

' whih is obtained by restriting l to Bpr
. 
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Therefore, we an obtain the anonial lh-level mapping lpr 

of P1 

by applying 

Constrution 5.1.1, and obtain by Corollary 5.1.3 that lpr 

is indeed a total fun-
tion. Furthermore, by Proposition 5.1.4 we obtain that lpr 

(A) : l 

' (A) for all 

A E Bpr 

, and sine l 

' maps into w, the level mapping lpr 

also maps into w. This 

means, in partiular, that Constrution 5.1.1 is in fat not transfnite but loses 

of at w. 

5.2.15 Defnition \e now defne a level mapping lp 

for the given program P : 

For every A E Bp 

\ Bpr 

let lp 

(A) = 0 . For every A E Bpr 

let lp 

(A) = lpr 

(A). 

\e summarize the observations just disussed. 

5.2.16 Constrution Let P b e a normal logi program and I a model of P . 

(1) Obtain P1 

from P and I using Program Transformation 5.2.14. 

(2) Obtain lpr 

from Constrution 5.1.1. 

(3) Obtain lp 

from Defnition 5.2.15. 

5.2.17 Proposition Let P b e aeptable with respet to a model I. Then the 

following statements hold. 

(i)  P1 

, obtained from step (1) in Constrution 5.2.16 is loally hierarhial. 

(ii)  lpr 

, obtained from step (2) in Constrution 5.2.16 is total (with respet to 

Bpr 

) and maps into w. 

(iii)  lp 

, obtained from step (3) in Constrution 5.2.16 is total and maps into w. 

(iv)  P is aeptable with respet to I and lp 

. 

Proof: It only remains to prove statement (iv), whih is immediate from the 

defnition of lp 

. • 

In the following, lp 

will also denote the (partial) level mapping as given in 

Constrution 5.2.16. It will be alled the anonial (partial) aeptable-level map-
ping for P . 

The following is the key result in our haraterization of aeptability. 

5.2.18 Theorem Let P be aeptable. Then P is aeptable with respet to Np 

and lp 

. 

Proof: By Theorem 5.2.12, P is aeptable with respet to l and Np 

. By Propo-
sition 5.2.17, P is then aeptable with respet to lp 

and Np 

. • 

\e an now state the following haraterization theorem. 

5.2.19 Theorem Let P be a normal logi program. Then P is aeptable if and 

only if the following onditions are satisfed: 
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(1) The sequene (T 

n(0))nEN 

onverges in Q to some Np 

. p 

(2) The mapping lp 

, onstruted from P and I = Np 

as in Constrution 5.2.16, 

is total and takes values in the natural numbers. 

(3) P satisfes ondition (5.1) from Defnition 5.0.2 with respet to lp 

and Np 

. 

Proof: Let P b e aeptable. Then (1) follows from Theorem 5.2.10, (2) follows 

from Proposition 5.2.17, and (3) follows from Theorem 5.2.18. The onverse is 

immediate. • 

Minimality Properties 

\e show that the anonial aeptable-level mapping lp 

of P is least among all 

level mappings with respet to whih aeptability an b e established. 

5.2.20 Lemma Let P be aeptable with respet to Np 

and some level-mapping 

l. Then lp 

(A) : l(A) for all A E Bp 

. 

Proof: For A E BpM , we obtain lp 

(A) : l(A) by Proposition 5.1.4. If A E 

Bp 

\ BpMp 

p 

, then by defnition of lp 

we have lp 

(A) = 0 : l(A) as desired. • 

5.2.21 Theorem For any aeptable program P , the anonial aeptable-level 

mapping lp 

is least among all level mappings with respet to whih P an b e 

shown to b e aeptable. More preisely, if P is aeptable with respet to some 

model I and some level mapping l, then for all A E Bp 

we have lp 

(A) : l(A). 

Proof: Let P be aeptable with respet to some model I and some level mapping 

l, and let A E Bp 

be arbitrarily hosen. By Theorem 5.2.12, P is aeptable with 

respet to l and Np 

. By Lemma 5.2.20 we obtain lp 

(A) : l(A) as desired. • 

Partitioning Aeptable Programs 

In order to simplify the alulation of Np 

, we will use methods similar to those 

employed in [AB\88, Prz88, Mar95]. \e will use the following defnition whih i s 

similar to [Mar95, Defnition 4.1]. For any g i v en progam P , reall that a prediate 

symb ol p is said to b e defned in a subprogram R of P if every lause whih 

ontains p in its head is ontained in R. The defnition of a prediate symb o l is 

the smallest subprogram R suh that the prediate symb o l i s defned in R. This 

notion extends naturally to atoms. 

5.2.22 Defnition Let P be a program and Q and R b e t wo subprograms of P . 

\e say that R extends Q, written R > Q, if no prediate symb o l defned in R 

ours in Q. 
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The basi idea is to partition an aeptable program in a suitable way suh 

that Np 

an be obtained by alulating the orresponding models of the subpro-
grams in sequene. 

  
5.2.23 Defnition Let P b e aeptable and P = P1 . . . Pk. \e all 

(P1, . . . , P k) an aeptable stratifation of P if Pi+1 

> P i 

for all i = 1 , . . . , k - 1. 

By true and false, w e will subsequently denote atoms whih always evaluate 

to true and false, respetively. Now apply the following onstrution. 

Replae every atom in eah lause in ground(P1) whih does not our in 

the head of any lause by false, and all the resulting program P1
' . By N1, we 

will denote Np 

restrited to the prediate symbols ourring in P1, and by l1 

we 

will denote lp 

restrited to the prediate symbols ourring in P1. \ e obtain the 

following result. 

5.2.24 Lemma Let P be aeptable with aeptable stratifation (P1, . . . , P k). 

Then the following hold. 

(i)  P1 

' is aeptable. 

(ii) The sequene  T p
n 

i 

(0) of iterates onverges in the atomi topology to the 

unique supported model N1 

of P1
' . 

Proof: (i) P1 

' obviously is aeptable with respet to N1 

and l1. 

(ii) By Theorem 5.2.10, the iterates onverge to a supported model of P1
' . By 

uniqueness of this model it oinides with N1. • 

Let Ni, for i = 1 , . . . , k , denote Np 

restrited to the prediate symb o l s d e f n e d 

in Pi. N o w suppose that for some i E { 1, . . . , k - 1} the programs P1
' , . . . , P i 

' have 

b e e n defned and that the following properties have b e e n established. 

1. P1
' , . . . , P i 

' are aeptable. 

2. Ni 

is the unique supported model of P 

' and N1 

Ni 

is the unique i 

supported model of P1 

Pi. 

Then defne Pi
' 

+1 

by replaing all ourrenes of atoms in ground(Pi+1) w hih 

are not defned in Pi+1, by true or false, respetively, depending on whether the 

atom is true or false, respetively, with respet to N1 

Ni. \ e then obtain 

the following result. 

5.2.25 Lemma Suppose the assumptions above hold. Then the following hold. 

(i)  Pi
' 

+1 

is aeptable. 

(ii) The sequene T 

n (0) of iterates onverges in the atomi topology to the pi+i 

unique supported model Ni+1 

of P 

' 

i+1. 
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(iii) N1 

Ni+1 

is the unique supported model of P1 

Pi+1. 

Proof: (i) Ni+1 

is a supported model of Pi
' 

+1, sine Np 

is a supported model 

of P and Pi
' 

+1 

was obtained from Pi+1 

by replaing atoms with true or false 

aording to their value with respet to the model N1 

Ni, and this oinides 

with Np 

restrited to the prediate symbols defned in P1 

Pi+1. Therefore, 

Pi
' 

+1 

is aeptable with respet to this model and lp 

restrited to the prediate 

symbols in Pi
' 

+1. 

(ii) Convergene is again ensured by the aeptability of the program. Also, by 

Theorem 5.2.10, these iterates onverge to the unique supported model of Pi
' 

+1 

whih is exatly Ni+1 

by the observations made in (i). 

(iii) This is immediate by the assumption and (ii). • 

Putting all these results together, we obtain the following Theorem. 

5.2.26 Theorem Let P b e aeptable with aeptable stratifation 

(P1, . . . , P k). For i = 1, . . . , k let Ni 

b e onstruted as above. Then 

N1 

Nk 

= Np 

. 

Termination of Non-Ground Queries 

\e ite the following result from [Apt95, Theorem 5.7]. For a partial onverse, 

see [AP93]. 

5.2.27 Theorem Let P b e aeptable with respet to a level mapping l and a 

model I. Then, for every literal L whih is bounded with respet to l, all SLDNF-
derivations of P  {+ L}, using the Prolog seletion rule, are fnite. In partiular, 

the goal {+ L} terminates under Prolog. 

\ith our preparations, the following result is easily obtained. 

5.2.28 Theorem Let P b e aeptable with respet to a level mapping l and a 

model I, and let L b e a literal whih is bounded with respet to l. Then L is 

bounded with respet to lp 

. 

Proof: This follows immediately from the minimality of lp 

as established in 

Theorem 5.2.21. • 

\e will now disuss termination of non-ground, i.e. general, goals. The fol-
lowing notions were introdued in [AP93]. 

A multiset or bag over a set � is an unordered sequene of elements of � . 

Given a (non-refexive) ordering on a set � , th e multiset ordering over (�, ) 

is an ordering of fnite multisets of the set � and is defned as follows. For two 

fnite multisets X and } over � , let X - } if and only if X = ( } \ { a}) for 

some fnite multiset suh that b a for all b E . Finally, d e f n e the multiset 

ordering over (�, ) as the transitive losure of the relation -. The multiset 

whose elements are a1, . . . , a n 

will be denoted by bag(a1, . . . , a n). 

The following defnition is to be found in [AP93, Defnition 2.9]. 
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5.2.29 Defnition Let P be a program, l a l e v el mapping for P , I a model of P 

with I n N being a m odel for P 

-, and let k 2 0. 

(i) \ith eah ground goal G of the form + L1, . . . , L n 

we assoiate a fnite mul-
tiset l1 

(G) of natural numbers defned by l1 

(G) = bag( l(L1), . . . , l (Ln(GP1))), 

where n(G, I) = min({n} { i E { 1, . . . , n } I I I= Li}). 

(ii) \ith eah goal G we assoiate a set of multisets l 

' (G) defned by l 

' (G) = 1 1 

{l1 

(G 

' ) I G 

' is a ground instane of G}. 

(iii) A goal  G is alled bounded by k with respet to l and I if k 2 j for all 

j E l 

' (G), where l 

' (G) stands for the set-theoreti union of the elements 1 1 

of l 

' (G).1 

(iv) A goal is alled bounded with respet to l and I if it is bounded by some 

k 2 0 with respet to l and I. 

It was observed in [Apt95] that the hoie of level mapping and of the model 

an afet the lass of (general, non-ground) goals whose termination an b e 

established, sine the hoie of both the level mapping and the model afet the 

notion of boundedness for goals. However, we will prove that the model Np 

and the anonial aeptable-level mapping lp 

are ompletely general for proving 

termination of non-ground goals. 

The following result is taken from [AP93, Corollary 4.11]. A partial onverse 

is also given there. 

5.2.30 Theorem Let P be an aeptable program and G a bounded goal. Then 

all SLDNF-derivations of P  { G}, using the Prolog seletion rule, are fnite. 

Our minimality results allow u s to establish the following. 

5.2.31 Theorem Let P b e aeptable with respet to a level mapping l and a 

model I, and let G b e a goal whih is bounded with respet to l and I. Then G 

is bounded with respet to lp 

and Np 

. 

Proof: Sine lp 

(A) : l(A) for all A E Bp 

by Theorem 5.2.21, it suÆes to show 

that n(G, Np 

) : n(G, I). This, however, follows diretly from the minimality 

properties given in Lemma 5.2.11 and Theorem 5.2.21. • 

\e note, fnally, that the model Np 

does not in general desribe the pro-
edural semantis of the program due to the possible presene of foundering 

intermediate goals, f. [AP93] and [Apt95]. The exat relationship b e t ween Np 

and the proedural semantis of P remains to be established. 

5.3 �w
: -Aessible Programs 

\e assoiate a disloated metri to eah <* -aessible program, show that it 

oinides with the d-metri d3 

from Setion 5.2, and apply the Matthews theorem 

1.4.6. 
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CHAPTER 5. SUPPORTED MODEL SEMANTIS  

In the following, P is a < 

* -aessible program whih satisfes the defning 

onditions with respet to a model I and a level mapping l, see Defnition 5.0.4. 

For J, E Ip 

we now defne d(  , ) = 0 and d(J, ) = 2-n, where J and 

difer on some atom A E Bp 

of level n, but agree on all ground atoms of 

lower level, i.e. d oinides with the metri d1 

indued by l. A s w as pointed out in 

[Fit94], and as we k n o w from Theorem 3.2.4, (Ip 

, d ) is a omplete metri spae, in 

fat even an ultrametri spae. \e also defne a funtion f : Ip 

- J by f( ) = 0 

if I and f( ) = 2 

-n, where n is the smallest integer suh that there is an 

atom A E Bp 

with l(A) = n, I= A and I I= A. Finally, w e defne u : Ip 

- J 

by u( ) = max {f( 

' ), d ( \ 

' , I \ I 

' )}, where 

' , for any E Ip 

, denotes 

restrited to the prediate symb o l s whih are not in Neg 

* 

p 

, and f : Ip 

x Ip 

- J 

is defned by 

f(J, ) = max {d(J, ), u (J), u ( )} 

= max {d(J, ), f ( 

' ), d ( \ 

' , I \ I 

' ), f (J 

' ), d (J \ J 

' , I \ I 

' )}. 

\e all f the d-metri assoiated with P , a n d w e will show next that it is omplete. 

5.3.1 Lemma  The funtion u : Ip 

- J defned by u( ) = max{f( 

' ), d ( \ 

' , I \ I 

' )} is ontinuous as a funtion from (Ip 

, d ) to J. 

Proof: Let m 

b e a sequene in Ip 

whih onverges in d to some E Ip 

. \e 

'  ' ' need to show that d( m 

\ , I \ I 

' ) onverges to d( \ , I \ I 

' ) and f( )m m

onverges to f( 

' ) as m - . Sine ( m) onverges to with respet to the 

metri d, it follows that for eah n E N there is mn 

E N suh that and 

m, for all m 2 mn, agree on all atoms of level less than or equal to n. So, if 

f( ) = 2-n0 , say, that means that m 

and agree on all atoms of level less 

than or equal to n if m 2 mn0 

, and hene f( m) = f( ) for all m 2 mn0 

. Also, 

' '  ' ' if d( \ , I \ I ) = 2 

-n0 , say, then d( m 

\ , I \ I 

' )=d( \ , I \ I 

' ) for all m

m 2 mn0 

as required.  • 

Proposition 3.1.9 yields that f is a omplete d-ultrametri on Ip 

using Lemma 

5.3.1. 

5.3.2 Proposition Let P be a < 

* -aessible program with respet to a level 

mapping l and a model I. Let the d-metri d3 

b e defned for P as in equation 

(5.2) of Defnition 5.2.6 for aeptable programs. Then d3 

oinides with f as 

defned above. 

Proof: Clearly, f and p oinide, and we obtain u( ) = max{p( ), d 1(  ,I )} for 

all E Ip 

. Sine d2(J, ) : d(J, ) for all J, E Ip 

, it now remains to show 

that d(J, ) : d3(J, ). So assume that d(J, ) = 2-n, where J and difer 

on some atom A E Bp 

or level n whih is ontained in Neg 

* . But then either J p 

and I or and I difer on A, hene either d1(J, I ) or d1(  ,I ) is greater than or 

equal to 2-n. If A E Neg 

* , then d2(J, ) 2 2-n whih suÆes. • p 
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CHAPTER 5. SUPPORTED MODEL SEMANTIS  

5.3.3 Proposition Let P be a < 

* -aessible program and f its assoiated d-
metri. If ( n) is a sequene whih  o n verges in f to some , then ( n)  o n verges 

in the atomi topology on Ip 

. 

Proof: It is easy to see that if f( n, ) 2-k, then n 

and agree on all 

atoms of level less than k whih suÆes. • 

The proof of the following proposition arries over from the treatment of 

aeptable programs in [Fit94], f. also Proposition 5.4.2. 

5.3.4 Proposition Let P be < 

* -aessible and let f b e defned as above. Then 

the assoiated immediate onsequene operator Tp 

is a ontration on (Ip 

, f ) 

with ontrativity fator 

1
2 

. 

By the Matthews theorem 1.4.6 we an now onlude the following theorem. 

5.3.5 Theorem Eah < 

* -aessible program has a unique supported model 

whih an b e obtained as the limit, in the atomi topology, of iterates of the 

single-step operator assoiated with the program. 

Proof: Let P be < 

* -aessible. Then (Ip 

, f ) is a omplete d-ultrametri spae 

and Tp 

is a ontration relative to f. By Theorem 1.4.6, Tp 

has a unique fxed 

point whih is the unique supported model of P , and this fxed p oin t an b e 

obtained as the limit, in f, of iterates of Tp 

. By Proposition 5.3.3, the model an 

b e obtained as stated. • 

\e note the following relationship between <* -aessible and aeptable pro-
grams. If P is a <* -aessible program, then it is possible to reorder the body lit-
erals in eah lause from ground(P ) s u  h that the resulting ground program is a-
eptable. Thus <* -aessible programs an be understood as �non-deterministi" 

aeptable programs. Note, however, that it is not in general possible to reorder 

the lauses in P itself in order to obtain an aeptable program, whih an b e 

seen from the following example. 

5.3.6 Program Let P b e the program onsisting of the following lauses. 

p(0) +  

p(1) + r(1)  

q(1) +  

q(0) + r(0)  

r(x) + -p(x), -q(x)  

This program is not aeptable, nor is the program obtained by swapping the 

two b o d y atoms in the last lause. However, the program is <* -aessible with 

respet to the level mapping l with l(p(0)) = l(q(1)) = 0, l(r(0)) = l(r(1)) = 1 and 
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l(p(1)) = l(q(0)) = 2. Consequently, we are able to obtain a ground aeptable 

program from ground(P ) as 

p(0) +  

p(1) + r(1)  

q(1) +  

q(0) + r(0)  

r(1) + -q(1), -p(1)  

r(0) + -p(0), -q(0).  

5.4 �
:-Aessible Programs 

\e arry over the results from Setion 5 . 3 t o < 

*-aessible programs. 

In the following, P is a < 

*-aessible program whih satisfes the defning 

onditions with respet to a model I and a level mapping l : Bp 

- I. \e let 

r = {2-+ I o : I} b e ordered as in Setion 3.2 and denote 2-1 by 0. 

2-+For J, E Ip 

we defne d(  , ) = 0 and d(J, ) = , where J and 

difer on some atom A E Bp 

of level o, but agree on all ground atoms of 

lower level, i.e. d oinides with the gum d1 

indued by l, see Proposition 5.1.6. 

As was pointed out in Setion 5.1, (Ip 

, d ) is a spherially omplete generalized 

ultrametri spae. \e also defne a funtion f on Ip 

by setting f( ) = 0 if 

I and f( ) = 2-+, where o is the smallest integer suh that there is an 

atom A E Bp 

with l(A) = o, I= A and I I= A. Finally, we defne a funtion 

u on Ip 

by u( ) = max{f( 

' ), d ( \ 

' , I \ I 

' )}, where 

' , for any E Ip 

, 

is restrited to the prediate symb o l s whih are not in Neg p 

* , and we defne a 

distane funtion f by 

f(J, ) = sup{d(J, ), u (J), u ( )} = max{d(J, ), u (J), u ( )}. 

5.4.1 Proposition (Ip 

, f ) is a spherially omplete disloated generalized ultra-
metri spae. 

Proof: (Ui), (Uiii) and (Uiv) follow from Proposition 3.4.4. For spherial om-
pleteness let (B+) b e a hain of nonempty balls in X with midpoints J+. Let J 

be the set of all atoms whih a r e eventually in J+, i.e. the set of all A E Bp 

suh 

that there exists some p with A E J+ 

for all o 2 p. It is easy to see that for eah 

ball B2-1 
in the hain we have d(Jf, J ) : 2-f and hene J is in the intersetion 

of the hain. • 

The proof of the next proposition is analogous to [Fit94, Lemma 7.1 and 

Proposition 7.1]. 

5.4.2 Proposition Let P be < 

*-aessible with respet to a level mapping l and 

a model I. Then for all J, E Ip 

with J = we have f(Tp 

(J), T p 

( )) 
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f(J, ). In partiular we h a ve the following, where for any E Ip 

we denote by 

' the set restrited to the prediate symb o l s whih are not in Neg p 

* : 

(J) 

' ' ) ' (i) d(Tp 

(J) \ Tp 

, I \ I  d(J \ J , I \ I 

' ). 

(ii) f(Tp 

( ) 

' )  f (J, ). 

(iii) d(Tp 

(J), T p 

( ))  f (J, ). 

Proof: By symmetry, it suÆes to prove properties (i), (ii) and (iii). For onve-
niene, we again identify Neg 

* with the subset of Bp 

ontaining prediate symb o l s p 

from Neg 

* . p 

(i) First note that d(Tp 

(J) \ Tp 

(J) 

' , I \ I 

' ) = d(Tp 

-(J), I \ I 

' ) sine these 

' values only depend on the atoms in Neg 

* 

p 

. Let d(J \ J , I \ I 

' ) = 2-+. \e show 

that d(Tp 

-(J), I \ I 

' ) : 2-(++1). So we know that J \ J 

' and I \ I 

' agree on all 

ground atoms of level less than o and difer on an atom of level o. It suÆes to 

show now that Tp 

-(J) and I \ I 

' agree on all ground atoms of level less than or 

equal to o. 

Let A be a ground atom in Neg 

* with l(A) : o and suppose that Tp 

-(J) and p 

I \ I 

' difer on A. Assume frst that A E Tp 

-(J) and A E I \ I 

' . Then there must 

be a ground instane A + L1, . . . , L m 

of P 

- suh that J \ J 

' I= L1, . . . , L m. Sine 

I \ I 

' is a fxed point of Tp 

- and A E Tp 

-(J), there must also b e a k suh that 

Lk 

E I \ I 

' , and l(Lk) l(A) by Defnition 5.0.4. So we obtain I \ I 

' I= Lk 

but 

J \ J 

' I= Lk 

with l(Lk)  o whih is a ontradition to the assumption that J \ J 

' 

and I \ I 

' agree on all atoms of level less than o. N o w assume that A E I \ I 

' and 

A E Tp 

-(J). It follows that there is a lause A + L1, . . . , L m 

in P 

- suh that 

I \ I 

' I= L1, . . . , L m 

and l(A) > l(L1), . . . , l (Lm) by Defnition 5.0.4. But then 

' ' ' J \ J I= L1, . . . , L m 

sine J \ J and I \ I agree on all atoms of level less than o 

and onsequently A E Tp 

-(J). This establishes (i). 

(ii) Assume f(J, ) = 2 

-+. \e show that f(Tp 

( ) 

' ) : 2-(++1), for whih in 

turn we h a ve to sh o w that for eah A E Tp 

( ) not in Neg 

* , i.e . A E Tp 

( ) 

' , with p 

' ) 

' l(A) : o we have A E I 

' . Assume that A E I for suh an A. Sine A E Tp 

( , 

there is a ground instane A + L1, . . . , L m 

of a lause in P with I= L1, . . . , L m, 

and note that A is not in Neg 

* . Sine A E I 

' , we have A E I and there must p 

also b e a k with Lk 

E I and l(A) > l(Lk) by Defnition 5.0.4. If Lk 

belongs to 

Neg 

* then, sine and I agree on all atoms in Neg 

* of level less than o, we p p 

obtain I= Lk 

whih  o n tradits I= L1, . . . , L m. If Lk 

does not belong to Neg 

* 

p 

then it is an atom and sine f( 

' ) : 2-+, we obtain I I= Lk, whih is again a 

ontradition. 

(iii) Let f(J, ) = 2-+, and let A E Bp 

with l(A) : o. It suÆes to show 

that A E Tp 

( ) if and only if A E Tp 

(J). \e onsider two ases. 

Case 1 A E Neg 

* . Sine f(J, ) : 2-+ , we know that J , and I agree on p 

all atoms in Neg 

* of level less than o. Now if A E I, then there is a lause p 

A + L1, . . . , L m 

in ground(P 

-) with I I= L1, . . . , L m 

and by Defnition 5.0.4 we 

obtain J I= L1, . . . , L m 

and I= L1, . . . , L m, hene A E Tp 

( ) n Tp 

(J). If A E I 

then for all lauses A + body in ground(P ) there is some L in body with I I= L 
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and l(L) o, and onsequently J I= L and I= L. \e onlude that A is 

neither inTp 

(J) nor in Tp 

( ) a s required. 

Case 2 A E Neg 

* . Sine f(J, ) : 2-+, we know that J , and I agree on all p 

atoms in Neg 

* of level less than o, and that for eah B E (J ) not in Neg 

* 

p p 

with l(B)  o we have B E I. Now suppose A E I with l(A) : o. Then there is 

a lause A + body in ground(P ) w ith I I= body and l(B)  ofor all B ourring 

in body. Consequently, we obtain J I= body and I= body, so A E Tp 

(J) 

and A E Tp 

( ). Assuming A E I, we know that for eah lause A + body in 

ground(P ) there is a literal L in body suh that I I= L and l(L)  o. It suÆes 

to show now that J I= L and I= L. Now if L is in Neg 

* , we obtain J I= L and p 

I= L. If L is not in Neg 

* , then sine I I= L we obtain J I= L and I= L whih p 

suÆes. • 

5.4.3 Theorem Let P be < 

*-aessible. Then P has a unique supported model. 

Proof: By Proposition 5.4.2, Tp 

is stritly ontrating with respet to f, whih 

in turn is a spherially omplete disloated generalized ultrametri. By Theorem 

1.5.1, the operator Tp 

must have a unique fxed p o i n t whih yields a unique 

supported model for P . • 

By the proof of Theorem 1.5.1 given in Setion 3.4, together with the al-
ternative proof of the PrieB-Crampe and Ribenb o i m theorem in the version of 

Theorem 1.3.9, we an furthermore obtain the unique model by onstruting the 

sequene ff(0) as in the proof. It remains to investigate how to obtain ff(0) in 

the ase that p is a limit ordinal. To this end, we employ the onstrution from 

the proof of Proposition 5.4.1, i.e. we set ff(0) to be the set of all A E Bp 

whih 

are eventually in (f+(0))+kf. 

5.5 �-Aessible Programs 

Given a <-aessible program P , w e defne a disloated generalized ultrametri on 

Ip 

whih will again allow us to apply the disloated PrieB-Crampe and Ribenboim 

theorem, Theorem 1.5.1. 

In the following, P is a <-aessible program whih satisfes the defning on-
ditions with respet to a model I and a level mapping l : Bp 

- I. A s before, we 

let r = {2-+ I o : I} be ordered as above and denote 2-1 by 0, and for J, E Ip 

we defne the generalized ultrametri d on Ip 

to be the generalized ultrametri d1 

indued by l. 

\e note that Tp 

is in general not stritly ontrating with respet to d for 

<-aessible programs, even if it is defnite. 
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5.5.1 Program Let P b e the following program. 

p(s 

2(x)) + p(x) 

p(0) + 

p(s 

4(0)) + p(s5(0)) 

p(s 

2(0)) + p(s 

3(0)) 

For = {s5(0)} and J = {s3(0)} we obtain d(J, ) = 2-3 . However 

d(Tp 

( ), T p 

(J) = 2 

-2), so Tp 

is not stritly ontrating. 

\e now defne  

f(J, ) = max {d(J, I ), d (  ,I )}  

for all J, E Ip 

. 

5.5.2 Proposition (X , f ) is a spherially omplete generalized disloated ultra-
metri spae. 

Proof: If follows from Proposition 3.4.5 that f is a d-gum. Spherial ompleteness 

follows from the fat that every nonempty ball ontains I. • 

5.5.3 Proposition Let P b e <-aessible. Then Tp 

is stritly ontrating with 

respet to f. 

Proof: Let J, E Ip 

and assume that f(J, ) = 2 

-+. Then J, , I agree on all 

ground atoms of level less than o. \ e show that Tp 

(J) and I agree on all ground 

atoms of level less than or equal to o. A similar argument s h o ws that Tp 

( ) and 

I agree on all ground atoms of level less than or equal to o, a n d this suÆes. 

Let A E Tp 

(J) with l(A) : o. Then there must b e a lause A + L1, . . . , L n 

in ground(P ) suh that J I= L1 

Ln. Sine I and J agree on all ground 

atoms of level less than o, ondition (ii) of Defnition 5.0.4 annot hold, beause 

if I I= Li 

with l(A) > l(Li), then J I= Li 

and onsequently J I= L1 

Ln, 

whih is a ontradition. Therefore, ondition (i) of Defnition 5.0.4 holds and so 

A E Tp 

(I) = I. Hene, A E I. 

Conversely, suppose that A E I. Sine I = Tp 

(I), there must b e a lause 

A + L1, . . . , L n 

in ground(P ) suh that I I= L1 

Ln. Thus, ondition (i) 

of Defnition 5.0.4 must hold, and so we an assume that A + L1, . . . , L n 

also 

satisfes l(A) > l (Li) for i = 1 , . . . , n . Sine I and J agree on all ground atoms of 

level less than o, w e have J I= L1 

Ln 

and hene A E Tp 

(J) as required. • 

5.5.4 Theorem Eah <-aessible program P has a unique supported model. 

Proof: Sine P is <-aessible, the distane funtion f as defned above is a 

spherially omplete d-gum. By Proposition 5.5.3, Tp 

is stritly ontrating, hene 

has a unique fxed p o i n t b y Theorem 1.5.1. • 
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setion lass of programs spae theorem 

5.1 ayli metri 1.2.2 

5.1 loally hierarhial gum 1.3.4 

5.2 aeptable d-metri 1.4.6 

5.3 < 

* -aessible d-metri 1.4.6 

5.4 < 

*-aessible d-gum 1.5.1 

5.5 <-aessible d-gum 1.5.1 

Table 5.1: Chapter overview: Classes of programs and applied theorems. 

Figure 5.1: Dependenies between lasses of programs. If a lass is depited lower 

in the diagram, this indiates that it is more general. 

The proof of Theorem 1.5.1 furthermore yields f(N ,N ) = 0 for the unique 

fxed point N of Tp 

. Sine the only point o f X whih has non-zero distane from 

itself is I, we onlude that I = N is the unique supported model of P . This is 

somewhat unfortunate sine I was needed in order to onstrut f. 

5.6 Summary and Further Work 

Chapter 5  a n be onsidered the entral hapter in this thesis, with the previous 

hapters providing appliable results, and the subsequent hapters foussing on 

a deeper study of the lasses of programs and onepts presented in this hapter. 

Table 5.1 gives a summary of whih fxed-point theorems were applied to whih 

lass of programs. Figure 5.1 displays dependenies between the lasses desribed 

in this hapter. Note that we h a ve not shown yet that every <*-aessible program 

is <-aessible, whih we will do in Chapter 6, Theorem 6.5.3. 

The fundamental onstrution used in this hapter is the generalized ultra-
metri d1 

indued by a level mapping l, in the haraterization of Proposition 
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5.1.6. All generalized metri strutures employed in this hapter make use of it, 

and refne it. Investigations remain to be done onerning the possibilities of ex-
tending this approah to other semanti operators, probably even operators on 

many-valued logis as in Setion 4.3. Some other questions whih arise out of the 

results in this hapter will be addressed in the rest of this thesis. 
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Chapter 6  

Fitting-style Semantis  

In this hapter, we will analyze and haraterize unique supported model lasses 

by means of ertain three-valued logis. In partiular, in Setion 6.1 we will in-
trodue three diferent three-valued logis and their assoiated onsequene op-
erators, and study the relationships b e t ween them. In Setions 6.2 and 6.3, we 

will haraterize aeptable and loally hierarhial programs by means of the 

b e h a viour of these operators. \e will also give alternative onstrutions of their 

anonial level mappings. Prompted by the studies of aeptable and loally hi-
erarhial programs, we will defne two lasses of programs denoted by [<*] and 

[<], whih will later on turn out to oinide with the lasses of all <*-aessible, 

respetively, <-aessible programs. \e study these lasses in Setions 6.4 and 

6.5. Moreover, we w i l l s h o w that the lass [<*] is omputationally adequate under 

SLDNF-resolution. 

Many-valued logis have been employed in several studies of the semantis of 

logi programs. In partiular, they have b e e n used to assign speial truth val-
ues to atoms whih possess ertain omputational b e h a viour suh as b e i n g non-
terminating [Fit85, My84], b e i n g ill-typed [Nai98], b e i n g foundering [And97], 

or failing when baktraking [BFMS98]. The motivation for the defnitions of the 

three-valued logis we will be using in the sequel omes from a ouple of soures. 

Primarily, these logis are formulated in order to allow for easy analysis and 

haraterization of the programs or lasses of programs in question by using the 

logi to mimi the defning property of the program or lass of programs. This 

idea is akin to some of those onsidered in the papers just ited, and is a om-
ponent of work presented in Setion 5.2 where a program transformation whih 

outputs a loally hierarhial program, when input an aeptable one, is used in 

the haraterization of aeptable programs. Natural questions, partly answered 

here, then arise as to the diferent w ays that diferent lasses of programs an be 

haraterized. On the other hand, some of the work in this hapter an also b e 

viewed as a ontribution to the asymmetri semantis proposed in [FBJ90] where 

it is noted that ertain diferenes between Pasal, LISP and Prolog, for example, 

are easily desribed in terms of three-valued logi. Thus, [FBJ90] is also a soure 

of motivation for our defnitions. However, we note that all programs analyzed 

in this hapter do have unique supported models, therefore the third truth value 
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undefned will only be used for obtaining the unique supported two-valued model. 

Hene, interpretations of undefned from the p o i n t of view of omputation (suh 

as non-halting) are not atually neessary in this hapter. 

All semantial onsiderations presented in this paper are with respet to ar-
bitrary preinterpretations. 

6.1 Three-valued Logis 

A three-valued interpretation of a program P is a pair (T , F ) of disjoint sets 

T, F Bp 

. Note that the notation used here is diferent from the one of Setion 

4.3, but is easily seen to b e equivalent. Given suh an interpretation I = ( T , F ), 

a ground atom A is true (t) in I if A E T , false (f) in I if A E F , and undefned 

(u) otherwise; -A is true in I if and only if A is false in I, -A is false in I if and 

only if A is true in I and -A is undefned in I if and only if A is undefned in I. 

-Given I = (T , F ), we denote T by I+ and F by I . Thus, I = (I+ , I 

-). If 

I+ -I = Bp 

, we all I a total three-valued interpretation of the program P . 

Total three-valued interpretations an b e identifed with elements of Ip 

. 

Given a program P , the set IpP 3 

of all three-valued interpretations of P forms a 

omplete partial order (in fat, omplete semi-lattie) with the ordering : defned 

by 

I+ + - -I : if and only if and I 

with least element ( 0, 0) whih w e will denote by l. Notie that total three-valued 

interpretations are maximal elements in this ordering. 

In our present  o n text, it will be suÆient t o g i v e truth tables for onjuntion 

and disjuntion, and we will make use of three diferent three-valued logis whih 

we are now going to defne. It should b e noted here that the truth tables for 

disjuntion are the same in all three logis and that disjuntion is ommutative. 

The frst logi, whih we will denote by £1, evaluates onjuntion as in Fit-
ting's Kripke-Kleene semantis [Fit85] (in fat, as in Kleene's strong three-valued 

logi, see [FBJ90]). This work built on [My84] and was subsequently studied in 

the literature e.g. in [Kun87, AP93, Nai98]. Disjuntion will be evaluated difer-
ently though, as indiated by the truth table in Table 6.1. 

The seond three-valued logi, £2, will b e used for studying aeptable pro-
grams and is non-ommutative under onjuntion. It will be suÆient t o e v aluate 

u f to u instead of f and leaving the truth table for £1 

otherwise unhanged. 

This way of defning onjuntion was employed in [And97] and [BFMS98], see 

also the disussion of LISP in [FBJ90]. The truth table is again given in Table 

6.1. 

The third logi, £3, will b e used for studying loally hierarhial and ayli 

programs. For this purpose, we use a ommutative v ersion of £2 

where we e v aluate 

f u to u instead of f, see the disussion in [FBJ90] of Kleene's weak three-valued 

logi in relation to Pasal. The truth table is shown in Table 6.1. 

Let P b e a normal logi program, and let £i 

denote one of the three-valued 

logis above, where i = 1 , 2 o r 3 . Corresponding to eah of these logis we defne 
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p q 

Logi £1 

p q p V q 

Logi £2 

p q p V q 

Logi £3 

p q p V q 

t t t t t t t t 

t u u u u u u u 

t f f t f t f t 

u t u u u u u u 

u u u u u u u u 

u f f u u u u u 

f t f t f t f t 

f u f u f u u u 

f f f f f f f f 

Operator <p P 1 

= < p 

<p P 2 

<p P 3 

Table 6.1: Truth tables for the logis £1, £2, and £3. 

an operator Fp 

on IpP 3 

as follows. For I E IpP 3, let Fp 

(I) = (T , F ) where T 

denotes the set 

{A E Bp 

I there is A + body E ground(P ) s.t. body is truei 

in I}, 

and F denotes the set 

{A E Bp 

I for every A + body E ground(P ), body is falsei 

in I}. 

Of ourse, truei 

and falsei 

here denote truth respetively falsehood in the logi 

£i. Notie that if A is not the head of any lause in P , then A is false in Fp 

(I) 

for any I. 

It is lear that Fp 

is monotoni in all three ases. \e set Fp 

t0 = l, 

Fp 

to = Fp 

(Fp 

t(o - 1)) for o a suessor ordinal, and  
Fp 

to = Fp 

tp for o a limit ordinal. 

fk + 

Sine Fp 

is monotoni, it has a least fxed point b y the Knaster-Tarski theorem 

1.1.7 whih is equal to Fp 

t o for some ordinal o alled the losure ordinal of P 

(for the hosen logi £i). 

Throughout the sequel, we will denote Fp 

by <pP 1, <pP 2 

or <pP 3 

if the hosen 

logi is orrespondingly £1, £2 

or £3. The appropriate symbol is also inluded in 

Table 6.1 for ease of referene. Note that the behaviour of eah of these operators 

depends only on the evaluation of onjuntion. In fat, <pP 1 

is the very same 

operator as used in [Fit85]. \e will also denote this operator by <p 

. 

6.1.1 Proposition If we evaluate impliation suh that the partial truth table 

in Table 6.2 is satisfed, then for eah i = 1, 2, 3, <p Pi 

is a loal onsequene 

operator. 
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p q 

t t 

t u 

t f 

u u 

u f 

f f 

p + q 

t 

t 

t 

t 

t 

t 

Table 6.2: Desired impliation properties for 3-valued logis. 

Proof: Immediate by Defnitions 4.3.7 and 4.3.10. • 

6.1.2 Proposition Let P b e a normal logi program and let I, I 

' , I 

'' E IpP 3 

be 

suh that I : I 

' : I 

'' . Then we have 

'' ).<pP 3(I) : <pP 2(I 

' ) : <pP 1(I 

Proof: The following observations are lear from the given truth tables, and 

indeed suÆe. If a b o d y of a lause is true (false) in £3, then it is true (false) in 

£2. I f it is true (false) in £2, then it is true (false) in £1. • 

\e investigate the relationship b e t ween <p 

and Tp 

for a given program P , 

extending some results in [AP93]. 

6.1.3 Lemma Let P be a normal logi program, let I E Ip 

and let be a partial 

+  interpretation for P with I 

-. Then <p 

( )+ Tp 

(I) <p 

( )-. 

+  )+Furthermore, if = I = 

-, so that is total, then <p 

( = Tp 

(I) =  

<p 

( )-.  

Proof: Let A E <p 

( )+ . Then A must b e the head of a lause A +  

A1, . . . , A ki 

, -B1, . . . , -Bk2 

in ground(P ) with Ai 

E 

+ and Bj 

E 

- for all  

i = 1 , . . . , k 1 

and j = 1 , . . . , k 2. By assumption, it follows that for these values of  

i and j, Ai 

E I and Bj 

E I, and hene A E Tp 

(I).  

For the seond inlusion, it suÆes to show that <p 

( )- Tp 

(I). Let A E  

<p 

( )-. Then, for every lause A + A1, . . . , A ki 

, -B1, . . . , -Bk2 

in ground(P ),  

-we have some Ai 

E or some Bj 

E 

+. Hene, for every suh lause, we have 

some Ai 

E I or some Bj 

E I, whih implies that A E Tp 

(I). 

For the last statement, it suÆes to note that a onjuntion L1 

Ln 

of literals 

is true in if and only if it is true in I if and only if it is not false in . • 

The following straightforward orollary provides the essential link b e t ween 

the <-operator, the single-step operator Tp 

and onvergene in Q. Intuitively 

speaking, iterates of Tp 

are �squeezed b e t ween" the iterates of <p 

. 

6.1.4 Corollary Let In 

= T 

n(0) and let = t n. Then, for all n E N , we p n 

<p 

+  -obtain n 

In 

. n 
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The following now easily arries over from [AP93], and is in fat a diret 

onsequene of Lemma 6.1.3. 

6.1.5 Proposition Let P b e a normal logi program and let I = ( I+ , I 

-) be a 

total interpretation for P . Then I is a fxed p oin t of <p 

if and only if I+ is a 

fxed point of Tp 

. Furthermore, if <p 

has exatly one total fxed p o i n t N , then 

N+ is the unique fxed point o f Tp 

. 

-Proof: Let I b e a fxed p o in t of <p 

. Then I+ I+ I and by Lemma 6.1.3 

-we obtain I+ = < p 

(I)+ Tp 

(I+) 

<p 

(I)- = 

I = I+. Conversely, let I+ be 

-a fxed point of Tp 

. By Lemma 6.1.3, we obtain <p 

(I)+ = Tp 

(I+) = I+ = 

I = 

<p 

(I)-, and therefore <p 

(I)+ = I+ and <p 

(I)- = I-. The last statement now 

follows immediately. • 

Colleting together the previous results now yields onvergene in Q of iterates 

of Tp 

. 

6.1.6 Proposition Let P be a normal logi program and assume that N = < p 

t 

w is total. Then T 

n(0) onverges in Q to N+, and N+ is the unique supported p 

model Np 

of P . 

Proof: Using the notation from Corollary 6.1.4, we obtain N+ = 

+ and n 

N- -= . Sine N is total, we obtain from Propositions 4.2.2 and 6.1.5 that n 

N+ is the limit in Q of the sequene In. Sine totality of <p 

t w implies that it 

is the unique fxed p o in t o f < p 

, it therefore equals (N+ ,N 

-), so that N+ is the 

unique fxed p o in t o f Tp 

by Proposition 6.1.5. • 

6.1.7 Proposition Let P b e a normal logi program, let Fp 

denote <p Pi 

, for 

i = 1, 2, 3, and assume that N = Fp 

t o is total, where o is the orresponding 

losure ordinal of P . Then N+ is the unique two-valued supported model of P . 

Furthermore, the transfnite sequene (Fp 

tp)f 

onverges in the atomi topology 

to N+ . 

Proof: By totality of N , Propositions 6.1.2 and 6.1.5 we obtain N+ as a fxed 

point of Tp 

. Sine N is the least fxed p oin t of Fp 

and is maximal in IpP 3, it is 

the unique fxed p oin t of Fp 

. The onvergene results follows as in Proposition 

6.1.6. • 

Given a ground atom A whih ours as the head of an element A + C  
of ground(P ), we form the pseudo lause, or simply lause, A + iCi 

whose  
body Ci 

is the (possibly infnite) disjuntion of the b o d i e s Ci 

of all lauses in i  
ground(P ) whose head is A; we all A the head of the pseudo lause A + Ci.i

The set of all suh pseudo lauses will b e denoted by P 

* . It will b e onvenient  
to assign �truth" values to Ci, relative to the logis £i 

by in fat assigning i

truth values to arbitrary disjuntions of literals and then employing the same 

sort of abuse for �disjuntions" of ground literals whih was established earlier 

97  



 

�

CHAPTER 6. FITTING-STYLE SEMANTIS  

for onjuntion. This is done as follows: Ci 

will b e assigned value true (t) if i

and only if at least one Ci 

is true and none are undefned; it will b e assigned 

value undefned (u) if and only if at least one Ci 

is undefned; it will be assigned 

value false (f) if and only if all the Ci 

are false. These defnitions are the natural 

extension to possibly infnite disjuntions of the values given iteratively to fnite 

disjuntions by the truth t a b l e s i n T able 6.1. 

Letting Fp 

denote any one of the <p Pi 

, for i = 1, 2, 3, we defne an operator 

Fp 

* on IpP 3 

as follows. For I E IpP 3, set Fp 

* (I) = (T , F ), where T is the set of 

all ground atoms whih o   u r as the head of a pseudo lause in P 

* whose b o d y 

is true in I, and F is the set of all ground atoms whih our as the head of a 

pseudo lause whose body is false in I. As before, <p 

*Pi 

will denote Fp 

* when the 

hosen logi is £i, i = 1 , 2, 3. Note that Fp 

* is again monotoni for any hoie of 

underlying logi. Ordinal p o wers Fp 

* t o are defned as for Fp 

. \e will denote 

the operator <p 

*Pi 

also by <* 

p Pi 

, and < 

* 

pP 1 

by <* 

p 

. 

6.1.8 Example \e give an example illustrating the program transformation P 

* . 

Let P b e the (propositional) program 

a + b 

a +  

b + 

 +  

then P 

* is 

a + b V  

b + 

 +  

Let I be the three-valued interpretation ({b}, 0). Then <pP 1(I) = ( {a, b}, 0), whih 

is also the least fxed point of <pP 1. However, sine  is undefned in I, we have 

<p 

*P1(I) = ( {b}, 0), whih is the least fxed point o f < p 

*P1. The diferene between 

<pP 1 

and <p 

*P1 

results from the way in whih disjuntion is defned, see the fol-
lowing proposition, Proposition 6.1.10. In fat, in this ontext it is worth noting 

an observation made by one of the referees of [HS99a], as follows. In lassial 

two-valued logi, the programs (a + b) (a + ) and a + (b V ) are equivalent 

simply beause of the distributive laws and De Morgan's law that -b �-  and 

-(b V ) are equivalent. In the Logis £i, i = 1 , 2, 3, -b �-  and -(b V ) are not 

equivalent as an easily b e verifed by, for example, taking b to b e true and  to 

be undefned. In fat, the rule a + (b V ) with disjuntive b o d y i s w eaker (leaves 

more undefned) than the two separate rules a + b and a + . 

6.1.9 Proposition If we evaluate impliation suh that the partial truth table 

in Table 6.2 is satisfed, then for eah i = 1, 2, 3, <* is a loal onsequene p Pi 

operator. 
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Proof: Immediate by Defnitions 4.3.7 and 4.3.10. • 

6.1.10 Proposition Let P b e a normal logi program and let I, I 

' , I 

'' E IpP 3 

be 

suh that I : I 

' : I 

'' . Then we have 

'' ),<p 

*P3(I) : <p 

*P2(I 

' ) : <p 

*P1(I 

and for F denoting any of the <i, for i = 1 , 2, 3, we have 

Fp 

* (I) : Fp 

(I) and Fp 

* (I) 

- = Fp 

(I) 

-. 

Proof: The proof is along the same lines as the proof of Proposition 6.1.2 noting 

that in a disjuntion Ci 

whih is true, no Ci 

is undefned. •i

6.2 Aeptable Programs 

\e are able to haraterize aeptable programs by means of the operator <p 

*P2, 

and we do this next. \e will need the following proposition. 

6.2.1 Proposition Suppose that P is aeptable with respet to a level mapping 

l. Then Np 

= < pP 1 

tw is total, N+ is the unique supported model of P and P is p 

aeptable with respet to l and N+ . p 

Proof: The frst statement arries over diretly from [AP93], where it was shown 

for Herbrand preinterpretations. The seond statement was shown in Theorem 

5.2.12. • 

6.2.2 Lemma Let P b e aeptable. Then N = < p 

*P2 

t w is total. Furthermore, 

N = < pP 2 

tw, and N+ is the unique supported model N+ of P . p 

Proof: Let l b e a l e v el mapping with respet to whih P is aeptable. By Propo-
sition 6.2.1, P is aeptable with respet to l and N+ . Assume that there is a p 

ground atom A whih is undefned in N . \ithout loss of generality we an as-
sume that l(A) is minimal. Then by defnition of £2, there is preisely one pseudo 

lause in P 

* of the form A + Ci 

in whih at least one of the Ci, say C1, is i

undefned. Thus, there must our a left-most ground body literal B in C1 

whih 

is undefned in N , and this ground literal is to the left in C1 

of the frst ground 

literal whih is false in N . Hene, all ground literals ourring to the left of B 

must b e true in N . Sine N : Np 

by Proposition 6.1.10, all these ground lit-
erals must also be true in N+. By aeptability of P we therefore onlude that p 

l(B) l(A), ontraditing the minimality of l(A). By Proposition 6.1.10, the 

seond statement holds. The last statement follows from Proposition 6.1.7. • 
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6.2.3 Defnition Let P b e aeptable. Defne the mapping lp 

as follows: lp 

(A) 

is the lowest ordinal o suh that A is not undefned in <p 

*P2 

t(o 1). 

6.2.4 Proposition Let P b e aeptable. Then lp 

is an w-level mapping and 

P is aeptable with respet to lp 

and Np 

. Furthermore, if l is another level 

mapping with respet to whih P is aeptable, then lp 

(A) : l(A) for all A E Bp 

. 

In partiular, lp 

is exatly the anonial aeptable-level mapping defned in 

Constrution 5.2.16. 

Proof: By Lemma 6.2.2, lp 

is indeed an w-level mapping. 

Let A b e t h e head of a ground lause C in P with lp 

(A) = n. Then the b o d y 

Ci 

of the orresponding pseudo lause in P 

* is either true or false (i.e. is not i

undefned) in N = < p 

*P2 

tn. If Ci 

is true, eah Ci 

evaluates to true or false in i

N . If Ci 

evaluates to true in N (and at least one must), then all ground literals 

in Ci 

are true in N , and therefore have level less than or equal to n - 1. If Ci 

evaluates to false in N , then there must be a ground literal in Ci 

whih is false in 

N suh that all ground literals ourring to the left of it are true in N . Moreover 

all these ground literals are not undefned in N and hene have l e v el less than or 

equal to n - 1. A similar argument applies if Ci 

is false in N . Sine N : Np 

,i

it is now lear that the lause C satisfes ondition (5.1) of aeptability given in 

Defnition 5.0.2 with respet to lp 

and Np 

. 

Now let l b e another level mapping with respet to whih P is aeptable. 

By Proposition 6.2.1, P is aeptable with respet to l and Np 

. Let A E Bp 

with l(A) = n. \e show by indution on n that l(A) 2 lp 

(A). If n = 0 , then A 

appears only as the head of unit lauses, and therefore lp 

(A) = 0. Now le t n > 0. 

Then in every lause with head A, the left prefx of the orresponding body, u p t o 

and inluding the frst ground literal whih is false in Np 

, ontains only ground 

literals L with l(L) n. By the indution hypothesis, lp 

(L) n for all these 

ground literals L and, onsequently, lp 

(A) : l(A) by defnition of lp 

. 

The last statement follows from Theorem 5.2.21, where it is shown that the 

given minimality property haraterizes lp 

. • 

\e are now in a position to haraterize aeptable programs. 

6.2.5 Theorem Let P b e a normal logi program. Then P is aeptable if and 

only if N = < p 

*P2 

tw is total. 

Proof: By Lemma 6.2.2 it remains to show that totality o f N implies aeptabil-
ity. Defne the w-level mapping lp 

for P as in Defnition 6.2.3. Sine N is total, 

lp 

is indeed an w-level mapping for P . \e will show that P is aeptable with 

respet to lp 

and N . 

Arguing as in the proof of the previous proposition, let A b e the head of a 

ground lause C in P with lp 

(A) = n. Then the orresponding body C evaluates 

to true or false in N = <p 

*P2 

t n. If it evaluates to true in N , then all ground 

literals in C are true in N , and therefore have l e v el less than or equal to n - 1. If 

it evaluates to false in N , then there must be a ground literal in C whih is false 
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in N suh that all ground literals ourring to the left of it are true in N . Again, 

all these ground literals are not undefned in N and hene have l e v el less than or 

equal to n - 1. Sine N : , the lause C satisfes the ondition of aeptability 

given in Defnition 5.0.2. • 

In [Mar96], it was shown that the lass of programs whih terminate under 

Chan's onstrutive negation [Cha88] oinides with the lass of programs whih 

are aeptable with respet to a model based on a preinterpretation whose do-
main is the Herbrand universe and ontains infnitely many onstant and funtion 

symbols, f. Setion 5.2. \e therefore obtain the following result. 

6.2.6 Theorem A normal logi program P terminates under Chan's onstru-
tive negation if and only if <p 

*P2 

tw is total, where <p 

*P2 

is omputed with respet 

to a preinterpretation whose domain is the Herbrand universe and ontains in-
fnitely many onstant and funtion symb o l s . 

\e are also able to haraterize aeptability a s follows. 

6.2.7 Proposition A normal logi program P is aeptable if and only if there 

exists an w-level mapping l for P and a model I for P suh that the following is 

satisfed: Condition (5.1) of Defnition 5.0.2 holds and whenever I I= body for all 

lauses A + body in ground(P ), we have I I= A. 

Proof: Let P be a program whih is aeptable with respet to a level mapping l 

and a model I. Then P is aeptable with respet to its unique supported model 

N and l by Theorem 5.2.12, so ondition (5.1) is satisfed with respet to N . 

Sine N is supported, the additional ondition is also satisfed with respet to 

N . 

Conversely, let l and I be suh that ondition (5.1) and the additional ondi-
t i o n i n t h e statement of the proposition are satisfed. Sine I is a model and the 

additional ondition holds, we obtain that I is a supported model. So I, restrited 

-to the prediate symb o l s in Neg 

* , is a supported model of P whih suÆes. • p 

6.3 Loally Hierarhial Programs 

\e will now give a new haraterization of loally hierarhial and ayli pro-
grams along the lines of Theorem 6.2.5, using the operator <p 

*P3. 

6.3.1 Lemma Let P b e loally hierarhial with respet to the level mapping l 

and let A E Bp 

b e suh that l(A) = o. Then A is true or false in <p 

*P3 

t(o 1). 

In partiular, there exists an ordinal op 

suh that <p 

*P3 

top 

is total. 

Proof: The proof is by transfnite indution on o. The base ase follows diretly 

from the fat that if o = 0, then A appears as head of unit lauses only. N o w l e t 

o = p 1 be a suessor ordinal. Then all ground literals appearing in bodies of 
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lauses with head A have level less than or equal to p. By the indution hypothesis, 

they are all not undefned in <p 

*P3 

t(p 1) and therefore A is either true or false 

in <p 

*P3 

t(o 1). If o is a limit ordinal, then all ground literals ourring in bodies 

of lauses with head A have level stritly less than o. Hene, by the indution 

hypothesis and sine o is a limit ordinal, all these ground b o d y literals are not 

undefned in <p 

*P3 

to, and therefore A is true or false in <p 

*P3 

t(o 1). • 

6.3.2 Corollary Let P b e a loally hierarhial program with level mapping 

l : Bp 

- o and let N = < pP 1 

t o. Then N is total and Np 

= N+ is the unique 

supported model of P . 

Proof: By Propositions 6.1.2 and 6.1.10, we have <p 

*P3 

t p : <pP 3 

t p : <pP 1 

t p 

for all ordinals p. Sine <p 

*P3 

t o is total by Lemma 6.3.1, the given statement 

holds using Proposition 6.1.7. • 

6.3.3 Defnition Let P b e loally hierarhial. Defne the level mapping lp 

for 

P as a funtion lp 

: Bp 

- op 

where lp 

(A) is the least ordinal o suh that A is 

true or false in <p 

*P3 

t(o  1 ). 

6.3.4 Proposition Let P be loally hierarhial with respet to some level map-
ping l. Then lp 

is a level mapping for P and, for all A E Bp 

, w e have lp 

(A) : l(A). 

Furthermore, lp 

oinides with the anonial lh-level mapping of Constrution 

5.1.1. 

Proof: The mapping lp 

is indeed a level mapping by Lemma 6.3.1. Let A E Bp 

with l(A) = o. \ e show the given minimality statement b y transfnite indution 

on o. If o = 0, then A appears as the head of unit lauses only, and so lp 

(A) = 0. 

If o = p 1 is a suessor ordinal, then all ground literals L ourring in bodies of 

lauses with head A have level l(L) : p. By the indution hypothesis, we obtain 

lp 

(L) : p for all those ground literals, and so lp 

(A) : o = l(A) by onstrution 

of lp 

. If o is a limit ordinal, then all ground literals L ourring in bodies of 

lauses with head A have level l(L)  o. S in e lp 

(L) : l(L) and sine o is a limit 

ordinal, we obtain that all these ground literals L are not undefned in <p 

*P3 

t o 

and therefore lp 

(A) : o = l(A) as desired. 

The last statement follows sine the minimality property just proved hara-
terizes the anonial lh-level mapping as was shown in Proposition 5.1.4. • 

Note that it is an easy orollary of the previous results that if a program P is 

ayli, then <p 

*P3 

tw is total. 

6.3.5 Theorem A normal logi program P is loally hierarhial if and only if 

<p 

*P3 

to is total for some ordinal o. I t is ayli if and only if <p 

*P3 

tw is total. 

Proof: Let P b e a normal logi program suh that <p 

*P3 

to is total for some o. 

\e defne a mapping lp 

: Bp 

- o as in Defnition 6.3.3. From the defnition of 
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the logi £3 

it is now o b vious that P is indeed loally hierarhial with anonial 

lh-level mapping lp 

. The reverse was shown in Lemma 6.3.1. The statement for 

ayli programs now follows similarly. • 

6.4 �
:-Aessible Programs 

Our investigations of aeptable and loally hierarhial programs suggest we 

defne a lass of programs by the property that <p 

*P1 

to is total for some ordinal 

o. \e will do this next, show that this lass ontains exatly the <*-aessible 

programs, and also that this lass is omputationally adequate. 

6.4.1 Defnition \e defne the lass [<*] of normal logi programs as follows. A 

normal logi program P is ontained in [<*], if <p 

*P1 

to is total for some ordinal 

o. 

6.4.2 Theorem Every program in [<*] has a unique supported model. Further-
more, this lass ontains all aeptable and all loally hierarhial programs. 

Proof: Immediate by Propositions 6.1.7 and 6.1.10. • 

6.4.3 Defnition The anonial level mapping wrt. < 

* for a given program in 

[<*] is denoted by l* and defned as follows. For every A E Bp 

, set l*(A) = o, 

where o is the minimal ordinal suh that A is true or false in <p 

*P1 

t(o 1). 

The following is immediate by Proposition 6.1.10. 

6.4.4 Proposition If P is aeptable or loally hierarhial with anoni-
al aeptable-level mapping, respetively anonial lh-level mapping, lp 

, then 

l*(A) 2 lp 

(A) for all ground atoms A. 

6.4.5 Proposition Let P b e a normal logi program. Then P is ontained in 

[<*] if and only if the following property holds for some model I and some level 

mapping l for P : For eah lause A + L1, . . . , L n 

in ground(P ), we either have 

I I= L1 

Ln 

and l(A) > l (Li) for all i = 1 , . . . n , or there exists i E { 1, . . . , n } 

suh that I I= Li, I I= A and l(A) > l(Li). Furthermore l*(A) : l(A) for every 

A E Bp 

. 

Proof: The frst statement f o l l o ws immediately from the defnition of the logial 

onnetives in the logi £1, using a proof by transfnite indution. 

The minimality property o f l* is shown by transfnite indution along the same 

lines as in the proofs of the Propositions 6.2.4 and 6.3.4. • 

6.4.6 Corollary [<*] ontains exatly all <*-aessible programs. 
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Proof: The proof is analogous to the proof of Proposition 6.2.7, using Proposition 

6.4.5. • 

It was shown in Setion 5.1 that the lass of all loally hierarhial programs 

is omputationally adequate in the sense that every partial reursive funtion 

an b e omputed with suh a program if the use of safe uts is allowed. For <* -
aessible programs, the ut need not b e used, and we will show this next. The 

proof basially shows that given a partial reursive funtion, there is a defnite 

program as given in [Llo88] w h i  h omputes that funtion. This program will turn 

out to be a < 

*-aessible program. 

6.4.7 Theorem Let f be a partial reursive funtion. Then there exists a defnite 

< 

*-aessible program whih omputes f . 

Proof: \e will make use of the defnite program P, 

given in [Llo88, Theorem 9.6], 

and we refer the reader to the proof of this theorem for details. It is easily seen 

that we have to onsider the minimalization ase only. In [Llo88], the following 

program P, 

was given as an implementation of a funtion f whih is the result 

of applying the minimalization operator to a partial reursive funtion g, whih 

is in turn implemented by a prediate pg. \e abbreviate X1, . . . , X n 

by X. 

p, 

(X , } ) + pg(X, 0, U ), r (X, 0, U , } ) 

r(X , }, 0, } ) + 

r(X , } , s (V ), ) + pg(X , s (} ), U ), r (X , s (} ), U , ) 

This program is not <*-aessible. However, we an replae it with a program P 

' 

, 

whih has the same proedural behaviour and is <*-aessible. In fat, we replae 

the defnition of r by 

r(X , }, 0, } ) + 

r(X , } , s (V ), ) + pg(X , s (} ), U ), r (X , s (} ), U , ), lt (}, ), 

where the prediate lt is in turn defned as 

lt (0, s (X)) + 

lt (s(X), s (} )) + lt (X , } ) 

and is obviously <*-aessible. By a straightforward analysis of the original pro-
gram P, 

, it is lear that the addition of lt (y, z ) in the seond defning lause of 

r does not alter the proedural b e h a viour of the program. Sine lt and pg 

are 

< 

*-aessible, it is now easy to see that r is <*-aessible, and so therefore is P 

' . , 

• 

It is worth noting that negation is not needed here in order to obtain full 

omputational power, so Theorem 6.4.7 strenghtens the result of [Llo88] referred 

to in the proof. By ontrast, as already noted, defnite loally hierarhial pro-
grams seem not to provide full omputational power. Regardless of some known 
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drawbaks in SLDNF-resolution, it is interesting to know that relative to it the 

lass of all <*-aessible programs has full omputational p o wer neither the 

lass of ayli nor even the lass of aeptable programs has this property. 

6.5 �-Aessible Programs 

\e arry over our methods to the study of <-aessible programs. 

6.5.1 Defnition Let P b e a normal logi program. Then P is ontained in [<] 

if and only if <p 

to is total for some ordinal o. 

6.5.2 Defnition Let P b e in [<]. For eah A E Bp 

, let lp 

(A) denote the least 

ordinal o suh that A is not undefned in <p 

t (o 1). \e all the resulting 

mapping lp 

the anonial level mapping for P wrt. <. 

6.5.3 Theorem The lass [<] ontains exatly the <-aessible programs. 

Proof: Let P b e in [<], let lp 

b e its anonial level mapping wrt. <, let o be 

its losure ordinal wrt. <p 

and let Np 

= < p 

t o+ b e its unique supported (two-
valued) model. 

(a) Let A E Np 

and lp 

(A) = p. By defnition of lp 

and <p 

there exists a lause 

A + L1, . . . , L n 

in ground(P ) suh that the L1, . . . , L n 

are true in < t p, and 

hene are also true in Np 

. A g a in b y defnition of lp 

we obtain lp 

(A) > l p 

(Li) for 

all i. 

(b) Let A E Np 

and lp 

(A) = p. By defnition of lp 

and <p 

we obtain that for 

any lause A + L1, . . . , L n 

in ground(P ) w e m ust have that L1 

Ln 

is false 

in <p 

tp. So there mu st b e so m e i suh that Li 

is false in <p 

tp and l(Li)  pby 

defnition of lp 

, and hene lp 

(A) > lp 

(Li). Thus, P is <-aessible with respet 

to Np 

and lp 

. 

Conversely, let P be <-aessible, so that P satisfes onditions (i) and (ii) of 

Defnition 5.0.4 with respet to a model I and a level mapping l. \e show by 

indution on p that any A E Bp 

with l(A) = p is not undefned in <p 

t (p  1) 

and, furthermore, that I and <p 

t(p 1) agree on A. 

If l(A) = 0, then A must b e the head of a unit lause or does not appear in any 

head. In the frst ase, A is true in <p 

t 1, and in the seond ase, A is false 

in <p 

t 1. Note that in the frst ase A is also true in I sine ondition (i) of 

Defnition 5.0.4 applies and I is a m odel of P . Also, in the seond ase, A is also 

false in I sine ondition (ii) of Defnition 5.0.4 applies. 

Now let l(A) = p. If there is no lause in ground(P ) with head A, th en A is false 

in <p 

t1 : <p 

t(p 1) and also false in I sine ondition (ii) of Defnition 5.0.4 

applies. So assume there is a lause in ground(P ) with head A. By defnition of 

<-aessibility, either ondition (i) or ondition (ii) of Defnition 5.0.4 applies. 

If ondition (i) applies, then there is a lause A + L1, . . . , L n 

in ground(P ) 

suh that l(L1), . . . , l (Ln)  l (A) and therefore, by the indution hypothesis, the 

L1, . . . , L n 

are not undefned in <p 

t p and I agrees with <p 

t p on them. Now, 
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sine I is a model of P and I I= L1, . . . , L n, w e obtain that A is true in I and by 

defnition of <p 

also in <p 

tp. 

If ondition (ii) applies, then for eah lause A + L1, . . . , L n 

in ground(P ) th ere 

is some i suh that l(A) > l (Li) and Li 

is false in I. Hene we obtain that Li 

is 

false in <p 

t p by the indution hypothesis and it follows that A is false in both 

I and <p 

t(p  1 ). • 

6.5.4 Theorem Let P b e <-aessible with unique supported model N . Then 

N is minimal as a t wo-valued model. 

Proof: Let N be a model of P , and let l be the anonial level mapping of 

P wrt. <. Assume that there exists some A E N \ . \ithout loss of generality, 

we an assume that A is hosen suh that l(A) is minimal. By Defnition 5.0.4 we 

obtain that there is a lause A + B1, . . . , B k, -Bk+1, . . . , -Bm 

in ground(P ) with 

head A and l(Bi)  l (A) for all atoms Bi 

in the body. Sine Bk+1, . . . , B m 

E N , w e 

obtain Bk+1, . . . , B m 

E . By minimality o f l(A) w e also obtain B1, . . . , B k 

E . 

Now, sine is a model of P , we must have A E whih is a ontradition to 

our assumption. • 

6.5.5 Program Theorem 6.5.4 annot b e generalized to all programs with 

unique supported models: the program 

q + p 

p + p, q 

p + -p, -q 

has a unique supported model {p, q}, but {q} is also a model (though not sup-
ported), and so {p, q} is not minimal as a t wo-valued model. 

Not also that for <*-aessible programs the unique supported model is in 

general not least as a two-valued model as an be seen from the program onsisting 

of the single lause p + q. 

6.5.6 Theorem The defnite programs in [<] are exatly the defnite programs 

with unique supported models. 

Proof: This follows immediately from [Fit85, Proposition 7.3]: for a defnite pro-
-gram P with least fxed p oin t (I+ , I 

-) of <p 

, b oth I+ and Bp 

\ I are fxed 

-points of the single-step operator Tp 

, and in fat I+ is the least and Bp 

\ I is 

the greatest supported model of P . Sine P has only one supported model we 

-obtain I+ = Bp 

\ I and therefore P E [<]. • 
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6.6 Summary and Further Work  

\e h a ve p r o vided alternative  haraterizations of the lasses of programs studied 

in Chapter 5, using operators on diferent three-valued logis. These logis turn 

o u t t o b e v ery losely related, and the novelty of this approah lies in the fat that 

the truth value undefned is employed in order to mirror aspets of the programs 

whih are denotational, and not operational. 

\ith this approah it was possible to haraterize aeptable programs, i.e. 

programs whih are terminating under SLDNF-resolution, and it is obvious to ask 

whether this approah an be arried over to termination analysis with respet to 

other resolution methods, or to other semantis whih are based on many-valued 

logis, as referred to in the introdution of this hapter. 
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Chapter 7 

Stable Model Semantis 

The stable model semantis and the supported model semantis share the prop-
erty that a program may have several meanings under these semantis, whih is 

not the ase under other semantis suh a s t h e w ell-founded [GRS91] or the weakly 

perfet model semantis [PP90]. The ambiguity of the stable model semantis, 

however, whih at frst sight seems to b e an undesirable feature of it, has b e e n 

put to use in a programming paradigm alled answer set programming, whih has 

urrently b e e n implemented in several forms, see [MT99] for an overview. 

Stable models are always supported but not vie versa, so the stable model 

semantis an b e viewed as a refnement of the supported model semantis. In 

this hapter, we will disuss some issues relating the two, and an appliation of 

the multivalued Kleene theorem 2.4.6. 

In Setion 7.1, we employ our results on <*-aessible programs and a theorem 

due to [Fag91] in order to desribe a lass of programs for whih their stable and 

their supported models oinide. Setion 7.2 onerns the stable model semantis 

for disjuntive programs and how to relate it to the non-disjuntive ase. Finally, 

in Setion 7.3, we apply Theorem 2.4.6 in order to obtain stable models for a 

ertain lass of extended disjuntive programs, related to [KM98]. 

In this hapter, we will work over Herbrand interpretations only. 

\e will frst give some preliminary defnitions and results that will be needed 

in presenting our own results; they an all b e found in [GL91, KM98], and in 

[GL88] for the non-disjuntive ase. For most of this hapter, we will work with 

disjuntive programs, so we will shortly introdue them and their stable model 

semantis. 

7.0.1 Defnition Let Lit be the set of all ground literals in a frst-order language 

£. A rule r is an expression of the form 

(L1 

V V Ln 

+ Ln+1 

Lm 

�ot Lm+1 

�ot Lk) 

where Li 

E Lit for eah i. Rules are usually written as 

L1, . . . , L n 

+ Ln+1, . . . , L m, �ot Lm+1, . . . , �ot Lk. 
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Given suh a rule r, we set Head(r) = {L1, . . . , L n}, Pos(r) = {Ln+1, . . . , L m} 

and Neg(r) = {Lm+1, . . . , L k}. A rule r is said to b e disjuntive if n 2 2, and 

non-disjuntive otherwise. An extended disjuntive program is a ountable set of 

disjuntive rules. If all the rules are non-disjuntive, the program is said to b e 

non-disjuntive. The term extended refers to the use of two kinds of negation, 

one being lassial negation, ourring in the literals of the lause, the other one 

being the negation , w h i  h an b e interpreted as negation as failure. �ot

As an example of an extended disjuntive program we reall a version of the 

famous �Tweety" senario. 

7.0.2 Program 

fies(X) + bird(X), p en gu in ( X)�ot 

abnormal(X), fies(X) + bird(X) 

- fies(X) + p en gu in ( X) 

bird(X) + p en gu in ( X) 

penguin(tweety ) + 

bird(bob) + 

The intended meaning of this program is that tweety is a penguin and a bird, 

does not fy, and is abnormal. But b o b is a bird whih does fy, sine there is no 

evidene that bob is a penguin. Also, we h a ve no evidene that bob is abnormal. 

This meaning is aptured in the stable model semantis, introdued b e l o w. 

Note that if P is a normal logi program, then ground(P ) is an extended 

disjuntive logi program, whih is in fat non-disjuntive a n d  o n tains only one 

kind of negation. Sine negation, -, in the ase of normal logi programs an b e 

understood from a proedural point of view as negation as failure, we i n terpret the 

ourrene of eah negation - in ground(P ) as an instane of . S o g ro u n d ( P ),�ot

viewed as an extended disjuntive program, is non-disjuntive a n d ontains only 

the negation �ot, so that all literals ourring in ground(P ) are from this point 

of view in fat positive, i.e. atoms. As is ustomary in the literature, we will 

ontinue to use the symb o l - in this ase to indiate negation as failure. Note that 

we assume that extended disjuntive programs are already given in ground form, 

while non-disjuntive programs may ontain variable symbols. The identifation 

of a program P with ground(P ) does not pose any diÆulties in the ontext of 

our disussion. 

In order to desribe the answer set semantis, or stable model semantis, for 

extended disjuntive programs, we frst onsider programs without negation, �ot. 

Thus, let I denote a disjuntive program in whih Neg(r) is empty for eah rule 

r E I. A subset X of Lit, i.e. X E 2��� , is said to b e losed by rules in I if, 

for every r E I suh that Pos(r) X, we have that Head(r) n X = 0. The set 

X E 2��� is alled an answer set for I if it is a minimal subset of Lit suh that 

the following two onditions are satisfed. 
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1. If X ontains omplementary literals, then X = Lit. 

2. X is losed by rules in I. 

\e denote the set of answer sets of I by o(I). If I is non-disjuntive, then 

o(I) is a singleton set, i.e. I has only one answer set. However, if I is disjuntive, 

then o(I) may  o n tain more than one element. 

Now suppose that I is a disjuntive program that may  o n tain �ot. F or a set 

X E 2��� , onsider the program Ix defned as follows. 

1. If r E I is suh that Neg(r) nX is not empty, then we remove r i.e. r E Ix . 

2. If r E I is suh that Neg(r) n X is empty, then the rule r 

' belongs to Ix , 

' ' ' ' where r is defned by Head(r ) = Head(r), Pos(r ) = Pos(r) and Neg(r ) = 0. 

The program transformation (I, X ) - Ix is alled the Gelfond-Lifshitz 

transformation of I with respet to X. G )
It is lear that the program Ix does not ontain �ot and therefore o Ix G )

is defned. \e say that X is an answer set or stable model of I if X E o Ix . 

So, answer sets are fxed p o i n ts of the operator GL introdued by Gelfond and G )
Lifshitz in [GL91], where GL(X) = o Ix . \ e note that the operator GL is in 

general not monotoni, and all it the Gelfond-Lifshitz operator. 

In the urrent and the following hapter, we will also make slight use of the 

well-founded semantis, and we refer to [GRS91] for defnitions and preliminary 

results. 

7.1 Unique Supported and Stable Models 

Sine there exist many diferent semantis for logi programs, it is natural to ask 

when these semantis oinide. \e will see in Theorem 8.2.3, that <-aessible 

programs are well-behaved from this p o i n t of view sine all major semantis 

turn out to be the same for these programs. In this setion, we will investigate a 

ondition, in the non-disjuntive ase, under whih the stable models of a program 

are exatly the supported models of the program. 

7.1.1 Proposition There is a program P whih has a unique supported model 

but no stable model, and whose well-founded model is not total. 

Proof: Consider the following program P : 

p + p 

p + -p 

\e obtain Tp 

({p}) = {p} and Tp 

(0) = {p}, so {p} is the unique supported model 

of P . H o wever, the Gelfond-Lifshitz transformation using {p} deletes the seond 

lause and keeps the frst. The resulting program has minimal model 0, so {p} 
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is not a stable model. Sine totality of the well-founded model implies that the 

well-founded model is stable [GRS91], we obtain that P does not have a total 

well-founded model. • 

\e defne well-supported Herbrand models following [Fag91, Fag94]. 

7.1.2 Defnition An interpretation I of a program P is alled well-supported if 

there exists a strit well-founded partial ordering - on I suh that for any atom 

A E I there exists a (ground) lause A + B1, . . . , B n, -C1, . . . , -Cm 

suh that 

I I= B1 

Bn 

�- C1 

�- Cm 

and Bi 

- A for eah i = 1 , . . . , n . 

The following theorem was given in [Fag91, Theorem 2.1]. 

7.1.3 Theorem For a normal logi program P , the well-supported models of P 

are exatly the stable models of P . 

Given a program P , w e will denote by P 

' the program whih is obtained from 

P as follows: P 

' is the set of all lauses A + A1, . . . , A n 

for whih there is a 

lause A + A1, . . . , A n, -B1, . . . , -Bm 

in P . T hus P 

' denotes the program whih 

is obtained by omitting all negative literals in all the lauses in P , and we note 

that P 

' is defnite. 

\e an now haraterize a lass of programs for whih stable and supported 

models oinide. Reall that all stable models are supported. 

7.1.4 Theorem Let P b e a program suh that P 

' is <*-aessible. Then the 

supported models of P are exatly the stable models of P . 

Proof: Let N b e a supported model of P . \ e show that N is well-supported. 

(1) N is a supported model of the Gelfond-Lifshitz transformation P 

M of 

P with respet to N . In order to show this, let A + body b e a lause in P 

M , 

and assume that body is true in N . Then the b o d y of a orresponding lause in 

ground(P ) is also true with respet to N by defnition of P 

M , and hene A is true 

with respet to N . So N is a model of P 

M . T o show supportedness, assume that 

A E N . Then there is a lause A + body in P with N I= body. By defnition of 

P 

M we obtain that there is a orresponding lause in P 

M whose b o d y is true in 

N . So N is supported as a m odel of P 

M . 

(2) Sine P 

' is <*-aessible, it has a unique supported model . \e show 

that N . Assume that this is not the ase, i.e. that there is A E N \ 

with l(A) minimal. Sine N is a supported model of P 

M , we know that there is 

a lause A + body in P 

M with N I= body. B ut body is also the body of a lause 

in P 

' with head A. So by < 

*-aessibility o f P 

' , and sine A E by assumption, 

there exists a literal B in body with l(B) l(A) and I= B, and sine P 

' is 

defnite, we obtain B E N and B E whih ontradits minimality of l(A) in 

our hoie of A. So N . 

(3) \e show now that N is well-supported as a model of P . L et A E N . Sine 

N is a supported model of P there exists a lause A + B1, . . . , B n 

-C1, . . . , -Cm 

in ground(P ) suh that the b o d y of this lause is true in N . From the inlusion 
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N it follows that B1, . . . , B n 

E . Now sine P 

' is <*-aessible we obtain 

l(A) > l (Bi) for all i = 1 , . . . , n . Therefore, the strit ordering - on N defned by 

B - C if and only if l(B)  l (C) establishes that the model N is well-supported. 

• 

The result in Theorem 7.1.4 annot b e generalized by replaing <* with <: 

there exists a program P suh that P 

' is <-aessible and suh that P has a 

supported model whih is not a stable model. In order to see this, let P b e the 

program given in the proof of Proposition 7.1.1. Then P 

' has a unique supported 

model N = {p} and is <-aessible. So N is indeed a supported model of P but 

not a stable model of P . 

7.2  Stable Models and Supported Models in the 

Disjuntive Case 

\e study stable and supported models in the disjuntive ase. In partiular, we 

will provide a framework for asting disjuntive programs into non-disjuntive 

ones, and study relationships b e t ween the models before and after the transfor-
mation. \e will work with disjuntive logi programs, i.e. with extended disjun-
tive programs where all literals ourring in the program are in fat positive, i.e. 

atoms. Moreover, �ot will be taken to mean lassial negation, -. One immediate 

efet of this imposition that Head(r) an only ontain positive literals (whether 

or not the restrition on �ot is imposed) is to restrit the elements of an answer 

set to be positive literals also, as shown by the following lemma. 

7.2.1 Lemma Suppose that the head of eah lause in a disjuntive program I 

ontains only positive literals. Then any answer set for I ontains only positive 

literals. 

Proof: Suppose that X is a set of literals whih is losed by rules in Iz for 

some E 2��� . Let } denote the set whih results by removing from X all the 

negative literals in X. Then } is losed by rules in Iz . To see this, suppose 

that r E I and that Pos(r) } is true. Then Pos(r) X is also true, and so 

Head(r) n } = Head(r) n X = 0. 

Therefore, by minimality, a n a n s w er set of I an only ontain positive literals. 

• 

Notie that this lemma makes redundant the ondition 1. onerning omple-
mentary literals in the frst part of the Defnition 7.0.1 of an answer set. 

Thus, for the rest of this setion, the most general form of rule r that we shall 

onsider in this setion is the following 

A1, . . . , A n 

+ Bn+1, . . . , B m, -Bm+1, . . . , -Bk, 

where all Ai, B j 

are atoms. Therefore, we h a ve Head(r) = {A1, . . . , A n}, Pos(r) = 

{Bn+1, . . . , B m} and Neg(r) = {Bm+1, . . . , B k}. 

112  



CHAPTER 7. STABLE MODEL SEMANTIS  

In fat, the members of the lass of disjuntive programs thus defned are 

preisely the disjuntive databases onsidered in [Prz88]. \e will ontinue to use 

the notation I for a typial disjuntive program even with this restrition in 

plae. Hene, I denotes a possibly infnite set of rules of the sort just desribed. 

Normal Derivatives of Disjuntive Logi Programs 

The Lemma 7.2.1 fouses attention on the sets of positive ground literals in the 

frst order language £ underlying I i.e. on the p o wer set Ir 

of the Herbrand 

base Br 

of I. \e intend to relate answer sets to supported models of normal 

logi programs assoiated with I, and Lemma 7.2.1 will assist us in doing this. 

Therefore, typial elements of Ir 

will be denoted either by I or by X, depending 

on the ontext. The frst step in the diretion we want to go is provided by the 

following defnition, and it will be onvenient to write a typial rule r in I in the 

form Hr 

+ body . r 

7.2.2 Defnition Suppose that I is a disjuntive logi program. The single-step 

operator Tr 

assoiated with I is the multivalued mapping from Ir 

to the p o wer 

set 21r of Ir 

defned by: J E Tr(I) if and only if the following onditions are 

satisfed. 

(i) For eah rule Hr 

+ body in I suh that I I= body , there exists an A in r r

Hr 

suh that A E J . 

(ii) For all A E J , there exists a rule Hr 

+ body in I suh th a t I I= body and r r 

A belongs to Hr. 

Notie that this defnition redues to the usual defnition of the single-step 

operator Tp 

in ase that I is a normal logi program P . 

7.2.3 Theorem Suppose that I is a disjuntive logi program. Then we have 

I E Tr(I), i.e. I is a fxed point o f Tr, if and only if the following onditions are 

satisfed. 

(a) I is a model for I, i.e. for every rule Hr 

+ body in I suh that body is r r 

true with respet to I, we have that Hr 

is also true with respet to I. 

(b) For every A E I, there is a rule Hr 

+ body in I suh that body is true r r 

with respet to I and A E Hr. 

By analogy with the non-disjuntive ase, we all an interpretation I (i.e. an 

element o f Ir) whih fulflls ondition (b) above a supported interpretation. T hus, 

I E Tr(I) if and only if I is a supported model for I. 

Proof: Suppose that I E Tr(I) and let Hr 

+ body b e a rule in I suh that r 

body is true with respet to I. F or (a), it remains to show that there is an atom r 

A in Hr 

suh that A E I, whih is the ase by ondition (i) of Defnition 7.2.2. 

Condition (b) follows diretly from (ii) of Defnition 7.2.2. 
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Conversely, suppose that onditions (a) and (b) are satisfed by I. \e have 

to show that I E Tr(I), i.e. that onditions (i) and (ii) of Defnition 7.2.2 are 

satisfed for I = J . Both however follow diretly from onditions (a) and (b), 

respetively. • 

\e study next how to derive a normal program from a disjuntive one. 

7.2.4 Defnition Suppose that I is a disjuntive logi program. A normal 

derivative P of I is defned to be a (ground) normal logi program P onsisting 

of possibly infnitely many lauses whih satisfes the following onditions. 

(a) For every rule Hr 

+ body in I there exists a lause A + body in P suh r r  

that A belongs to Hr.  

(b) For every lause A + body in P there is a rule Hr 

+ body in I suh that r r  

A belongs Hr.  

Note that ondition (b) simply states that all lauses in P have to b e derived 

from rules in I by ondition (a). 

7.2.5 Theorem Let I b e a disjuntive logi program and let I E Ir. Then 

J E Tr(I) if and only if J = Tp 

(I) f o r some normal derivative P of I. 

Proof: Let P be a normal derivative of I and suppose that J = Tp 

(I). \e have 

to show that J E Tr(I) i.e. that J satisfes onditions (i) and (ii) of Defnition 

7.2.2. 

For (i), let Hr 

+ body be a rule in I suh that body is true with respet to r r 

I. By ondition (a) of the previous defnition, there exists a lause A + body in r 

P suh that A belongs to Hr. B y defnition of Tp 

, we have A E J as required. 

For (ii), let A be in J . Then there exists a lause A + body in P suh that 

body is true with respet to I. By ondition (b) of the previous defnition, there 

exists a rule H + body in I suh that A belongs to H as required. 

Conversely, suppose that J E Tr(I) i.e. that J satisfes onditions (i) and (ii) 

of Defnition 7.2.2. \e have to show that there exists a normal derivative P of 

I suh that J = Tp 

(I). To do this, we defne the ground normal program P as 

follows. 

(1) Let Hr 

+ body b e a rule in I suh that body is true with respet to I. r r 

Then by ondition (i) there is an atom A in Hr 

suh that A E J . Let P ontain 

all lauses A + body for suh A. r 

(2) For every rule Hr 

+ body in I suh that body is not true with respet r r 

to I, w e  hoose an atom A in Hr 

arbitrarily. Let P ontain all lauses A + bodyr 

thus defned. 

(3) P ontains only lauses defned by (1) and (2).  

Obviously, P is a normal derivative o f I .  

Now let A E J . Then by (1) there exists a lause A + body in P suh  

that body is true with respet to I. Consequently, A E Tp 

(I). Conversely, let 

A E Tp 

(I). Then there is a lause A + body in P suh that body is true with 
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respet to I. By (1) and (3) there exists a rule H + body in I suh that A 

belongs to H, and by (1) again, we obtain A E J as required. • 

The previous theorem allows us to onlude the existene of supported mod-
els for any given disjuntive program I provided any normal derivative o f I h a s 

suh a model. In partiular, if any normal derivative of I is aeptable, or loally 

hierarhial, or loally stratifed1, or defnite, then I has at least one supported 

model. Conversely, i f a g i v en disjuntive program I has a supported model, there 

exists a normal derivative of I whih has a supported model. This fat is impor-
tant from our p o i n t o f view sine we are foussing on normal derivatives of I in 

the belief that they simplify the study of I. 

A disjuntive database I is a fnite disjuntive logi program onsisting of 

nr 

E N (ground) rules. \e all nr 

the order of I. 

7.2.6 Proposition Let I be a disjuntive database of order nr 

= n E N onsist-
ing of the rules r1, r 2, . . . , r n. For every k E { 1, . . . , n }, let dk 

denote the numb e r G ) nof disjuntions ourring in the head of rk. Then I has at most k=1 

2dk - 1 nr 

G )
normal derivatives. Therefore, for any I E Ir 

we have ITr(I)I : k=1 

2dk - 1 . 

Proof: Let rk 

b e a rule in I. Every normal derivative P of I ontains at least G )
one and at most dk 

lauses generated by rk. Consequently, there are 

dk 

m = m=1 dk( G )) G ) 

dkdk 

m - = 2 - 1 possibilities for lauses in P derived from rk, and m= dk dk

the frst statement in the onlusion follows immediately from this. The seond 

part of the onlusion now follows from Theorem 7.2.5. • 

For any disjuntive database whih happens to b e a normal logi program, 

the bound in the previous orollary turns out to be 1, so that this bound is sharp. 

Normal Derivatives and the Answer Set Semantis 

\e n o w return to answer set semantis, and the fnal results of this setion bring 

together the ideas developed thus far by relating answer sets of I and supported 

models of normal derivatives of I. 

7.2.7 Theorem Suppose that I is a disjuntive logi program in whih Head(r) 

ontains only positive literals for eah rule r E I, and in whih �ot denotes 

lassial negation. Then given an answer set X E 2��� for I, there is a normal 

derivative P of I suh that Tp 

(X) = X. 

Proof: \e have X E o(Ix ). Consider Ix and the following normal derivative P 

of I whih w e onstrut by referene to the step by step onstrution of Ix . Let r 

be a rule in I and suppose for ease of notation that r takes the form Hr 

+ body . r 

First, suppose that Neg(r)nX = 0, so that r E Ix . \ e  hoose an atom, A say, 

from the head Hr 

of r arbitrarily and inlude the lause A + body in P . Sine r 

1 Cf. Chapter 8. 

115  



  

�  
 �

 �  

�
�

�
�

�

�  

� �
 

� �

CHAPTER 7. STABLE MODEL SEMANTIS  

Neg(r) n X = 0 we see that X I= body , and therefore this lause ontributes r

nothing to Tp 

(X). 

Now suppose that Neg(r) n X = 0. Then the rule r 

' belongs to Ix , where r 

' 

is defned by Head(r 

' ) = Head(r), Pos(r 

' ) = Pos(r) and Neg(r 

' ) = 0. Sine X is 

an answer set for Ix , we have the statement Pos(r 

' ) X � Head(r 

' ) n X = 0 

holding true. The frst subase of this ase is when Pos(r 

' ) X. Again, we selet 

an atom A in Head(r 

' ) = Head(r) arbitrarily and inlude the lause A + bodyr 

in P . Sine Pos(r) = Pos(r 

' ) X, we have X I= body one more. Therefore, r 

this lause also ontributes nothing to Tp 

(X). 

Finally, onsider the subase of the previous ase in whih Pos(r 

' ) X, so 

that Pos(r) = Pos(r 

' ) X. For eah atom A E Head(r 

' ) n X = Head(r) n X 

inlude the lause A + body in P , not inluding repetitions of this lause. Sine r 

Pos(r) X and Neg(r) n X = 0, we have X I= body . Thus, Tp 

(X) inludes all r

the A E Head(r) n X for eah rule r suh that Pos(r) X. Therefore, we have 

Tp 

(X) X, and P is a normal derivative o f I b y onstrution. Thus, it remains 

to show that Tp 

(X) = X. 

Suppose it is the ase that Tp 

(X) c X i.e. that there is an x E X suh that 

for eah rule r in Ix with Pos(r) X we have x E X n Head(r). \e show that 

this supposition leads to the ontradition that } = X \ { x} c X is an answer 

set for Ix . Indeed, if r is a rule in Ix suh that Pos(r) } , then Pos(r) X 

and so Head(r) n } = Head(r) n X = 0. Thus, } is losed by rules in Ix . But 

this ontradits the minimality o f X and onludes the proof. • 

As an immediate orollary of our results, we an reover the result of [GL91] 

that an answer set for I is a model for I (and hene the name answer set 

semantis or stable model semantis). 

7.2.8 Corollary Suppose that I is a disjuntive logi program. Then any a n s w er 

set X for I is a model for I. 

Proof: By Theorem 7.2.7, there is a normal derivative P of I suh th a t Tp 

(X) = 

X. Therefore, we have X E Tr(X) by Theorem 7.2.5. It now follows that X is a 

supported model for I by Theorem 7.2.3. • 

The following result is a frst step towards a onverse of Theorem 7.2.7. 

7.2.9 Proposition Suppose that I is a disjuntive logi program whih satisfes 

the hypothesis of Theorem 7.2.7. Suppose also that X E 2��� and that P is a 

xnormal derivative o f I suh that Tp 

(X) = X. Then X is losed by ru les in I . 

Proof: Let r 

' E Ix b e an arbitrary rule. Then there is a rule r in I of the form 

Hr 

+ body suh that Neg(r) n X = 0, Head(r 

' ) = Head(r) and Pos(r 

' ) = Pos(r).r 

Suppose that Pos(r 

' ) X. Then Pos(r) X and therefore X I= body , sine r

Neg(r) n X = 0. But P is a normal derivative of I and therefore there must b e 

a lause in P of the form A + body , where A E Head(r). By defnition of the r

single-step operator Tp 

, we have A E Tp 

(X) and hene we have A E X sine 
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Tp 

(X) = X. Therefore, Head(r 

' ) n X = Head(r) n X = 0. Thus, X is losed by 

rules in Ix as stated. • 

Proposition 7.2.9 raises the problem of haraterizing those normal derivatives 

whose fxed points are answer sets for I. Indeed, the same problem an b e put 

for all the other semantis whih have b e e n proposed for disjuntive programs 

and databases. 

7.3 Signed Semi-disjuntive Programs 

As already mentioned, the multivalued Knaster-Tarski theorem 2.1.4 was applied 

in [KM98] in order to fnd answer sets for a ertain lass of extended disjuntive 

programs, see Lemma 7.3.2 and Theorem 7.3.3 b e l o w. In this setion, we will 

defne a sublass of these programs to whih the multivalued Kleene theorem 

2.4.6 an be applied instead. 

Reall, that the operator GL is in general not monotoni. However, for non-
disjuntive programs it is antimonotoni in that we have G L( X) 2 GL(} ) when-
ever X } . This fat is used in order to obtain a monotoni operator by applying 

the operator GL twie. For this purpose, we partition a given program, if possible, 

into two suitable subprograms, following [KM98]. 

7.3.1 Defnition An extended disjuntive logi program I is said to b e signed 

if there exists S E 2��� , alled a signing, suh that every rule r E I satisfes one 

of the following onditions. 

1. If Neg(r) n S is empty, then Head(r) S and Pos(r) S. Let I3 

b e the 

subprogram of I onsisting of those rules whih satisfy this ondition. 

2. If Neg(r)nS is not empty, then Head(r)nS = Pos(r)nS = 0 and Neg(r) S. 

Let I 33 

b e the subprogram of I onsisting of those rules whih satisfy this 

ondition, where 

SS denotes the set Lit \ S. 

Clearly, the programs I3 

and I 33 

are disjoint and I = I3 

I 33. A signed 

program I is said to be semi-disjuntive if there exists a signing S suh that I3 

is non-disjuntive. 

\e b o r r o w from [KM98] that, for signed semi-disjuntive programs, the op-

erator T : 2 

33 - 22
 s

defned by   
+(rg )T (X) = o I 33

is monotoni with respet to the ordering 2 whih is the dual of the order of 

subset inlusion, . In fat, for the remainder of this setion we will be onerned 

with dereasing orbits, and w-ontinuity with respet to dereasing orbits et. So, 

let us note that 2��� is a omplete lattie with respet to , and therefore the 
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ordering 2 on 2��� turns this set into an w-po (with bottom element). Sine it 

is natural to think of the ordering on 2��� , rather than its dual, the notions 

and results of this setion will b e formulated with respet to . But, in fat, 

we will later on apply the dual version of the multivalued Kleene theorem 2.4.6, 

where the notions of monotoniity, w-ontinuity a n d w-po will be taken to mean 

the duals of the orresponding notions introdued in Setion 2.4, see for example 

Lemma 7.3.2. 

The following lemma, [KM98, Lemma 2], establishes the dual of the hypothesis 

(2.1) on T whih was used in Theorem 2.1.4. 

7.3.2 Lemma \ith the notation already established, let I b e a signed semi-
3disjuntive program, let (Xf) b  e a dereasing orbit of T in 2 

3
and let X denote 

SXf. Then there exists S suh that E T (X) and X.f 

From this lemma, it follows by the multivalued Knaster-Tarski theorem 2.1.4 

that the operator T has a fxed point. The proof of the next theorem from [KM98] 

was based on this observation. 

7.3.3 Theorem Let I be a signed semi-disjuntive program whih i s safe2 with 

respet to the partition (I3, I33), where S is a signing for whih I3 

is non-
disjuntive. Then I has a onsistent answer set i.e. an answer set whih d o e s n o t 

ontain any omplementary literals. 

The proof of this result utilizes only the single fat from Lemma 7.3.2 that a 

fxed point o f T an be found (by applying Theorem 2.1.4). So, if a fxed point o f 

T an be found by other means, the proof of Theorem 7.3.3, as given in [KM98], 

is still valid. 

Now, if I is a program as in Theorem 7.3.3 and, in addition to this, T is 

w-ontinuous (using the notion dual to the one from Defnition 2.4.5), then we 

obtain the fxed point of T from the proof of Theorem 2.4.6 using no more than 

w iterations. \e will see that a fniteness ondition together with an ayliity 

ondition suÆes to ahieve this. 

7.3.4 Defnition A program I is said to b e of fnite type if, for eah L E Lit, 

the set of rules in I with L in their head is fnite3. A program I is alled ayli 

if there is a (level) mapping l : Lit - N , suh that l(L) = l(-L) for eah literal 

L and, for every rule r in I and for all L in Head(r) and all L 

' in Pos(r) Neg(r), 

we have l(L) > l (L 

' ). 

The ondition on a program that it is of fnite type was used in [Sed95] in 

order to establish Theorem 4.2.6 onerning ontinuity, in the atomi topology, 

of the immediate onsequene operator of a normal logi program i.e. of a non-
disjuntive program. Later on it was shown in [Sed97] that ontinuity in the 

2 This onept is defned in [KM98], but it will not be needed here. 

3 When working with non-ground programs, a suÆient ondition to obtain this for the 

ground instantiation of the program is the absene of loal variables. See also Example 7.3.8. 
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atomi topology is losely related to ontinuity in quasimetri spaes. Thus, in 

the light of Setion 2.4, it is not surprising that programs of fnite type make a n 

appearane again in our present setting. Cf. also Defnition 4.3.11. 

\e now indutively defne the following sets for a signed semi-disjuntive 

program with signing S. 

X = Lit, G )
Ixi}i 

= o ,3 G )
Xi+1 

E o I_
3
i with Xi+1 

Xi,3  
X = Xi, 

iEN 

} = }i. 

iEN 

IxiIndeed, these sets are well-defned sine I3, and therefore , is non-3 ( )
gi+ r 

disjuntive for eah i, and sine the operator T , where T (Xi) = o I 33 

as above, is monotoni. \ith this notation, we have the following lemma. 

7.3.5 Lemma Let I b e a signed semi-disjuntive program with signing S suh 

that I 33 is of fnite type. Then the following hold with respet to the ordering 

on 2��� . 

(i) The sequene Xi 

is dereasing. \e set X = Xi. 

(ii) The sequene Ixi of programs is inreasing with respet to set-inlusion, 3 

Ixi 

xand 3 

= I 3 

. 

(iii) The sequene }i 

is inreasing. \e set } = }i. 

(iv) The sequene I_i of programs is dereasing with respet to set-inlusion, 33 

I_i 

_and 3 = I 3 . 

3 3 G )
(v) } = o Ix .3 

(vi) X is losed by rules in I_
3 .3 

(vii) For eah L in X, there is a rule r in I_
3 with L E Head(r) suh that the 

3 

following two onditions are satisfed. 

(vii.1) Pos(r) X. 

(vii.2) For any literal L 

' E Head(r) w ith L 

' = L, we have L 

' E X. 

Proof: (i) This follows immediately from the defnition of the Xi. 

(ii) This follows from (i), (iii) follows from (ii), and (iv) follows from (iii). G )
Ixi(v) If L E } , then there is i E N suh that L E }i 

= o for all i 2 i .3 
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Sine the sequene Ixi of programs is inreasing with respet to set-inlusion and 3 G ) G )
Ixi Ix for eah i, we obtain L E o Ix and therefore } o Ix . Now let 3 3 3 3 

r b e a lause in Ix . If Pos(r) } , then there is i E N suh that Pos(r) }i.3 

But eah }i 

is losed by rules in Ix
3 

i and Ixi is non-disjuntive for eah i, hene 3 

we obtain that Head(r) E }i. So Head(r) E } and it follows that } is losed by 

rules in Ix
3 3. Sine answer sets of Ix are sets whih are minimally losed by rules G ) G )

in Ix and sine } o Ix , we obtain that } = o Ix .3 3 3 

(vi) This was shown in [KM98]. 

(vii.1) Let L E X be a literal. \e k n o w th a t L E Xn 

for all n. B ut Xn 

is minimally 

losed by rules in I_
3
n , therefore we also know that, for eah n, there must b e 

3 

a rule r in I_
3
n with L E Head(r) and Pos(r) Xn. Sine I 33 is of fnite type, 

3 

we also know that there are only fnitely many rules r in I_
3
n with L E Head(r).

3 

I_iBut I_
3
i+1 

3 for all i, so it follows that there must b e a rule r in I_ 

3 with 

3 3 

3 

L E Head(r) suh that Pos(r) Xi 

for all i. Hene Pos(r) X. 

(vii.2) Let r1, . . . , r n 

b e all the rules in I_ 

3 with L E Head(ri) and Pos(ri) X,
3 

noting that I_ 

3 is of fnite type so that there exist only fnitely many suh rules. 

3 

There must now b e a j E N suh that, for all j 2 j , we have that eah ri 

is 

fa rule in I
_
3 with Pos(ri) Xj 

by (vii.1). Now, for eah i = 1, . . . , n , suppose 

3 

that there is a literal Li 

= L in Head(ri) with Li 

E X. T hen we have Li 

E Xj 

for 

fall j 2 j . It is now easy to see that Xj 

\ { L} is losed by rules in I
_
3 , whih 

3 

fontradits the fat that Xj 

is minimally losed by rules in I
_
3 . • 

3 

If the program I 3 additionally satisfes the ayliity ondition, then X is3 

already a fxed point of T , as we show next. 

7.3.6 Theorem Let I be a signed semi-disjuntive program with signing S suh 

that I 33 is of fnite type and is ayli. Let (Xn) b e a dereasing w-orbit of T in 

32 

3
and let X = Xn. Then X E T (X).n 

Proof: \e k n o w from Lemma 7.3.2 that there is X with E T (X). Assume 

' ' = X \ = 0. Sine I_ 

3 is ayli, there must b e an L E of minimal level. 

3 

But L E X so, by Lemma 7.3.5 (vii), there must b e a rule r whih satisfes 

onditions (vii.1) and (vii.2). By (vii.1) and minimality of the level of L, we 

obtain Pos(r) and sine is losed by rules in I_ 

3 , there must b e a literal 

3 

L 

' E Head(r) with L 

' E . But X, so we obtain L 

' E X and L 

' = L by 

(vii.2), and therefore L E ontradits L E . • 

As already mentioned above, the proof of Theorem 7.3.3 now arries over 

diretly from [KM98], so that eah signed semi-disjuntive program whih is safe 

with respet to the partition (I3, I33), where S is a signing for whih I 3 

is non-
disjuntive and I 33 is of fnite type and ayli, has a onsistent a n s w er set. From 

the proof of Theorem 7.3.3 together with Theorem 7.3.6, this answer set turns 

out to b e } X, with notation as defned in the paragraph preeding Lemma 

7.3.5. The novelty of this theorem lies in the fat that the answer set an be found 

by applying the operator T no more than w times. 
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CHAPTER 7. STABLE MODEL SEMANTIS  

\e onlude with two examples whih show that the onditions of being 

ayli and of fnite type are indeed neessary. \e will use the notation from 

Lemma 7.3.5. 

7.3.7 Program Let I b e the ground instantiation of the following program, 

where x denotes a v ariable and 0 a onstant. 

p(x) + q(x)�ot 

q(s(x)) + p(x)�ot 

r(0) + q(x), p(x)�ot 

The program I is signed with signing S = {p(sn(0)) I n E N } and is trivially 

semi-disjuntive. Note, however, that I 3 is not of fnite type but is ayli. \e 3 

now make t h e following alulations: 

X = Lit, 

} = 0,  

Xi 

= {r(0)} { q(s 

n(0)) I n 2 i} for i 2 1,  

}i 

= {p(s 

n(0)) I n = 1 , . . . , i } for i 2 1. 

As expeted, the set X = Xi 

= {r(0)} is not a fxed p oin t of T nor isi 

X i 

}i 

= {r(0)} { p(sn(0)) I n E N } an answer set of I. However, taking 

X +1 

= T (X ) = 0, whih is a fxed p o in t of T , we obtain {p(sn(0)) I n E N } as 

answer set of I. 

The following example shows that the ayliity ondition on I 3 annot e3 

b 

dropped. 

7.3.8 Program Let I b e the ground instantiation of the following program, 

where x is a variable and a onstant s y m bol 0 is added to the language underlying 

I. 

t(x) + t(x) 

p(x) + q(x)�ot 

q(s(x)) + p(x)�ot 

r(x) + q(x), p(x)�ot 

r(x) + r(s(x)), t(x)�ot 

The program I is signed with respet to the signing S = {p(sn(0)), t (sn(0)) I n E 

N } and is trivially semi-disjuntive. Note, however, that due to the last lause 

in the above program, I 3 is not ayli but is of fnite type. \e now make the 3 

following alulations: 

X = Lit, 

} = 0, 

Xi 

= {q(s 

n(0)) I n 2 i} { r(s 

n(0)) I n E N } for i 2 1, 

}i 

= {p(s 

n(0)) I n = 0 , . . . , i - 1} for i 2 1. 
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CHAPTER 7. STABLE MODEL SEMANTIS  

As expeted, the set X = = {r(sn(0)) I n E N } is not an answer set of I 3i 

Xi 3 

nor is X }i 

= {r(sn(0)) I n E N } { p(sn(0)) I n E N } an answer set of I. i 

However, if we keep on iterating and alulate G )
Ixw} +1 

= o = {p(s 

n(0)) I n E N }, and3 

X +1 

= T (X ) = 0 

we obtain X +1 

as fxed point of T and {p(sn(0))} as answer set of I. 

7.4 Summary and Further Work 

\e have disussed relationships b e t ween the stable model semantis and the 

supported model semantis, and applied a fxed-point theorem from Chapter 1 to 

the Gelfond-Lifshitz operator for extended disjuntive programs. \e note that 

our methods of obtaining normal programs from disjuntive ones as in Setion 7.2 

orrespond to relationships b e t ween the multivalued fxed-point theorems from 

Chapter 2 and the respetive single-valued theorems from Chapter 1. 

Stable models an b e understood in the framework of default theories due to 

R. Reiter, and are important for the urrently emerging programming paradigm 

alled answer set programming. Domain-theoreti investigations of the stable 

model semantis have been undertaken in [ZR97a, ZR97b, ZR98, RZ98], where 

disjuntive programs were treated using Smyth p o werdomains instead of mul-
tivalued mappings. Relationships to the work presented in this hapter suggest 

themselves but remain to b e w orked out. 

\e fnally note that there is a subtle diferene between programs P and their 

ground instantiations ground(P ). Every program P an b e ast into a possibly 

infnite ground program by assoiating it with ground(P ). However, a ount-
ably infnite ground program annot in general b e onverted into a fnite pro-
gram ontaining variables. \hile this does not ause any restritions onerning 

the denotational analysis of these programs, there is ertainly a diferene when 

talking about operational aspets, e.g due to the presene of foundering under 

SLDNF-resolution. \e w ould also like to mention [Fer94], where lasses of models 

are haraterized in topologial terms. This work is based on (possibly infnite) 

ground programs, and, due to our observations above, an not b e arried over 

without modifations to the ase of fnite programs with variables. 
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Chapter 8 

Perfet and Weakly Perfet 

Model Semantis 

The perfet model semantis was proposed in [Prz88] as a suitable semantis for 

loally stratifed programs, introdued below, whih are a ommon generalization 

of both loally hierarhial and stratifed programs [AB\88]. It turned out to be 

too restritive, however, and the approah was generalized in [PP90] to the so-
alled weakly stratifed programs, resulting in the weakly perfet model semantis. 

In Setion 8.1, we will study the perfet model semantis for loally stratifed 

programs from an iterative p o i n t of view, inspired by an approah followed in 

[AB\88] for stratifed programs. In Setion 8.2, we i n vestigate <-aessible pro-
grams from the point of view of the weakly perfet model semantis and show, 

that all major semanti approahes oinide for these programs. 

\e will work over Herbrand interpretations only. 

8.1 Loally Stratifed Programs 

\e frst defne stratifed programs due to [AB\88]. 

8.1.1 Defnition Let P denote a normal logi program. Then P is said to b e 

stratifed if there is a partition P = P1 

Pm 

of P suh that the following 

two onditions hold for i = 1 , . . . , m : 

(1) If a prediate symbol ours positively in a lause in Pi, then its defnition is 

ontained within j<i 

Pj. 

(2) If a prediate symb o l o   u r s negatively in a lause in Pi, then its defnition 

is ontained within jk i 

Pj. 

\e adopt the onvention that the defnition of a prediate symb o l p ourring 

in P is ontained in P1 

whenever its defnition is empty. Thus, eah prediate 

symbol ourring in P is defned but it may h a ve empty defnition; in partiular, 

P1 

itself may b e empty. 
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CHAPTER 8. PERFET AND WEAKLY PERFET MODEL SEMANTIS  

In order to treat non-monotoni operators, the powers of an operator T map-
ping a omplete lattie into itself were defned in [AB\88] as follows: 

T t0(I) = I 

T t(n 1)(I) = T (T tn(I)) T tn(I) 

T tw(I) = 

:
T tn(I). 

n= 

Of ourse, T tn(I) is not equal to T 

n(I) unless T is monotoni and I T (I). 

Indeed, the sequene (T t n(I))n 

is always monotoni inreasing. However, this 

onept an be used to onstrut a minimal supported model Np 

for any stratifed 

program P as follows: put N = 0,N 1 

= Tpi 

tw(N ), . . . ,N m 

= Tpm 

tw(Nm-1). 

Finally, l e t Np 

= Nm. T h i s onstrution is due to [AB\88]. 

\e next defne loally stratifed programs due to [Prz88] whih generalize 

b o t h stratifed and loally hierarhial programs. 

8.1.2 Defnition A normal logi program P is alled loally stratifed if there 

exists a level mapping l : Bp 

- I for P suh that for every lause A + 

A1 

, . . . , A m, -B1 

, . . . , -Bn 

in ground(P ) we have l(A) 2 l(Ai) and l(A) > l(Bj) 

for all i and j. 

\hile the defning onditions for loally hierarhial programs prevent the 

ourrene of reursion, the onditions for loally stratifed programs prevent only 

reursion through negation, hene allow to ontrol the negation whih ours 

in the program, as we will see b e l o w, without restriting the use of reursion 

otherwise. In partiular, eah defnite program is loally stratifed. 

\e will now arry over the above mentioned treatment of stratifed programs 

to the ase of loally stratifed programs. 

8.1.3 Defnition Let P denote a normal logi program and let l : Bp 

- I 

denote a level mapping, where I > 1. For eah n satisfying 0 n : I, let PTn] 

denote the set of all lauses in ground(P ) in whih only atoms A with l(A)  n
our, and reall the notation £n 

for the set of all atoms A of level l(A) less than 

n. \e defne TTn] 

: (£n) - (£n) by TTn](I) = Tp[nJ 

(I). The mapping TTn] 

is 

alled the immediate onsequene operator restrited at level n. 

Thus, the idea formalized by this defnition is to �ut-of" at level n. 

8.1.4 Constrution Let P b e a loally stratifed program and let l : Bp 

- I 

denote a level mapping, where I > 1. \e onstrut the transfnite sequene 

(In)nE1 

indutively as follows. For eah m E N , we put IT1Pm] T1] 

(0) and set= T 

m

:I1 

= m= IT1Pm]. If n E I, where n > 1, is a suessor ordinal, then for eah m E N 

:we put ITnPm] 

= T 

m
](In-1) and set In 

= ITnPm]. If n E I is a limit ordinal, weTn m= 

put In 

= Im. Finally, w e put ITp ] 

= In.mkn nk1

The main tehnial lemma we need is as follows. For its proof, whih is by 

transfnite indution, it will b e onvenient to put ITnPm] 

= In 

for all m E N 
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CHAPTER 8. PERFET AND WEAKLY PERFET MODEL SEMANTIS  

whenever n is a limit ordinal; thus statement (b) in the lemma makes sense for 

all ordinals n. 

8.1.5 Lemma Let P b e a normal logi program whih is loally stratifed with 

respet to the level mapping l : Bp 

- I, where I > 1. Then the following 

statements hold. 

(a) The sequene (In)nE1 

is monotoni inreasing in n. 

(b) For every n E I, where n 2 1, the sequene (ITnPm]) is monotoni inreasing 

in m. 

() For every n E I, where n 2 1, In 

is a fxed point of TTn]. 

(d) If l(B)  n and B E In, where B E Bp 

, then for every m E I with n m we 

have B E Im 

and hene B E ITp ]. In partiular, if l(B)  nand B E ITn+1Pm] 

for some m E N , then B E In 

and hene B E ITp ]. 

Proof: It is immediate from the onstrution that the sequene (In)nE1 

is mono-
toni inreasing in n, and this establishes (a). 

The main work is in establishing (b) and ( ), whih w e treat simultaneously. T o 

do this, we need to note the tehnial fat that, for eah n E I, w e an partition 

PTn+1] 

as PTn] 

P (n), where P (n) denotes the subset of ground(P ) onsisting of 

those lauses whose head has level n. Thus, TTn+1](I) = TTn](I) Tp (n)(I) for any 

I E Ip 

; note that if A E Tp (n)(I), then l(A) = n. 

Let (n) be the proposition, depending on the ordinal n, that (ITnPm]) is mono-
toni inreasing in m and that In 

is a fxed point o f TTn]. Suppose that (n) holds 

for all n o, where o : I is some ordinal. \e must show that (o) holds. 

Indeed, (1) holds sine PT1] 

is a defnite program and the onstrution of I1 

is 

simply the lassial onstrution of the least fxed p o i n t o f TT1], and therefore we 

may assume that o > 2. It will be onvenient to break up the details of the ase 

when o is a suessor ordinal into a sequene of steps. 

Case 1. o = k 1 is a suessor ordinal. Thus, (k) holds. 

Step 1. \e establish the reursion equations: 

ITk+1P ] 

= Ik 

ITk+1Pm+1] 

= Ik 

Tp (k)(ITk+1Pm]) 

and the frst is immediate. Putting m = 0, w e have ITk+1P1] 

= TTk+1](Ik) = TTk](Ik) 

Tp (k)(Ik) = Ik 

Tp (k)(Ik) = Ik 

Tp (k)(ITk+1P ]), using the fat that Ik 

is a fxed point 

of TTk]. Now suppose that the seond of these equations holds for some m > 0. 

Then ITk+1P(m+1)+1] 

= TTk+1](ITk+1Pm+1]) = TTk](ITk+1Pm+1]) Tp (k)(ITk+1Pm+1]) = 

TTk](Ik 

Tp (k)(ITk+1Pm])) Tp (k)(ITk+1Pm+1]), and it suÆes to show that TTk](Ik 

Tp (k)(ITk+1Pm])) = Ik. So suppose that A E TTk](Ik 

Tp (k)(ITk+1Pm])). Thus, 

there is a lause in PTk] 

of the form A + A1, . . . , A , -B1, . . . , -B1i 

whereki 

A1, . . . , A E Ik 

Tp (k)(ITk+1Pm]) and B1, . . . , B E Ik 

Tp (k)(ITk+1Pm]). But then ki 

1i 

level onsiderations and the hypothesis onerning P imply that A1, . . . , A ki 

E Ik 
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CHAPTER 8. PERFET AND WEAKLY PERFET MODEL SEMANTIS  

and B1, . . . , B 1i 

E Ik. Therefore, A E TTk](Ik) = Ik 

and we have the inlusion 

TTk](Ik 

Tp (k)(ITk+1Pm])) Ik. The reverse inlusion is demonstrated in like fash-
ion, showing that the seond of the reursion equations holds with m replaed by 

m 1 and hene, by indution on m, that it holds for all m. 

Step 2. \e have the inlusions Tp (k)(Ik) Tp (k)(Ik 

Tp (k)(Ik)) Tp (k)(Ik 

Tp (k)(Ik 

Tp (k)(Ik))) . . . 

These inlusions are established by methods similar to those we have just em-
ployed and we omit the details. 

It is now lear from this fat and the reursion equations in Step 1 that 

(ITk+1Pm]), or (IT+Pm]), is monotoni inreasing in m. Sine monotoni inreasing 

sequenes onverge to their union in Q, and ITk+1Pm] 

is an iterate of Ik, it now 

follows by Theorem 4.2.5 that Ik+1 

is a m odel for PTk+1]. 

Step 3. If B E Bp 

and l(B)  k, then B E Ik+1 

if and only if B E Ik. 

Indeed, if B E Ik, then it is lear from the reursion equations of Step 1 that 

B E Ik+1. On the other hand, if B E Ik, then it is equally lear from the reursion 

equations and level onsiderations that, for every m E N , B E ITk+1Pm] 

and hene 

that B E Ik+1, a s required. 

Step 4. Ik+1 

is a supported model for PTk+1]. 

To see this, suppose that A E Ik+1 

= 

: ITk+1Pm]. Then there is m E N suh m= 

T 

m+1that A E ITk+1Pm+1] 

= (Ik) for all m 2 m . Thus, A E TTk+1](T 

m0 (Ik)) = Tk+1] Tk+1]

TTk+1](ITk+1Pm0]). Hene, there is a lause A + A1, . . . , A ki 

, -B1, . . . , -B1i 

in PTk+1] 

suh that eah Ai 

E ITk+1Pm0] 

and no Bj 

E ITk+1Pm0]. But l(Bj) k for eah j 

sine P is loally stratifed. Sine Bj 

E ITk+1Pm0], we now see from the reursion 

equations that Bj 

E Ik. From the result in Step 3 we now dedue that, for eah 

j, Bj 

E Ik+1. Sine it is obvious that eah Ai 

belongs to Ik+1, we obtain that 

A E TTk+1](Ik+1). Thus, Ik+1 

TTk+1](Ik+1) and therefore Ik+1 

is a supported 

model for PTk+1], or a fxed p o in t o f TTk+1], as required. 

Thus, (o) holds when o is a suessor ordinal. 

Case 2. o is a limit ordinal. 

In this ase, it is trivial that (IT+Pm]) is monotoni inreasing in m. T hus, we have 

only to show that I+ 

is a fxed point o f TT+] 

i.e. a supported model for PT+], and we 

show frst that I+ 

is a model for PT+]. L et A E TT+](I+). Then there is a lause A + 

A1, . . . , A ki 

, -B1, . . . , -B1i 

in PT+] 

suh that A1, . . . , A ki 

E I+ 

and B1, . . . , B 1i 

E 

I+. Indeed, by the defnition of PT+] 

and the hypothesis onerning P , there is n 

o suh that the lause A + A1, . . . , A , -B1, . . . , -B1i 

belongs to PTn0]. Sine the ki 

sequene (In)nE1 

is monotone inreasing and I+ 

= In, there is n1  osuh nk+

that A1, . . . , A ki 

E Ini 

and B1, . . . , B 1i 

E Ini 

. Choosing n2 

= max{n , n 1}, we 

have A + A1, . . . , A ki 

, -B1, . . . , -B1i 

E PTn2] 

and also A1, . . . , A ki 

E In2 

and 

B1, . . . , B 1i 

E In2 

. Therefore, on using the indution hypothesis we have A E 

TTn2 

](In2 

) = In2 

I+. Hene, TT+](I+) I+, as required. 

To see that I+ 

is supported, let A E I+. By monotoniity o f ( In)nE1 

again and 

the identity I+ 

= In, there is a suessor ordinal n 2 1 suh that A E Innk+

for all n suh that n : n o. In partiular, we have A E In0 

= 

: 

m= ITn0Pm]. 

Therefore, there is m1 

E N suh that A E ITn0Pmi+1] 

= TTn0](T 

mi (In0-1)). Con-Tn0]
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CHAPTER 8. PERFET AND WEAKLY PERFET MODEL SEMANTIS  

sequently, there is a lause A + A1, . . . , A ki 

, -B1, . . . , -B1i 

in PTn0] 

suh that 

E T 

miA1, . . . , A ki Tn0]
(In0-1) = ITn0Pmi] 

In0 

I+ 

and B1, . . . , B ki 

E ITn0Pmi 

]. But 

l(Bj)  n - 1 for eah j and so no Bj 

belongs to In0-1 

by Step 3 of the previous 

ase. Therefore, by this step, no Bj 

belongs to In0 

and by iterating this we see 

that, for every m E N , no Bj 

belongs to In0+m. Therefore, no Bj 

belongs to I+. 

Hene, we have A E TTn0 

](I+) TT+](I+) or in other words that I+ 

TT+](I+), as 

required. 

It now follows that (n) holds for all ordinals n, and this ompletes the proof 

of (b) and (). In partiular, we see that the reursion equations obtained in Step 

1 hold for all ordinals k, and we reord this fat in the orollary below. Indeed, all 

that is needed to establish these equations is the fat that eah Ik 

is a fxed point 

of TTk], and to note that the proof just given shows also that ITp ] 

is a fxed point 

of Tp 

. In turn, (d) of the lemma now follows from this observation by iterating 

Step 3. 

The p r o o f o f t h e lemma is therefore omplete.  • 

It an b e seen here, and it will b e seen again later, that the importane of 

(d) is the ontrol it gives over negation in the manner illustrated in the proof 

just given that Ik+1 

is a supported model for PTk+1]. It is also worth noting that 

the onstrution produes a monotoni inreasing sequene by means of a non-
monotoni operator, and that Lemma 8.1.5 plays a role here similar to that played 

by [AB\88, Lemma 10]. 

8.1.6 Corollary Suppose the hypotheses of Lemma 8.1.5 all hold. Then: 

(1) For all ordinals n and all m E N we have the reursion equations 

ITn+1P ] 

= In 

ITn+1Pm+1] 

= In 

Tp (n)(ITn+1Pm]). 

(2) If P is in fat loally hierarhial, then for  every ordinal n 2 1 we have 

ITn+1Pm] 

= In 

Tp (n)(In) for all m E N , where P (n) is defned as in the proof 

of Lemma 8.1.5, and therefore the iterates stabilize after one step. 

Proof: That (1) holds has already been noted in the proof of Lemma 8.1.5. 

For (2), it suÆes to prove that Tp (n)(In) = Tp (n)(In 

Tp (n)(In)). So sup-
p o s e therefore that A E Tp (n)(In 

Tp (n)(In)). Then there is a lause A + 

A1, . . . , A ki 

, -B1, . . . , -B1i 

in P (n) suh that A1, . . . , A ki 

E In 

Tp (n)(In) and 

B1, . . . , B ki 

E In 

Tp (n)(In). From these statements and by level onsiderations, 

we have A1, . . . , A E In 

and B1, . . . , B ki 

E In. Therefore, A E Tp (n)(In) so that ki 

Tp (n)(In 

Tp (n)(In)) Tp (n)(In). The reverse inlusion is established similarly to 

omplete the proof. • 

Statement (2) of this orollary makes the alulation of iterates very easy to 

perform in the ase of loally hierarhial programs. 
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CHAPTER 8. PERFET AND WEAKLY PERFET MODEL SEMANTIS  

8.1.7 Theorem Suppose that P is a normal logi program whih is loally strat-
ifed with respet to the level mapping l : Bp 

- I. Then ITp ] 

is a minimal 

supported model for P . 

Proof: That ITp ] 

is a supported model for P follows from the proof of 

Lemma 8.1.5, and so it remains to show that ITp ] 

is minimal. To do this, we 

establish by transfnite indution the following proposition: �if J ITp ] 

and 

Tp 

(J) J , then In 

J for all n E I, where n 2 1", and this learly suÆes. 

Indeed, TT1](J) Tp 

(J) J and therefore J is a model for PT1]. But, as already 

noted in proving Lemma 8.1.5, I1 

is the least model for PT1] 

by onstrution, sine 

PT1] 

is defnite. Therefore, I1 

J and the proposition holds with n = 1. 

Now assume that the proposition holds for all ordinals n o for some ordinal 

o E I, where o > 1; we show that it holds with n = o.  

Case 1. o = k 1 is a suessor ordinal, where k > 0.  

\e have Ik 

J . \e sh o w b y indution on m that ITk+1Pm] 

J for all m. Indeed,  

with m = 0 we have ITk+1P ] 

= Ik 

J . Suppose, therefore, that ITk+1Pm0] 

J for  

some m > 0. Let A E ITk+1Pm0+1] 

= TTk+1](T 

m0 (Ik)). Then there is a lause A + Tk+1] 

, . . . , A , , . . . , in PTk+1] 

suh that A1, . . . , A E T 

m0 ) = A1 ki 

-B1 -B1i 

ki Tk+1](Ik ITk+1Pm0] 

and B1, . . . , B 1i 

E ITk+1Pm0]. But l(Bj)  kfor eah j. Applying Lemma 8.1.5 (d) 

we see that no Bj 

belongs to ITp ] 

and onsequently no Bj 

belongs to J beause 

J ITp ]. Sine ITk+1Pm0] 

J by assumption, we have A1, . . . , A E J . Therefore, ki 

A E TTk+1](J) Tp 

(J) J , and from this we obtain that ITk+1Pm0+1] 

J as  

required to omplete the proof in this ase.  

Case 2. o is a limit ordinal.  

In this ase, I+ 

= In 

and In 

J for all n o by hypothesis. Therefore,  nk+

I+ 

J as required. 

Thus, the result follows by transfnite indution. • 

The following defnition is due to [Prz88]. Indeed it was shown in [Prz88] that 

eah loally stratifed program has a unique perfet model. Our proof in Theorem 

8.1.9 below, using our previously obtained results, however, is more onstrutive. 

8.1.8 Defnition Suppose that P is a loally stratifed normal logi program, 

and let l denote the assoiated level mapping. Given two d i s t i n  t m o d e l s N and 

N for P , w e say that N is preferable to N if, for every ground atom A in N \ N , 

there is a ground atom B in N \ N suh that l(A) > l (B). Finally, w e say that 

a model N for P is perfet if there are no models for P preferable to N . 

Notie that the requirement l(A) > l(B) is dual to the requirement A B 

relative t o the priority relation defned in [Prz88]. 

8.1.9 Theorem Suppose that P is a normal logi program whih is loally strat-
ifed with respet to a level mapping l : Bp 

- I, where I is a ountable ordinal. 

Then ITp ] 

is a perfet model for P and indeed is the only perfet model for P . 

Proof: Suppose that there is a model N for P whih is preferable to ITp ] 

(and 

therefore distint from ITp ]); we will derive a ontradition. 
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CHAPTER 8. PERFET AND WEAKLY PERFET MODEL SEMANTIS  

First note that N \ ITp ] 

must be non-empty, otherwise we have N ITp ]. But 

this inlusion fores equality of N and ITp ] 

sine ITp ] 

is a minimal model for P , 

and therefore N and ITp ] 

are not distint. This means that there is a ground atom 

A in N \ ITp ], whih an b e hosen so that l(A) has minimum value; let B be a 

ground atom in ITp ] 

\ N orresponding to A in aordane with Defnition 8.1.8, 

and whih satisfes l(A) > l (B). 

Next we note that TT1](N) Tp 

(N) N , sine N is a model for P . Hene, 

N is a model for PT1], whih implies that I1 

N sine I1 

is the least model 

for the defnite program PT1]. Therefore, B an b e hosen so that B E In0 

\ N , 

with minimal n > 1. Now n annot b e a limit ordinal, otherwise we would 

have In0 

= mkn0 

Im, from whih we would onlude that B E Im 

\ N for some 

m n ontrary to the hoie of n . Thus, n must b e a suessor ordinal and, 

therefore, B an b e hosen so that B E ITn0Pm0 

] 

\ N , where m is suh that 

ITn0 

Pmi] 

\ N = 0 whenever m1  m, ; indeed, sine I1 

N , we must have n > 1 

and m 2 1 also. Consequently, B E TTn0](ITn0Pm0 

-1]) \ N showing that there is 

a lause B + C1, . . . , C , -D1, . . . , -D1i 

in PTn0] 

with the property that eah ki 

Ci 

E ITn0Pm0 

-1] 

and no Dj 

E ITn0Pm0-1]. S in e l(Dj)  n- 1 for eah j, w e see that 

none of the Dj 

belong to ITp ] 

by Lemma 8.1.5 (d). But all the Ci, if there are any, 

must belong to N by t h e  hoie of the numbers n and m . Moreover, there must 

b e at least one Dj 

and indeed at least one belonging to N . For if there were no 

Dj 

or we had eah Dj 

E N , then we would have B E Tpn0 

(N) Tp 

(N) N , 

using again the fat that N is a model for P . But this leads to the onlusion that 

B E N , whih is ontrary to B E ITp ] 

\ N . Thus, there is a D = Dj 

E N \ ITp ], 

for some j, satisfying l(D)  l (B)  l(A). Sine A was hosen in N \ ITp ] 

to have 

smallest level, we have a ontradition. 

This ontradition shows that ITp ] 

must be a perfet model for P as required. 

The last statement in the theorem onerning uniqueness of ITp ] 

now follows from 

[Prz88, Theorem 4]. • 

Sine it is shown in [Prz88] that perfet models are independent of the loal 

stratifation, we also have the following result. 

8.1.10 Corollary If P is a normal logi program whih is loally stratifed with 

respet to two level mappings l1 

and l2, then the orresponding models ITpi] 

and 

ITp2] 

are equal. 

8.1.11 Program Sine loally stratifed programs are a generalization of loally 

hierarhial programs it is lear that eah loally hierarhial program has a 

unique perfet model. This does not hold, however, for <*-aessible programs. 

Indeed, the program 

p + -q 

q + r, -p 

is <*-aessible (even aeptable) with respet to the unique supported model 

N = {p}. However, I = {q} is also a model of this program and while I is 
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CHAPTER 8. PERFET AND WEAKLY PERFET MODEL SEMANTIS  

preferable to N , N in turn is also preferable to I, so P does not have a perfet 

model. 

It also follows from [Prz88, Theorem 4] and Theorem 8.1.9 above that ITp ] 

oinides with the model Np 

of [AB\88] when P is stratifed. However, for 

the sake of ompleteness we next present a proof of this fat using the methods 

established thus far. To do this, it will b e onvenient to introdue the onept 

T 1 n(I) for a mapping T : Ip 

- Ip 

and I E Ip 

. In fat, T 1 n(I) is defned 

indutively as follows: 

T 10(I) = I 

T 1(n 1)(I) = T (T 1n(I)) I 

T 1w(I) = 

: 

T 1n(I). 

n= 

8.1.12 Theorem Let P b e a stratifed normal logi program. Then ITp ] 

= Np 

. 

Proof: As usual, we take the stratifation to b e P = P1 

. . . Pm 

and we will 

show by indution that Ik 

= Nk 

for k = 1 , . . . , m and that Ik 

= Nm 

for k > m . 

From this we learly have ITp ] 

= Nm 

= Np 

as required. 

\ith the defnition of the level mapping we are urrently using and with 

the onventions we have made regarding the stratifation, we note frst that the 

equalities PTk] 

= ground(P1 

P2 

. . . Pk) and P (k - 1) = ground(Pk) both hold 

for k = 1 , . . . , m , where P (k) i s a s defned in the proof of Lemma 8.1.5. 

Now PT1] 

= ground(P1) is defnite, even if empty, and so it is immediate 

that Tpi 

1 i(N ) = Tpi 

t i(N ) for all i and that I1 

= N1. So suppose next 

that Tpk+i 

1 i(Nk) = Tpk+i 

t i(Nk) for all i and that Ik+1 

= Nk+1 

for some 

k > 0. Then Tpk+2 

1 0(Nk+1) = Nk+1 

= Tpk+2 

t 0(Nk+1) and also ITk+2P ] 

= 

Ik+1 

= Nk+1 

= Tpk+2 

t 0(Nk+1). So now suppose that Tpk+2 

1 m(Nk+1) = Tpk+2 

t 

m(Nk+1) and that ITk+2Pm] 

= t m(Nk+1) for some m > 0. Then Tpk+2 

1Tpk+2 

(m  1 )( Nk+1) = Tpk+2 

(Tpk+2 

1 m(Nk+1)) Nk+1 

and Tpk+2 

t (m 1)(Nk+1) = 

t m(Nk+1)) t m(Nk+1), and it is lear that Tpk+2 

1 (mTpk+2 

(Tpk+2 

Tpk+2 

1)(Nk+1) t(m 1)(Nk+1). For the reverse inlusion, we note that under Tpk+2 

our present h ypotheses we h a ve Tpk+2 

t(m 1)(Nk+1) = Tpk+2 

1m(Nk+1))(Tpk+2 

Tpk+2 

1m(Nk+1) (Tpk+2 

11m(Nk+1) and so it suÆes to show that Tpk+2 

Tpk+2 

m(Nk+1)) Nk+1 

or in other words that ITk+2Pm] 

Tp (k+1)(ITk+2Pm]) Ik+1. Sine 

this latter set is equal to ITk+2Pm+1] 

by the reursion equations of Corollary 8.1.6, 

the inlusion we w ant follows from the monotoniity of the sets ITk+2Pm] 

relative t o 

m. \e onlude, therefore, that Tpk+2 

1(m 1)(Nk+1) = t(m  1)( Nk+1).Tpk+2 

Finally, ITk+2Pm+1] 

= Ik+1 

Tp (k+1)(ITk+2Pm]) = Nk+1 

tm(Nk+1)) = Tpk+2 

(Tpk+2 

Nk+1 

1m(Nk+1)) = Tpk+2 

1(m 1)(Nk+1) = t(m 1)(Nk+1),Tpk+2 

(Tpk+2 

Tpk+2 

by the onlusions of the previous paragraph. Therefore, ITk+2Pm+1] 

= Tpk+2 

t 

(m 1)(Nk+1). From this we obtain, by indution, the equality ITk+2Pm] 

= Tpk+2 

t 

m(Nk+1) for all m and with it the equality Ik+2 

= Nk+2 

as required. • 

The details of the indution proof just given also establish the following propo-
sition. 
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8.1.13 Proposition Let P = P1 

. . . Pm 

be a stratifed normal logi program. 

Then we have Tpk+i 

1 i(Nk) = t i(Nk) for all i and k = 0 , . . . , m - 1.Tpk+i 

8.2 Weakly Perfet Model Semantis 

\hen studying various lasses of programs, the question naturally arises as to 

how suh lasses relate to other lasses known in the literature. From the defni-
tion, it follows immediately that the unique supported model lass of all loally 

hierarhial programs is ontained in the lass of all loally stratifed programs. 

In this setion, we will relate the lass of all <-aessible programs to the notion 

of weak stratifation. 

It was pointed out in [BF91, Remark 5.3] that the original defnition of weakly 

stratifed programs in [PP90] is ambiguous sine the two onditions 

(a) All strata of a program P onsist of trivial omponents only. 

(b) All layers of a program P are defnite programs. 

whih were originally used for defning weakly stratifed programs are not equiv-
alent. \e will all a program weakly stratifed-a if ondition (a) holds, and weakly 

stratifed-b if ondition (b) holds. For a disussion of this, see [BF91, Setion 5], 

and we refer to the same publiation for notation onerning weakly stratifed 

programs. 

In [PZ98], it was shown that eah aeptable program [AP93] is weakly 

stratifed-a. From [GRS91, Corollary 4.3], we immediately obtain that eah <-
aessible program has a total well-founded model, ie. is efetively stratifed 

[BF91]. Again from [BF91, Proposition 5.4], we obtain that a program whih 

is weakly stratifed-b, is also efetively stratifed. 

It is easy to see that a program whih is weakly stratifed-b, is also weakly 

stratifed-a. In the opposite diretion, we have the following result. 

8.2.1 Theorem If P is weakly stratifed-a and if there does not exist a lause 

A + body in ground(P ) with -A ourring in body, th en P is weakly stratifed-b. 

Proof: Sine P is weakly stratifed-a, all minimal omponents are trivial. Let 

A + body be a lause in the bottom layer. \ithout loss of generality assume that 

body ontains some negative literal -B, ie. 

1 B  A, w ith A = B by assumption. 

Sine the omponent ontaining A is trivial, we obtain A > B and therefore we 

obtain a ontradition. • 

It is lear from the last result that a loally hierarhial program is weakly 

stratifed-a if and only if it is weakly stratifed-b. This does in fat also hold for 

loally stratifed programs. 

\e will now generalize a result from [PZ98], that all aeptable programs are 

weakly stratifed-a. 

1 �<" denotes the dependeny relation taken from the dependeny graph of P [PP90]. 
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8.2.2 Theorem If P is <-aessible, then P is weakly stratifed-a and the unique 

supported model Np 

of P is also its weakly perfet-a model. 

Proof: Let Np 

b e the unique supported model of P and let l b e its anonial 

level mapping wrt. <. \e an also assume without loss of generality that for eah 

level o there exists some A E Bp 

with l(A) = o. 

(1) \e f r s t s h o w that all omponents of the bottom stratum S(P ) of P are trivial. 

Assume that this is not the ase, i.e. that there exists a minimal omponent 

C S(P ) whih is not trivial. Then there must b e some A E C with l(A) 

minimal, and some A 

' E C with A = A 

' . Note that A A 

' and A 

' A [BF91, 

Defnition 5.1]. Let B b e an arbitrary atom ourring in a ground lause with 

head A. Then B A 

' and therefore B A, and by minimality o f C we obtain 

B E C. So all atoms B ourring in bodies of lauses in ground(P ) with head A 

belong to C. Sine P is <-aessible, however, there must exist some hoie of B 

for whih we h a ve l(B)  l (A), and this ontradits the minimality o f l(A). Note 

that the bottom stratum ontains all atoms of level 0, and hene is non-empty. 

(2) The model N of the bottom layer is ompatible with Np 

, i.e. if a literal is 

true, respetively false, in N , then it is true, respetively false, in Np 

. In order 

to see this, note that for every atom A in a minimal omponent, the bottom layer 

L(P )  o n tains all lauses with head A and all lauses with head being any o f t h e 

body atoms of lauses in the bottom layer. Sine the program P is <-aessible, it 

is easy to see that the subprogram formed by the bottom layer is also <-aessible 

and has a unique supported model whih is ompatible with Np 

. 

Now let A b e an atom in L(P ) whih ours negatively in the b o d y of some 

lause. Sine all omponents are trivial, A must also b e the head of the same 

lause, i.e we h a ve A A . If B is another body atom in the same lause, then we 

obtain B  A and A B whih ontradits triviality o f all omponents. Hene, 

if some atom A ours negatively in a lause in L(P ), then the lause is of the 

form A + -A. All models of L(P ) must therefore assign the truth value true 

to all atoms ourring negatively in L(P ). The program whih is obtained from 

omitting all these lauses is defnite and has a least model whih agrees with Np 

. 

If we add to this model all atoms whih our negatively in L(P ), we obtain the 

least model of L(P ). 

(3) \e show that P /N is <-aessible (see [BF91]). This is indeed the ase sine 

(2) holds, and is easily seen by applying Theorem 6.5.3. 

(4) \e  a n n o w apply steps (1), (2) and (3) via transfnite indution as in [PP90], 

whih yields that P is indeed weakly stratifed-a and that Np 

is the weakly 

perfet-a model of P . T h us, the proof is omplete. • 

8.2.3 Theorem Let P b e <-aessible. Then P has a unique supported model 

Np 

whih is the unique stable model, the well-founded model, a minimal two-
valued model, and the weakly perfet-a model of P . 

Proof: \e know that Np 

= < p 

to for some ordinal o and that Np 

is total. By 

Theorem 6.5.4, we know that N+ is a minimal two-valued model of P , and by p 
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Theorem 8.2.2 we k n o w th a t Np 

is the weakly perfet-a model of P . By [GRS91, 

Corollary 4.3], Np 

= < p 

to is a subset of the well-founded model of P , and sine 

Np 

is total, it must oinide with the well-founded model. By [GRS91, Corollary 

5.6], totality o f the well-founded model implies that it oinides with the unique 

stable model of the program. This ompletes the proof. • 

8.2.4 Program Aeptable programs are not neessarily weakly stratifed-b, as 

an b e seen from the following program. 

p + 

p + q, -p 

The bottom layer ontains the lause p + q, -p and is therefore not a defnite 

program. 

8.2.5 Program On the other hand, there exist programs with unique supported 

models whih are not weakly stratifed-a. To see this, note that the following 

program 

p + -q 

q + -p 

p + -p 

has unique supported model {p}. H o wever, it has {p, q} as a minimal omponent 

whih is not trivial. 

8.3 Summary and Further Work 

\e h a ve provided an iterative approah to the perfet model semantis of loally 

stratifed programs and loated the lasses of programs disussed in Chapters 5 

and 6 in the ontext of other standard semantis. Figure 8.1 on page 134 extends 

Figure 5.1 on page 91 inorporating the results from Setion 8.2. 

Of ourse, the results in Setion 8.1 indiate possible researh onerning 

the extent to whih iterative approahes an b e applied to other semantis. The 

results in Setion 8.2 larify some relationships between lasses of programs known 

from the literature, whih also is a feld of further study. 
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Figure 8.1: Dependenies between lasses of programs. If a lass is depited lower 

in the diagram, this indiates that it is more general. 
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Chapter 9  

Logi Programs and Neural 

Networks 

Logi Programs and Neural Networks are two important paradigms in Artifial 

Intelligene. Their abilities, and our theoretial understanding of them, however, 

seem to b e rather omplementary. Logi Programs are highly reursive and well 

understood from the point of view of delarative semantis. Neural Networks an 

b e trained but yet lak a delarative reading. Reent publiations, for example 

[BDJ+99, HK94, HSK99, Zha99], suggest studying the relationships between the 

two paradigms with the long-term aim of merging them in suh a way that the 

advantages of both an b e ombined. 

The results we wish to disuss draw h e a vily on the work of Holldobler, Kalinke 

and St orr [HK94, HSK99], whih w e will in part generalize. It will be onvenient 

to briefy review their approah and their results. For our investigations, it will 

b e suÆient to onsider Herbrand interpretations only. 

In [HK94], a strong relationship b e t ween propositional logi programs, i.e. 

programs without variable or funtion symb o l s , and 3-layer feedforward and re-
urrent networks was established. For eah s u  h program P , a 3 -l a yer feedforward 

network an b e onstruted whih omputes the single-step operator Tp 

assoi-
ated with P . To th is en d , eah atom in P is represented by one or more units in 

the network. If the program is suh that iterates of Tp 

, for any initial value, on-
verge to a unique fxed point o f Tp 

, then the network an be ast into a reurrent 

network whih settles down into a unique stable state orresponding to the fxed 

point. On the other hand, for eah 3-layer network a propositional logi program 

P an b e onstruted suh that the orresponding operator Tp 

is omputed by 

the network. 

In [HSK99], an attempt was made to obtain similar results for logi programs 

whih are not propositional, that is, for programs whih a l l o w v ariables. The main 

obstale whih has to b e overome in this ase is that the Herbrand base is in 

general infnite; it is therefore not possible to represent an atom by one or more 

units in the network. The solution suggested in [HSK99] uses a general result 

due to Funahashi [Fun89], see Theorem 9.1.1, whih states that every ontinuous 
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funtion on a ompat subset of the real numbers an be uniformly approximated 

by ertain types of 3-layer neural networks. By asting the Tp 

-operator into suh 

a funtion, approximating the single-step operator is shown to be possible. 

In order to obtain a ontinuous real-valued funtion from Tp 

, metris were 

employed in [HSK99]. For ayli1 logi programs, a omplete metri an b e 

obtained whih renders the single-step operator a ontration, see Setion 5.1. By 

identifying the single-step operator with a mapping on the reals, a ontrative, and 

therefore ontinuous, real-valued funtion is obtained whih represents the single-
step operator. This funtion an in turn be approximated by neural networks due 

to the result of Funahashi mentioned above. For ertain kinds of ayli programs, 

namely suh whih admit an injetive level mapping, the resulting network an 

then again b e ast into a reurrent network whih settles down into a unique 

stable state orresponding to the unique fxed p o i n t o f t h e operator. 

In this hapter, we will investigate a more general approah to representing 

the single-step operator for (non-propositional) normal logi programs by neural 

networks. 

In Setion 9.1, we will use Theorem 4.2.6 whih haraterizes ontinuity of 

the single-step operator in the atomi topology, and apply the approximation 

theorem of Funahashi in order to approximate single-step operators by neural 

networks. 

In Setion 9.2, we will show that for any given normal logi program, its as-
soiated single-step operator an b e realized as a Borel-measurable real-valued 

funtion. An approximation theorem due to Hornik, Stinhomb e and \hite 

[HS\89], see Theorem 9.2.1, an then b e applied to show that eah single-step 

operator for any normal logi program an b e approximated arbitrarily well by 

neural networks in a metri fµ 

defned in measure-theoreti terms in Setion 9.2. 

Cantor Topology 

Reall from Setion 4.2, that Ip 

an b e identifed with the p o werset of Bp 

, and 

that it an therefore also b e identifed with the set 2Bp of all funtions from Bp 

to {0, 1} (or to any other two-point spae). Using this latter identifation, the 

topology Q beomes a topology on the funtion spae 2Bp , and is exatly the 

produt topology (of p o i n t-wise onvergene) on 2Bp if the two-point spae is 

endowed with the disrete topology. 

If we interpret Ip 

as the set of all funtions from Bp 

to {0, 2}, so that we 

now take the two-point spae as {0, 2}, we an identify Ip 

with the set of all 

those real numbers in the unit interval [0, 1] whih an be written in ternary form 

without using the digit 1; in other words we an identify Ip 

with the Cantor set. 

The produt topology mentioned above then oinides with the subspae topol-
ogy inherited from the natural topology on the real numbers, and the resulting 

spae is alled the Cantor spae C. Thus, the Cantor spae C is homeomorphi 

1 These programs were alled reurrent in [HSK99]. 
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to the topologial spae (Ip 

, Q ), and in the following l : Ip 

- C will denote a 

homeomorphism b e t ween Ip 

and C. It is well-known that the Cantor spae is 

a ompat subset of J, and we an defne l(x) = max{y E C : y : x} and 

u(x) = min {y E C : y 2 x} for eah x E [0, 1]. 

Neural Networks 

A 3-layer feedforward network (or single hidden layer feedforward network) on-
sists of an input layer, a hidden layer, and an output layer. E ah layer onsists of 

fnitely many omputational units. There are onnetions from units in the input 

layer to units in the hidden layer, and from units in the hidden layer to units 

in the output layer. The input-output relationship of eah unit is represented 

by inputs xi, output y, onnetion weights Wi, threshold e, and a funtion < as 

follows:   
y = < Wixi 

- e . 

i 

The funtion <, whih w e will all the squashing funtion of the network, is usually 

non-onstant, bounded and monotone inreasing, and sometimes also assumed to 

b e  o n tinuous. \e will speify the requirements on < that we assume in eah ase. 

\e assume throughout that the input-output relationships of the units in the 

input and output layer are linear. The output funtion of a network as desribed 

above is then obtained as a mapping f : J
r - J with   

f(x1, . . . , x r) = j< Wji 

xi 

- ej , 

j i 

where r is the number of units in the input layer and the onstants j 

orrespond 

to weights from hidden to output layers. 

\e refer to [Bis95] for bakground onerning artifial neural networks. 

Measurable Funtions 

A olletion N of subsets of a set X is alled a a-algebra if (i) 0 E N ; (ii) if 

A E N then its omplement 

A E N ; (iii) if (An) is a sequene of sets in N , th en 

the union An 

E N . The pair (X ,N ) is alled a measurable spae. A funtion 

f : X - X is said to b e measurable with respet to N if f-1(A) E N for eah 

A E N . 

If N is a olletion of subsets of a set X, then the smallest a-algebra a(N) 

ontaining N is alled the a-algebra generated by N . In this ase, a funtion 

f : X - X is measurable with respet to a(N) if and only if f-1(A) E a(N) 

for eah A E N . If B is the subbase of a topology T , and B is ountable, then 

a(B) = a(T ). If B is a subbase of the natural topology on J, then a(B) is alled 

the Borel-a-algebra on J, and a funtion whih is measurable with respet to this 

a-algebra is alled Borel-measurable. A measure on (J, a (B)) is alled a Borel-
measure. 
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\e refer the reader to [Bar66, Bau92] for bakground onerning elementary 

measure theory. 

9.1  Approximating Continuous Single-Step Op-

erators by Neural Networks 

Under ertain onditions, given in Theorem 4.2.6, the single-step operator asso-
iated with a logi program is ontinuous in the atomi topology. B y identifying 

the spae of all interpretations with the Cantor spae, a ontinuous funtion on 

the reals is obtained whih an be approximated by 3 -l a yer feedforward networks. 

\e investigate this next. 

The following Theorem an b e found in [Fun89, Theorem 2]. 

9.1.1 Theorem Suppose that < : J - J is non-onstant, bounded, monotone 

inreasing and ontinuous. Let J
n b e ompat, let f : - J b e a on-

tinuous mapping and let E > 0. Then there exists a 3-layer feedforward network 

with squashing funtion < whose input-output mapping fS : - J satisfes 

maxxEK 

d(f(x), fS(x)) E, where d is a metri whih indues the natural topol-
ogy on J. 

In other words, eah ontinous funtion f : - J an be uniformly approx-
imated by input-output funtions of 3-layer networks. 

\e already know that the Cantor spae C is a ompat subset of the real 

line and that the topology whih C inherits as a subspae of J oinides with 

the Cantor topology on C. Also, the Cantor spae C is homoeomorphi to Ip 

endowed with the atomi topology Q, see Theorem 4.2.4. Hene, if the Tp 

-operator 

is ontinuous in Q, we an identify it with a mapping l(Tp 

) : C - C : x -
l(Tp 

(l-1(x))) whih is ontinous in the subspae topology of C in J. 

9.1.2 Theorem Let P b e a normal logi program. If, for eah I E Ip 

and for 

eah A E Bp 

with A E Tp 

(I), either there is no lause in P with head A or 

there is a fnite set S(I, A ) = {A1, . . . , A k, B 1, . . . , B k 

} of elements of Bp 

satis-
fying the properties (i) and (ii) of Theorem 4.2.6, then Tp 

(more preisely l(Tp 

)) 

an be uniformly approximated by input-output mappings of 3-layer feedforward 

networks. 

In partiular, this holds for the operator Tp 

if P does not ontain any loal 

variables or is ayli with injetive level mapping. 

Proof: Under the onditions stated in the theorem, the single-step operator Tp 

is ontinuous in the atomi topology. Using a homeomorphism l : Ip 

- C, the 

resulting funtion l(Tp 

) i s  o n tinuous on the Cantor spae C, w h i h is a ompat 

subset of J. Applying Theorem 9.1.1, l(Tp 

) an b e uniformly approximated by 

input-output funtions of 3-layer feedforward networks. 

Now if P does not ontain any loal variables, then Tp 

is obviously ontinuous 

in Q by Theorem 4.2.6. Now l e t P be ayli with injetive l e v el mapping and let 
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A E Bp 

\Tp 

(I) for some I E Ip 

. Sine the level mapping is fnite, there exist only 

fnitely many atoms whih our in bodies of lauses with head A, whih suÆes 

by Theorem 4.2.6. • 

9.2  Approximating the Single-Step Operator by 

Neural Networks 

By Theorem 9.1.1, ontinuous funtions an be uniformly approximated by input-
output funtions of 3-layer feedforward networks. It is also possible to approxi-
mate eah measurable funtion on J, but in a muh w eaker sense. \e w ill in ves-
tigate this in the present setion. 

The following was given in [HS\89, Theorem 2.4] 

9.2.1 Theorem Suppose that < is a monotone inreasing funtion from J onto 

(0, 1). Let f : J
r - J b e a Borel-measurable funtion and let µ be a probability 

Borel-measure on J
r . Then, given any E > 0, there exists a 3-layer feedforward 

network with squashing funtion < whose input-output funtion fS : J
r - J 

satisfes 

fµ(f , fS) = inf{Æ > 0 : µ{x : If(x) - fS(x)I > Æ }  Æ}  E. 

In other words, the lass of funtions omputed by 3-layer feedforward neural 

nets is dense in the set of all Borel-measurable funtions f : J
r - J relative to 

the metri fµ 

defned in Theorem 9.2.1. 

\e h a ve already noted that the operator Tp 

is not ontinuous in the topology 

Q in general, nor is it ontinuous in the Sott topology on Ip 

in general. \e 

proeed to show next that the single step operator has the pleasing property t h a t 

it is measurable with respet to a(Q) for arbitrary programs, and therefore that 

it an always b e extended to a Borel-measurable funtion on J. 

9.2.2 Proposition Let P be a normal logi program and let Tp 

be its assoiated 

single-step operator. Then Tp 

is measurable on (Ip 

, a (Q)) = (Ip 

, a (Q)). 

Proof: \e need to show that for eah subbasi set Q(L), we have T 

-1(Q(L)) E p 

a(Q). 

First, let L = A be an atom. If A is not the head of any lause in ground( P ), 

then T 

-1(Q(A)) = 0 E a(Q). If A is the head of a lause in ground(P ), then there p 

are at most ountably many lauses 

A + Ai1, . . . , A iki 

, -Bii 

, . . . , -Bi1i 

in ground(P ) with head A, and we obtain 

T 

-1(Q(A)) = Q(Ai1, . . . , A iki 

, -Bii 

, . . . , -Bi1i 

)p 

i 
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whih is indeed in a(Q). 

Now suppose that L = -A is a negative literal. If A is not the head of any 

lause in ground(P ), then T 

-1(Q(-A)) = Ip 

E a(Q). So assume that A is the p 

head of some lause in ground(P ). If there is a unit lause with head A, then 

T 

-1(Q(-A)) = 0 E a(Q). So assume that none of the lauses in ground(P ) with p 

head A is a unit lause. Then there are at most ountably many lauses 

A + Ai1, . . . , A iki 

, -Bii 

, . . . , -Bi1i 

in ground(P ) with head A. \e then obtain 

T p 

-1(Q(-A)) = Q(-Ai1) Q (-Aiki 

)  Q(Bii 

)  Q(Bi1i 

) 

i 

whih is indeed in a(Q). • 

By means of Proposition 9.2.2, we an now view the operator Tp 

as a mea-
surable funtion l(Tp 

) on C by identifying Ip 

with C via the homeomorphism l. 

Sine C is measurable as a subset of the real line, this operator an be extended2 

to a measurable funtion on J and we obtain the following result. 

9.2.3 Theorem Given any normal logi program P , the assoiated operator Tp 

(more preisely l(Tp 

)) an b e approximated in the manner of Theorem 9.2.1 by 

input-output mappings of 3-layer feedforward networks. 

This result is somewhat unfortunate sine the approximation stated in Theo-
rem 9.2.1 is only almost everywhere, i.e. p o i n twise with the exeption of a set of 

measure zero. The Cantor set, however, is a set of measure zero. Nevertheless, we 

are able to strengthen this result a bit by giving an expliit extension of Tp 

to 

the real line. \e defne a sequene (Tn) of measurable funtions on J as follows, 

where l(x) and u(x) are as defned earlier, and for eah i E N we set 

3i -i 

2 

Di 

= [(2k - 1)3 

-i , 2k 3 

-i], 

k=1 

and for eah i 2 2 we defne 

  l(Tp 

)(x) if x E C    l(Tp 

)(0) if x 0 

T (x) =  l(Tp 

)(1) if x > 1    
0 otherwise 

;(Tp 

)(u(x))-;(Tp 

)(1(x))l(Tp 

)(l(x)) 

u(x)-1(x) 

(x - l(x)) if x E D1
T1(x) = 

0 otherwise 

;(Tp 

)(u(x))-;(Tp 

)(1(x))l(Tp 

)(l(x)) 

u(x)-1(x) 

(x - l(x)) if x E Di
Ti(x) = 

0 otherwise. 

2 E.g. as a funtion T : � - � with T (x) = t(T� 

(t�1 (x))) if x  C  and T (x) = 0 otherwise. 
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\e defne the funtion T : J - J by T (x) = supi 

Ti(x) and obtain T (x) = 

l(Tp 

(x)) for all x E C and T (l(I)) = l(Tp 

(I)) for all I E Ip 

. Sine all the funtions 

Ti, for i 2 1, are pieewise linear and therefore measurable, the funtion T is also 

measurable. Intuitively, T is obtained by a kind of linear interpolation. 

If i : Bp 

- N is a bijetive mapping, then we an obtain a homeomorphism 

l : Ip 

- C from i as follows: we identify I E Ip 

with x E C where x written in 

ternary form has 2 as its i(A)th digit (after the deimal p o i n t) if A E I, and 0 

as its i(A)th digit if A E I. If I E Ip 

is fnite or ofnite3, then the sequene of 

digits of l(I) in ternary form is eventually onstant 0 (if I is fnite) or eventually 

onstant 2 (if I is ofnite). Thus, eah suh interpretation is the endpoint of a 

linear piee of one of the funtions Ti, and therefore of T . 

9.2.4 Corollary Given any normal logi program P , its single-step operator 

Tp 

(more preisely l(Tp 

)) an b e approximated by input-output mappings of 

3-layer feedforward networks in the following sense: for every E > 0 and for 

every I E Ip 

whih is either fnite or ofnite, there exist a 3-layer feedforward 

network with input-output funtion f and x E [0, 1] with Ix - l(I)I  Esuh that 

Il(Tp 

(I)) - f(x)I  E . 

Proof: \e use a homeomorphism l whih is obtained from a bijetive mapping 

i : Bp 

- N as in the paragraph preeeding the Corollary. \ e an assume that the 

measure µ from Theorem 9.2.1 has the property that µ{[x, x E]} : E for eah 

x E J. Let E > 0 and I E Ip 

be fnite or ofnite. Then by onstrution of T there 

Eexists an interval [l(I), l (I) Æ] with Æ 

2 

(or analogously [l(I) - Æ, l (I)]) suh 

Ethat T is linear on [l(I), l (I) Æ] and IT (l(I))-T (x)I 

2 

for all x E [l(I), l (I) Æ]. 

By Theorem 9.2.1 and the previous paragraph, there exists a 3-layer feedforward 

network with input-output funtion f suh that fµ(T , f ) Æ, that is, µ{x : 

IT (x) - f(x)I > Æ}  Æ. By our ondition on µ, there is x E [l(I), l (I) Æ] with 

EIT (x)-f(x)I : Æ 
2 

. \ e an onlude that Il(Tp 

(I))-f(x)I = IT (l(I))-f(x)I : 

IT (l(I)) - T (x)I IT (x) - f(x)I  Eas required. • 

It would be of interest to strengthen this approximation for sets other than the 

fnite and ofnite elements of Ip 

, a lth o u g h it is in teresting to note that the fnite 

interpretations orrespond to ompat elements in the sense of domain theory, 

see [SHLG94] and Defnition 1.1.4. 

9.3 Summary and Further Work 

There are two aspets to this work. On the one hand, one an onsider the problem 

of approximating the Tp 

operator, assoiated with logi programs P , by means 

of input-output funtions of multi-layer neural networks, as we have done here. 

This, in detail, involves relating properties of the network to lasses of programs 

for whih the approximation is possible. It also involves the onsideration of what 

3 I I� 

is ofnite if B� 

\ I is fnite. 
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mathematial notions of approximation are useful and appropriate. Here we h a ve 

disussed two w ell-known ones: uniform approximation on ompata, and a notion 

of approximation losely related to onvergene in measure. Both these strands 

need further investigation, and this setion is an aount o f w ork to date whih i s 

at an early stage of development. In the other diretion, and we h a ve not disussed 

this at all here exept in passing, is to view logi programs as fundamental and to 

view the approximation proess as a means of giving semantis to neural networks 

based on the delarative semantis of logi programs. There is onsiderable point 

in doing this in that the semantis of logi programming is well understood whilst 

that of neural networks is not, but is something to be taken up elsewhere, probably 

inluding work on quantitative logi programming as in [Mat99]. 

At the detailed mathematial level, the mapping P - Tp 

is not injetive. So, 

although the single-step operator an basially b e used to represent a program 

semantially, diferent programs may have the same single-step operator. This 

fne tuning is lost by our representation of logi programs by neural networks. 

However, passing to lasses of programs with the same single-step operator is 

something that is often done in the literature on semantis and in fat is ex-
atly the notion of subsumption equivalene due to [Mah88]. Moreover, there 

exist unountably many homeomorphisms l : Ip 

- C; for example, every bije-
tive mapping from Bp 

to N gives rise to suh a homeomorphism as observed in 

the paragraph preeeding Corollary 9.2.4. So there is a lot of fexibility in the 

hoie of l and therefore in how one embeds Ip 

in J. The homeomorphism used 

in [HSK99] employed the quaternary numb e r system. 

In [HSK99], as mentioned in the beginning of this hapter, the neural network 

obtained by applying the approximation theorem of Funahashi was ast into a 

reurrent network whih settled down in a unique stable state orresponding to 

the unique fxed point of the single-step operator of the underlying program P . 

Strong assumptions had to be plaed on P to make this possible: P was required 

to be ayli with an injetive l e v el mapping. Ayliity of the program yields the 

existene of a omplete metri on Ip 

with respet to whih its single-step operator 

is a ontration, see Setion 5.1. For larger lasses of programs, suh as the <* -
aessible programs, we have seen that it is also possible to fnd metris suh 

that the single-step operator is a ontration: In Setion 5.3 we h a ve seen how t o 

onstrut a omplete d-metri f for a given <* -aessible program P , and sine 

Tp 

i s a  o n tration with respet to f, see Proposition 5.3.4, it is also a ontration 

with respet to the omplete metri d assoiated with f as in Proposition 3.1.11. 

It turns out, however, that the metri d thus obtained annot in general b e 

topologially imb e d d e d into the real line. In order to see this, note that for the 

d-metri f assoiated with a <* -aessible program there may be an unountable 

numb e r of interpretations suh that f(  , ) = 0, namely for example all 

with I. Eah suh , however, beomes an isolated p o i n t with respet 

to the topology indued by d, i.e. the singleton set ontaining is open and 

losed in this topology. Now, if (Ip 

, d ) ould b e topologially imb e d d e d in the 

real line using an imbedding l, then for eah as above we would have that 
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{l( )} is open and losed in the topologial subspae l(Ip 

) of the real line, i.e. 

that there is an open interval J c J suh that J n { l(Ip 

)} = {l( )}. Assuming 

unountably many isolated p o i n ts in (Ip 

, d ), we ould therefore onstrut a 

partition of J into unountably many intervals, whih is impossible by a well-
known result from general topology. Hene we onlude that (Ip 

, d ) annot in 

general be topologially imb e d d e d into the real line. 

From the onsiderations just presented we onlude that alternative metris 

or even methods have to b e investigated in order to arry over the result from 

[HSK99] mentioned above for ayli programs with injetive level mappings to 

more general lasses. 
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Chapter 10 

Conlusions 

There are many aspets to this work, whih are in fat losely interonneted. \e 

want to onlude with a short disussion of diferent p o i n ts of view from whih 

the work in this thesis an b e put into a more general perspetive. 

Logi Programming and Non-monotoni Reason-

ing 

The denotational aspets of logi programming with negation are still not suÆ-
iently understood. \e ontribute to this general line of researh by using topo-
logial methods for the analysis of fxed-point semantis. Reently, some studies 

of topologial approahes to indutive logi programming have b e e n undertaken 

[GNAJBD00] whih is a feld of further study. 

Knowledge Representation and Reasoning 

Logi programming an also b e understood as a simple model of reasoning, and 

the behaviour of the single-step operator as an indutive perspetive on it. Sine 

many of our results were onerned with understanding the dynamis of this op-
erator, they an b e understood as an approah to understand the dynamis of 

reasoning, as motivated for example in [BDJ+99]. Extensions, e.g. to quantita-
tive logi programming paradigms whih inorporate probabilisti or fuzzy logi 

strutures, suggest themselves. 

Comparison and Integration of Paradigms 

The single-step operator obtains its iterative b e h a viour from a relatively simple 

set of rules, has a very omplex dynamis whih is diÆult to understand, and 

sometimes produes meaningful results as limits of the iterations. From this per-
spetive, analogies to haos theory and topologial dynamial systems ome into 
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view, and indeed some few investigations along these lines have already been un-
dertaken. They also open up onnetions to other paradigms like artifial neural 

networks, as in Chapter 9. 

Denotational Semantis and Domain Theory 

In reent years, quantitative aspets of domain theory, using generalized met-
ris, have been studied intensively. The study of denotational logi programming 

semantis from a generalized metri p o i n t of view an b e understood as a on-
tribution to this general area of researh. It is not surprising, for example, that 

injetivity o f l e v el mappings has made its appearane in several hapters, sine the 

fnite and ofnite interpretations orrespond to the notion of ompat elements 

in domain theory. 

Investigations onerning domain theory in logi programming have also been 

undertaken by Rounds and Zhang [ZR97a, ZR97b, R Z 9 8 , Z R 9 8 ], and relationships 

b e t ween their approah and the results in this thesis remain to be worked out. The 

topologial perspetive o f o u r w ork gives a ontinuous point of view on the disrete 

logi programming paradigm and should also be transferable to quantitative logi 

programming paradigms as mentioned above. 

Topology (in Computer Siene) 

General topology allows one to naturally build a bridge between the disrete and 

the ontinuous, whih is an important line to investigate sine omputing is in-
herently disrete while the world, whih omputing is supposed to model, is often 

pereived as ontinous. The results in this thesis ontribute to this disussion by 

providing a ontinous framework for the study of the disrete logi programming 

paradigm, as it was also suggested in [BDJ+99]. \e have also ontributed to some 

topologial aspets of domain theory and to the study of fxed-point theorems in 

general. 

The author hopes that his results onstitute valuable ontributions to the 

above mentioned areas of researh. 
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