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Abstract

Many fixed-point theorems are essentially topological in nature. Among them
are the Banach contraction mapping theorem on metric spaces and the fixed-
point theorem for Scott-continuous mappings on complete partial orders. The
latter theorem is fundamental in denotational semantics since semantic operators
in most programming language paradigms satisfy its requirements. The use of
negation in logic programming and non-monotonic reasoning, however, renders
some semantic operators to be non-monotonic, hence discontinuous with respect
to the Scott topology, and therefore invalidates the standard approach, so that
alternative methods have to be sought. In this thesis, we investigate topological
methods, including generalized metric fixed-point theorems, and their applicabil-
ity to the analysis of semantic operators in logic programming and non-monotonic
reasoning.

In the first part of the thesis, we present weak versions of the Banach contrac-
tion mapping theorem for single-valued and multivalued mappings, and investi-
gate relationships between the underlying spaces. In the second part, we apply
the obtained results to several semantic paradigms in logic programming and
non-monotonic reasoning. These investigations will also lead to a clearer under-
standing of some of the relationships between these semantic paradigms and of the
general topological structures which underly the behaviour of the corresponding
semantic operators. We will also obtain some results related to termination prop-
erties of normal logic programs, clarify some of the relationships between different
semantic approaches in non-monotonic reasoning, and will establish some results
concerning the conversion of logic programs into artificial neural networks.
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Chapter O

Introduction

Through the use of the fixed-point theorem for Scott-continuous functions, The-
orem 1.1.3, topological considerations naturally come into view in the area of
denotational semantics. Since in most programming paradigms semantic opera-
tors are Scott-continuous, hence monotonic, this theorem yields least fixed points
for these operators, and these fixed points are interpreted as the denotational
semantics of the programs in question. This is also the case for logic programs
without negation, called definite logic programs.

In order to increase expressiveness and flexibility, however, it is desirable that
negation may be used in logic programming. Standard semantic operators in this
paradigm, though, are either not monotonic or, if they are monotonic, they are
not Scott-continuous, hence do not in general achieve their least fixed points as
the limit of a sequence of iterations as in the Scott-continuous case. The above
mentioned approach using Theorem 1.1.3 is therefore invalid and other methods
have to be sought, which include (1) the use of alternative semantic operators as
e.g. in [Fit85, GRS91, GL88, HS99a|, (2) restricting the syntax of the programs
under consideration as e.g. in [ABW88, Cav89, Prz88, SH97|, and (3) applying
alternative fixed-point theorems as e.g. in [Fit85, KKM93, KM98, PCR00c¢, HS00].
We will touch all three approaches in this thesis while our main focus is on (3).

In the case that a semantic operator is monotonic, but not Scott-continuous,
then a theorem for monotonic operators on chain-complete partial orders, Theo-
rem 1.1.7, is the main alternative and has indeed been employed in the context of
logic programming and non-monotonic reasoning, e.g. for the Fitting semantics
[Fit85], cf. Chapter 6, and for the well-founded semantics [GRS91]. Some seman-
tic operators, however, among them the immediate consequence operator and the
Gelfond-Lifschitz operator [GL91], are non-monotonic and neither Theorem 1.1.3
nor Theorem 1.1.7 can be applied. A natural alternative fixed-point theorem in
this case is the Banach contraction mapping theorem, Theorem 1.2.2, on metric
spaces.

Since it is not a priori clear whether the spaces on which the semantic oper-
ators act are metrizable in a way such that the operators are contractions and
satisfy the hypotheses of the Banach contraction mapping theorem, it is natural
to ask for fixed-point theorems which are more general, i.e. act on generalized
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metric spaces. The development of such fixed-point theorems, the analysis of the
respective underlying spaces, and investigations concerning their applicability to
logic programming semantics form the heart of this thesis.

There are several ways how to generalize the notion of a metric such that a
version of the Banach contraction mapping theorem can be retained, including
generalized ultrametrics, quasimetrics and dislocated metrics.

Generalized ultrametrics have their origin in valuation theory, and differ from
conventional ultrametrics in that the distance function maps not into the reals
but into a more general partially ordered set. A number of fixed-point theorems
for these spaces have been obtained and been introduced to the area of logic pro-
gramming [PC90, PCR93, KKM93, SH97, BMPC99, HS99b, PCR00c, PCROOb,
PCRO00al, cf. also Theorem 1.3.4.

Quasimetrics [Smy91, BvBR96, Rut96], and quasi-uniformities [FL82, Smy87],
which are non-symmetric distances, have recently been studied extensively in
the Topology in Computer Science community. Due to their strong relationships
with order structures, a fixed point theorem which reconciles Theorems 1.1.3 and
1.2.2 has been obtained [Smy87, Rut96], cf. Theorem 1.6.3. Logic programming
semantics in the context of quasimetrics was studied in [Sed97, HS99c].

Dislocated metrics were studied under the notion of metric domains in
[Mat86], where also a fixed-point theorem was given which generalizes the Banach
contraction mapping theorem, cf. Theorem 1.4.6. They differ from conventional
metrics in that the distance between a point and itself may be non-zero. The

slightly stronger notions of partial and weak partial metrics have recently been
studied further [Mat92, Mat94, O’N95, EH98, Hec99, Wac00].

Apart from the quest for generalized metric fixed-point theorems which can
be applied to the semantic analysis of logic programs, some investigations using
general topological approaches have been undertaken in the literature. This can be
traced back to [Bat89, BS89b, BS89a], where the query topology on the space of all
Herbrand interpretations was introduced. This topology was later on generalized
to arbitrary preinterpretations [Sed95] and called the atomic topology. The atomic
topology is a Cantor topology and can be characterized using logical notions, and
it sems to be a very appropriate topology for normal logic programs and the
results presented in this thesis support this claim. In fact, all models obtained by
iterating non-monotonic operators in this thesis are limits in the atomic topology
of these iterates.

Topological approaches to the fixed-point semantics of normal logic programs
enable us to better understand the behaviour of semantic operators which arise
in this context. In fact, it is clear that a (topological) space of interpretations
together with such an operator can be understood as a topological dynamical
system, in a naive sense. Such a point of view was hinted at in [SH97, SH99],
but further results remain to be obtained, and this presents a whole bundle of
new projects. We will not follow this line of thought here but refer the reader to
[BDJ*99] for motivational background.
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Topological results in logic programming semantics also allow us to establish
theoretical relationships between the theories of logic programming and of ar-
tificial neural networks [HK94, HSK99]. We present only some basic results in
Chapter 9, and the study of these relationships again presents a project in its
own right.

From a more general perspective, topological investigations in theoretical com-
puter science are a natural tool to build a bridge between discrete and continuous
paradigms, which is an object of study in many fields right now. The author
hopes that the work presented in this thesis will be a valuable contribution to
this discussion.

Some of the work in this thesis has already been presented at conferences and
workshops, see e.g. [HS99a, HS99b, HS99¢, HS00, SH97, SH99|. All the material
has been rearranged, expanded, and brought into a more general context. All re-
sults in this thesis which are not my own are indicated as such by giving reference
to the literature.

0.1 Structure of the Thesis

The thesis is divided into two parts.

Part T contains an overview of fixed-point theorems on generalized metric
spaces, both for single-valued (Chapter 1) and for multivalued mappings (Chapter
2), and a discussion of relationships between underlying spaces (Chapter 3). This
part assumes no knowledge in logic programming and should be of independent
interest.

Part II focuses on applications of results from Part I and some other results
related to logic programming semantics. After some general considerations on
topological structures for normal logic programs (Chapter 4), we discuss sev-
eral semantic paradigms, including the supported model semantics (Chapter 5),
some semantic approaches related to the Fitting semantics (Chapter 6), the sta-
ble model semantics (Chapter 7), and the perfect and weakly perfect model se-
mantics (Chapter 8). After some considerations concerning relationships between
logic programming and artificial neural networks (Chapter 9), we close with some
general conclusions (Chapter 10).

In Chapters 1 and 2, we present fixed-point theorems for single-valued and
multivalued mappings on generalized metrics. Although most of these theorems
are already known from the literature, we include new alternative proofs and
some general investigations concerning the underlying spaces.

Chapter 3 investigates possibilities for conversion between some of the spaces
from Chapters 1 and 2. We obtain new alternative proofs for some of the fixed-
point theorems of the earlier chapters, a deeper insight into their relationships,
and general methods for casting spaces of interpretations into generalized metrics,
which will be of use in the second part of the thesis.
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Chapter 4 reviews the Scott topology and the atomic topology on spaces of
interpretations. The atomic topology is then generalized to many-valued logics
leading to a very general framework for topological investigations of many-valued
semantic operators.

In Chapter 5, we focus on the supported model semantics and in particular
on uniquely determined programs, i.e. programs which have unique supported
models. Step-by-step we relax syntactical and semi-syntactical conditions, leading
to a hierarchy of classes of programs generalizing the acyclic programs. As these
classes become more general we in turn apply more and more general fixed-point
theorems from Chapter 1, each application leading to a unique fixed-point for the
investigated programs, and to methods for obtaining these as topological limits.

An approach using three-valued logics in the style of [Fit85] is employed in
Chapter 6. Again, we obtain a hierarchy of classes of programs which is shown to
coincide with the one presented in Chapter 5.

Chapter 7 investigates the stable model semantics, both in the disjunctive
and the non-disjunctive case. Relationships between the stable model semantics
and the supported model semantics are obtained, and a multivalued fixed-point
theorem from Chapter 2 is applied.

The perfect and the weakly perfect model semantics are studied from a topo-
logical point of view in Chapter 8. The classes described in Chapters 5 and 6 are
located with respect to these semantics and generalized.

The main body of the thesis closes in Chapter 9 where relationships between
logic programs and artificial neural networks, using topological methods, are stud-
ied. In particular, we address the problem of converting normal logic programs
into neural networks.

Each chapter contains a Summary and Further Work section at the end,
and final conclusions will be given in Chapter 10. We proceed now with some
preliminaries and notation.

0.2 Notation

Most of the notation and notions which appear in the thesis will be introduced in
the main text when they are needed for the first time. For easy reference, an index
is included at the end of the thesis, which contains pointers to the definitions. We
note that some of the terminology will be overloaded, i.e. the same notion may
have slightly different meanings in different contexts, to keep consistency with
the literature. This should pose no particular problem if care is taken as to which
kind of space one is currently working with. It will be convenient now to make
some general comments on notation and conventions which will be employed in
the sequel.

The set of natural numbers will be denoted by N, and of real numbers by
R; by Rf we denote the set of all positive real numbers including zero. Ordinals
will usually be denoted by Greek letters, and the first infinite ordinal by w. Each
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ordinal is identified with the set of all its predecessors, i.e. for each ordinal a we
have {f | B < a} = {8 | B € a}, and using this convention, we identify w with N.
If « is a successor ordinal, we denote its predecessor by o — 1, and the successor
of an arbitrary ordinal o will be denoted by a + 1.

If f: X — Y isafunction and A C X, we set f(A) ={f(a)|a € A}.

Ordinal powers of functions are defined as follows. Let f : X — X be a
function on a set X, and let x € X. We define f (z) = x and for each successor
ordinal a+1 we define f*™(z) = f(f*(x)). If « is a limit ordinal, we will require
several methods in the sequel how to define f%(x), and we will define these on the
spot for the respective context. Thus, if we define f*(x) for each limit ordinal «,
it will be unambiguous in each case what all ordinal powers of the given function
f are.

A partially ordered set (A, <) is directed if for all z,y € A there exists z € A
such that z < z and y < z. For each 8 € A we define 1 ={A € A | < A}

A net (z))xea is a net in the topological sense i.e. the index set A is directed,
and the index set will be omitted, i.e. the net will be written as (z,) or even just
x) when the meaning is clear from the context; the notation (x,), will also be
used. For each A € A, z) is called an element of the net (x))x. Given a net (x)s
and an element 3 € A, we call the subnet (2))\>p = (za)1s of (za)a a tail of
(@x)a-

A net with index set equal to w, or equivalently N, is called a sequence. A
transfinite sequence is a net where the index set is an ordinal. A chain is a
linearly ordered family of elements of a given partially ordered set. An w-chain
is a sequence which is a chain.

If X isaset and f: X — X is a function then each x € X with f(z) =z
is called a fized point of f. If X carries a partial order <, then each z € X with
f(z) < xis called a pre-fized point of f.If f is a mapping from X to the powerset
2X of X, then f is called a multivalued mapping on X. In this case, each € X
with x € f(x) is called a fized point of f. Each single-valued mapping f on a set
X can be identified with a multivalued mapping by identifying each f(z) € X
with {f(z)} € 2%. We will assume throughout that multivalued mappings are
non-empty, i.e. that f(z) # 0 for all z € X.

A distance function on a set X is a mapping from X x X to a given set
A, where A will always be either the set of real numbers R or some partially
ordered set. A generalized ultrametric is a distance function which maps into a
partially ordered set and satisfies some specific further conditions which will be
given in Definition 1.3.1. In contrast to this, a generalized metric is a distance
function which either maps into R and satisfies the triangle inequality (Miv)
of Definition 1.2.1, or which maps into a partially ordered set and satisfies the
corresponding strong triangle inequality (Uiv) of Definition 1.3.1. This usage of
the term generalized is not entirely consistent, but is adopted here in order to
compromise between established notation and convenience: The term generalized
ultrametric refers to a specific structure (Definition 1.3.1) and is standard. The
term generalized metric refers to all notions appearing in this thesis which can

10
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be understood as generalizations of metrics (or ultrametrics) in a naive sense.
This contrasts to the use of this notion in some of the literature where the term
generalized metric refers to quasi-pseudo-metrics only, see Definition 1.2.1.

We will usually denote distance functions with d, unless the requirement that
self-distances of points are zero is dropped ((Mi) in Definition 1.2.1, (Uii) in
Definition 1.3.1), in which case we will usually denote them by p to help the
reader. All generalized metric spaces are supposed to be non-empty.

Some of the major fixed-point theorems will be given names for convenience.
Theorem 1.1.3, for example, will be called the Kleene theorem, and it will be
referred to as either the Kleene theorem, or the Kleene theorem, Theorem 1.1.3,
or more simply, with a slight abuse of language, the Kleene theorem 1.1.3. Other
named theorems will be referred to analogously. It is not claimed that the names
given to theorems in this thesis are historically correct, see [LNS82].

Notation for logic programming basically follows [L1088].
Given a first order language L, a normal logic program, referred to as logic
program or simply program, is a finite set of clauses of the form

V(A Li A+ A Ly),

where n € N may differ between clauses, A is an atom in £ and Lq,..., L, are
literals, i.e. atoms or negated atoms, in L. As is customary in logic programming,
we will write such a clause as

A(—Ll,...,Ln,

and A is called the head of the clause, each L; is called a body literal of the clause
and their conjunction L4, ..., L, is called the body of the clause. We allow n = 0,
by an abuse of notation, in which case the body is empty and the clause is called a
unit clause or a fact. We will occasionally use the notation A < body for clauses,
i.e. body in this case stands for the conjunction of the body literals of the clause.
If no negation symbol occurs in a logic program, it is called a definite or positive
logic program. A variable in a clause is said to be local if it occurs in the body of
the clause, but not in the corresponding head.

0.2.1 Program The following is an example of a normal logic program:

distlist([
distlist([H|T
member (X, [X|T
member(X, [H|T

<_
<« distlist(7), ~member(H, T')
<_

]
]
]
|) <= member(X,T)

~— — ' —

In the above example, uppercase letters denote variable symbols. The constant
symbol [] is interpreted as the empty list and [H|T] as a list with head H and
tail T, hence [.|.] is a function symbol with arity 2. The intended meaning of the
program is that member(z,[) is true if x is an element of the list [, and distlist(/)

11
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is true if [ is a list of mutually distinct elements. Under a logic programming
system like Prolog, the above program can indeed be used to check whether a list
consists of mutually distinct elements.

Given a preinterpretation .J for a first order language £ underlying a given
logic program P, the set of all ground instances of atoms occurring in P, under
J, will be denoted by Bp s, or just by Bp if this will cause no misunderstandings.
In the case of .J being the Herbrand preinterpretation corresponding to £, we will
call Bp the Herbrand base of P. The set of all ground instances of clauses in P
(with respect to an arbitrary, but fixed preinterpretation .J) will be denoted by
ground(P). The set of all interpretations of P under J will be denoted by Ip ; or
simply by Ip. Each I € Ip is identified with the set of all ground atoms which
are true with respect to I, i.e. we identify Ip with the power set 287, and for
each I € Ip we have {A € Bp | I E A} = {A € Bp | A € I}. Due to this
identification, the set Ip carries a natural order structure, namely set-inclusion.
If I is an interpretation of a program P, we denote its complement Bp \ I by 1.

Given a program P, the language underlying P is the first order language
with constant, function, and predicate symbols being, respectively, the constant,
function, and predicate symbols occurring in P; if no constant symbol is present,
however, we add the symbol 0 as a constant symbol to the language. If we state
that .J is an (arbitrary) preinterpretation it is always assumed that .J is suitable for
the program in question, i.e. it is a preinterpretation for the language underlying
the program.

0.2.2 Definition Given a logic progam P and a preinterpretation .J, we define
the single-step operator or immediate consequence operator Tp ;, or simply Tp,
as a mapping from Ip to Ip as follows. For each I € Ip we set Tp(I) to be the
set of all A € Bp for which there exists a clause A < Lq,..., L, in ground(P),
such that I = L, L.

The usefulness of the operator Tp in the semantic analysis of logic programs
rests on the fact that the models of P are exactly the pre-fixed points of Tp [L1088].
A model of P is called a supported model (or model of the Clark completion' of
P [Cla78)) if it is a fixed point of Tp [ABWSS|.

A level mapping for a program P is a mapping [ : Bp — «, where « is an
ordinal. If @ = w, [ is called an w-level mapping. We always assume that a level
mapping is extended to ground literals by setting I(—A) = [(A) for all A € Bp.

We finally remark that the term semantics in this thesis refers to declarative
or denotational semantics, and we will use the term procedural semantics if we
want to refer to the procedural, or operational aspects.

!The correspondence between supported models and models of the Clark completion is in
fact via a standard identification.

12
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Chapter 1

Fixed-point Theorems for
Single-valued Mappings

We present fixed-point theorems which will be applied in Part II of the thesis, and
some further results. Section 1.1 contains the fundamental fixed-point theorems
on partially ordered sets which play a central role in the denotational semantics
of logic programs. Section 1.2 introduces generalized metrics where the distance
functions map into the real numbers, and recalls the Banach contraction map-
ping theorem. Section 1.3 recalls the PrieB-Crampe and Ribenboim theorem on
generalized ultrametric spaces, including an alternative proof, and discusses its
relation to the Banach contraction mapping theorem. Section 1.4 discusses the
corresponding fixed-point theorem by Matthews on dislocated metrics and some
topological matters concerning these spaces. The latter two theorems are then
merged in Section 1.5, and finally, in Section 1.6, the Rutten-Smyth theorem on
quasimetrics is discussed.

1.1 Partial Orders

The set of all interpretations of a logic program, with respect to a given prein-
terpretation, is essentially a powerset. With the subset ordering, it becomes a
complete lattice. We present two classical fixed-point theorems on weaker order
structures, which play a fundamental role in logic programming semantics.

1.1.1 Definition A partially ordered set (D, <) is called an w-complete partial
order (w-cpo) if

(1) there exists L € D such that for all @ € D we have L < a (L is called the
bottom element of D) and

(2) ifa <a; <...is an w-chain in D, then sup,cya; exists in D.
1.1.2 Definition Let D and E be w-cpos and let f : D — E be a function.

(1) f is called monotonic if a < b implies f(a) < f(b) for all a,b € D.

14
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(2) fis called w-continuous if it is monotonic and for every w-chaina < a; < ...
we have f(sup,;cy @i) = sup;ey f(@i)-

The following theorem is of fundamental importance in the theory of denota-
tional semantics.

1.1.3 Theorem (Kleene theorem) Let D be an w-cpo and let f : D — D
be an w-continuous function. Then f has a least fixed point a. Furthermore,

a = sup,ey f"(L).

Proof: We sketch the well-known proof. The sequence (f"(_L))nen is an increasing
chain, hence has a supremum «a. By continuity of f, we obtain f(a) = a, hence a
is a fixed point which turns out to be least since for any other fixed point b of f
we obtain f"(L) < b by an easy induction argument. [ |

If P is a definite logic program, then the hypotheses of Theorem 1.1.3 are
satisfied by the operator Tp, which is well-known [L1088]. In Part II of the thesis,
we will study programs with negation, in which case semantic operators are not
necessarily w-continuous, and sometimes not even monotonic, so that Theorem
1.1.3 cannot be applied.

The notion of w-continuity is a weak version of Scott-continuity, which is
usually defined on Scott-Ershov domains, introduced next.

1.1.4 Definition A partially ordered set (D,C) is called a (Scott-Ershov) do-
main with set D, of compact elements (see [SHLG94)), if the following conditions
hold:

(i) (D,C) is a complete partial order (cpo), that is, D has a bottom element
1, and the supremum sup A exists for all directed subsets A of D.

(ii) The elements a € D, are characterized as follows: whenever A is directed
and a C sup A, then a C z for some x € A.

(iii) For each x € D, the set approx(z) = {a € D. | a C z} is directed and
x = sup approx(z) (this property is called algebraicity of D).

(iv) If the subset A of D is consistent (there exists © € D such that a C x
for all @ € A), then sup A exists in D (this property is called consistent
completeness of D).

We will usually denote the order relation by C if the order structure under con-
sideration is a domain.

Several important facts emerge from these conditions, including the existence
of function spaces (the category of domains is cartesian closed). Moreover, the
compact elements provide an abstract notion of computability. Domains were
introduced independently by D.S. Scott and Y.L. Ershov as a means of provid-
ing structures for modelling computation, and to provide spaces to support the
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denotational semantics approach to understanding programming languages, see
[SHLGY94].
The standard topology on a domain is the Scott topology, defined as follows.

1.1.5 Definition Let (D,C) be a domain. The set {f¢ | ¢ € D.} is a base for a
topology, called the Scott topology on D. A function f : D — D is called Scott-
continuous if it is continuous with respect to the Scott topology. Equivalently

(see [SHLGY94]), f is Scott continuous if and only if it is monotonic and for each
directed set A D we have sup f(A) = f(sup A).

It is clear that every domain is a cpo and every cpo is an w-cpo. Likewise,
every Scott-continuous function on a domain is also w-continuous. Theorem 1.1.3
is often stated in less general form on domains for Scott-continuous functions, or
even on complete lattices.

If an operator is monotonic but not Scott-continuous, the existence of a least
fixed point can still be guaranteed, although not as the limit of an w-chain.

1.1.6 Definition A partial order D is called chain-complete if every chain in D
has a supremum.

1.1.7 Theorem (Knaster-Tarski theorem) Let (D, <) be a chain-complete
partial order, let f : D — D be monotonic, and let a € D be such that a < f(a).

Then f has a least fixed point x above a and there exists a least ordinal v such
that f7(a) = x.

Proof: We sketch the well-known proof. For any limit ordinal « define f*(a) =
sup{f?(a) | B «a}, from which we obtain a transfinite increasing sequence of
iterates of f. Let v be an ordinal whose cardinality is greater than the cardinality
of D. Then f7(a) must be a fixed point of f which is above a. |

We find it convenient to introduce names for Theorems 1.1.3 and 1.1.7, al-
though this is not always done. We will call Theorem 1.1.3 the Kleene theorem,
and Theorem 1.1.7 the Knaster-Tarski theorem. We would like to note that this
notation is not standard, but will be very convenient in the sequel.

1.2 Metrics

We introduce some notions of generalized metrics and state the Banach contrac-
tion mapping theorem for conventional metrics.

1.2.1 Definition Let X be a set and let o : X x X — R" be a function, called
a distance function. Consider the following conditions:

(Mi) For all x € X, o(z,z) = 0.

(Mii) For all z,y € X, if o(z,y) = o(y,x) = 0 then z = y.
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notion satisfies (Mi) (Mii) (Miii) (Miv) (Miv’)
metric X X X X
ultrametric X X X (x) X
pseudometric X X X
pseudo-ultrametric X X (x) X
quasimetric b b X
quasi-ultrametric X X (x) X
dislocated metric X X X
dislocated ultrametric X X (x) X
dislocated quasimetric X X
dislocated quasi-ultrametric X (x) X
quasi-pseudo-metric X X
quasi-pseudo-ultrametric X (x) X

Table 1.1: Generalized metrics: Definition 1.2.1.

(Miii) For all z,y € X, o(z,y) = o(y, ).
(Miv) For all z,y,2 € X, o(z,y) < o(z, 2)+ o(2,y).

(Miv') For all w,y,2 € X, o(z,y) < max{o(z,2), 0(z, y)}-

If o satisfies conditions (Mi) to (Miv), then it is called a metric. If it satisfies
conditions (Mi), (Miii) and (Miv), it is called a pseudometric. If it satisfies (Mii),
(Miii) and (Miv), we will call it a dislocated metric (or simply d-metric). A quasi-
metric satisfies conditions (Mi), (Mii) and (Miv). Condition (Miv) will be called
the triangle inequality. If a (pseudo-, quasi-, d-) metric satisfies the strong trian-
gle inequality (Miv'), then it is called a (pseudo-, quasi-, d-) ultrametric. These
definitions are listed in Table 1.1; an x indicates that the respective condition is
satisfied. (x) indicates that the respective condition is automatically satisfied.

1.2.2 Theorem (Banach contraction mapping theorem) Let (X,d) be a
complete metric space, 0 < A 1 and let f : X — X be a function which
is a contraction with contractivity factor A, i.e. satisfies d(f(z), f(y)) < Ad(x,y)
for all x,y € X (with z = y). Then f has a unique fixed point which can be
obtained as the limit of the sequence (f"(z)) for any x € X.

Proof: We sketch the well-known proof. For any = € X, the sequence (f"(z)) is
a Cauchy sequence which converges to a unique limit x by completeness of the
space. Since f is a contraction, it is continuous, hence = is a fixed point of f,
and is easily shown to be unique. [ |

It is well-known that the requirement A< 1 cannot be relaxed in general, as
can be seen from the function
xr L forz>1

xT

f R>R:z— i
2 otherwise,
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which satisfies the condition d(f(x), f(y)) d(z,y) for all z,y € R with x =y,
where d is the natural metric on R, but has no fixed point since f(z) > x for all
r € R If X is compact, however, the requirement on A\ can be relaxed.

1.2.3 Theorem Let (X, d) be a compact metric space and let f: X — X be a
function which is strictly contracting, i.e. satisfies d(f(x), f(y)) d(z,y) for all
x,y € X with z = y. Then f has a unique fixed point.

Proof: The function d(z) = d(z, f(x)) is continuous since f is continuous.
Therefore, it achieves a minimum m on X. Assume d(z ) = m > 0. Then
d(f(z)) = d(f(z), f(f(z))) d(z,f(zr)) = d(x) = m which is a contra-
diction. Hence m = 0 and f has a fixed point.

Assume z and y are fixed points of f and z = y. Then d(z,y) =
d(f(x), f(y))  d(z,y) which is a contradiction. Therefore, the fixed point of
f is unique. [ |

The above result can be found e.g. in [DG82].

1.3 Generalized Ultrametrics

The origin of generalized ultrametrics lies in valuation theory. They differ from
conventional metrics in that the distance function takes values in general partially
ordered sets instead of the real numbers. We introduce generalized ultrametrics
and dislocated generalized ultrametrics, state the Prie-Crampe and Ribenboim
theorem 1.3.4 which is the analogue on these spaces of the Banach contraction
mapping theorem 1.2.2, and study the notion of spherical completeness of gener-
alized ultrametric spaces in how it relates to completeness and compactness for
conventional metrics. We also give a constructive proof of a part of the Prief3-
Crampe and Ribenboim theorem.

1.3.1 Definition Let X be a set and let [ be a partially ordered set with least
element 0. We call (X, 0,I") (or simply (X, 0)) a generalized ultrametric space
(gum) if p: X x X — T is a function such that for all z,y,2 € X and all y € T
we have:

(Ui) o(x,y) = 0 implies x = y.

(Uii) o(z,x) =

(Uiii) o(z,y) = o(y, =).

(Uiv) If o(z,y) < v and o(y,z) < 7, then o(z,z) <.

If o satisfies conditions (Ui), (Uiii) and (Uiv), but not necessarily (Uii), we call
(X, 0) a dislocated generalized ultrametric space or simply a d-gum space, cf. Table
1.2. Condition (Uiv) will be called the strong triangle inequality for gums.

We will occasionally refer to the set I' as the distance set of (X, o).
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notion satisfies (Ui) (Uii) (Uiii) (Uiv)
generalized ultrametric (gum) X X X X
dislocated generalized ultrametric (d-gum)  x X X

Table 1.2: (Dislocated) generalized ultrametrics: Definition 1.3.1.

It is clear that every (conventional) ultrametric space is also a generalized
ultrametric space.
The following definitions prepare Theorem 1.3.4 and are taken from [PCR00a].

1.3.2 Definition Let (X, 0,T") be a d-gum space. For 0 = v € T and = € X,
the set B,(z) = {y € X | o(x,y) < v} is called a (y-)ball in X with centre or
midpoint x. A d-gum space is called spherically complete if, for any chain C, with
respect to set-inclusion, of non-empty balls in X, we have ()C = (). A function
f: X — X is called

(1) non-ezpanding if o(f(z), f(y)) < o(z,y) for all 7,y € X,

(2) strictly contracting on orbits if o( f*(z), f(z))  o(f(x),z) for every z € X
with z = f(x), and

(3) strictly contracting if o( f(x), f(y)) (x,y) for all z,y € X with x = y.

The requirement in the definition of spherical completeness that all balls are
non-empty can be dropped when working in a gum instead of a d-gum, since in
the first case all balls are always non-empty.

We will need the following observations, which are well-known for ordinary
ultrametric spaces, see [PCR93].

1.3.3 Lemma Let (X, 0,T") be a d-gum space. For o, 5 € T" and z,y € X the
following statements hold.

(1) If a < g and B,(x) N Bs(y) = 0, then B,(z)  Bs(y).

(2) If Bo(z) N Ba(y) = 0, then B,(x) = Ba(y). In particular, each element of a
ball is also its centre.

(3) Bi(ay) (%) = By ()-

Proof: Let a € B,(x) and b € B,(x) N Bg(y). Then p(a,r) < a and o(b, z) < «,
hence p(a,b) < a < f. Since p(b,y) < 3, we have p(a,y) < 3, hence a € Bs(y),
which proves the first statement. The second follows by symmetry and the third
by replacing o(x,y) by a and applying (2). [ |

For the following, see [PCR00c]. We will give several alternative proofs later.
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1.3.4 Theorem (Prief.-Crampe and Ribenboim theorem) Let (X, d) be a
spherically complete generalized ultrametric space and let f : X — X be non-
expanding and strictly contracting on orbits. Then f has a fixed point. Moreover,
if f is strictly contracting on X, then f has a unique fixed point.

Note that every compact ultrametric space is spherically complete by the
finite intersection property. The converse is not true: let X be an infinite set and
take d(z,y) = 1 if x = y and d(z,z) = 0 for all . Then (X, d) is not compact
but spherically complete. The relationship between spherical completeness and
completeness is given by the next proposition. Similar investigations have been
undertaken in [PC90] in the case of totally ordered distance sets.

1.3.5 Proposition Let (X, d) be an ultrametric space. If X is spherically com-
plete then it is complete. The converse does not hold in general.

Proof: Assume that (X,d) is spherically complete and that (z,) is a Cauchy
sequence in (X, d). Then, for every k € N, there exists a least ny € N such that
for all n,m > ny we have d(x,,x,,) < % We note that n; increases with k. Now

consider the set of balls B = {B% (zn,) | k € N}. By (Uiv), B is a decreasing chain
of balls and has non-empty intersection B by spherical completeness of (X, d).
Let a € B. Then it is easy to see that (x,) converges to a (hence B = {a} is a
one-point set since limits in (X, d) are unique) and therefore (X, d) is complete.

In order to show that the converse does not hold in general, define an ultra-
metric d on N as follows. For n,m € N, let d(n,m) =1 2~ ™™™} if p = m and
d(n,n) = 0 for all n € N. The topology induced by d is then the discrete topology
on N, and the Cauchy sequences with respect to d are exactly the sequences which
are eventually constant. So (N, d) is complete. Now consider the chain of balls B,
of the form {m € N|d(m,n) <1 27"}. Then we obtain B,, = {m | m > n} for
allneN. So B, =0. [

Note also that with the notation from the second part of the proof, the suc-
cessor function n — n 1 is strictly contracting, but does not have a fixed point.
By Proposition 1.3.5 and the remarks preceding it, we obtain that the notion of
spherical-completeness is strictly less general than completeness, and is strictly
more general than compactness.

We will now follow a line of thought from [PC90], only slightly changed (the
original version was for linearly ordered distance set), and with the proofs adapted
to the more general setting.

1.3.6 Definition Let (z4)s<, be a (possibly transfinite) sequence of elements
of a gum (X, d). Then (x;) is said to be pseudo-convergent if for all «  f3

v o we have d(zg,z,)  d(x,,xg). The transfinite sequence (75)s41<, With
75 = d(zs,5,1) 18 then strictly monotonic decreasing. If o is a limit ordinal,
then any x € X with d(x,z5) < ms for all & o is called a pseudo-limit of the
transfinite sequence (xs)s<,.
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The space (X, d) is called trans-complete if every pseudo-convergent transfinite
sequence (Ts)s<,, where p is a limit ordinal, has a pseudo-limit in X.

1.3.7 Proposition If = is a pseudo-limit of (z5)s<,, where p is a limit ordinal,
then the set of all pseudo-limits of (z4) is given by Lim(zs) = {2z € X | d(z, 2)
ms for all d< p}.

Proof: Let z € Lim(zs). Since d(z,x) ms and d(x,x5) < w5 we obtain
d(z,z5) < ms for all §. Conversely, let z be a pseudo-limit of (zs). Since
d(x,x501),d(z,1511) < msyq for all § o, we obtain d(z,2) < w5y ms for
all < p. [ |

1.3.8 Proposition A generalized ultrametric space is spherically complete if and
only if it is trans-complete.

Proof: Let X be trans-complete and let B be a decreasing chain of balls in X.
Without loss of generality assume that B does not have a minimal element and is
in fact strictly decreasing. Then we can select a coinitial subchain (Bj)s<, of B,
where p is a limit ordinal, i.e. (Bj)s<, is a transfinite sequence of balls. Since this
transfinite sequence is strictly decreasing, we know that for every ¢ there exists
x5 € B;s \ Bsi1, and the transfinite sequence (x5)s<, is pseudo-convergent, hence
has a pseudo-limit z. Since d(z,zs) < d(xs,x5:1) and 4, 2511 € Bs we obtain
x € Bg for all 4, hence x €  B.

Conversely, let X be spherically complete and let (z5) be pseudo-convergent.
Let w5 = d(xs5,2541) and Bs = By, (x5). For @« [ we have x5 € B, N Bg and
therefore that (Bj) is a decreasing chain of balls by Lemma 1.3.3. By spherical
completeness, there is some 2 €  Bs which is a pseudo-limit of (z5). [ |

We can now give a constructive proof of the second part of Theorem 1.3.4
under the restriction that I is linearly ordered. The proof is inspired by [KKM93],
cf. also Section 2.2.

1.3.9 Theorem Let (X, d,T") be a spherically complete generalized ultrametric
space where I is linearly ordered and let f : X — X be strictly contracting on
X. Then f has a unique fixed point.

Proof: Choose some x € X and let 21 = f(z ). We inductively define a transfi-
nite sequence as follows. Our induction hypothesis is that for all ordinals 3

the sequence (x5)s<, is pseudo-convergent. We also assume, without loss of gen-
erality, that none of the x5 is a fixed point of f.

If «a = 1 1 is the successor of a successor ordinal, then let z, =
f(xp41). Since f is strictly contracting, the obtained sequence (x)s<, is pseudo-
convergent.

If o« is a limit ordinal, then (23)s<o is pseudo-convergent by the induction
hypothesis. Then choose z, to be one of its pseudo-limits, which is possible by
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Proposition 1.3.8, and let v, 2 . Then by the induction hypothesis
d(I’szaja) < d(x’ma $72+1)
(SC% ) xvz)'
So the resulting sequence is also pseudo-convergent.

Ifa=p is the successor of a limit ordinal, where x4 is constructed -ad
in the previous paragraph, then let =, = f(x3). We have to show that for all
B! 2 < 6 we have d(x%axa) (LU%,LL'W). <7

First assume that v, is a limit ordinal. For every v 1 Yo we obtain

d(Tyt1,20)  d(xy,28) < d(x,,2,,) since f is strictly contracting and by the
induction hypothesis, and d(zy11,2,,)  d(xy,x,,) by the following argument:
ATy i1, 3,) < Typr Ty = d(Ty, Typ1), hence x5 € Br | (%y41) = Br |, (74,)
which suffices. By (Uiv) we conclude that d(z.,,, %) (x4, 2,,) as required.

It remains to show the case where 5 is a successor ordinal. We obtain

d(x%axa) (3372,1,{];‘5)
(x’h Y x’y?)

since f is strictly contracting and by the induction hypothesis.

We constructed a transfinite sequence (x,) which is pseudo-convergent. We
also obtain a corresponding sequence 7, in I', where 7, = d(Z4, Ta11), Which is
strictly decreasing. If we assume that no point in (z,) is a fixed point, then there
must be an ordinal v such that 7w, = 0 for all & > 7, where 0 is the least element
of I'. This, however, contradicts the assumption that no point in (z,) is a fixed
point.

In order to finish the proof, we need to show uniqueness of the fixed point.
Suppose y is another fixed point of f. Then d(z,y) = d(f(x), f(y)) d(z,y)
which is a contradiction. Hence the fixed point is unique. [ |

An alternative constructive proof is given in Section 1.5.

1.4 Dislocated Metrics

Dislocated metrics were studied under the name of metric domains in [Mat86]. We
proceed now with the definitions needed for stating the Matthews theorem, which
is the generalized Banach contraction mapping theorem on these spaces, that is,
we will define convergence, Cauchy sequences and completeness for dislocated
metrics as in [Mat86]. As it turns out, these notions can be carried over directly
from conventional metrics. Then, we will investigate the topological structure
underlying the notion of dislocated metric, which will lead to a proof of the
Matthews theorem which is in the spirit of the proof of the Banach contraction
mapping theorem.

1.4.1 Definition A sequence (x,) in a d-metric space (X, o) converges with re-
spect to o (or in p) if there exists an # € X such that o(z,,z) converges to 0 as
n — oo. In this case, x is called a limit of (x,) (in o).
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1.4.2 Proposition Limits in d-metric spaces are unique.

Proof: Let z and y be limits of the sequence (x,,). By properties (Miii) and (Miv)

of Definition 1.2.1, it follows that o(z,y) < o(xn, z)+ o(x,,y) — 0 as n —

Hence o(z,y) = 0 and by property (Mii) of Definition 1.2.1 it follows that z = y.
[ |

1.4.3 Definition A sequence (z,) in a d-metric space is called a Cauchy sequence
if for each ¢ > 0 there exists n € N such that for all m,n > n we have

(T, p) ) <e

1.4.4 Proposition Every convergent sequence in a d-metric space is a Cauchy
sequence.

Proof: Let (x,) be a sequence which converges to some z, and let ¢ > 0 be
arbitrarily chosen. Then there exists n € N with o(zy,2) 5 foralln >n . For
g __

m,n > n we then obtain o(xy,,z,) < o(xpm, z)+ o(r,z,) 2 5 =c. Hence (z,)

is a Cauchy sequence. [

1.4.5 Definition A d-metric space (X, ) is called complete if every Cauchy
sequence in X converges with respect to 0. A function f : X — X is called a
contraction if there exists 0 < A 1 such that o(f(z), f(y)) < Ao(x,y) for all
z,y € X.

1.4.6 Theorem (Matthews theorem) Let (X,p0) be a complete d-metric
space and let f : X — X be a contraction. Then f has a unique fixed point.

A proof of this theorem was given in [Mat86], and we will from now on refer to
it as the Matthews theorem. We will give an alternative proof later which is more
in the spirit of the proof of the original Banach contraction mapping theorem.

We will now investigate a topological point of view of dislocated metrics fol-
lowing the outline given by the definitions at the beginning of this section. Since
constant sequences do not in general converge in d-metric spaces, a conventional
topological approach is not feasible, and notions of neighbourhoods, convergence
and continuity will have to be modified.

Dislocated Neighbourhoods

1.4.7 Definition An (open £-)ball in a d-metric space (X, o) with centre x € X
isaset B.(z) ={y€ X |o(z,y) } wheree > 0.

Note that balls may be empty in d-metric spaces. In fact, the above definition
of ball does not imply that the centre of a ball is contained in the ball itself:
the point may be dislocated from the ball, and hence our usage of the term
“dislocated”.
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1.4.8 Proposition Let (X, p) be a d-metric space.
(a) The following three conditions are equivalent:

(i) For all x € X, we have o(z,z) = 0.
(ii) o is a metric.
(iii) For all z € X and all £ > 0, we have B.(x) = ).
(b) The space (X', p), where X' = {z € X | o(z,z) = 0}, is a metric space.

Proof: (a) That (i) implies (ii) is obvious, as is (ii) implies (iii). We show (iii)
implies (i). Since B.(z) = () for all ¢ > 0, there exists, for each £ > 0, some y € X
with o(z,y) €. But, for all y € X, we have p(x,z) < 2 p(z,y), and hence

o(z, ) for all € > 0. Therefore, o(z,z) = 0. <e
(b) Obviously, (X', p) is a d-metric space. The assertion now follows immediately
from (a). |

We proceed with the investigation of dislocated metrics from a topological
point of view.

1.4.9 Definition Let X be a set. A relation o X x P(X) (written infix) is
called a d-membership relation (on X) if it satisfies the following property for all
re€Xand A,B X:

r<g Aand A B implies z< B. (1.1)

We say x is below A” if x< A.

The below”-relation is a generalization of the membership relation from set-
theory, which will allow us to define a suitable notion of neighbourhood.

1.4.10 Definition Let X be a set, let o be a d-membership relation on X and
let U, = () be a collection of subsets of X for each x € X. We call (U,,<)
a d-neighbourhood system (d-nbhood system) for x if it satisfies the following
conditions.

(Ni) If U € U, then z< U.
(Nii) f U,V € Uy, then UNV € U,.

(Niii) If U € U,, then thereisa V' U with V € U, such that for all y< V we
have U € U,,.

(Niv) IfU e, and UV, then V € U,.

Each U € U, is called a d-neighbourhood (d-nbhood) of x. Finally, let X be a set,
let o be a d-membership relation on X and, for each x € X, let (U,,< ) be a
d-nbhood system for x. Then (X,U,< ) (or simply X) is called a d-topological
space, where U = {U, | v € X }.
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Note that points may have empty d-nbhoods and that Definition 1.4.10 is ex-
actly the definition of a topological neighbourhood system if o is the membership
relation €.

Proposition 1.4.11, next, shows that d-nbhood systems arise naturally from
d-metrics.

1.4.11 Proposition Let (X, p) be a d-metric space. Define the d-membership
relation o as the relation {(x, A) | there exists ¢ > 0 for which B.(z) A}. For
each z € X, let U, be the collection of all subsets A of X such that z< A. Then
(Uy,<0 ) is a d-nbhood system for x for each z € X.

Proof: It is easy to see that o is indeed a d-membership relation.

(Ni) is obvious. Note that we also have the reverse property: if z< U, then U € U,.
(Nii) If z< U, V, then there are balls A, B with centre x such that A U and
B V. Without loss of generality let A be the smaller of the balls A and B.
Then A=AnNB UNV.

(Niii) Let U € U,, that is, < U. Then there is a ball B with centre x such that
B U and B € U,. Now let y<g B be arbitrary. We have to show that y< U. But
y< B implies that there is a ball B" with centre y such that y<s B’ B U. So
y< U.

(Niv) This is obvious since x<< UV implies z< V. |

We note that if (X, ) is a metric space, then the above construction yields
the usual topology associated with a metric.

The set of balls of a d-metric does not in general yield a conventional topology.
In this respect, the axioms defining a dislocated metric are different from those
defining a partial metric in [Mat92, Mat94], which are as follows.

1.4.12 Definition Let X be a set and let p : X x X — R" be a function. We
call p a partial metric on X if it satisfies the following axioms.

For all z,y € X, x =y if and only if p(z, z) = p(x,y) = p(y, y).

(Pii) For all z,y € X, p(x,z) < p(z,y).

(Pi)

)
i)
)

(Piii) For all z,y € X, p(z,y) = p(y, x).
(Piv) For all z,y,2 € X, p(z,2) < p(z,y)+ p(y,2) — p(y,y)-

A weak partial metric is a distance function satisfying conditions (Pi), (Piii)
and (Piv) of Definition 1.4.12, i.e. condition (Pii) of small self-distances is not
required. These spaces were studied e.g. in [EH98, Hec99, O’N95], and we note
that [O’N95] works with partial metrics where negative distances are allowed.
It is easy to see that any (weak) partial metric is a d-metric. Furthermore, the
set of balls with respect to a (weak) partial metric does indeed yield a topology,
and strong relationships between the topologies arising from partial metrics and
topologies discussed in domain theory can be established. We refer the reader to
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[Mat92, Mat94, EH98, Wac00] for a comprehensive discussion of these matters
since our main concern here is with the more general notion of dislocated metric.
We will not follow the lines mentioned in this paragraph since dislocated metrics
will suffice for the purpose of our applications.

1.4.13 Proposition Any d-ultrametric satisfies (Pii), (Piii) and (Piv), but not
necessarily (Pi).

Proof: Let (X, p) be a d-ultrametric space and let z,y, z € X.

(Pii) By the strong triangle inequality, we obtain o(x,z) < max{o(x,y), o(y, x)}

and by symmetry we obtain the desired inequality.

(Piii) follows from (Miii).

(Piv) By the strong triangle inequality, we obtain o(z, 2) < max{o(z,y), o(y, 2)}.

Without loss of generality, we can assume that o(z,y) > o(y, z). Since by (Pii)

we have o(y, y) < o(y, z), we obtain o(z, 2) < o(z,y) < o(z,y)+ o(y,2) — 0(y, y).
Let X be a set and define p on X x X to be identically 1. Then p is a d-

ultrametric on X which does not satisfy (Pi). |

Convergence and Continuity

Once the notion of d-nbhood is defined, it is straightforward to adapt the notion
of convergence to d-topological spaces.

1.4.14 Definition Let (X,U,< ) be a d-topological space and let z € X. A
(topological) net (z,) d-converges to x € X if for each d-nbhood U of = we have
that x is eventually in U, that is, there exists some A such that ), € U for each

A> ).

Note that if for some x € X we have () € U,, then the constant sequence
(x) does not d-converge. In fact, if ) € U, then no net in X d-converges to z.
Note also that the notion of convergence obtained in Definition 1.4.14 is a natural
generalization of convergence with respect to a d-metric, and we investigate this
next.

1.4.15 Proposition Let (X, p) be a d-metric space and let (X,U,<0 ) be the d-
topological space obtained from it via the construction in Proposition 1.4.11. Let
(x,) be a sequence in X. Then (z,) converges in p if and only if (z,) d-converges
in (X,U,< ).

Proof: Let (z,) be convergent in p to some z € X, so that o(x,,z) — 0 as
n — , and let U be a d-nbhood of x. Then there exists ¢ > 0 such that
B.(x) U. Since o(x,,x) — 0, there exists n such that x, € B.(x) U for all
n >n and hence (z,) d-converges to x.

Conversely, let (z,,) be d-convergent to some 2 € X, that is, for each d-nbhood
U of = there exists n such that z,, € U for each n > n . For each ¢ > 0, B.(z) is a
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d-nbhood of x. Since ¢ can be chosen arbitrarily small, we must have o(z,,z) — 0
as n — , as required. [ |

We proceed with defining continuity on d-topological spaces.

1.4.16 Definition Let X and Y be d-topological spaces and let f : X — Y be a
function. Then f is d-continuous at x € X if for each d-nbhood V of f(z )inV
there is a d-nbhood U of x in X such that f(U) V. We say f is d-continuous
on X if f is d-continuous at each z € X.

The following theorem shows that the notion of d-convergence can be charac-
terized via nets, by analogy with conventional topology.

1.4.17 Theorem Let X and Y be d-topological spaces and let f : X — Y be
a function. Then f is d-continuous if and only if for each net (z,) in X which
d-converges to some € X, (f(xy)) isanet in Y which d-converges to f(z ) € Y.

Proof: Let f be d-continuous at x and let z, be a net which d-converges to x .
Let V be a d-nbhood of f(z ). Then there exists a d-nbhood U of x such that
f(U) V. Since z) is eventually in U, we obtain that f(x,) is eventually in V,
and hence f(z)) d-converges to f(z ).

Conversely, if f is not d-continuous at = , then for some d-nbhood V' of f(z )
and for all U € U,,, we have f(U) V. Thus for each U € U,, thereis an xy € U
with f(zy) € V. Then (xy) is a net in X which d-converges to x whilst f(zy)
does not d-converge to f(x ). |

We have generalized convergence from d-metrics to d-topologies. However, we
still lack a notion of continuity in terms of d-metrics. We will investigate this
next, and this will enable us to give a proof of the Matthews theorem 1.4.6 which
is analogous to the standard proof of the Banach contraction mapping theorem:.

1.4.18 Proposition Let (X, p) and (Y, ¢') be d-metric spaces, let f: X — Y be
a function and let (X,U,<0 ) and (Y, V,<0’) be the d-topological spaces obtained
from (X, p), respectively (Y, ¢'), via the construction in Proposition 1.4.11. Then
f is d-continuous at x € X if and only if for each € > 0 there exists a ¢ > 0 such

that f(Bs(z ))  B(f(z )).

Proof: Let f be d-continuous at x € X and let € > 0. Then B.(f(z )) is a
d-nbhood of f(x ). By definition of d-continuity, there exists a d-nbhood U of
x with f(U)  B.(f(xz )). But since U is a d-nbhood of z , there exists a ball
Bs(x ) U and therefore f(Bs(x )) f(U) B.(f(z)).

Conversely, assume that the e-0-condition on f holds and let V' be a d-nbhood
of f(z ). Then there exists ¢ > 0 with B.(f(z )) V and § > 0 with f(Bs(z ))
B.(f(x)) V. Since Bs(z ) is a d-nbhood of x we obtain d-continuity of f. B

1.4.19 Proposition Let (X, ) be a d-metric space, let f : X — X be a con-
traction with contractivity factor A and let (X,U,<0 ) be the d-topological space

27



CHAPTER 1. FIXED-POINT THEOREMS FOR SINGLE-VALUED MAPPINGS

obtained from (X, p) via the construction in Proposition 1.4.11. Then f is d-
continuous.

Proof: Let # € X and let € > 0 be arbitrarily chosen. For ¢ = 1=, we ob-

tain d(f(x), f(z )) < Md(z,2 ) < Ay e for all v € Bs(z ), and therefore
f(Bs(x)) B.(f(z)) as required. |

Proof of Theorem 1.4.6: With our preparations, the proof follows the proof of
the Banach contraction mapping theorem on metric spaces, and we only sketch
the details here.

Let € X be arbitrarily chosen. Then the sequence (f"(z)), oy is a Cauchy
sequence and converges in (X, p) to some point y. Since f is a contraction, it is
also d-continuous by Proposition 1.4.19 from which we obtain y = lim f"(z) =
f(lim f*~'(z)) = f(y) by Theorem 1.4.17. Uniqueness follows since if z is a fixed
point of f, then o(x, 2) = o(f(z), f(2)) < Ao(z, z) and therefore o(, z) = 0, and
hence x = z by (Mii). |

1.5 Dislocated Generalized Ultrametrics

The following theorem gives a partial unification of the Matthews theorem 1.4.6
and the Prieff-Crampe and Ribenboim theorem 1.3.4. The proof of the latter
theorem given in [PCR93] in fact carries over directly to our more general setting
of d-gums.

1.5.1 Theorem Let (X, p,T") be a spherically complete d-gum space and let
f + X — X be non-expanding and strictly contracting on orbits. Then f has a
fixed point. If f is strictly contracting on X, then the fixed point is unique.

Proof: Assume that f has no fixed point. Then for all + € X we have
o(z, f(x)) = 0. We define the set B by B = {By(,f)) () | + € X}, and note that
each ball in this set is non-empty. We also note that By, f(2)) (%) = By, @) (f(2))
by Lemma 1.3.3. Now let C be a maximal chain in B. Since X is spherically
complete, there exists z € €. We show that By ;) (2) By, f(zy) for all
r € X and hence, by maximality, that By, f(.))(2) is the smallest ball in the
chain. Let By () (7) € C. Since z € By (z))(¢), and noting our earlier obser-
vation that B (x f(x))( r) =B o(z,f(z ))(f( x)) for all z, we get o(z,z) < o(z, f(x))

and o(z, f(z)) < o(x, f(z)). By non-expansiveness of f, we get o(f(2), f(z)) <
o(z,z) < o(z, (!,E)() t follows by (Uiv) that o(z, f(2)) < o(x, f(x)) and there-

fore that By, (:))(2)  By(a,f(z))(¢) by Lemma 1.3.3 for all z € X, since x was
chosen arbltrarlly Now, since f is strictly contracting on orbits, o( f(z), f(2))
o(z, f(2)), and therefore z € By s(.).r22))(f(2)) C Bosp2))(f(2)). By Lemma
1.3.3, this is equivalent to B,s(.),r2(2))(f(2)) C By(z,f(z))(2), which is a contradic-
tion to the maximality of C. So f has a fixed point.

Now let f be strictly contracting on X and assume that x, y are two dis-
tinct fixed points of f. Then we get o(z,y) = o(f(x), f(y))  o(x,y) which is
impossible. So the fixed point of f is unique in this case. |
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We next give a constructive proof of a special case of Theorem 1.5.1.

1.5.2 Theorem Let (X,d,T") be a spherically complete dislocated generalized
ultrametric space with I' = {27 | @ < v} for some ordinal v. We order I" by
27 278iff 3 , and denote 277 by 0. If f : X — X is any strictly contracting
function on X, then f has a unique fixed point.

Proof: Let x € X. Then f(x) € f(X) and d(f(z),z) <2~ since 27 is the max-
imum distance possible between any two points in X. Now, d(f(f(x)), f(x)) <
271 <27 since f is strictly contracting, and by (Uiv) it follows that d(f?(z),z) <
27 . By the same argument, we obtain d(f3(z), f*>(z)) < 272 < 27! and therefore
d(f3(z), f(z)) < 27" In fact, an easy induction argument along these lines shows
that d(f""'(x), f™(z)) < 27™ for m < n. Again by (Uiv), we obtain that the
sequence of balls of the form By-»(f"(x)) is a descending chain (with respect to
set-inclusion) if n is increasing, and therefore has non-zero intersection B since
X is spherically complete. We therefore conclude that there is x € B with
d(z , f*(x)) < 27" for each n € N.

For each n € N we argue as follows. Since d(f(z ), f**'(z)) (z , fM(z)) <
27" and d(z , f"(z)) < 27D < 27" we obtain d(f(x ),z ) < 27" Since this
is the case for all n € N, we obtain d(f(z ),z ) <2~ .

It is straightforward to cast the above observations into a transfinite induction
argument, and we obtain the following construction:

Choose x € X arbitrarily. For each ordinal o < 7, we define f*(x) as follows. If
« is a successor ordinal, then f%(z) = f(f* !(z)) as usual. If « is a limit ordinal,
then we choose f%(z) as some x, which has the property that d(z,, f?(z)) < 277,
and the existence of such an x, is guaranteed by spherical completeness of X.

The resulting transfinite sequence f%(x) has the property that
d(fe(z), f(x)) < 27 for all @ < «. Consequently, d(f"*'(z), f'(z)) =
277 =0, and therefore f7(z) must be a fixed point of f.

Finally, z, = f7(z) can be the only fixed point of f. To see this, suppose
y = x., is another fixed point of f. Then we obtain f(y,z,) (y,z,), from the
fact that f is strictly contracting, which is impossible. [ |

Another alternative proof of this theorem will be given at the end of Section
3.4.

1.6 Quasimetrics

Quasimetrics are a convenient way of reconciling metric and order structures. We
give the relevant definitions in order to state the Rutten-Smyth theorem 1.6.3,
in the form in which it appears in [Rut96]. A more general version was given in
[Smy87] on quasi-uniformities.

1.6.1 Definition A sequence (x,) in a quasimetric space (X, d) is a (forward)
Cauchy sequence if, for all £ > 0, there exists n € N such that for alln > m >n
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we have d(z,,z,) . A Cauchy sequence (z,) converges to x € X if, for all
y € X, d(z,y) = limd(z,,y). Finally, X is called CS-complete if every Cauchy
sequence in X converges.

Note that limits of Cauchy sequences in quasimetric spaces are unique. Given
a quasimetric space (X, d), d induces a partial order <; on X by setting = <; y
if and only if d(z,y) = 0. If (X, d) is a quasimetric space, then (X, d*) is a metric
space, where d*(x,y) = max{d(z,y), d(y, z)}.

1.6.2 Definition Let X be a quasimetric space. A function f : X — X is called

(1) CS-continuous if, for all Cauchy sequences (x,) in X with limz,, = =, (f(x,))
is a Cauchy sequence and lim f(z,) = f(z),

(2) non-expanding if d(f(x), f(y)) < d(z,y) for all z,y € X, and

(3) contractive if there exists some 0 < ¢< 1 such that d(f(z), f(y)) < ¢ d(z,y)
for all z,y € X.

Contractive mappings are not necessarily CS-continuous as was pointed out
in [Rut96], where also a proof of the following theorem can be found.

1.6.3 Theorem (Rutten-Smyth theorem) Let (X,d) be a CS-complete
quasimetric space and let f : X — X be non-expanding.

(1) If f is CS-continuous and there exists z € X with z <, f(z), then f has a
fixed point, and this fixed point is least above x with respect to <,.

(2) If f is CS-continuous and contractive, then f has a unique fixed point.

Moreover, in both cases the fixed point can be obtained as the limit of the Cauchy
sequence (f"(x)), where in (1) z is the given point, and in (2) z can be chosen
arbitrarily.

Let (X, <) be a partially ordered set. Define a function d< : X x X — R by

0 ifz<y
d<(@y) = 1 otherwise.

Then it is easily checked that (X, d<) is a quasi-ultrametric space, and d< is called
the discrete quasimetric on X. Note that <;_ and < coincide for a given partial
order <. -

By virtue of this definition and the definition of <; for a given quasimetric d,
Part (1) of Theorem 1.6.3 generalizes the Kleene theorem 1.1.3. Part (2) general-
izes the Banach contraction mapping theorem 1.2.2, cf. also [Rut96, Smy87] and
Proposition 2.4.4.
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space name of theorem  reference number symbol
w-Ccpo Kleene 1.1.3 K
chain-complete  Knaster-Tarski 1.1.7 KT
partial order
complete metric Banach 1.2.2 B
compact metric — 1.2.3 cp
gum Prief-Crampe and 1.3.4 PCR
Ribenboim
d-metric Matthews 1.4.6 M
d-gum — 1.5.1 dPCR
quasimetric Rutten-Smyth 1.6.3 RS

Table 1.3: Summary of single-valued fixed-point theorems.

cpu

e

cp

e

Figure 1.1: Dependencies between fixed-point theorems from Chapter 1. If a the-
orem is depicted lower in the diagram, this means that it is more general. See
Table 1.3 for the abbreviations.

PCR

K M dPCR

1.7 Summary and Further Work

We have presented a number of theorems on different order structures and gen-
eralized metrics, which are collected in Table 1.3.

The dependencies between these theorems are depicted in Figure 1.1, where
the letters abbreviate the theorems as listed in Table 1.3. The abbreviation “cpu”
stands for the fact that strictly contracting functions on compact ultrametric
spaces have unique fixed points, which is an easy corollary of Theorem 1.2.3.

We note that the Prie-Crampe and Ribenboim theorem 1.3.4 can be proven
using the Knaster-Tarski theorem 1.1.7, analogous to a proof in [EH98] of the
Banach contraction mapping theorem 1.2.2 from the Kleene theorem 1.1.3, see
Section 3.3. Also, the dislocated Prie-Crampe and Ribenboim theorem 1.5.1,
respectively the Matthews theorem, can be proven using the non-dislocated ver-
sion, i.e. the Prie-Crampe and Ribenboim theorem 1.3.4, respectively the Banach
contraction mapping theorem 1.2.2, see Sections 3.4 and 3.1, respectively.

We list a number of questions arising from our results.
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Question 1.1

Question 1.2

Question 1.3

Question 1.4

Is there a reasonable notion of d-open set corresponding to the
notions of d-neighbourhood, d-convergence and d-continuity as in
Section 1.47

What are necessary and sufficient conditions such that a spherically
complete gum is compact?

Is there a quasimetric version of the Prie-Crampe and Ribenboim
theorem 1.3.47

Which of the theorems in Figure 1.1 allow for common generaliza-
tions?
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Chapter 2

Fixed-point Theorems for
Multivalued Mappings

We briefly present fixed-point theorems for multivalued mappings on partial or-
ders and generalized metrics, and study some of the relationships between them.
It turns out that many fixed-point theorems from Chapter 1 can be carried over
to a multivalued setting. In Section 2.1, we carry over the Knaster-Tarski theorem
1.1.7. In Section 2.2, we present a multivalued version of the Banach contraction
mapping theorem 1.2.2. Section 2.3 is concerned with multivalued variants of the
Prie3-Crampe and Ribenboim theorem and Section 2.4 introduces a theorem for
multivalued mappings on quasimetrics which reconciles the theorems on partial
orders and metrics analogous to the Rutten-Smyth theorem 1.6.3.

2.1 Partial Orders

We review a multivalued version of the Knaster-Tarski theorem 1.1.7 due to
[KM98]. A multivalued Kleene theorem will be presented in Section 2.4.

2.1.1 Definition Let 7': X — 2% be a multivalued mapping defined on X. An
orbit of T is a net (x;);cq in X, where v denotes an ordinal, such that z;,1 € T'(x;)
for all i € . An orbit (x;);eq of T is called an w-orbit if « is the first limit ordinal,
w. An orbit (z;);cq of T will be said to be eventually constant if there is a tail
(wi)p<i of (%i)ica which is constant in that z; = x; for all 4,5 € « satisfying
f<i,jg.

If T: X — 2% is a multivalued mapping and z is a fixed point of 7', then we
obtain an orbit of T" which is eventually constant by settingz =2 =z, =25....
Conversely, suppose that (x;);cq is an orbit of T" with the property that z; ; = z;
for all i € « satisfying 5 < i, for some ordinal § € . Then x5 = 311 € T(zp)
and we have a fixed point 25 of T". Thus, having a fixed point and having an orbit
which is eventually constant are essentially equivalent conditions on 7.
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2.1.2 Definition A multivalued mapping 7" defined on a partially ordered set
X will be said to be monotonic if, for all x,y € X satistying x < y and for all
a € T(z), there exists b € T'(y) such that a < b.

2.1.3 Definition An orbit (z;);c, of T'is said to be increasing if we have z; < x;
for all 7,7 € « satisfying ¢ < j, and is said to be eventually increasing if some
tail of the orbit is increasing. Finally, an increasing orbit (x;);cqo of T is said to
be tight if, for all limit ordinals 5 € «, we have 3 = sup{z; | i< (}.

Suppose that (x;);cq is an increasing orbit of 7' and that 5 € « is a limit
ordinal. Then x5, is an element of T'(xg) such that x; < x4y for alli 3, and
of course sup{z; |7 S} < xp < x4y if the supremum exists. In particular, any
increasing orbit (z;);co which is tight (if such exists) must satisfy the following
condition:

For any limit ordinal 3, there exists © (= z41) € T(sup{z; | i< S5})
such that sup{z; |i p} <u=z. (2.1)

This condition is a slight variant of a condition which was identified in [KM98]
as a sufficient condition for the existence of fixed points of monotonic multivalued
mappings. In fact, the following result was established in [KM98], except that it
was formulated for decreasing orbits and infima and we have chosen to work with
the dual notions instead, to maintain consistency.

2.1.4 Theorem (Knaster-Tarski multivalued) Let X be a complete partial
order and let 7' : X — 2% be a multivalued mapping which is non-empty, mono-
tonic and satisfies (2.1). Then T has a fixed point.

We omit details of the proof of this result except to observe that, starting with
the bottom element z = 1 of X, the condition (2.1) permits the construction,
transfinitely, of a tight orbit (z;) of T'. Since this can be carried out for ordinals
whose underlying cardinal is greater than that of X, we are forced to conclude
that (x;) is eventually constant and therefore that 7" has a fixed point.

Noting that sup{z; | i< S} =sup{x;41|¢ [}, one can view (2.1) schemat-
ically as the statement “sup{T'(z;) | ¢ S} < T(sup{z; | ¢ f})” and it can
therefore be thought of as a rather natural, weak continuity condition on 7" which
is automatically satisfied by any monotonic single-valued mapping T on a cpo.
The question of when the orbit constructed in the previous paragraph becomes
constant in w steps as in the single-valued Kleene theorem 1.1.3 is a question of
continuity and will be taken up in Section 2.4.

Theorem 2.1.4 was established in [KM98] in order to show the existence of
(consistent) answer sets for a class of disjunctive programs called signed programs,
see Section 7.3. At the end of Section 7.3, we will give examples which show that
it sometimes is necessary to work transfinitely in practice, a point which justifies
the name “Knaster-Tarski theorem” applied to Theorem 2.1.4.
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Thus, to summarize, monotonicity of T together with (2.1) appears to give, for
multivalued mappings, an exact analogue of the fixed-point theory for monotonic
single-valued mappings due to Knaster-Tarski. Moreover, there are applications to
the semantics of disjunctive programs which parallel those made in the standard,
non-disjunctive case.

2.2 Metrics

We present a result due to [KKM93| which is a multivalued version of the Banach
contraction mapping theorem 1.2.2.

2.2.1 Definition Let (X, d) be a metric space. A multivalued mapping 7' : X —
2X is called a contraction if there exists a real number k< 1 such that for every
xz € X, for every y € X, and for all a € T'(z), there exists b € T'(y) such that
d(a,b) < kd(z,y).

The following result is taken from [KKM93]. An alternative proof will be given
in Section 2.4.

2.2.2 Theorem (Banach multivalued) Assume that X is a complete metric
space, and that T is a multivalued contraction on X such that, for every x € X,
the set T'(z) is closed and non-empty. Then 7" has a fixed point.

This theorem was established with a specific objective in view, namely, to show
the existence of answer sets for disjunctive logic programs which are countably
stratified [KKM93].

2.3 Generalized Ultrametrics

We present multivalued versions of the Prieff-Crampe and Ribenboim theorem
1.3.4.

2.3.1 Definition Let (X, d,I") be a generalized ultrametric space (so that I' is
a partially ordered set). A multivalued mapping 7" on X is called strictly con-
tracting, respectively, non-expanding if, for all z,y € X with x = y and for
every a € T(x), there exists an element b € T(y) such that d(a,b)  d(z,y),
respectively, d(a,b) < d(x,y).

The mapping T is called strictly contracting on orbits, if for every x € X
and for every a € T(z) with a = z, there exists an element b € T'(a) with
d(a,b) (a,x). <d

For T : X — 2% let I, = {d(z,y) | y € T(x)} and, for a subset A T,
denote by Min A the set of all minimal elements of A.

The following theorem was proved in [PCRO00c]. Although we know of no
specific application of it, we believe it will prove to be useful by virtue of the
general nature of the set T.
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2.3.2 Theorem (PrieB-Cramps and Ribenboim multivalued) Let (X, d)
be a spherically complete generalized ultrametric space. Let T : X — 2% be
non-empty, non-expanding and strictly contracting on orbits. Moreover, assume

that for every x € X, MinIl, is finite and that every element of II, has a lower
bound in MinII,. Then T has a fixed point.

The following ideas were considered in [KKM93|. We show that the notions
defined there basically coincide with those from generalized ultrametrics.

2.3.3 Definition A semigroup is a set V together with an associative binary

operation :V xV — V. If isalso commutative, then the semigroup is called
commutative or Abelian. A semigroup is called a semigroup with 0 if there exists
an element 0 € V such that 0 wuw=wu =u forallueV.

By an ordered semigroup with 0 we mean a semigroup with 0 on which there

is an ordering < satisfying: 0 < v for all v € V', and if v; < vy and v] < v}, then
!/ !/
v U <V Uy

2.3.4 Definition Let V' be an ordered Abelian semigroup with 0 and let X be
an arbitrary set. A g-metric on X is a mapping d : X x X — V which satisfies
the following conditions for all x,y,z € X.

1. d(z,y) =0 if and only if z = y.

2. d(z,y) =d(y,x).
3. d(z,y) < d(x,z)+ d(z,y).

A pair (X, d) consisting of a set X and a g-metric d on X is called a g-metric
space.

In [KKM93], g-metrics were called generalized metrics, but we have changed
the notation since the notion of generalized metric is used differently in this
thesis. We will in fact not work with g-metrics in the sequel since the strongly
related generalized ultrametrics will suffice for our purposes. We investigate this
relationship next; the following definitions are again taken from [KKM93].

2.3.5 Definition Let V' denote the set of all expressions of the type 0 or 27,
where « is a countable ordinal. An order is defined on V' by: 0 < v for every
v €V, and 27 < 279 if and only if 3 < a. As a semigroup operation v v, we
will use the maximum max(u, v). It will be convenient to write 27 = 2-(@+1),

2.3.6 Definition Assume that « is either a countable ordinal or w;, the first
uncountable ordinal, and that v = (vg)s<q is a decreasing family of elements of
V. Let X be a g-metric space, and let (z3)s<o be a family of elements of X.

(i) (zp) is said to v-cluster to x € X if, for all 3, we have d(zg,x)  wvg
whenever 3
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(i) (zp) is said to be v-Cauchy if, for all 5 and v, we have d(zg,z,) v
whenever [

(iii) X is said to be complete if for every v, every v-Cauchy family v-clusters to
some element in X.

(iv) A set A X will be called complete if for every v, whenever a v-Cauchy
family consists of elements of A, it v-clusters to some element of A.

A strong relationship between the notion of completeness of g-metrics with
the notion of trans-completeness, Definition 1.3.6, for generalized ultrametrics
is obvious. We show that they coincide by showing equivalence between com-
pleteness for g-metrics and spherical completeness for generalized ultrametrics,
cf. Proposition 1.3.8.

2.3.7 Definition A mapping T': X — 2% is called a (%)—contmction if, for every
z € X, for every y € X and for every a € T(x), there exists b € T(y) such that
d(a,b) < 3d(z,y).

The following theorem was proved in [KKM93].

2.3.8 Theorem Let X be a complete g-metric space, let T be a multivalued
(1)-contraction on X such that 7'(z) is not empty for some z € X (i.e. T"is not
identically empty), and suppose that for every z € X the set T'(z) is complete.
Then T has a fixed point.

We present some results relating the results just given to the notion of spherical
completeness we discussed earlier.

Let (X, d) be a g-metric space with respect to V' as given in Definition 2.3.5.
Then d is in fact a generalized ultrametric space and vice-versa.

2.3.9 Proposition Let (X, d) be a complete g-metric space with respect to V.
Then X is spherically complete as an ultrametric space.

Proof: Let B = (B, (Iﬁ))ﬁm be a decreasing chain of balls in X, and without
loss of generality assume that it is strictly decreasing and that « is a limit ordinal.
We have to show that B = (). Let v = (vg)s. Since B is a chain, it is easy to see
that (xs41)p is v-Cauchy and therefore, by completeness of X, (z441) v-clusters
to some = € X. By definition, this means that d(z341,2) g and therefore that
v € Byy(2g41) = By, () for all . Thus, z € B. |

2.3.10 Proposition Let (X,d, V) be a spherically complete generalized ultra-
metric space. Then X is complete as a g-metric space.
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Proof: Let v= (v3) be a decreasing family of elements of V' which is, without
loss of generality, strictly decreasing, and let (x3) be v-Cauchy. For v € v, e.g.

v =27 let v' denote 2~(**1), Then B = (B% (:Ug))ﬁ is a decreasing chain of balls
in X. By spherical completeness, it has non-empty intersection. Choose x € B.
Then for all 3 we obtain d (v5,z) < v g, i.e. (x5) v-clusters to z. |

This means, by virtue of Theorem 2.3.2, that we can reformulate the assump-
tions in Theorem 2.3.8 and thereby obtain the following theorem which in fact is
a special case of [PCR00c, (3.4)].

2.3.11 Theorem Let X be a spherically complete generalized ultrametric space
(with respect to V') and let 7' be multivalued, non-empty and strictly contracting
on X and s.t. T(z) is spherically complete for all z € X. Then T has a fixed
point.

2.4 Quasimetrics

We study a multivalued version of the Rutten-Smyth theorem 1.6.3, which will
lead to a multivalued version of the Kleene theorem 1.1.3.

2.4.1 Definition Let (X, d) be a quasimetric space. A multivalued mapping T :
X — 2% is called a contraction if there exists a A with 0 < A< 1 such that, for all
xz,y € X and for all a € T(x), there exists b € T'(y) satisfying d(a,b) < Ad(z,y).
We say that T is non-expanding if, for all z,y € X and for all a € T'(x), there
exists b € T(y) satistying d(a,b) < d(z,y).

These definitions are clearly extensions of well-known definitions made for
single-valued mappings, and indeed collapse to them in the case that 7' is single-
valued. An obvious and natural definition of continuity of 7" is the following:
for every Cauchy sequence (z,) in X with limit 2 and for every choice of y, €
T(x,), we have that (y,) is a Cauchy sequence and limy, € T'(z). In fact, the
weaker definition following, which is implied by the one just given, suffices for our
purposes and will be used throughout.

2.4.2 Definition Let T : X — 2% be a multivalued mapping defined on a quasi-
metric space (X, d). We say that T is continuous if we have limzx, € T(limz,)
for every w-orbit (z,) of T" which is a Cauchy sequence.

Again, this definition collapses to a natural one in the case that T is
single-valued. In fact, if T is single-valued, it simply states the condition that
lim7T(z,) = limz,,; = limz, = T(limz,) for every w-orbit which is a Cauchy
sequence, which is a weaker condition than that of CS-continuity as in Definition
1.6.2(1).

Finally, if (X, d) is a quasimetric space, we define the associated partial order
<gon X by z <,y if and only if d(z,y) = 0, cf. Section 1.6.
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The main result of this section is the following theorem, which generalizes the
Rutten-Smyth theorem 1.6.3.

2.4.3 Theorem (Rutten-Smyth multivalued) Let (X,d) be a CS-complete
quasimetric space and let T : X — 2% denote a non-empty and continuous
multivalued mapping on X. Then 7" has a fixed point if either of the following
two conditions holds:

(a) T is a contraction.

(b) T is non-expanding and there is x € X and x; € T'(x ) such that d(x ,x1) =
Oie. z <gux.

Proof: (a) Let + € X. Since T'(xz ) = (), we can choose z; € T'(x ). Since T is
a contraction, there is xo € T'(x1) such that d(z1,x) < kd(x ,z1). Applying this
argument repeatedly, we obtain a sequence (z,) such that for all n > 0 we have
Tpi1 € T(x,) and d(Tp41, Tpio) < kd(zy, Tpy1). Thus, (z,) is an w-orbit. Using
the triangle inequality, we obtain

m—1 m—1 n
d(xmanrm) S Z d(xn+iaxn+i+1) S Z kn+zd(x 7x1) S 1_— kd(x axl)'
=0 1=0

Thus, (x,) is a (forward) Cauchy sequence in X and therefore is an w-orbit of T
which is Cauchy. Since X is complete, (z,,) has a limit 2 . Now, by continuity of
T, we obtain € T'(z ) and = is a fixed point of T', as required.

(b) Let x € X and x; € T'(z ) satisfy d(z ,z;) = 0. Since T is non-expanding,
there is zy € T(xy) with d(zy,25) < d(z ,z;) = 0. Inductively, we obtain a
sequence (z,) such that z,1 € T(z,) and d(z,, Tpix) < Zf;ol A(Tptiy Tniv1) =
0. Hence, (z,,) is an orbit of 7" which is forward Cauchy and therefore has a limit
x . By continuity of T" again, we see that x 1is a fixed point of T [

The proof given here of Part (a) of Theorem 2.4.3 is, up to the last step, exactly
the same as the first half of the proof of the multivalued Banach contraction
mapping theorem 2.2.2 established in [KKM93], except that we are working with
a quasimetric rather than with a metric and therefore care needs to be taken
that no use is made of symmetry. On the other hand, the proof we give next of
Theorem 2.2.2, which roughly corresponds to the second half of the proof given
in [KKM93], is shorter and technically somewhat simpler than the proof given in
[KKM93].

We show next that Theorem 2.4.3 includes both the multivalued Banach con-
traction mapping theorem of [KKM93] just mentioned, and also a natural exten-
sion of the Kleene theorem 1.1.3 to multivalued mappings, see Theorem 2.4.6. As
stated earlier, this unification is in direct analogy with the single-valued case.

Proof of Theorem 2.2.2 We show that the condition that T'(z) is closed for
every x together with that of 7" being a contraction implies that 7 is continuous,
and the result then follows from Part (a) of Theorem 2.4.3.
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First note that (X, d) being a complete metric space means that (X,d) is
complete as a quasimetric space, and obviously T satisfies (a) of Theorem 2.4.3.
Now suppose that (z,) is an orbit of T" which is a forward Cauchy sequence and
hence a Cauchy sequence; we want to show that x € T(x ), where x is the
limit of (z,,).

Since T is a contraction, for every n there exists y, € T(z ) such that
d(Tpi1,Yn) < kd(x,,z ). Therefore, d(y,,x ) < d(Yn,Tni1) d(xpi,z ) <
kd(x,,x )+ d(x,y1,7 ). Hence, we have y, — = . But each y, € T(z ), and
T(z) is closed for every x. Consequently, the limit x of the sequence y, also
belongs to T'(z ). So,z € T(z ), and it follows that 7" is continuous as required.

[ |

We next turn our attention to demonstrating that Theorem 2.4.3 contains a
version of the Kleene theorem for multivalued mappings. It will be necessary to
make some preliminary observations, as follows, concerning partially ordered sets
and the quasimetrics they carry. We refer to [Rut96] for these results.

2.4.4 Proposition Let (X, <) be a partial order and let (X,d) denote the as-
sociated quasimetric space, i.e. d = d< as in Section 1.6. Then the following
hold.

(i) A non-empty multivalued mapping 7 : X — 2% is monotonic if and only if
it is non-expanding.

(ii) A sequence (z,) in X is eventually increasing in (X, <) if and only if it is a
Cauchy sequence in (X, d).

(iii) The partially ordered set (X, <) is w-complete if and only if (X, d) is com-
plete as a quasimetric space. Furthermore, in the presence of either form of
completeness, the limit of any Cauchy sequence is the least upper bound of
any increasing tail of the sequence.

Notice that neither Part (iii) of this result nor the next definition assumes the
presence of a bottom element.

2.4.5 Definition Let the partial order (X, <) be w-complete and let 7' : X — 2%
be a non-empty multivalued mapping on X. We say that T is w-continuous if T’
is monotonic and, for any w-orbit (z,) of T" which is eventually increasing, we

have sup(z,) € T(sup(zx,)), where the supremum is taken over any increasing tail
of (z,,).

We obtain finally the following Kleene theorem for multivalued mappings as
an easy corollary of our Theorem 2.4.3. Some of its applications will be discussed
in Section 7.3.

2.4.6 Theorem (Kleene multivalued) Let (X, <) be an w-complete partial
order (with bottom element) and let T : X — 2% be a non-empty, w-continuous
multivalued mapping on X. Then T has a fixed point.

40



CHAPTER 2. FIXED-POINT THEOREMS FOR MULTIVALUED MAPPINGS

space name of theorem reference number
w-Ccpo Kleene multivalued 2.4.6
cpo Knaster-Tarski multivalued 2.1.4
complete metric Banach multivalued 2.2.2
gum Prie-Crampe and 2.3.2
Ribenboim multivalued
quasimetric Rutten-Smyth multivalued 2.4.3

Table 2.1: Summary of multivalued fixed-point theorems.

Proof: Since (X, <) is w-complete, the associated quasimetric space (X, d) (i.e.
d = d< as in Section 1.6) is complete by Proposition 2.4.4. Furthermore, T is
monotonic, since it is w-continuous, and is therefore non-expanding by Proposi-
tion 2.4.4 again. On taking + = L and z; € T(x ) arbitrarily, we have z and
zy satisfying d(xz ,x1) = 0. The result will therefore follow from Part (b) of The-
orem 2.4.3 as soon as we have established that 7" is continuous in the sense of
Definition 2.4.2.

Let (z,) be any w-orbit of 7" which is a Cauchy sequence. Then (z,,) is even-
tually increasing and, by w-continuity of 7', we have sup(x,,) € T(sup(z,)), where
the supremum is taken over any increasing tail of (x,). In other words, we have
limz, € T(limz,) and hence we have the continuity of 7" that we require. |

The Kleene theorem for single-valued mappings 71" asserts that the fixed point
produced by the usual proof is the least fixed point of 7. This assertion does not
immediately carry over to the case of multivalued mappings 7" without additional
assumptions. One such simple, though rather strong, condition is the following:
for each € X, assume that T'(x) has a least element M, and that M, < M,
whenever x < y. To see that this suffices, suppose that x is any fixed point of T,
and construct the orbit (z,) of T' by setting x = L and x,,; = M, for each n.
Then (x,) converges to a fixed point Z. Noting that | < z and that M, < x, we
see that x,, < x for all n. Hence, T < z.

2.5 Summary and Further Work

We summarize the fixed-point theorems presented in this chapter in Table 2.1,
and note that these theorems have corresponding versions in the single-valued
case which have been carried over. The obvious task of carrying over further
single-valued fixed-point theorems along the same lines remains and should pose
no particular difficulties.

We note that in the applications in Part II of the thesis, all gums will always
have some ordinal, in reverse order, as distance set as in Definition 2.3.5, see
also Sections 3.2 and 3.3. This is caused by the fact that the gums arising in our
applications are derived from level mappings which are themselves mappings into
ordinals.
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We will employ multivalued mappings in the context of disjunctive logic pro-
grams in Section 7.3, where multivalued mappings naturally arise as semantic
operators. In [ZR97a, ZR97h, ZR98], the authors avoid using multivalued map-
pings in the same context by using operators on powerdomains instead. And in-
deed, the monotonicity notions used in this chapter correspond to powerdomain
constructions, more specifically to the Hoare powerdomain [SHLG94|, which is
an alternative to the Smyth powerdomain employed in [ZR98]. Details of these
relationships remain to be worked out.
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Chapter 3

Conversions between Spaces

We study relationships between the different spaces from Chapters 1 and 2. In
particular, we will focus on the representation of some of the spaces by others,
which will in some cases lead to alternative proofs for the respective fixed-point
theorems.

In Section 3.1, we will establish relationships between conventional metrics
and dislocated metrics. We will obtain several methods of obtaining dislocated
metrics from metrics, some of which will be applied in Part II of the thesis,
and we will show how the Matthews theorem 1.4.6 can be derived from the
Banach contraction mapping theorem 1.2.2. In Section 3.2, we will see how Scott-
Ershov domains can be cast into generalized ultrametric spaces, which will also be
applied in Part IT of the thesis. In Section 3.3 we will cast generalized ultrametric
spaces into domains and derive another alternative proof of the Prie3-Crampe and
Ribenboim theorem. Finally, in Section 3.4, we will study relationships between
gums and d-gums analogous to Section 3.1.

We would like to note that quasimetrics are strongly related to partial orders,
and we refer to [Smy87, Smy91, BvBR96, Rut96] for these matters since we will
not make any specific use of these relationships in the sequel.

3.1 Metrics and Dislocated Metrics

In this section, we will investigate relationships between conventional metrics and
d-metrics. First note that if f is a contraction with contractivity factor A on a
d-metric X, we have o(f(z), f(x)) < Xo(x, z) for all z € X. Since the requirement
o(x,z) =0 for all x € X renders a d-metric to be a metric, we are interested in
understanding the function u, : X — R defined by u,(x) = o(z, ).

3.1.1 Definition Let (X, o) be a d-metric space. The function u, : X — R :
r — o(z,x) is called the dislocation function of o.

Depending on the context, dislocation functions are sometimes called weight
functions, e.g. in [Mat94, Wac00].
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3.1.2 Lemma Let (X, p) be a d-metric space. Then u, : X — R is d-continuous.

Proof: Recalling the observations following Definition 1.4.14, let x € X and let
(zx) be a net in X which d-converges to x, that is, for each £ > 0 there exist A
such that o(z,, ) for all A > X . Since u,(z)) = o(xa, xx) < 20(zy, ) for all
A, we obtain u,(zy) — 0 for increasing A. It remains to show that u,(z) = 0, and
this follows from wu,(z) = o(z,z) < 20(z), x), since the latter term tends to 0 for
increasing . [

The following is a general result which shows how d-metrics can be obtained
from conventional metrics.

3.1.3 Proposition Let (X, d) be a metric space, let u : X — R" be a function
and let T : R" x R" — R be a symmetric operator which satisfies the triangle
inequality. Then (X, o) with

oz, y) = d(z,y)+ T(u(z),uly))

is a d-metric space and u,(z) = T'(u(z),u(x)) for all z € X. In particular, if
T(z,z) = x for all z € RY, then u, = u.

Proof: (Mii) If g(z,y) = 0, then d(z,y)+ T(u(z),u(y)) = 0. Hence d(z,y) =0
and x = y.

(Miii) Obvious by symmetry of d and 7.

(Miv) Obvious since d and T satisfy the triangle inequality. [

Completeness also carries over if some continuity conditions are imposed.

3.1.4 Proposition Using the notation of Proposition 3.1.3, let u be continuous
as a function from (X,d) to R" (endowed with the usual topology), and let T'
be continuous as a function from the topological product space (R")? to R",
satisfying the additional property T(x,z) = x for all z. If (X,d) is a complete
metric space, then (X, g) is a complete d-metric space.

Proof: Let (r,) be a Cauchy sequence in (X, g). Thus, for each ¢ > 0, there
exists n € N such that for all m,n > n we have d(x,,,z,) < d(Tm,z,)+
T(u(xm), u(z,)) = o(xm,x,) €. So (x,) is also a Cauchy sequence in (X, d)
and therefore has a unique limit z in (X, d). In particular, we have z,, — z in
(X,d) and also u(z,) — u(z) and T'(u(z,),u(z)) = T(u(z),u(x)) = u(z). We
have to show that o(z,,z) converges to 0 as n — . For all n € N we obtain
0(Tn, ) = d(xpn, )+ T(u(zy), u(r)) = u(r) = up(x), and it remains to show that
o(z,z) = 0. But this follows from the fact that (z,) is a Cauchy sequence, since
this implies that u(z,) = u,(z,) = o(2n, x,) — 0 as n — , hence by continuity
of u we obtain u(z) = 0. |

We can also obtain a partial converse of Proposition 3.1.3.
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3.1.5 Proposition Let (X, p) be a d-metric space which satisfies condition (Piv)
from Definition 1.4.12 and let T : R" x R™ — R" be a symmetric operator such
that T'(z,z) = x for all x € R and which satisfies the inequality

for all z,y,2 € R". Then (X,d) with

d(z,y) = o(x,y) — T (ug(x), ue(y))
is a pseudometric space.

Proof: (Mi) For all x € X we have d(z, ) = o(z, ) — u,(z) = 0.
(Miii) Obvious by symmetry of ¢ and T.
(Miv) For all z,y € X we obtain

d(z,y) = (o(), uo(y))

+ 0(2,y) = 02, 2) = (T(ue(2), up(2))  T(ug(2),up(y)) — uy(2))
— T(ug(w),up(2))  0(2,y) = T(uy(2), uy(y))

|
S

An example of a natural operator 1" which satisfies the requirements of Propo-
sitions 3.1.3, 3.1.4 and 3.1.5 is

1
T:R" xR* —>]R+:(x,y)—>§(x Y),

cf. [Mat92].
We discuss a few more examples of d-metrics which are partly taken from
[Mat92].

3.1.6 Example Let d be the metric d(z,y) = £z — y[ on RT, let v : R" — R"
be the identity function, and define T'(x,y) = 5(z y). Then p as defined in
Proposition 3.1.3 is a d-metric and o(z,y) = 3|t —y| 3(z y) = max{z,y} for
all 7,y € R".

3.1.7 Example Let Z be the set of all closed intervalson R. Then d : TxZ — R
defined by

1
d([a,b],[c.d]) = 5 (la =] [b—d])
is a metric on Z. Let u : Z — R™ be defined by
u(la, b)) =b—a

and let T" be defined as in Example 3.1.6. Then the construction in Proposition
3.1.3 yields a d-metric p such that

o([a, b], [c,d]) = max{b,d} — min{a, c}
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for all [a,b], [c,d] € Z.
Indeed, we obtain

o(fa, ) fe.d) = (B lexd)  5b=Fa 5= 5
1

=5(b=d b d Ja—c/—a-0)
—sb—d b D) Sla—c-( o)

= max{b,d} — min{a, c}.

DN =

3.1.8 Example (R, o) where ¢o: (z,y) -z vy is a dislocated metric space.

The following proposition gives an alternative way of obtaining d-ultrametrics
from ultrametrics. We will apply this in Section 5.2.

3.1.9 Proposition Let (X, d) be an ultrametric space and let u : X — R" be a
function. Then (X, p) with

oz, y) = max{d(z, y), u(z), u(y)}

is a d-ultrametric and o(x, x) = u(z) for all x € X. If u is continuous as a function
from (X, d), then completeness of (X, d) implies completeness of (X, o).

Proof: (Mii) and (Miii) are obvious.
(Miv') We obtain for all z,y,z € X

o(z,y) = max{d(z, y), u(z), u(y)}

< max{d(z, 2), d(z, y), u(x), u(y) }

< max{d(z, 2), u(x), u(z), d(z,y),u(y) }

= max{o(z, 2), (2, 9)}.
For completeness, let (z,,) be a Cauchy sequence in (X, g). Then (z,) is a Cauchy
sequence in (X,d) and converges to some x € X. We then obtain o(x,,x) =
max{d(x,, x),u(x,),u(zr)} — u(x) as n — . As in the proof of Proposition
3.1.4 we obtain u(x) = 0 which completes the proof. |

We investigate the relationship between the Matthews theorem 1.4.6 and the
Banach contraction mapping theorem 1.2.2.

3.1.10 Proposition Let (X, p) be a d-metric space and define d : X x X — R
by d(x,y) = o(x,y) for x = y and d(z,z) = 0 for all z € X. Then d is a metric.

Proof: We obviously have d(z,z) = 0 for all x € X. If d(x,y) = 0 then either
x =y or o(zx,y) = 0, and from the latter we also obtain x = y. Symmetry is clear.
We want to show that d(z,y) < d(z, 2)+ d(z,y) for all z,y,z € X. If d(z,2) =
o(z, z) and d(z,y) = o(z,y) then the inequality is clear. If d(z,2) = 0 then z = 2
and the inequality reduces to d(z,y) < d(z,y) which holds. If d(z,y) = 0 then
z =y and the inequality reduces to d(z,y) < d(x,y) which holds. [ |
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3.1.11 Proposition Let (X, p) be a d-metric space and define d : X x X — R
by d(z,y) = o(z,y) for x = y and d(xz,xz) = 0 for all z € X. If the metric d is
complete, so is p, and if f is a contraction relative to p then f is also a contraction
relative to d.

Proof: If (z,,) is a Cauchy sequence in g, then for all ¢ there exists n such that
o(Tk, Tm) € for all k,m > n . Consequently, we also obtain d(zy,z,,) ¢ for
all k,m > n , and since d is complete, the sequence (x,) converges in d to some
z and d(z,,x) — 0 asn — . It remains to show that o(z,,x) — 0 as n —

We consider two cases.

(1) Assume that the sequence (x,) is such that there exists n with x,, =
for all m > n . Then o(zp,x) = d(zy,z) for all m > n | ie. o(zp,,z) — 0, and
hence o(z,,x) — 0.

(2) Assume that there exist infinitely many n, € N such that x,, = x. Since
(z,,) is a Cauchy sequence with respect to ¢ we obtain o(x,, , ) for all e > 0,
i.e. o(x,z) = 0. Hence o(x,,x) = d(z,,z) for all n € N as required.

Let z,y € X and assume o(f(x), f(y)) < Xo(x,y) for some 0 < A 1. If
f(z) = f(y) then d(f(x), f(y)) = 0, hence d(f(z), f(y)) < Ad(z,y). If f(z) =

<
f(y) then x = y and so d(f(z), f(y)) = o(f(x), f(y)) < Xe(x,y) = Ad(z,y) as
required. [

3.1.12 Proposition Let (X, p) be a complete d-metric space and define d :
X x X - Rbyd(z,y) = o(x,y) for x =y and d(z,z) = 0 for all z € X. Then
the metric d is complete, and if f is a contraction relative to d then f is not
necessarily a contraction relative to p.

Proof: Let (x,) be a Cauchy sequence in d. If (x,) eventually becomes constant,
the sequence obviously converges in d. So assume this is not the case, and it
can be noted that then the sequence (z,) contains infinitely many mutually dis-
tinct points. Indeed it is easy to see that otherwise (z,,) would not be a Cauchy
sequence. Now define a subsequence (y,,) which is obtained from (x,) by remov-
ing multiple occurrences of points in (z,): For each n € N let y, = x; where
k is minimal with the property that for all m n we have x, = ¥,,. Since
(yn) is a subsequence of the Cauchy sequence (x,) we obtain that (y,) is also a
Cauchy sequence. Now for any two elements y, z in the sequence (y,) we have that
d(y,z) = o(y, z) by definition of d, and hence (y,) converges in g to somey € X.
Hence (y,) also converges in d to y . We show next that (x,) converges to y in
d. Let € > 0 be arbitrarily chosen. Since z,, is a Cauchy sequence with respect to
d there exists an index n; such that d(zy,»,) 5 for all k,m > n,. Since (y,)
converges to y in p, we also know that there is an index ny, with y,, = x,, for
some index ng such that ng > ny and d(yn,,y ) 5. For all 2, with n > n3 we
then obtain d(z,,y ) < d(zn, Tn,)+ d(Tns,y ) as required.

Let X = {0,1} and define a mapping f : X — X by f(z) =0 for all x € X.
Let o be constant equal to 1. Then p is a complete d-metric and f is a contraction
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relative to d. However o(f(0), f(1)) = 0(0,1), so f is not a contraction relative
to o. |

We can now prove the Matthews theorem 1.4.6 by using the Banach contrac-
tion mapping theorem 1.2.2.

Alternative proof of Theorem 1.4.6 Let (X, p) be a complete d-metric space
and f a contraction relative to o. Define d as above. Then d is a complete metric
and f is a contraction relative to d. So f has a unique fixed point by the Banach
contraction mapping theorem. |

3.2 Domains as Generalized Ultrametric Spaces

It is our intention here to cast domains into ultrametric spaces. Usually, domains
are endowed with the Scott topology, which is one of the T' (but not T7) topologies
of interest in theoretical computer science. However, as we will see, domains can
be endowed with the structure of a spherically complete ultrametric space. This is
not something normally considered in domain theory. However, given that there
are many ultrametrics which are useful in theoretical computer science, it suggests
that a study of the properties of generalized ultrametric spaces, as carried out e.g.
in [Kuh99, Rib96, BMPC99, PC90, PCR93, PCR00c, PCR00b, PCR00a], from
this viewpoint is worthy of consideration.

We now cast an arbitrary domain into an ultrametric space. For this purpose,
let v denote an arbitrary countable ordinal, and let I, denote the set {27* | a<
v} of symbols 27 ordered by 2= 277 if and only if 3

3.2.1 Definition Let r : D, — v be a function, called a rank function, form
I',4+1 and denote 277 by 0. Define d, : D x D — I', 4y by d,(z,y) =inf{27% | ¢ C
x if and only if ¢ C y for every ¢ € D, with r(c) }.

Then (D, d,) is an ultrametric space said to be induced by r. The definition
of d, is a variation of a construction made by M.B. Smyth in [Smy91, Example
5], and applied to level mappings in logic programming in [Sed97]. Indeed, the
intuition behind d, is that two elements x and y of the domain D are “close” if
they dominate the same compact elements up to a certain rank (and hence agree
in this sense up to this rank); the higher the rank giving agreement, the closer
are x and y. Furthermore, (D, d,) is spherically complete. The proof of this claim
does not make use of the existence of a bottom element of D, so this requirement
can be omitted. The main idea of the proof is captured in the following lemma
which shows that chains of balls give rise to chains of elements in the domain. It
depends on the following elementary facts, see also Lemma 1.3.3.

3.2.2 Fact (1) If y < ¢ and = € B;(y), then B,(zr) Bs(y). Hence every point
of a ball is also its centre.
(2) If B,(x) C Bs(y), then 6 <+ (thusy ,if I is totally ordered).
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It will simplify notation in the following proof to denote the ball By-a(x) by
B“(x).

3.2.3 Lemma Let B®(y) and B%(x) be arbitrary balls in (D, d,). Then the fol-
lowing statements hold.

(1) For any z € B?(y), we have {c € approx(z) | r(c) B} = {c € approx(y) |
r(c) }. <p

(2) Bg =sup{c € approx(y) | r(c) } and B, = sup{c € approx(z) | r(c) }
both exist.

(3) Bs € B?(y) and B, € B%(x).
(4) Whenever B4(x)  BP(y), we have Bs C B,.

Proof: (1) Since d,(z,y) < 277, the first statement follows immediately from the
definition of d,.

(2) Since the set {c € approx(z) | r(c) } is bounded by z, for any z and 3, the
second statement follows immediately from the consistent completeness of D.
(3) By definition, we obtain Bz C y. Since Bz and y agree on all ¢ € D, with
r(c) , the first statement in (3) holds, and the second similarly. </

(4) First note that x € B?(y), so that B?(y) = B?(z) and the hypothesis can be
written as B®(z)  B(x). We consider two cases.

(i) If 8 < «, then using (1) and noting again that * € B?(y) we get Bs = sup{c €
approx(y) | r(¢c) B} = sup{c € approx(z) | r(¢) [} C sup{c € approx(z) |
r(c) } = B, as required. <o

(i) If « 3, then we cannot have B%(x) C B?(r) and we therefore obtain
B(z) = B?(z) and consequently B%(Bg) = B?(Bs) = B?(B,) using (3). With
the argument of (i) and noting this time that y € B*(x), it follows that B, C Bg.
We want to show that B, = Bg. Assume in fact that B, T Bg. Since any
point of a ball is its centre, we can take z = Bj in (2), twice, to obtain Bz =
sup{c € approx(Bg) | r(c) B} and B, = sup{c € approx(Bs) | r(c) «a}.
Thus, the supposition B, T Bz means that sup{c € approx(Bg) | r(c) «} C
sup{c € approx(Bg) | r(c)  [B}. Since {¢ € approx(Bs) | r(¢) «a} {c €
approx(Bg) | r(¢) [}, there must be some d € {¢ € approx(Bj) | r(¢c) [}
with d C sup{c € approx(Bg) | r(c) a} = B,. Thus, there is an element
d € D, with v(d)  f satisfying d C B, and d C Bj. This contradicts the fact
that d,(B,, Bs) < 27°. Hence, B, C Bjg, and since B, T B, it follows that
B, = Bg and therefore that Bz C B, as required. |

3.2.4 Theorem The ultrametric space (D, d,) is spherically complete.

Proof: By the previous lemma, every chain (B%(z,)) of balls in D gives rise to a
chain (B,) in D in reverse order. Let B = sup B,. Now let B*(x,) be an arbitrary
ball in the chain. It suffices to show that B € B*(z,). Since B, € B*(x,), we
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have d,(Bg,x) < 27% But d, is a generalized ultrametric and so it suffices to
show that d,.(B, B,) < 27®. For every compact element ¢ C B,, we have ¢ C B
by construction of B. Now let ¢ C B with ¢ € D, and r(¢)  «. We have to
show that ¢ C B,. Since c is compact and ¢ C B, there exists Bg in the chain
with ¢ C Bg. If B*(xz,) B”(xp), then Bs C B, by Lemma 3.2.3 and therefore
¢ C By. If BA(25) C B%(x,), then o 3, and since ¢ C Bg, ¢ is an element of
the set {c € approx(zg) | r(c) } = {c € approx(z,) | r(¢)  «a}. Since B, is
the supremum of the latter set, we have ¢ C B, as required. [ |

This result will be applied in Section 5.1.

3.3 Generalized Ultrametric Spaces as Domains

We will give an alternative proof of the Prie-Crampe and Ribenboim theorem
which is inspired by [EH98], where the Banach contraction mapping theorem 1.2.2
was proven from the Kleene theorem 1.1.3. We will prove the Prie-Crampe and
Ribenboim theorem using the Knaster-Tarski theorem 1.1.7. For this purpose, we
will again impose the condition on the generalized ultrametric space (X,d,T),
that T is of the form {27* | & < 7} for some ordinal 7, ordered as in Section 3.2
and in Definition 2.3.5 by 27® < 278 if 8 < a. Such a generalized ultrametric
space will henceforth be called a gum with ordinal distances. Recall that we denote
277 by 0.

The main technical tool which was employed in [EH98] is the space of for-
mal balls associated with a given metric space. We will extend this notion to
generalized ultrametrics.

Let (X, d,T') be a generalized ultrametric space with ordinal distances and let
B’'X be the set of all pairs (z, «) with x € X and a € T'. We define an equivalence
relation ~ on B'X by setting (z1,a7) ~ (z3,0q9) if and only if oy = ay and
d(x1,29) < ;1. The quotient space BX = B'X/ ~ will be called the space of
formal balls associated with (X,d,T"), and carries an ordering C which is well-
defined (on representatives of equivalence classes) by (z,a) C (y, 3) if and only
if d(z,y) < a and § < a. We denote the equivalence class of (z,«) by [(z,a)],
and note of course that the use of the same symbol C between equivalence classes
and their representatives should not cause confusion.

3.3.1 Proposition The set BX is partially ordered by C. Moreover, X is spher-
ically complete if and only if BX is chain-complete.

Proof: Let X be spherically complete and let [(xg, §)] be an ascending chain in
BX. Then Bg(xg) is a chain of balls in X with non-empty intersection, and let
x € Bg(rs). Then d(zs,x) < f for all §. Hence the chain [(zg, 5)] in BX has
[(x,0)] as an upper bound. Now consider the set A of all & € T such that [(z, «)]
is an upper bound of [(zg, §)]. Since we are working with ordinal distances only,
the set A has a supremum -+, and hence [(z,7)] is a least upper bound of the

chain [(z3, 5)].
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Now let BX be chain-complete and let (Bg(2s))4.,, Wwhere A I, be a chain
of balls in X. Then [(x3,§)] is an ascending chain in BX and has a least upper
bound (z,7), and hence B, (z) Bgs (). |

3.3.2 Proposition The function ¢ : X — BX : z — [(x,0)] is injective and ¢(X)
is the set of all maximal elements of BX.

Proof: Injectivity of ¢ follows from (Ui). The observation that the maximal el-

ements of BX are exactly the elements of the form [(x,0)] completes the proof.
|

Given a strictly contracting mapping f on a generalized ultrametric space
(X,d,T) with ordinal distances, we define a function Bf : BX — BX by

7a (f(z),27@D) if 27 =
=2 = G0 if2 7 =0,

3.3.3 Proposition If f is strictly contracting, then Bf is monotonic.

Proof: Let (z,27%) C (y,277), so that d(z,y) < 27® and o < . If 27@ = 0,
there is nothing to show, so assume 27* = 0. It only remains to show that
d(f(x), f(y)) < 27D which holds since f is strictly contracting, and that
Q <p if 27% = 0, and that « < Bif 277 = 0 a#d a = B;Iwhich are
easy to see. [ |

Alternative proof of Theorem 1.3.4 Let (X, d,I") be a spherically complete
generalized ultrametric space with ordinal distances, and let f : X — X be
strictly contracting. Then BX is a chain-complete partially ordered set, and B f
is a monotonic mapping on BX. For B € BX, we denote by 7B the upper cone
of B, that is, the set of all B € BX with B C B.

Let x € X be arbitrarily chosen, assume without loss of generality that
x = f(z), and let a be an ordinal such that d(x, f(x)) = 27%. Then (z,27%) C
(f(x),27@*D), and by monotonicity of Bf we obtain that Bf maps 1 [(z,2 )]
into itself. Since 1[(z,27%)] is a chain-complete partial order with bottom element
[(x,27)], we obtain by the Knaster-Tarski theorem 1.1.7 that Bf has a least fixed
point in 1[(x,27%)] which we will denote by B .

It is clear by definition of Bf that B must be maximal in BX, and hence is
of the form [(z ,0)]. From Bf[(x ,0)] = [(z ,0)] we obtain f(z ) =z , so that x
is a fixed point of f.

Now assume that y = z is another fixed point of f. Then d(z ,y) =
d(f(xz ), f(y)) d(x ,y) since f is strictly contracting. This contradiction es-
tablishes that f has no fixed point other than z . [ |
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3.4 Generalized Ultrametrics and Dislocated
Generalized Ultrametrics

We investigate the relationship between the Prief-Crampe and Ribenboim theo-
rem 1.3.4 and it’s dislocated version, Theorem 1.5.2.

3.4.1 Proposition Let (X, ) be a dislocated generalized ultrametric space and
define d : X x X — R by d(z,y) = o(z,y) for t = y and d(z,z) =0 for all x € X.
Then d is a generalized ultrametric.

Proof: The proof is straightforward following Proposition 3.1.10. |

3.4.2 Proposition Let (X, g) be a dislocated generalized ultrametric space and
define d : X x X — R by d(z,y) = o(z,y) for z = y and d(z,z) = 0 for all
x € X. If d is spherically complete then p is spherically complete, and if f is
strictly contracting relative to p then f is also strictly contracting relative to d.

Proof: We first show that non-empty balls in p contain all their midpoints. So
let {y | o(z,y) < a} be some non-empty ball in ¢ with midpoint z. Then there
exists some z € {y | o(z,y) < a} and we obtain o(z,x) < o(z, z) by (Uiv) and
since o(z,2) < a we have x € {y | o(x,y) < a}. Hence, every non-empty ball in
o0 is also a ball with respect to d.

Now let B be a chain of non-empty balls in p. Then B is also a chain of balls
in d and has non-empty intersection by spherical completeness of d as required.

Let z,y € X with z = y and assume o(f(z), f(y)) o(z,y). If f(z) = f(y)
then d(f (x), £(4)) = 0, hence d(f(z), /() (5,y). If f(z) = f(y) then = = y
and so d(f(z), f(y)) = o(f(2), f(y))  (z,y) = d(z,y) as required. u

3.4.3 Proposition Let (X, g) be a spherically complete dislocated generalized
ultrametric space and define d : X x X — R by d(z,y) = o(x,y) for x = y and
d(x,z) = 0 for all x € X. Then d is spherically complete, and if f is strictly
contracting relative to d then f is not necessarily strictly contracting relative to

0.

Proof: Let B be a chain of balls in d. If B contains a ball B = {z} for some
x € X, then z is in the intersection of the chain. So assume that all balls in B
contain more than one point.

Now let B, (z,,) = {2 | d(x,2m) < v} be a ball in B and let z,,, = 2 € B, (x,).
Then o(Tm, Tm) < 0(Tm, 2) = d(Tm, 2) < @, hence B, (z,,) = {z | o(z, ) < v}
It follows that B is also a chain of balls in p and has non-empty intersection as
required.

Let X = {0,1} and define a mapping f : X — X by f(z) =0 for z € X. Let
o0 be constant equal to 1. Then (X, g,{0,1}), where 0 1 is spherically complete
and f is strictly contracting relative to d. However o(f(0), f(1)) = 0(0,1), so f
is not strictly contracting relative to o. |
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We can now use Theorem 1.3.4 to give an easy proof of Theorem 1.5.2.

Alternative proof of Theorem 1.5.2 Using Proposition 3.4.1, we obtain a
generalized ultrametric space (X, d), which is spherically complete by Proposition
3.4.3. By Proposition 3.4.2, the function f is strictly contracting relative to d.
Hence, by Theorem 1.3.4, f has a unique fixed point. [ |

We close by giving two constructions of d-gums from gums.

3.4.4 Proposition Let (X,d,T") be a generalized ultrametric space with ordinal
distances and let u : X — I' be a function. Then the distance function

o(z,y) = sup{d(z, y), u(z), u(y)} = max{d(z,y), u(z), u(y)}
is a dislocated generalized ultrametric on X.

Proof: (Ui) and (Uiii) are trivial. For (Uiv) see the proof of Proposition 3.1.9. B
This result will be applied in Section 5.4.

3.4.5 Proposition Let (X,d,T") be a generalized ultrametric space with ordinal
distances, let z € X, and define a function

0: X xX =T (z,y) - max{d(z,2),d(y, 2)}.

Then (X,p0,T) is a dislocated generalized ultrametric space. Furthermore, if
(X, d) is spherically complete, then so is (X, o).

Proof: Clearly, o is a d-gum. For spherical completeness, note that every non-
empty ball in (X, p) contains z which suffices. [ |

This result will be applied in Section 5.5.

3.5 Summary and Further Work

We have covered two main themes in this chapter, which are (1) the relationships
between the dislocated and non-dislocated versions of the Banach contraction
mapping theorem 1.2.2 and the Priefl-Cramps and Ribenboim theorem 1.3.4, re-
sulting in alternative proofs of the Matthews theorem 1.4.6 and Theorem 1.5.1,
covered in Sections 3.1 and 3.4 and (2) relationships between Scott-Ershov do-
mains and generalized ultrametric spaces, covered in Sections 3.2 and 3.3.

The proof of the Matthews theorem 1.4.6 in Section 3.1 involved the casting of
a d-metric into a metric, hence implicitly allows to introduce a metrizable topol-
ogy on the d-metric space. In Section 1.4, in the paragraph after Definition 1.4.12,
we noted that partial and weak partial metrics, which are also d-metrics, allow for
a natural topology obtained from open balls. Thus we have two natural topologies
on partial and weak partial metrics, and an obvious question is how these two
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relate. Further investigations on (weak) partial metric spaces are currently be-
ing undertaken by different authors, e.g. in [EH98, Wac00], and domain-theoretic
arguments naturally come into view in this context.

Generalized ultrametrics have, to the best of our knowledge, not been stud-
ied in the context of domain theory beforehand. Sections 3.2 and 3.3 provide a
first step towards such investigations. The domain-theoretic proof of the Prief3-
Crampe and Ribenboim theorem 1.3.4 in Section 3.3, for example, suggests the
possibility of a domain-theoretic treatment of non-monotonic operators in logic
programming, possibly related to the work of [RZ98, ZR97a, ZR97b, ZR98], where
the operator corresponding to the stable model semantics [GL88], cf. Chapter 7,
is studied from a domain-theoretic point of view. In the publications just men-
tioned, operators in three-valued logic as in [Fit85] play an important role, and
they will also be considered in this thesis in Chapter 6.

We finally note that the constructions used for casting domains into general-
ized ultrametrics as in Section 3.2, and for casting generalized ultrametrics into
chain-complete partial orders as in Section 3.3, are not inverse to each other, and
it remains to be investigated under what conditions inverses can be found.
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Chapter 4

Topologies for Logic
Programming Semantics

If P is a definite logic program, then the operator Tp is continuous in the Scott
topology on Ip, and has a least fixed point due to the Kleene theorem 1.1.3. This
fixed point corresponds very well to the procedural semantics of the program
under logic programming systems like Prolog [L1088]. In the case of normal pro-
grams, the single-step operator is no longer monotonic, and the Scott topology
is insufficent for analyzing its behaviour. An alternative to the Scott topology in
this case is the Cantor topology on Ip, also called the atomic topology ). The
results presented in this part of the thesis support the claim that () is the major
alternative choice of a topology for logic programming semantics.

In Section 4.1, we will shortly review the Scott topology on Ip in the form in
which it was presented in [Sed95]. In Section 4.2, we discuss the atomic topology
and present some first results which support the claim that it is a highly suitable
topology for our analysis. In Section 4.3, we will introduce a generalization of the
atomic topology for multi-valued logics.

In this chapter, we will work under fixed but arbitrary preinterpretations.

4.1 Scott Topology (Positive Atomic Topology)

We shortly review the Scott topology on the space of all interpretations of a
program. For proofs of the results in this section, see [Sed95].

4.1.1 Definition Let P be a logic program. The set {G(A) | A € Bp} with
G(A)={I € Ip | A € I} is a subbase of a topology, the positive atomic topology
Q+ on Ip.

Note that a basic open set in Q7 is of the form G(A;) N N G(A4,), which
we will write as G(A4,...,A,). If Bp is countable, e.g. in the case when the
preinterpretation is Herbrand, we note that Q% is second countable.

The topology QT can be characterized by convergence using the following
proposition.
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4.1.2 Proposition A net (1) converges in Q* to I € Ip if and only if every
element of I is eventually an element of I, i.e. if and only if for each A € Bp
there exists A such that A € I, for all A > X\ .

4.1.3 Proposition The positive atomic topology Q1 on Ip coincides with the
Scott topology on Ip.

4.1.4 Proposition Let (I,) be a sequence in Ip. Then the following hold.
(1) (I,) has a greatest limit in QT denoted by gl(I,).
(2) gl(L,) = {A € Bp | A € I, eventually}.

(3) If (I,,) is eventually monotonic increasing, say ([j)r>k, i5 monotonic increas-
ing, then gl(1,) = Upsp, -

If P is a definite program, then the operator Tp is Scott-continuous on Ip,
hence admits a least fixed point Mp by the Kleene theorem 1.1.3. The supported
model Mp is also the least model of P and is interpreted as the intended mean-
ing of P, since it corresponds very well to the procedural behaviour under logic
programming systems [L1088].

In the special case of Herbrand preinterpretations, the positive atomic topol-
ogy is called the positive query topology, which was introduced and analyzed in
[Bat89, BS89b, BS89a|, and only later on generalized to arbitrary preinterpreta-
tions.

4.2 Cantor Topology (Atomic Topology)

We introduce the atomic topology due to [Sed95] and prove some first results
which support the claim that it is a very suitable topology for the analysis of
non-monotonic semantic operators.

4.2.1 Definition Let P be a logic program. The set {G(A) | A € Bp} {G(—A) |
A€ Bp}, where G(A) ={I €Ip|Aecl}and G(—A)={I € Ip| Ac I}, isa
subbase of a topology, the atomic topology Q on Ip.

The atomic topology was first developed, analyzed, and applied in the special
case of Herbrand preinterpretations in [Bat89, BS89b, BS89a|, where it was called
the query topology, and later on generalized to arbitrary preinterpretations in
[Sed95].

Note that the basic open sets of () are of the form G(A;)N- -NG(Ax)NG(=B;)N

N G(—By), which we will write as G(Ay,..., Ay, ~By,...,~By). Clearly, Q is
finer than Q' and is second countable if the domain of the preinterpretation is
countable.

The atomic topology can be characterized by convergence using the following
result due to [Sed95].
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4.2.2 Proposition A net (I,) converges in @@ to I € Ip if and only if every
element in [ is eventually in I, and every element not in I is eventually not in Iy,
i.e. for each A € I there exists A such that for all A > A we have A € I, and for
each A € Bp with A € I there exists \; such that for all A > \; we have A € I,.

We recall two further results on the atomic topology due to [Sed95].

4.2.3 Proposition The atomic topology on Ip coincides with the product topol-
ogy on 287 where 2 = {0, 1} is endowed with the discrete topology.

4.2.4 Theorem (Ip, () is a totally disconnected compact Hausdorff space. It is
also second countable and metrizable if the domain of the chosen preinterpretation
is countable. It is homeomorphic to the Cantor set in the real line, if Bp is
countably infinite.

We will now present some results which underline the importance of the atomic
topology as an alternative to the Scott topology in a non-monotonic context.

4.2.5 Theorem Let P be a normal logic program.

(1) If for some I € Ip the sequence (T5(I)) converges in ) to some M, then M
is a model for P.

(2) If the sequence (TE(I)) does not converge in @) for any I € Ip, then P has
no supported model.

Proof: Suppose TE(I) — M in () for some I € Ip. We have to show that
Tp(M) M. Let A€ Tp(M). By definition of Tp, there exists a ground instance
A+ Ay, ... Ay, By,...,nB;, of a clause in P with A, € M and B; € M for
k=1,...,k, 1l =1,... 1. By Proposition 4.2.2, there is an n € N, such that
foralln > n , Ay € Tp(I) and B, € TE(I) for all k,[. By definition of Tp and
the above clause we have that A € T (I) for all m > n . Hence, A € TE(I)
eventually and therefore, by Proposition 4.2.2 again, A € M, which proves the
first statement.

Now, if M is a supported model for P, then (T5(M)) is constant with value
M, so the second statement is trivially true. [

Let P be a normal logic program and let I € Ip be such that the sequence
(TE(I)) converges in @ to some M € Ip. Then by Theorem 4.2.5, M is a model for
P. If, furthermore, Tp is continuous in (), or at least continuous at M, then M =
m TptH(I) = UimTp(TR(I)) = Tp(imTR(I)) = Tp(M). So M is a supported
model in this case.

Continuity of the immediate consequence operator is studied in detail in
[Sed95], and we borrow the following result, which will be of use in Chapter
9.

4.2.6 Theorem Let P be a normal logic program. Then Tp is continous in @ if
and only if, for each I € Ip and for each A € Bp with A € Tp(I), either there is no
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clause in P with head A or there is a finite set S(I, A) = {Ay,..., Ay, By,..., By }
of elements of Bp with the following properties:

(1) Al,,AkGIandBl,,Bk el

(ii) Given any clause C' with head A, at least one = A, or at least one B; occurs
in the body of C.

As a corollary, one obtains that programs without local variables have contin-
uous single-step operators, and also that the single-step operator is not in general
continuous for arbitrary programs.

4.2.7 Theorem Let P be a normal logic program and let I € Ip be such that
the sequence (1I,,), with I,, = T5(I ), converges in @) to some M € Ip. If, for every
A € M, no clause whose head matches A contains a local variable, then M is a
supported model.

Proof: We have to show that M Tp(M). So let A € M. By convergence in
and Proposition 4.2.2, there exists n € N such that A € T5(I ) for all n > n .
By hypothesis, there are only finitely many clauses in ground(P) with head A.
Let C' be the (finite) set of all atoms occurring in positive body literals and D
the (finite) set of all atoms occurring in negative body literals of those clauses.
Let C; =C NM and D; = D \ M. Since I, — M in @, there is an n; € N such
that C; I, and Dy Bp\ I, for all n > n;. Since A € Tp (Imax{no,m}), there
is a clause A «— Ay,..., Ag,, By, ..., B, in ground(P) with A, € C; M and
B, eD; Bp\Mfork=1,...,k,l=1,...,1;. Hence A € Tp(M) as required.

|

In the sequel, it will often be necessary to tranfinitely iterate the operator Tp
before a fixed point is reached. The following result is an obvious, but fundamental
generalization of Theorem 4.2.5.

4.2.8 Theorem Let P be a normal logic program and let I € Ip and define, for
each limit ordinal «,

TS (1) = {A € Bp | A is eventually in (Tﬁ([))m} .

If, for some limit ordinal + , the tranfinite sequence (T3(I)),<+, converges in @),
then the limit of this sequence is a model of P.

Proof: The proof is a straightforward adaptation of the proof of Theorem 4.2.5
and is omitted. |
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4.3 Generalized Atomic Topologies
We generalize the atomic topology to multivalued logics.

In the following, let P be a normal logic program. We consider logics, un-
derlying P, with finitely many truth values ¢ ,t;,...,t, 1. An interpretation un-
der such a logic is a tuple I = (I ,...,I, 1) where each I; is a set of ground
atoms from P such that all I; are mutually disjoint and I; = Bp, where Bp
is the set of all ground atoms from the first order language underlying P. For
every 1 = 0,...,n — 1, each atom in [; has truth value ¢; under I, and we write
vr(A) =t; for A € I;. The truth value ¢t will be abbreviated as t and we say that
an atom A with v;(A) =t is true in I. The function v : Ip x Bp : (I, A) — v(A),
expanded to formulas as second arguments using suitable truth tables for the
logical connectives, is called the wvaluation function of the logic. The set of all
interpretations of P will be denoted by Ip,,.

4.3.1 Definition An interpretation I € Ip,, is called a model of P if v (C) =t
for every ground instance C' of any clause in P.

We define a topology on Ip,, as follows.

4.3.2 Definition Identify Ip, with the set {v; : I € Ip,}. There obviously is
a bijective correspondence between the two sets by each I corresponding to vy.
Endowing {¢ ,...,,_1} with the discrete topology, we obtain a product topology
Q on Ip, which will be called the generalized atomic topology.

Topological Properties

The following two propositions follow from well-known results from elementary
topology [Wil70]. Note that Q is a topology of pointwise convergence since it is
a product topology of the discrete topology on a finite set.

4.3.3 Proposition For A € Bp and t; a truth value, let G(A,t;) = {I € Ip,, |
vr(A) = t;}. Then Q is the topology generated by the subbase {G(A,t;) | A €
Bp,ie{0,...,n—1}).

4.3.4 Proposition A net I in Ip, converges in Q if and only if for every A € Bp
there exists some A4 such that vy, (A) is constant for all A > A 4. In this case, the
limit I of the net I, is given by vr(A4) = vz,  (A) for each A € Bp.

We immediately obtain that Q is indeed a generalization of Q).

4.3.5 Proposition If the chosen logic is the classical (two-valued) logic, then Q
coincides with the atomic topology @ on Ip, = Ips = Ip.

The following theorem also follows from the fact that Q is a product topology
of the discrete topology on a finite set.
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4.3.6 Theorem The generalized atomic topology Q is a totally disconnected
compact Hausdorff topology. It is second countable if the domain of the chosen
preinterpretation is countable.

Consequence Operators

4.3.7 Definition An operator 7" on Ip, is called a consequence operator for
P if for every I € Ip, the following condition holds: For every ground clause
A < body in P, where vp()(A) = t;, say, and v(body) = ¢;, say, we have that
the truth table for ¢; < ¢; yields the truth value true.

Obviously, the single-step operator Tp for normal logic programs P is a con-
sequence operator.

4.3.8 Theorem Let T be a consequence operator for P and let I € Ip,,. If T (I)
converges in Q to some M € Ip,, then M is a model of P. If, furthermore, T is
continuous in Q, then M is a fixed point of 7.

Proof: Let I, = T™(I) for each m and let A € Bp with vy (A) = ¢;. Then we
obtain vy, (A) = t; for all k; > k for some k& € N by convergence in Q. Let
A < body be a ground clause in P. Since 7' is a consequence operator, we obtain
that for any ks >k , vy, (body) must have some value ¢; such that ¢; < ¢; yields
truth value true. Since body is a finite conjunction of ground atoms, and since
I,,, converges in Q, there must therefore exist some [ € N, chosen large enough,
such that for all | > [ , vj,(body) evaluates to some ¢; which is independent of
and such that ¢; < ¢; yields truth value true. Consequently, again by convergence
in Q, the clause A < body evaluates to true under M. Since the clause was
arbitrarily chosen, M is a model of P.
If T is continuous in Q, we obtain M = lim 7" (I) = T(limT"(I)) = T(M).
[ |

4.3.9 Corollary Let T be a consequence operator, P be a normal logic program,
and M be a fixed point of T'. Then M is a model of P.

Proof: Since the sequence T™(M) is constant, it follows by Theorem 4.3.8 that
M is a model of P. [

Continuity

4.3.10 Definition Let A € Bp and denote by B, the set of all body atoms of
clauses with head A that occur in ground(P). A consequence operator T is called
local if for every A € Bp and any two interpretations I, K € Ip, which agree on
all atoms in By, we have vy (A) = vy (A).
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The restriction of being local imposed on a consequence operator is very weak
and is obviously satsified by the single-step operator in classical two-valued logic.

The following definition, which gives a condition which is weaker than the
absence of local variables, can be found in [Sed95, Definition 2].

4.3.11 Definition Let C be a clause in P and A € Bp such that A unifies with
the head of C'. The clause C is said to be of finite type relative to A if C' has only
finitely many different ground instances with head A. The program P will be said
to be of finite type relative to A if each clause in P is of finite type relative to A,
i.e. if the set of all clauses in ground(P) with head A is finite. Finally, P will be
said to be of finite type if P is of finite type relative to A for every A € Bp.

4.3.12 Proposition Let P be a normal logic program of finite type and let T’
be a local consequence operator for P. Then T is continuous in Q.

Proof: Let I € Ip, be an interpretation and let Gy = G(A,t;) be a subbasic
neighbourhood of 7'(I) in Q, and note that G, is the set of all € Ip,, such that

vi (A) = t;. We need to find a neighbourhood G; of I such that T(G;) Gb.
Since P is of finite type, the set B, is finite. Hence the set G; =
Bes, 9(B,vr(B)) is a finite intersection of open sets and therefore open. Since
each € G agrees with I on B4, we obtain vy(k)(A) = vp)(A) = t; for each
€ Gy by locality of T. Hence, T(G1) Gs. [ |

4.4 Summary and Further Work

We have described different topologies on the space of all interpretations of a logic
program: the Scott topology, the atomic topology, and generalized atomic topolo-
gies. From this point of view this space, together with some semantic operator
associated with a given program, can be interpreted as a topological dynamical
system, in a naive sense, and allows us to study these operators in a topological
context instead of an order-theoretic one as in the classical case. Such a point of
view will be put to work e.g. in Chapter 9, where we will establish some connec-
tions between logic programming and artificial neural networks.

The atomic topology provides a very natural notion of convergence on the
space of all interpretations, and in fact it is difficult to imagine a reasonable notion
of convergence in this context which is not closely related to the characterization
in Proposition 4.2.2. As we will see in Chapter 5, if a net converges with respect to
any of the generalized metrics studied in this thesis, then this net also converges
with respect to (), although not vice-versa in general. So all the topologies which
capture the convergence notions associated with these generalized metrics will be
topologies which are finer than the atomic topology.

The generalized atomic topology of Section 4.3 will not be put to much
use in the sequel. The general observations made, however, open up the pos-
sibility of studying non-monotonic semantic operators on many-valued logics,
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which is something which has, to our knowledge, not be done before, as seman-
tic operators on many-valued logics are usually designed to be monotonic, as in
[Myc84, Fit85, PP90, GRS91, And97, BFMS98, Nai98, CS00]. As a first step to-
wards such investigations, it should be useful to study these monotonic operators
in the context of generalized atomic topologies.

63



Chapter 5

Supported Model Semantics

In this chapter, we will show that some of the fixed-point theorems from Chapter
1 are applicable to the single-step operator Tp under some conditions on the pro-
grams P. In particular, we will apply the PrieB-Crampe and Ribenboim theorem
1.3.4 (Section 5.1), the Matthews theorem 1.4.6 (Section 5.3) and Theorem 1.5.1
(Sections 5.4 and 5.5). Since all these fixed-point theorems yield, if applicable,
the existence of a unique fixed point for Tp, the conditions which will be imposed
on the programs in order to apply the theorems will always have the effect that
the programs under consideration have unique supported models, i.e. are uniquely
determined [BS89b]. Such classes of programs for which all programs in the class
have a unique supported model, will be called unique supported model classes, and
examples are the acyclic programs [Cav89, Bez89, AB90], the locally hierarchical
programs [Cav89, Cav9l], and the acceptable programs [AP93, AP94, Mar95].
The latter class is important since it has a strong relationship to termination
properties under SLDNF-resolution [AP93] and under Chan’s constructive nega-
tion [Mar96], and we will devote Section 5.2 to a more thorough study of these
programs.

We begin with defining the classes of programs which will be studied in this
chapter. We will work over arbitrary preinterpretations.

5.0.1 Definition A normal logic program P is called locally hierarchical if there
exists a level mapping [ : Bp — «, for some ordinal «, such that for each clause
A« Ly,...,L, in ground(P) and for all i = 1,...,n we have [(A) > I(L;). If |
can be chosen as an w-level mapping, then P is called acyclic.

We note that Program (.2.1 is acyclic.

The conditions of being locally hierarchical or acyclic are purely syntactical.
In [AP93], these conditions have been relaxed to semi-syntactic requirements
by employing interpretations with certain conditions. Our remaining definitions
follow these lines, and the following one is taken directly from [AP93].

5.0.2 Definition Let P be a normal logic program and let p, ¢ be predicate
symbols occurring in P.
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1. p refers to q if there is a clause in P with p in its head and ¢ in its body.

2. p depends on q if (p,q) is in the reflexive, transitive closure of the relation
refers to.

3. Negp denotes the set of predicate symbols in P which occur in a negative
literal in the body of a clause in P.

4. Negp denotes the set of all predicate symbols in P on which the predicate
symbols in Neg, depend.

5. P~ denotes the set of clauses in P whose head contains a predicate symbol
from Negjp.

Let P be a normal logic program, let [ : Bp — w be a level mapping and let I be
a model of P whose restriction to the predicate symbols in Negp is a supported
model of P~. Then P is called acceptable (with respect to [ and I) provided that
the following condition holds.

For each ground instance A < L4,..., L, of a clause in P
and for all i € {1,...,n} we have: (5.1)

i—1
if I /NLj then  I1(4)>I(L).
j=1

We recall the following example program from [AP93].
5.0.3 Program Suppose that G is an acyclic finite graph. Then the program

win(X) < move(X,Y), 7 win(Y)
move(a, b) for all (a,b) € G

is acceptable but not acyclic. Again, uppercase letters denote variable symbols,
while lowercase letters denote constant symbols.

We can further relax Definition 5.0.2 as follows.

5.0.4 Definition A normal logic program P is called ®*-accessible if and only if
there exists a level mapping [ for P and a model I for P whose restriction to the
predicate symbols in Neg}, is a supported model of P~ such that the following
condition holds. For each clause A < Ly,..., L, in ground(P), we either have
IeL L, and I(A) > I(L;) foralli =1,...,n or there exists i € {1,...,n}
such that I = L; and [(A) > [(L;).

We call P ®* -accessible if it is $*-accessible and [ is an w-level mapping.

P is called ®-accessible if and only if there exists a level mapping [ for P and
a model I for P such that the following condition holds. Each A € Bp satisfies
either (i) or (ii):
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(i) There exists a clause A < Ly,..., L, in ground(P) with head A such that
IE=L L, and [(A) > I(L;) foralli =1,...,n.

(ii) For each clause A <« Li,...,L, in ground(P) with head A there exists
i€{l,...,n}such that I = L;, I = A and [(A) > I(L;).

We call P ® -accessible if it is ®-accessible and [ is an w-level mapping.

5.1 Acyclic Programs and Locally Hierarchical
Programs

In this section, we will apply the Banach contraction mapping theorem 1.2.2 to
acyclic programs and the Prie-Crampe and Ribenboim theorem 1.3.4 to locally
hierarchical programs. We will also show that the class of all locally hierarchical
programs, although syntactically very restricted, is computationally adequate in
the sense that each partial recursive function can be computed, under SLDNF-
resolution, by such a program, if the use of safe cuts is allowed.

We begin our study of locally hierarchical programs by showing how such a
program P can be endowed with a canonical level mapping [p which is smallest
in a certain obvious sense.

5.1.1 Construction Let P be a program which is locally hierarchical with re-
spect to a level mapping [. We define a level mapping [p on Bp as follows. For
every A € Bp which does not occur as a head in ground(P), let Ip(A) = 0. For
every A € Bp which occurs as the head of a unit clause but not as the head of
any non-unit clause, let [p(A) = 0. Now let A € Bp be such that A is the head of
some non-unit, clause(s) in ground(P). Let B4 be the collection of body-literals
occurring in these clauses. Note that B, is finite for every A if P has no local
variables. Now suppose that for every B € By, [p(B) is already defined. Let
My = supge, Ip(B) and set [p(A) = My, if M, is a successor ordinal, and
set [p(A) = My, if M, is a limit ordinal. Then [p is obtained by transfinitely
iterating this procedure. We will refer to [p, as defined above, as the canonical
lh-level mapping of P and, further, vp will denote the smallest ordinal a such
that [p(A) € a for all A € Bp.

5.1.2 Proposition Let P be a program which is locally hierarchical with respect
to some level mapping [. Then [p, as defined above, is a total function on Bp and
P is locally hierarchical with respect to [p. Moreover, if P has no local variables,
then vp < w and hence P is acyclic.

Proof: First we show that dom(lp) = Bp. Suppose there is A € Bp \ dom(lp).
Without loss of generality we can further suppose that [(A) is minimal for A with
this property. Then there must be some B € By with B € dom(lp), otherwise
Ip(A) is defined in the process given in Construction 5.1.1. Since P is locally
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hierarchical, we have [(B)  [(A) which contradicts the choice of A with [(A)
minimal. Therefore, [p is a (total) level mapping, and obviously P is locally
hierarchical with respect to it. Finally, if P has no local variables, then the set
B, is finite for every A € Bp, and so [p maps into w. Hence, vp < w. |

The construction above of the level mapping [p can be used to determine
whether or not a given program P is locally hierarchical, and the following corol-
lary is immediate.

5.1.3 Corollary Let P be an arbitrary normal logic program. Then P is locally
hierarchical if and only if dom(lp) = Bp, where [p is constructed as in Construc-
tion 5.1.1. Furthermore, if P is locally hierarchical, it is locally hierarchical with
respect to [p.

5.1.4 Proposition Let P be a program which is locally hierarchical with respect
to a level mapping [. Then for every A € Bp, we have [p(A) < [(A).

Proof: Suppose the conclusion is false. Thus, there is A € Bp with [(A)  p(A),
and such that [(A) is minimal. Then, for all B € B4, we have [(B)  (A) because
P is locally hierarchical. Therefore, by minimality of [(A), we have {(B) > Ip(B)
for all B € B4. By definition of [p, we see that I[p(A) = min{a | « > [p(B),B €
Ba} < min{a | @ > [(B),B € By} < I(A). From this we obtain [p(A) < I(A),
giving the required contradiction. [

Application of the Prief3-Crampe and Ribenboim Theorem

We regard Ip as a domain, under set inclusion, whose set of compact elements is
the set I. of all finite subsets of Bp, see Section 3.2.

5.1.5 Definition Let P be a normal logic program and let [ : Bp — v be a
level mapping. We define the rank function r; induced by [ by setting r/(I) =
max{l(A) | A € I} for every I € I., with I non-empty, and taking r;()) = 0. The
generalized ultrametric obtained from a rank function in this way, see Definition
3.2.1, will be denoted by d; and called the gum induced by I.

Note that d; is spherically complete by Theorem 3.2.4.

The following proposition will make it easier to calculate distances which
depend on r;. To simplify notation, define L, = {A € Bp | [(Bp) } for each
ordinal a.

5.1.6 Proposition Let P be a normal logic program, let [ : Bp — v be a level
mapping for P and let I,J € Ip. Then d;(I,J) = inf{27® | IN L, = N L,},
i.e. d)(I,J) =27% where « is the least ordinal such that I and J differ on some
atom of level a.
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Proof: Immediate by the observation that, for every I € Ip, [ =sup{{A} | A €
I}. n

We note that we could have used the characterization in Proposition 5.1.6 in
order to define d; more directly. The generalized metric d; is in fact fundamental
for the remaining chapter and will be the basis for the definitions of the generalized
metrics employed in the sequel.

Our main result in this section is the following theorem.

5.1.7 Theorem Let P be a normal logic program which is locally hierarchical
with respect to a level mapping [ : Bp — . Then Tp is strictly contracting with
respect to the generalized ultrametric d; induced by [, and Tp» has a unique fixed
point and hence P has a unique supported model.

Proof: Let Iy, I, € Ip and suppose that dj(I;, 1) = 2.

Case 1. a = 0.

Let A € Tp(I;) with [(A) = 0. Since P is locally hierarchical, A must be the
head of a unit clause in ground(P). From this it follows that A € Tp(l3) also. By
the same argument, if A € Tp(Ily) with [(A) = 0, then A € Tp(I;). Therefore,
Tp(L)N Ly = Tp(lz) N Ly, and hence we have

dl(Tp(Il),Tp(Ig)) S 2_1 2_ - dl(.[l,.[Q)

as required.

Case 2. a > 0.

In this case, I} and I, differ on some element of Bp with level a;, but agree on
all ground atoms of lower level. Let A € Tp([;) with [(A) < a. Then there is
a clause A < Ay,..., Ay, B1,...,B;, in ground(P), where ki,l; > 0, such
that for all £,j we have A, € I, and B; € I;. Since P is locally hierarchical
and I) N L, = I, N L,, it follows that for all £, j we have A, € I, and B; € L.
Therefore, A € Tp(I5). By the same argument, if A € Tp(I,) with [(A) < «, then
A € Tp(I,). Hence we have Tp(I1) N Loy = Tp(l2) N Lay1, and it follows that

di(Tp(Iy), Tp(I,)) < 27D 27% — (y(I, I,)

as required.

Thus, Tp is strictly contracting. Therefore, by the Prieff-Crampe and Riben-
boim theorem 1.3.4, Tp has a unique fixed point and therefore P has a unique
supported model as claimed. [ |

In the case that [ is an w-level mapping, d; is a conventional ultrametric and
the Banach contraction mapping theorem 1.2.2 can be applied analogously to
Theorem 5.1.7.

5.1.8 Theorem Suppose P is acyclic with level mapping [. Then Tp is a con-
traction with respect to the ultrametric d; with contractivity factor % Therefore,
Tp has a unique fixed point by the Banach contraction mapping theorem 1.2.2,
and hence P has a unique supported model.
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We note also that it was shown in [Sed97] that the conventional ultrametric
d;, for an w-level mapping [, generates the atomic topology on Ip in the case that
L, is finite for each n € w. If this finiteness condition is not imposed on the level
mapping, then the topology generated by d; is finer than the atomic topology,
which means that the sequence (TgE([)), for each I € Ip, which converges in
d; to the unique supported model of P by the proof of the Banach contraction
mapping theorem 1.2.2 and Theorem 5.1.8, also converges with respect to the
atomic topology.

In the case of a locally hierarchical program P, we can obtain a similar result
by considering ordinal powers of Tp by setting T5 (), for each limit ordinal « to

be the set of all A € Bp such that A is eventually in (Tlée (I)>5 , and obtain,
<a

by the alternative proof of the Prief-Crampe and Ribenboim theorem given in
Theorem 1.3.9, that the transfinite sequence consisting of the ordinal powers of
Tp at any given I € Ip converges in () to the unique supported model of P; in
fact this follows easily from the fact given in the proof of Theorem 1.3.9 that
the transfinite sequence (T%) is pseudo-convergent with respect to d;, and that
d; (Tg, Tf,‘“) is strictly decreasing and eventually 0 for increasing a.

Computational Adequacy of Locally Hierarchical Programs

We will show next that every partial recursive function can be implemented by
a locally hierarchical program with cuts, and we will return to this in Chapter 6
from a different perspective. For details about SLDNF-resolution and about cuts,
see [L1o88].

For convenience, we establish the following notation for every locally hierar-
chical program P. For A € Bp, we say that P = A if and only if A € Mp. We say
that P Fsppnr A if and only if there is an SLDNF-derivation for P < A}. Re-
call that an SLDNF-derivation flounders [AP93] if a non-ground negative literal
is selected at some stage in the derivation.

5.1.9 Theorem Let P be a locally hierarchical program and let A € Bp with
P Fsipne A. Then P | A. If yvp = w, and the SLDNF-derivation of P <+ A}
does not flounder, then P kg pnr A if and only if P = A. In particular, if P is
without local variables, then P = A if and only if P Fgppnp A.

Proof: By [L1088, Proposition 14.2], Mp is the unique model of the Clark com-
pletion comp(P) [Cla78, ABWS88| of P. By [L1088, Theorem 15.4], the first state-
ment immediately holds. Now let vp = w and P = A be such that the SLDNF-
derivation of P < A} does not flounder. Then, by [AP93, Corollay 4.11], all
SLDNF-derivations of P + A} are finite and, therefore, P Fg;pxye A which
proves the second statement. If P is without local variables, then P is acyclic
by Proposition 5.1.2 and obviously does not flounder on any ground goal, which
completes the proof using the second statement. [ |

We establish next the result that every partial recursive function can be com-
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puted by a locally hierarchical program with cuts. We take the point of view
(following [L1088]) that a cut does not affect the declarative semantics of a pro-
gram. When talking about SLDNF-resolution for locally hierarchical programs
with cuts, we assume that the selection function always selects the leftmost lit-
eral and, as discussed in [L1088], that the cut prunes” the search tree. To obtain a
well-defined procedural semantics of a given program, we assume that the topmost
clause whose head unifies with a current goal is always selected first, as imple-
mented in standard Prolog systems. So, for what follows, SLDNF-resolution is
performed in the way just described.

For convenience, we will denote ground terms by lowercase letters and vari-
ables by uppercase letters when refering to a predicate. Thus, p(z1,...,2,,Y)
means that all z; are ground and Y is a variable. We write (P, A) Fsppne B
if P < A} has an answer substitution ¢ (via SLDNF-resolution) such thatJ{
Al = B.

5.1.10 Theorem Identify N with the set of terms {s™(0) | n € N} by identify-
ing s with the successor function. Let f be an n-ary partial recursive function.
Then there exists a locally hierarchical program Py with cuts and an (n  1)-ary
predicate symbol py such that the following hold:

1. A call to Py with goal ps(z1,...,2,,Y) or pp(x1,...,2,,y) terminates via
SLDNF-resolution if (x1,...,x,) € dom(f) and backtracking over the goal
fails immediately.

2. (Pr,pp(x1,...,20,Y)) Fsuone pr(21, ..., 2, y) if and only if (zq,...,2,) €
dom(f) and f(z1,...,2,) = y.

3. For every ps(z1,...,2,,y) € Bp the following are equivalent:

(a) PlEp(z,...,20,Y)
(b) P|_SLDNF p(l‘l,...,l'n,y)
(c) flz1,...,zp) = v.

Proof: We follow [SS82] and [L1o88] with modifications where necessary. The
proof is by induction on the number ¢ of applications of composition, primitive
recursion, and minimalization needed to define f.

Suppose first that ¢ = 0. Thus f must be either the zero function, the successor
function, or a projection function.
Zero function

Suppose that f is the zero function defined by f(z) = 0. Define P; to be the
program ps(X,0) < .
Successor function

Suppose that f is the successor function defined by f(x) =z . Define Pj
to be the program ps(X, s(X)) + .
Projection function
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Suppose that f is the projection function defined by f(zi,...,x,) = =; for
some j € {1,...,n}. Define P; to be the program pf(Xi,...,X,, X;) <.

Clearly, for each of the basic functions, the program Py, as defined, is locally
hierarchical with the desired properties.

Next, suppose that the partial recursive function f is defined by ¢ > 0 appli-
cations of composition, primitive recursion, and minimalization.
Composition

Suppose that f is defined by

flzr,. o xn) =h(gi(zr, o 2n), ooy (X1, -, )

where ¢1, ..., g, and h are partial recursive functions. By the induction hypoth-
esis, corresponding to each g; (or h), there is a locally hierarchical program P,
(P,) with cuts and a predicate symbol p,, (pn) satisfying the conclusions of the
theorem. We can suppose that the programs P, ,..., P, , P, do not have any
predicate symbols in common. Define P; to be the union of these programs to-
gether with the clause

pf(Xla"'aXThZ) (_pg1(X17-"7Xn7}/1)7"'7pgm(X17-"7Xn7Ym)a
h(Yi,..., Y, Z),L.

Obviously, Py is a locally hierarchical program with cuts. Statement 1 is im-
mediate under the assertion of the induction hypothesis, as is the ‘if’-part of
statement 2. The ‘only-if’ part is shown as in [L1088]. For statement 3, the equiv-
alence of 3a and 3c is immediate and the equivalence of 3b and 3c is shown in a
manner analogous to that employed in [SS82].

Primitive recursion
Suppose that f is defined by

fz, .o x0,0) = h(xy, ..., 2p)
f(xla"'axnay ):g(xla'"7$nay7f(x17"'7xn7y))

where h and ¢ are partial recursive functions. By the induction hypothesis, cor-
responding to h (resp. g), there is a locally hierarchical program P, (resp. Py)
with cuts and a predicate symbol p;, (resp. p,) satisfying the conclusions of the
theorem. We can also suppose that P, and P, do not have any predicate symbols
in common. Define P to be the union of P, and P, together with the clauses

pr(X1, . X0, 0,2) < pu(Xy,. .., X, Z), 1.
pr(X1y .o X, s(Y), Z) = pp(X1, .., X, YV U), py( X1, ..., X0, Y, U, Z), .

Obviously, Py is a locally hierarchical program with cuts. The desired properties
are proven along the same lines as for composition.
Minimalization

Suppose that f is defined by f(xy,...,2z,) = py(g(z1,...,2,,y) = 0) where
g is a partial recursive function. By the induction hypothesis, corresponding to
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g there is a locally hierarchical program P, with cuts and a predicate symbol p,
satisfying the conclusions of the theorem. Define P to be P, together with the
clauses

pr( X1, oo, X0, 0) = py(Xy, ..., Xy, 0,0), 1
pr(Xy, .., X, s()) = r( Xy, ., X072 ), p(Xay o, X, (), 0), 0L
r( Xy, ..., Xy, 0) < (X, ..., X,,0,0).
r( X, 0, Xp,s() (X, ., X0, Z), (X, ..., Xy s(),0).

Obviously, Py is a locally hierarchical program with cuts. Again, statements 1
and 2 are proven along the same lines as for composition by taking into account
the fact that, if p, occurs in a subgoal of the computation, it is always ground.
Note that r(v1,...,2,,2) € Mp, if and only if (zy,...,2,,k) € dom(g) and
g(x1,..., Ty, k) = 0 for every k2, and that the goal r(xy,...,2,,7) subse-
quently yields all answer substitutions 2z (4/=0,1,2,...) with (z1,...,2,,k) €
dom(g) and g(z1,...,z,, k) = 0 for all & , which yields the equivalence of 3b
and 3c. To show the equivalence of 3a and 3c, note that P |= r(xq,...,z,, 2) if
and only if P |= py(x1,..., 2, k,0) for all & . So P |=pys(zy,...,2,,2) if and
only if P |= py(z1,...,2,,2,0) and P = py(z1,...,2,,k,0) for all & 2. Now
suppose f(z1,...,2,) = z. Then by the induction hypothesis, the above yields
that P = ps(z1,...,2n,2). Now suppose f(zi,...,7,) = z. We consider three
cases:

(1) g(z1,...,2p,2) =0. Then P = ps(z1,..., %, ) immediately.

(2) g(x1,..., 25, k) =0 for some k< z. Again P = ps(x,...,2,, 2) immediately.
(3) (z1,...,2n,k) € dom(g) for some k£ 2. Then r(xq,...,z,,k) occurs as
a subgoal of the computation and, therefore, so does p,(z1,...,2,, k,0). Note
that ¢ cannot be one of the basic functions since they are total. For the
same reason, g cannot be defined by using composition and primitive recursion
on the basic functions only. Consequently, at some point in the computation,
a subgoal ps(z1,...,2n,y) or pp(x1,...,2,,Y) occurs with f (z1,...,2,) =
py(g (z1,...,2n,y) = 0) and (z1,...,2,) € dom(f ). There are two subcases
to consider:

i) g (x1,...,zn,m) = 0 for all m € N. It is easily seen that in this case Py,

will not terminate on the subgoal py, (z1,...,2,,Y) and will fail on the subgoal
pfo(xla -y T,y y)
(ii) (z1,...,2,,m) € dom(g ) for some m € N. The condition of this case is ex-

actly as in case (3).

Thus, the argument can be repeated. Since every partial recursive function is
defined by using minimalization only finitely often, the conclusion follows by in-
duction. [ |

Theorem 5.1.10 shows that locally hierarchical programs with cuts are com-
putationally adequate with respect to SLDNF-resolution as interpreter. We note
that the cuts occurring in the proof are safe in the sense that they cut only
branches of the search tree which do not contain any success branches.

72



CHAPTER 5. SUPPORTED MODEL SEMANTICS

5.2 Acceptable Programs

Acceptable programs were first studied in detail in [AP93] where they were shown
to coincide, basically, with the programs which are left-terminating. In [AP94,
Apt95], they were further examined in the context of formal verification under
Prolog. The acceptable programs therefore form an important class. However,
in order to show from the definition that a given program P is acceptable, it
is necessary to determine a level mapping and a model for P which satisfy the
conditions of the definition, see Definition 5.0.2. But this may be difficult to do,
and it is therefore desirable to simplify this task, if possible, and we will now take
some steps in this simplification process by shedding light on the behaviour of
the single-step operator in this case.

Most of the methods and results in this section can easily be carried over to
the more general classes of programs which will be studied in the remaining part
of the chapter. We have decided to present them for the more special case of
acceptable programs due to the importance of this class of programs.

A first attempt at studying acceptable programs from a topological perspec-
tive was made in [Fit94]. In this paper, a distance function ds associated with
a given acceptable program was defined, which acts on Ip. This distance func-
tion turns out to be a dislocated metric, and our approach builds heavily on
this distance function, showing that it can be put to good use for studying, and
characterizing, acceptability.

The single-step operator Tp is in fact a contraction with respect to ds if P
is acceptable, and we will see that convergence of iterates of Tp in the atomic
topology follows from this, and the limit Mp of the sequence of iterates of Tp will
be seen to be the unique supported model of P (Theorem 5.2.10). The existence
of a unique supported model of an acceptable program was already established
in [AP93], in the case of Herbrand preinterpretations. It was obtained as the
supremum of the iterates of the monotonic three-valued operator ®p from [Fit85],
cf. Chapter 6. Our characterization by means of Tp and () simplifies this process
since the single-step operator is easier and more natural to apply.

The topological characterization of Mp just described, will also easily allow
us to establish the fact that a program P, which is acceptable with respect to
some model I and level mapping [, is also acceptable with respect to Mp and [
(Theorem 5.2.12). Even more, we will show that Mp is the smallest of all models
with respect to which acceptability of P can be established (Corollary 5.2.13).

At this stage, we know that convergence in @) of iterates of T is a neccessary
condition for acceptability of P. If this condition is met, the limit Mp thus ob-
tained is suitable for establishing acceptability if a corresponding level-mapping
is found. And in fact, every level mapping which renders P acceptable with re-
spect to some model, will also allow one to establish acceptability of P with
respect to Mp (Theorem 5.2.12). The set of all these possible level mappings will
finally turn out to contain a pointwise least element (Theorem 5.2.21). For this
level mapping, which will be called the canonical acceptable-level mapping [p for
P, we will give an iterative construction, provided Mp is known (Construction
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5.2.16). This construction, in fact, is applicable to all programs and depends on a
given model of the program. In this general case, however, the construction may
only lead to a partial mapping. From this, again, we derive a necessary condition
for acceptability of P, namely that the construction of [p, using the model Mp,
yields a level mapping which is not partial (Proposition 5.2.17).

The iterative methods for obtaining Mp and [p then provide a means for
characterizing, and establishing, acceptability of a program in question. This is
done by subsequently conducting the following steps (Theorem 5.2.19). (1) Obtain
iterates of Tp. If they converge in (), call the limit Mp. If they don’t converge,
then P is not acceptable. (2) Obtain [p using Mp. If Ip is not total, then P is
not acceptable. (3) Check whether condition (5.1) of Definition 5.0.2 holds. If it
holds, then P is acceptable. If it does not hold, then P is not acceptable.

Conducting steps (1) and (2) above is by no means a trivial task and in fact
is an undecidable problem. Our characterization, however, sheds more light on
the concept of acceptability and might be an aid for determining acceptability
if straightforward attempts fail. Simplification of this process is achieved by a
result which allows to partition the program in question into subprograms in a
way that subsequent establishment of acceptability of the subprograms suffices
for determining acceptability (Lemma 5.2.25 and Theorem 5.2.26).

Finally, the results obtained will be applied in order to show that both Mp
and [p are suitable for establishing termination of general non-ground queries.

In order to simplify notation in this section, we will abbreviate Negy by V.

Remarks on Domains of Preinterpretation

The choice of a suitable domain of preinterpretation is essential in the sense that
a program might be acceptable under some chosen domain, and not be acceptable
under another. We will illustrate this and the difficulties involved by means of a
few example programs.

5.2.1 Program Let P, be the following program.
r(0) <= =p(0), = (0)
p(0) + —q(X)
q(0)
Here, P = P, and P is acceptable with respect to the supported model

{p(0),¢(0)}, whose domain is the set {0,1}, and the level mapping given by

1(q(0)) = l(q(1)) = 0, U(p(0)) = U(p(1)) = 1, I(r(0)) = I(r(1)) = 2. However, P
fails to have any supported models if the domain of preinterpretation contains
only the constant and function symbols occurring in the program.

5.2.2 Program Let P, be the following program.

r(0) + —g(X),-r(0)
q(0) «
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The program P, is acceptable with respect to the domain {0}. However, it has
no supported model with respect to the set {0,1} as domain of preinterpretation.
Note that the programs P, and P, flounder on some goals.

Constructive negation in the sense of [Cha88| (cf. also [Mar96]), as a way
to resolve floundering, does not cover the general case either, due to the follow-
ing two assumptions made in the cited papers: Chan in [Cha88, p. 113] assumes,
throughout, the consistency of the completed database, and also assumes [Cha88,
p. 116] that the underlying language (i.e. the domain of preinterpretation) con-
tains infinitely many constant symbols and function symbols.

Consistency of the completed database is dependent on the chosen domain
of preinterpretation (restricted here through the presence of infinitely many con-
stant and function symbols) and, in fact, under the assumption concerning the
underlying language as above, we see that the completed database for program
P, is not consistent.

Furthermore, consider the following program.

5.2.3 Program Let P; be the following program.

r(0) = —¢q(X),r(0)
q(0) <

For program Pj, the unique supported Herbrand model {¢(0)} is certainly the
desired model. The program is also acceptable with respect to this model.

However, the goal <— 7(0), which is bounded, does not terminate under Chan’s
constructive negation. In [Mar96], however, it was shown that the set of all pro-
grams which are acceptable with respect to some preinterpretation JJ whose do-
main contains infinitely many constants and functions, coincides with the set of
all programs which terminate under Chan’s constructive negation. Nevertheless,
the result does not account for programs which are acceptable with respect to a
domain containing finitely many constants and functions, but not with respect
to a domain which is constrained as for constructive negation. The Program P;
displays this fact.

In all previous examples, the Herbrand preinterpretation was too small to
allow determination of acceptability. Our final program shows that in some cases
it may even be too large.

5.2.4 Program Let P, be the following program.

r(0) <= ~¢(X), r(0)
q(f(0)) «
Under the domain {f"(0) | n € N}, this program is not acceptable due to the
existence of the function symbol f, giving an instance of ¢(X) which is false.

However, P, is acceptable with respect to a preinterpretation whose domain is
the one-point set {0} and where f is interpreted as the identity function on {0}.
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In fact, this example shows that the result from [AP93] which states that every
program which is acceptable with respect to a Herbrand preinterpretation has a
unique supported Herbrand model, cannot be generalized to arbitrary preinter-
pretations in general.

On the other hand, [AP93, Corollary 4.12] shows that every acceptable pro-
gram is left terminating, whilst [AP93, Theorem 4.18] contains the result that ev-
ery left terminating non-floundering program is acceptable. Moreover, the proof
given of this latter fact shows that one has acceptability with respect to some
Herbrand model, where the underlying domain of preinterpretation is constructed
using only the variable and constant symbols occurring in the program  for such
programs, we suggest the terminology Herbrand-acceptable. Thus, an acceptable
program which fails to be Herbrand-acceptable must flounder on some ground
query. Moreover, all the examples considered in [AP93] are Herbrand-acceptable.

In the following, as already noted, we will work over arbitrary preinterpreta-
tions.

Fitting’s Approach

As already noted, it was first shown in [AP93] that every (Herbrand-) acceptable
program has a unique supported model. In [Fit94], Fitting considered proving the
same result by using metrics and the Banach contraction mapping theorem. His
method depends on the following definitions. A partial level mapping is a partial
mapping [ : Bp — «, where « is an ordinal. Recall the notation Lz for the set of
all atoms A of level I(A) less than . For the remainder of this section, we will
consider only w-level mappings, i.e. « = N.

5.2.5 Definition Let P be a normal logic program with partial level mapping [.
The pseudometric d associated with [ on Ip is defined as follows. For J K € Ip
let

d(J,K)=inf{2™" | L,,Nndom(l) N J = L,, ndom({) N for all m < n},

where L,,, for all m € N, is taken with respect to a (total) level mapping I’ which
extends /.

By [Fit94], any pseudometric associated with a (partial) level mapping is
complete.

If the level mapping is total, i.e. not a partial mapping, Definition 5.2.5 coin-
cides with the metric d; of Proposition 5.1.6.

5.2.6 Definition Let P be acceptable with respect to a level mapping [ and a
model I. We define the partial level mappings /; and [ as follows; recall that we
write N instead of Neg},.

1. dom(ly) = N, Il1(A) = I(A) for all ground literals A in N.
2. dom(ly) =°N, l5(A) = [(A) for all ground literals A not in V.
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The associated pseudometrics are denoted by d; and ds, respectively. Further-
more, we define a function p: Ip — R by

p(J)=inf{27™" | JN°NNL, I}

This form of p differs only slightly from that used in [Fit94] and can easily be
shown to be equivalent. Finally, following [Fit94] again, we define for all JJK € Ip

ds(J,K ) = max{d,(J, I),dr( Dy (J,K), p( ), p( )} (5.2)

We note that this distance function d3 depends both on the level mapping [
and on the interpretation I. We will discuss the intuition behind the definition of
ds after Proposition 5.2.8, which will provide us with some understanding of this
distance function. For the moment, we note that ds3 is a dislocated metric, but
that it is not in fact a metric. Indeed, let P be the program consisting of the three
unit clauses p(0) <, ¢(0) <—, ¢(1) <=, where 0 and 1 are constant symbols. Then
P is acceptable with respect to the Herbrand model I = {p(0), ¢(0), ¢(1)} and the
zero level mapping [. A straightforward calculation shows that d3(.J,¢I) = 1 for
all J € Ip so that, in particular, one has d3(°I,“I) = 1. Nevertheless, it will turn
out to be a useful tool in formulating some of our results. In fact, the following
proposition, [Fit94, Proposition 7.1], does not need the assumption that ds is a
metric and will be useful later.

5.2.7 Proposition Let P be acceptable with respect to a level mapping [ and a
model . Then for all J,K € Ip we have d3(Tp(J),Tp( )) < 3ds(J.K).

Applying the Matthews Theorem

We start by examining the relationship between the atomic topology @) and Fit-
ting’s dislocated metric d3. The following result will clarify the behaviour of se-
quences which converge in d;.

5.2.8 Proposition Let P be acceptable with respect to a level mapping [ and a
model I. Let .J, be a sequence which converges in d3 to some J € Ip. Then the
sequence .J,, converges to J in @), and the following two conditions hold.

(i) J, NN converges in @ to the model I N N of comp(P ™).

(ii) J, N°N converges in () to some I.

Furthermore, we obtain J = (I N N)
Proof: By hypothesis, we have ds(.J,,J) — 0 asn — . By definition of d3 this
implies that dy(J,, ), di(J,I) and dy(J,,, J) all tend to 0 as n — . Hence, by
definition of d; and d,, it follows that for all m € N there exists some n € N
such that for all n > n we have

J,NNNL,=INNNL,,

JAONNL,=INNNL, and
J,NNNL,=JNNNL,.
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From these equations, it follows that for all m € N there exists some n € N
such that for all n > n we have J, N L,, = J N L,, which proves convergence of
the sequence J,, to J in Q.

We also obtain that J, N N and J, NN converge in ) to J N N respectively
JNEN. By definition of d3 we have d;(.J, I) = 0 which implies that JAN = INN.
From the same definition we obtain p(.J) = 0 and therefore =~ = JN°N I which
completes the proof. [ |

As a corollary from the proof of Proposition 5.2.8, we obtain that convergence
in ds is independent of the choice of level mapping.

We are now in a position to better understand the intuition underlying the
definition of dj given in equation (5.2). Essentially, the terms dy(J, ) and di( 1)K,
in this equation ensure that if d3(J,K ) is small, then both J and  are “close”
(with respect to the pseudometric d;) to the chosen interpretation I, and this
closeness depends only on the atoms contained in N. Convergence in d; means
that the sequence in question must tend towards the unique supported model
I NN of P~. The remainder of the definition constrains what “closeness” means
on °N. The term dy( J)kensures that  and J share “enough” elements (of
suitable level), and the p-function forces both  and .J to be largely a subset of T
on °N. In terms of convergence in d3, the distance function d3 could be understood
as “filtering” a sequence towards a suitable subset of I, namely a subset which
coincides with I on N.

5.2.9 Proposition The d-metric d3 is complete.

Proof: Let J, be a Cauchy sequence with respect to ds. By definition of d3, this
implies that di(Jm,, 1), di(Jmy, 1), da(Jmys Imy), p(Jm,) and p(Jy,,) all tend to 0
for my, my > m and increasing m, and we obtain, as in the proof of Proposition
5.2.8, that .J,, converges in () to some .J. An argument similar to that in the proof
of Proposition 5.2.8 again shows that .J is also the limit of .J, with respect to ds.

[ |

5.2.10 Theorem Let P be acceptable with respect to a level mapping [ and a
model I, and let € Ip be arbitrary. Then T5( ) converges in @ to the unique
supported model Mp of P.

Proof: The d-metric d3 is complete by Proposition 5.2.9, and Tp is a contraction
with respect to ds by Proposition 5.2.7. So we can apply the Matthews theo-
rem 1.4.6, which yields that the sequence TH( ) converges in d3 to the unique
supported model of P. Since convergence in d3 implies convergence in ) by Propo-
sition 5.2.8, the proof is complete. [ |

Minimality of the Unique Supported Model

We will now provide an alternative characterization of the model Mp. Recall that
we are working under a fixed but arbitrary preinterpretation.
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5.2.11 Lemma Let P be acceptable and let Z be the set of all models with
respect to which P can be established to be acceptable. Then Mp NN =1NN
forall I € Z. In particular, INN = JNN for all I,J € Z. Furthermore, we have
the minimality property Mp T.

Proof: The sequence J, = T () converges with respect to d3 and satisfies con-
ditions (i) and (ii) of Proposition 5.2.8 for all I € 7. The first statement follows
then immediately from condition (i) and the second statement from condition
(ii). [

The model thereby obtained will be shown to be suitable for demonstrating
the acceptability of the program in question. We will need this result for our
characterization of acceptability in Theorem 5.2.19, and it will also give us an
alternative characterization of Mp as an easy corollary.

5.2.12 Theorem Let P be acceptable with respect to a level mapping [ and a
model I. Then P is acceptable with respect to [ and Mp.

Proof: Since IN N = Mp N N by Lemma 5.2.11, it remains to show that the
acceptability condition (5.1) from Definition 5.0.2 holds. Again by the same result,
it remains to show the condition for all clauses which are not in P~. Since Mp N
N = INN, and therefore these agree on all ground atoms which occur negatively
in P, it suffices to show that Mp I, which is the case by Lemma 5.2.11. [

5.2.13 Corollary Let P be acceptable and let Z be the set of all models with
respect to which P can be established to be acceptable. Then Mp = 7.

Proof: This follows immediately from Lemma 5.2.11 and Theorem 5.2.12. |

The Canonical Level Mapping for Acceptable Programs

We show next how to obtain a level mapping for a given program which is suitable
for proving its acceptability. The construction is based on Construction 5.1.1 for
locally hierarchical programs. For this purpose, let P be a program and [ a
model of P. We will now give a program transformation which yields a locally
hierarchical program from P and I if P is acceptable with respect to I, allowing
us to apply our earlier results. The program transformation is as follows:

5.2.14 Program Transformation Let P be a normal logic program and [ a
model of P. For each clause A < Ly,... L, in ground(P) determine the maximal
i such that I = L4 L;. Then replace the given clause with A <~ Ly, ..., L4
if i =nand by A < Lq,...,L, if : = n. The resulting ground program will be
called P;.

If P is acceptable with respect to I and [, then P; is locally hierarchical
with respect to the w-level mapping I’ which is obtained by restricting [ to Bp,.
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Therefore, we can obtain the canonical lh-level mapping [p, of P; by applying
Construction 5.1.1, and obtain by Corollary 5.1.3 that [p, is indeed a total func-
tion. Furthermore, by Proposition 5.1.4 we obtain that [p (A) < I'(A4) for all
A € Bp,, and since " maps into w, the level mapping [p, also maps into w. This
means, in particular, that Construction 5.1.1 is in fact not transfinite but closes
off at w.

5.2.15 Definition We now define a level mapping [p for the given program P:
For every A € Bp \ Bp, let [p(A) = 0. For every A € Bp, let [p(A) = lp,(A).

We summarize the observations just discussed.
5.2.16 Construction Let P be a normal logic program and I a model of P.
(1) Obtain P from P and I using Program Transformation 5.2.14.
(2) Obtain [p, from Construction 5.1.1.

(3) Obtain Ip from Definition 5.2.15.

5.2.17 Proposition Let P be acceptable with respect to a model I. Then the
following statements hold.

(i) Py, obtained from step (1) in Construction 5.2.16 is locally hierarchical.

(ii) lp,, obtained from step (2) in Construction 5.2.16 is total (with respect to
Bp,) and maps into w.

(iii) [p, obtained from step (3) in Construction 5.2.16 is total and maps into w.
(iv) P is acceptable with respect to I and [p.

Proof: It only remains to prove statement (iv), which is immediate from the
definition of [p. [ ]

In the following, Ip will also denote the (partial) level mapping as given in
Construction 5.2.16. It will be called the canonical (partial) acceptable-level map-
ping for P.

The following is the key result in our characterization of acceptability.

5.2.18 Theorem Let P be acceptable. Then P is acceptable with respect to Mp
and [p.

Proof: By Theorem 5.2.12, P is acceptable with respect to [ and Mp. By Propo-
sition 5.2.17, P is then acceptable with respect to [p and Mp. |

We can now state the following characterization theorem.

5.2.19 Theorem Let P be a normal logic program. Then P is acceptable if and
only if the following conditions are satisfied:
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(1) The sequence (TA(D))nen converges in @ to some Mp.

(2) The mapping lp, constructed from P and I = Mp as in Construction 5.2.16,
is total and takes values in the natural numbers.

(3) P satisfies condition (5.1) from Definition 5.0.2 with respect to [p and Mp.

Proof: Let P be acceptable. Then (1) follows from Theorem 5.2.10, (2) follows
from Proposition 5.2.17, and (3) follows from Theorem 5.2.18. The converse is
immediate. u

Minimality Properties

We show that the canonical acceptable-level mapping [p of P is least among all
level mappings with respect to which acceptability can be established.

5.2.20 Lemma Let P be acceptable with respect to Mp and some level-mapping
[. Then [p(A) < I(A) for all A € Bp.

Proof: For A € Bp, , we obtain [p(A) < I(A) by Proposition 5.1.4. If A €
Bp \ Bp,,,, then by definition of [p we have [p(A) =0 < (A) as desired. |

5.2.21 Theorem For any acceptable program P, the canonical acceptable-level
mapping [p is least among all level mappings with respect to which P can be
shown to be acceptable. More precisely, if P is acceptable with respect to some
model I and some level mapping /, then for all A € Bp we have [p(A) < [(A).

Proof: Let P be acceptable with respect to some model I and some level mapping
[, and let A € Bp be arbitrarily chosen. By Theorem 5.2.12, P is acceptable with
respect to [ and Mp. By Lemma 5.2.20 we obtain [p(A) < [(A) as desired. W

Partitioning Acceptable Programs

In order to simplify the calculation of Mp, we will use methods similar to those
employed in [ABW88, Prz88, Mar95]. We will use the following definition which is
similar to [Mar95, Definition 4.1]. For any given progam P, recall that a predicate
symbol p is said to be defined in a subprogram R of P if every clause which
contains p in its head is contained in R. The definition of a predicate symbol is
the smallest subprogram R such that the predicate symbol is defined in R. This
notion extends naturally to atoms.

5.2.22 Definition Let P be a program and () and R be two subprograms of P.
We say that R extends ), written R > (@), if no predicate symbol defined in R
occurs in Q.
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The basic idea is to partition an acceptable program in a suitable way such
that Mp can be obtained by calculating the corresponding models of the subpro-
grams in sequence.

5.2.23 Definition Let P be acceptable and P = P, ...  P.. We call
(Py, ..., Py) an acceptable stratification of P if Py > P, foralli=1,... k — 1.

By true and false, we will subsequently denote atoms which always evaluate
to true and false, respectively. Now apply the following construction.

Replace every atom in each clause in ground(P;) which does not occur in
the head of any clause by false, and call the resulting program P|{. By M;, we
will denote Mp restricted to the predicate symbols occurring in Py, and by [; we
will denote [p restricted to the predicate symbols occurring in 7. We obtain the
following result.

5.2.24 Lemma Let P be acceptable with acceptable stratification (P, ..., Py).
Then the following hold.

(i) P| is acceptable.

(ii) The sequence Tlﬁl(@) of iterates converges in the atomic topology to the
unique supported model M; of Pj.

Proof: (i) P obviously is acceptable with respect to M; and ;.
(ii) By Theorem 5.2.10, the iterates converge to a supported model of P]. By
uniqueness of this model it coincides with M;. [ |

Let M;, fori =1,...,k, denote Mp restricted to the predicate symbols defined
in P;. Now suppose that for some ¢ € {1,...,k— 1} the programs P, ..., P! have
been defined and that the following properties have been established.

1. P|,..., P/ are acceptable.

2. M; is the unique supported model of P/ and M, M; is the unique
supported model of P; P,

Then define P/, by replacing all occurrences of atoms in ground(F;;) which
are not defined in P, by true or false, respectively, depending on whether the
atom is true or false, respectively, with respect to M; M;. We then obtain
the following result.

5.2.25 Lemma Suppose the assumptions above hold. Then the following hold.

(i) P/, is acceptable.

)

(i) The sequence Tp () of iterates converges in the atomic topology to the
i4+1
unique supported model M;,; of P} ;.
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(iii) M, M; 1 is the unique supported model of P, Py,

Proof: (i) M;;, is a supported model of P ,, since Mp is a supported model
of P and P/, was obtained from P;;; by replacing atoms with true or false
according to their value with respect to the model M, M;, and this coincides
with Mp restricted to the predicate symbols defined in P; P; .. Therefore,
Pj. | is acceptable with respect to this model and [p restricted to the predicate
symbols in Fj_ ;.

(ii) Convergence is again ensured by the acceptability of the program. Also, by
Theorem 5.2.10, these iterates converge to the unique supported model of P/ ,
which is exactly M;;; by the observations made in (i).

(iii) This is immediate by the assumption and (ii). |
Putting all these results together, we obtain the following Theorem.

5.2.26 Theorem Let P be acceptable with acceptable stratification
(Pi,...,Py). For i = 1,....k let M; be constructed as above. Then
M, M, = Mp.

Termination of Non-Ground Queries

We cite the following result from [Apt95, Theorem 5.7]. For a partial converse,
see [AP93].

5.2.27 Theorem Let P be acceptable with respect to a level mapping [ and a
model . Then, for every literal L which is bounded with respect to [, all SLDNF-
derivations of P <— L}, using the Prolog selectio rule, are finite. In particular,
the goal {<— L} terminates under Prolog.

With our preparations, the following result is easily obtained.

5.2.28 Theorem Let P be acceptable with respect to a level mapping [ and a
model I, and let L be a literal which is bounded with respect to [. Then L is
bounded with respect to [p.

Proof: This follows immediately from the minimality of [p as established in
Theorem 5.2.21. [ ]

We will now discuss termination of non-ground, i.e. general, goals. The fol-
lowing notions were introduced in [AP93].

A multiset or bag over a set W is an unordered sequence of elements of W.
Given a (non-reflexive) ordering  on a set W, the multiset ordering over (W,<)
is an ordering of finite multisets of the set W and is defined as follows. For two
finite multisets X and Y over W, let X < Y if and only if X = (Y \ {a}) for
some finite multiset  such that b «a for all b € . Finally, define the multiset
ordering over (WW,<) as the transitive closure of the relation <. The multiset
whose elements are aq, ..., a, will be denoted by bag(as,...,a,).

The following definition is to be found in [AP93, Definition 2.9].
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5.2.29 Definition Let P be a program, [ a level mapping for P, I a model of P
with I N N being a model for P~, and let £ > 0.

(i) With each ground goal G of the form <— Ly, ..., L,, we associate a finite mul-
tiset [;(G) of natural numbers defined by {;(G) = bag(l(L1), ..., l(Ln,n)),
where n(G,I) =min({n}uU {i € {1,...,n} | I E L;}).

(ii) With each goal G we associate a set of multisets {7(G) defined by I}(G) =
I is a ground instance of G'}.
(G| G"i di fG

(iii) A goal G is called bounded by k with respect to [ and I if k& > j for all
j € I5(G), where [}(G) stands for the set-theoretic union of the elements
of ().

(iv) A goal is called bounded with respect to [ and [ if it is bounded by some
k > 0 with respect to [ and I.

It was observed in [Apt95] that the choice of level mapping and of the model
can affect the class of (general, non-ground) goals whose termination can be
established, since the choice of both the level mapping and the model affect the
notion of boundedness for goals. However, we will prove that the model Mp
and the canonical acceptable-level mapping [p are completely general for proving
termination of non-ground goals.

The following result is taken from [AP93, Corollary 4.11]. A partial converse
is also given there.

5.2.30 Theorem Let P be an acceptable program and G' a bounded goal. Then
all SLDNF-derivations of P G}, using the Prolog selection rule, are finite.

Our minimality results allow us to establish the following.

5.2.31 Theorem Let P be acceptable with respect to a level mapping [ and a
model I, and let G be a goal which is bounded with respect to [ and I. Then G
is bounded with respect to lp and Mp.

Proof: Since [p(A) < I(A) for all A € Bp by Theorem 5.2.21, it suffices to show
that n(G, Mp) < n(G,I). This, however, follows directly from the minimality
properties given in Lemma 5.2.11 and Theorem 5.2.21. [

We note, finally, that the model Mp does not in general describe the pro-
cedural semantics of the program due to the possible presence of floundering
intermediate goals, cf. [AP93] and [Apt95]. The exact relationship between Mp
and the procedural semantics of P remains to be established.

5.3 @] -Accessible Programs
We associate a dislocated metric to each ®*-accessible program, show that it

coincides with the d-metric ds from Section 5.2, and apply the Matthews theorem
1.4.6.
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In the following, P is a ®*-accessible program which satisfies the defining
conditions with respect to a model I and a level mapping [, see Definition 5.0.4.

For JJK € Ip we now define d( K= 0 and d(J,K ) = 27", where J and

differ on some atom A € Bp of level n, but agree on all ground atoms of
lower level, i.e. d coincides with the metric d; induced by [. As was pointed out in
[Fit94], and as we know from Theorem 3.2.4, (Ip,d) is a complete metric space, in
fact even an ultrametric space. We also define a function f : Ip — Rby f( ) =0
if Iand f( ) = 27", where n is the smallest integer such that there is an
atom A € Bp with [(A) =n, = A and [ = A. Finally, we define u : Ip — R
by u( ) =max{f( ’),d( \ ',I\I')}, where ' forany € Ip, denotes
restricted to the predicate symbols which are not in Negp, and o0: Ip X Ip — R
is defined by

o(J,K ) = max{d(J,K ),u(J),u( )}
= max{d(J,K), f( ,)7d( \ 17[\[,)7f(JI)7d(J\J,7[\[I)}'

We call p the d-metric associated with P, and we will show next that it is complete.

5.3.1 Lemma The function u : Ip — R defined by u( ) = max{f( ’),d( \
"I\ I')} is continuous as a function from (Ip,d) to R.

Proof: Let ,, be a sequence in Ip which converges in d to some € Ip. We
need to show that d( ,,\ /,,I\I') converges tod( \ ',I\I')and f( |)
converges to f( ') asm — . Since ( ,,) converges to  with respect to the
metric d, it follows that for each n € N there is m, € N such that and

m, for all m > m,, agree on all atoms of level less than or equal to n. So, if
f( ) = 27", say, that means that ,, and  agree on all atoms of level less
than or equal to n if m > m,,, and hence f( ,,) = f( ) forall m > m,,. Also,
ifd( \ ,I\I')=27",say, thend( ,\ ,,I\I)=d( \ ', I\I)forall
m > My, as required. [ |

Proposition 3.1.9 yields that p is a complete d-ultrametric on Ip using Lemma
5.3.1.

5.3.2 Proposition Let P be a ®*-accessible program with respect to a level
mapping [ and a model I. Let the d-metric d3 be defined for P as in equation
(5.2) of Definition 5.2.6 for acceptable programs. Then ds coincides with o as
defined above.

Proof: Clearly, f and p coincide, and we obtain u( ) = max{p( ),d;( I)Kfor
all € Ip. Since dy(J,K ) < d(J,K) for all JJK € Ip, it now remains to show
that d(J,K) < d3(J,K ). So assume that d(J,K) = 27", where J and  differ
on some atom A € Bp or level n which is contained in Neg},. But then either .J
and I or  and [ differ on A, hence either d;(J,I) or d;(  I)A5 greater than or
equal to 27", If A € Neg}, then dyo(J,K ) > 27" which suffices. |
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5.3.3 Proposition Let P be a ®*-accessible program and p its associated d-
metric. If () is a sequence which converges in p to some , then () converges
in the atomic topology on Ip.

Proof: It is easy to see that if o( ,,K) 27% then , and  agree on all
atoms of level less than k& which suffices. [ |

The proof of the following proposition carries over from the treatment of
acceptable programs in [Fit94], cf. also Proposition 5.4.2.

5.3.4 Proposition Let P be ®*-accessible and let p be defined as above. Then
the associated immediate consequence operator Tp is a contraction on (Ip, o)
with contractivity factor %

By the Matthews theorem 1.4.6 we can now conclude the following theorem.

5.3.5 Theorem Each ®*-accessible program has a unique supported model
which can be obtained as the limit, in the atomic topology, of iterates of the
single-step operator associated with the program.

Proof: Let P be ®*-accessible. Then (Ip, ) is a complete d-ultrametric space
and Tp is a contraction relative to p. By Theorem 1.4.6, Tp has a unique fixed
point which is the unique supported model of P, and this fixed point can be
obtained as the limit, in g, of iterates of T». By Proposition 5.3.3, the model can
be obtained as stated. [

We note the following relationship between ®*-accessible and acceptable pro-
grams. If P is a ®*-accessible program, then it is possible to reorder the body lit-
erals in each clause from ground(P) such that the resulting ground program is ac-
ceptable. Thus ®*-accessible programs can be understood as “non-deterministic”
acceptable programs. Note, however, that it is not in general possible to reorder
the clauses in P itself in order to obtain an acceptable program, which can be
seen from the following example.

5.3.6 Program Let P be the program consisting of the following clauses.

This program is not acceptable, nor is the program obtained by swapping the
two body atoms in the last clause. However, the program is ®*-accessible with
respect to the level mapping [ with [(p(0)) = (¢(1)) = 0,1(r(0)) = I(r(1)) = 1 and
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[(p(1)) = I(q(0)) = 2. Consequently, we are able to obtain a ground acceptable
program from ground(P) as

5.4 ®*-Accessible Programs

We carry over the results from Section 5.3 to ®*-accessible programs.

In the following, P is a ®*-accessible program which satisfies the defining
conditions with respect to a model I and a level mapping [ : Bp — . We let
I'={27%| o < v} be ordered as in Section 3.2 and denote 27 by 0.

For JJK € Ip we define d( K= 0 and d(JJK) = 27 where J and

differ on some atom A € Bp of level «, but agree on all ground atoms of
lower level, i.e. d coincides with the gum d; induced by [, see Proposition 5.1.6.
As was pointed out in Section 5.1, (Ip,d) is a spherically complete generalized
ultrametric space. We also define a function f on Ip by setting f( ) = 0 if

I and f( ) = 27%, where « is the smallest integer such that there is an
atom A € Bp with [(A) = «, FE A and I | A. Finally, we define a function
won Ip by u( ) =max{f( '),d( \ ',I\I')}, where ' forany € Ip,
is  restricted to the predicate symbols which are not in Negp, and we define a
distance function o by

o(J,K ) =sup{d(J.K ),u(J),u( )} =max{d(J,K),u(J),u( )}

5.4.1 Proposition (Ip, p) is a spherically complete dislocated generalized ultra-
metric space.

Proof: (Ui), (Uiii) and (Uiv) follow from Proposition 3.4.4. For spherical com-
pleteness let (B,) be a chain of nonempty balls in X with midpoints .J,. Let .J
be the set of all atoms which are eventually in J,, i.e. the set of all A € Bp such
that there exists some § with A € J, for all a > (. It is easy to see that for each
ball B,—s in the chain we have d(Jg, J) < 2 7 and hence J is in the intersection
of the chain. [ |

The proof of the next proposition is analogous to [Fit94, Lemma 7.1 and
Proposition 7.1].

5.4.2 Proposition Let P be ®*-accessible with respect to a level mapping [ and
a model I. Then for all JK € Ip with J =  we have o(Tp(J),Tp( ))
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o(J,K ). In particular we have the following, where for any € Ip we denote by
"the set  restricted to the predicate symbols which are not in Neg}:

(i) d(Tp(N)\Tp(J), INT)  (JNJ,INT).
(i) f(Te( )) (LK)
(iii) d(Tp(J),Tp( )) (LK)

Proof: By symmetry, it suffices to prove properties (i), (ii) and (iii). For conve-
nience, we again identify Neg}, with the subset of Bp containing predicate symbols
from Negl.

(i) First note that d(Tp(J) \ Tp(J), I\ I') = d(Tp-(J),I \ I') since these
values only depend on the atoms in Negp. Let d(J \ J', I\ I') = 2=*. We show
that d(Tp-(J), 1\ I') < 27+ So we know that J \ J' and I\ I’ agree on all
ground atoms of level less than o and differ on an atom of level «a. It suffices to
show now that Tp-(J) and I \ I" agree on all ground atoms of level less than or
equal to a.

Let A be a ground atom in Neg}p with [(A) < « and suppose that Tp-(.J) and
I'\ I differ on A. Assume first that A € Tp-(J) and A € I\ I'. Then there must
be a ground instance A < Ly, ..., L, of P~ such that J\ J' = Ly, ..., Ly,. Since
I'\I' is a fixed point of Tp- and A € Tp-(J), there must also be a k such that
Ly e I\I' and I(Lg) [(A) by Definition 5.0.4. So we obtain I \ I' = Ly but
J\J' E Ly with [(Ly) which is a contradiction to the assumption that J '\ .J’
and I\ I" agree on all atoms of level less than a. Now assume that A € I\ I’ and
A € Tp-(J). It follows that there is a clause A < Ly,..., Ly, in P~ such that
I\I' = Ly,...,Ly and I[(A) > I(Ly),...,l(Ly) by Definition 5.0.4. But then
J\NJ' E Ly,..., Ly since J\ J and I\ I' agree on all atoms of level less than «
and consequently A € Tp—(J). This establishes (i).

(ii) Assume o(J,K ) = 2% We show that f(Tp( )') < 27 for which in
turn we have to show that for each A € Tp( ) not in Negp, i.e. A € Tp( ), with
[(A) < a we have A € I'. Assume that A € I' for such an A. Since A € Tp( )/,
there is a ground instance A < Ly,..., L, of a clause in P with = Ly, ..., Ly,
and note that A is not in Negj. Since A € I', we have A € I and there must
also be a k with L, € I and [(A) > [(Ly) by Definition 5.0.4. If L; belongs to
Negp then, since  and I agree on all atoms in Negp of level less than «, we
obtain | Ly which contradicts = Ly, ..., Ly,. If L does not belong to Neg},
then it is an atom and since f( ') < 27 we obtain I = Lj, which is again a
contradiction.

(iii) Let o(J,K) = 27%, and let A € Bp with [(A) < a. Tt suffices to show
that A € Tp( ) if and only if A € Tp(J). We consider two cases.

Case 1 A € Negp. Since o(J,K) < 27 we know that J, and I agree on
all atoms in Neg}, of level less than a. Now if A € I, then there is a clause
A< Ly,..., Ly in ground(P~) with I = L,,..., L,, and by Definition 5.0.4 we
obtain J = Ly,..., Ly, and | Ly,..., Ly, hence A€ Tp( )NTp(J). HfAeT
then for all clauses A < body in ground(P) there is some L in body with I = L
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and /(L)  «, and consequently J = L and = L. We conclude that A is
neither in7p(J) nor in Tp( ) as required.
Case 2 A € Neg}. Since o(J,K ) < 27*, we know that J,  and I agree on all
atoms in Neg}, of level less than «, and that for each B € (J ) not in Neg},
with [(B) we have B € I. Now suppose A € I with [(A) < «. Then there is <«
a clause A < body in ground(P) with I = body and [(B) for all B occurring
in body. Consequently, we obtain J = body and = body, so A € Tp(J)
and A € Tp( ). Assuming A € I, we know that for each clause A < body in
ground(P) there is a literal L in body such that [ = L and (L) . It suffices
to show now that J =L and | L. Now if L is in Neg},, we obtain .J = L and
= L. If L is not in Neg}, then since I = L we obtain J = L and  |= L which
suffices. [

5.4.3 Theorem Let P be ®*-accessible. Then P has a unique supported model.

Proof: By Proposition 5.4.2, Tp is strictly contracting with respect to o, which
in turn is a spherically complete dislocated generalized ultrametric. By Theorem
1.5.1, the operator Tp must have a unique fixed point which yields a unique
supported model for P. [ |

By the proof of Theorem 1.5.1 given in Section 3.4, together with the al-
ternative proof of the Priefl-Crampe and Ribenboim theorem in the version of
Theorem 1.3.9, we can furthermore obtain the unique model by constructing the
sequence f?(()) as in the proof. It remains to investigate how to obtain f?(f)) in
the case that 3 is a limit ordinal. To this end, we employ the construction from
the proof of Proposition 5.4.1, i.e. we set f?(0)) to be the set of all A € Bp which
are eventually in (f*(0))a<s.

5.5 &-Accessible Programs

Given a ®-accessible program P, we define a dislocated generalized ultrametric on
Ip which will again allow us to apply the dislocated Prie-Crampe and Ribenboim
theorem, Theorem 1.5.1.

In the following, P is a ®-accessible program which satisfies the defining con-
ditions with respect to a model I and a level mapping [ : Bp — 7. As before, we
let I' = {27 | @« < v} be ordered as above and denote 277 by 0, and for JJK € Ip
we define the generalized ultrametric d on Ip to be the generalized ultrametric d;
induced by 1.

We note that Tp is in general not strictly contracting with respect to d for
®-accessible programs, even if it is definite.
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5.5.1 Program Let P be the following program.

p(s*(2))  p(z)
p(0)
p(s"(0)) < p(s°(0))
p(s*(0)) < p(s°(0))
For = {s°(0)} and J = {s*(0)} we obtain d(J,K) = 273. However

d(Tp( ),Tp(J) =272), so Tp is not strictly contracting.

We now define
o(J,K ) = max{d(J, I),d( 1)K,

for all JJK € Ip.

5.5.2 Proposition (X, p) is a spherically complete generalized dislocated ultra-
metric space.

Proof: If follows from Proposition 3.4.5 that p is a d-gum. Spherical completeness
follows from the fact that every nonempty ball contains I. [

5.5.3 Proposition Let P be ®-accessible. Then Tp is strictly contracting with
respect to p.

Proof: Let JJK € Ip and assume that o(J,K ) =27 Then J,K, I agree on all
ground atoms of level less than «v. We show that T»(.J) and I agree on all ground
atoms of level less than or equal to o. A similar argument shows that Tp( ) and

I agree on all ground atoms of level less than or equal to «, and this suffices.
Let A € Tp(J) with I(A) < a. Then there must be a clause A <— Ly,..., L,

in ground(P) such that J | Ly L,. Since I and J agree on all ground
atoms of level less than «, condition (ii) of Definition 5.0.4 cannot hold, because
if I = L; with [(A) > l(L) then J = L; and consequently J = L, Ly,

which is a contradiction. Therefore, condition (i) of Definition 5.0.4 holds and so
AeTp(l)=1I. Hence, A€ 1.

Conversely, suppose that A € I. Since I = Tp(I), there must be a clause
A« Ly,..., L, in ground(P) such that I = L, L. Thus, condition (i)
of Definition 5.0.4 must hold, and so we can assume that A < Ly,..., L, also
satisfies [(A) > [(L;) for i = 1,...,n. Since I and J agree on all ground atoms of
level less than o, we have J = L, L,, and hence A € Tp(J) as required. B

5.5.4 Theorem Fach ®-accessible program P has a unique supported model.

Proof: Since P is ®-accessible, the distance function p as defined above is a
spherically complete d-gum. By Proposition 5.5.3, T is strictly contracting, hence
has a unique fixed point by Theorem 1.5.1. [ |
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section class of programs  space theorem
5.1 acyclic metric 1.2.2
5.1 locally hierarchical gum 1.3.4
5.2 acceptable d-metric  1.4.6
5.3 ®*-accessible d-metric  1.4.6
5.4 d*-accessible d-gum 1.5.1
5.5 ®-accessible d-gum 1.5.1

Table 5.1: Chapter overview: Classes of programs and applied theorems.

acyclic

/

acceptable

/

d-- accessible locally hierarchical

N

®= accessible

®-— accessible

Figure 5.1: Dependencies between classes of programs. If a class is depicted lower
in the diagram, this indicates that it is more general.

The proof of Theorem 1.5.1 furthermore yields o(M, M) = 0 for the unique
fixed point M of Tr. Since the only point of X which has non-zero distance from
itself is I, we conclude that I = M is the unique supported model of P. This is
somewhat unfortunate since I was needed in order to construct p.

5.6 Summary and Further Work

Chapter 5 can be considered the central chapter in this thesis, with the previous
chapters providing applicable results, and the subsequent chapters focussing on
a deeper study of the classes of programs and concepts presented in this chapter.

Table 5.1 gives a summary of which fixed-point theorems were applied to which
class of programs. Figure 5.1 displays dependencies between the classes described
in this chapter. Note that we have not shown yet that every ®*-accessible program
is ®-accessible, which we will do in Chapter 6, Theorem 6.5.3.

The fundamental construction used in this chapter is the generalized ultra-
metric d; induced by a level mapping [, in the characterization of Proposition
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5.1.6. All generalized metric structures employed in this chapter make use of it,
and refine it. Investigations remain to be done concerning the possibilities of ex-
tending this approach to other semantic operators, probably even operators on
many-valued logics as in Section 4.3. Some other questions which arise out of the
results in this chapter will be addressed in the rest of this thesis.
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Chapter 6

Fitting-style Semantics

In this chapter, we will analyze and characterize unique supported model classes
by means of certain three-valued logics. In particular, in Section 6.1 we will in-
troduce three different three-valued logics and their associated consequence op-
erators, and study the relationships between them. In Sections 6.2 and 6.3, we
will characterize acceptable and locally hierarchical programs by means of the
behaviour of these operators. We will also give alternative constructions of their
canonical level mappings. Prompted by the studies of acceptable and locally hi-
erarchical programs, we will define two classes of programs denoted by [®*] and
(@], which will later on turn out to coincide with the classes of all ®*-accessible,
respectively, ®-accessible programs. We study these classes in Sections 6.4 and
6.5. Moreover, we will show that the class [®*] is computationally adequate under
SLDNF-resolution.

Many-valued logics have been employed in several studies of the semantics of
logic programs. In particular, they have been used to assign special truth val-
ues to atoms which possess certain computational behaviour such as being non-
terminating [Fit85, Myc84|, being ill-typed [Nai98], being floundering [And97],
or failing when backtracking [BFMS98]. The motivation for the definitions of the
three-valued logics we will be using in the sequel comes from a couple of sources.
Primarily, these logics are formulated in order to allow for easy analysis and
characterization of the programs or classes of programs in question by using the
logic to mimic the defining property of the program or class of programs. This
idea is akin to some of those considered in the papers just cited, and is a com-
ponent of work presented in Section 5.2 where a program transformation which
outputs a locally hierarchical program, when input an acceptable one, is used in
the characterization of acceptable programs. Natural questions, partly answered
here, then arise as to the different ways that different classes of programs can be
characterized. On the other hand, some of the work in this chapter can also be
viewed as a contribution to the asymmetric semantics proposed in [FBJ90] where
it is noted that certain differences between Pascal, LISP and Prolog, for example,
are easily described in terms of three-valued logic. Thus, [FBJ90] is also a source
of motivation for our definitions. However, we note that all programs analyzed
in this chapter do have unique supported models, therefore the third truth value

93



CHAPTER 6. FITTING-STYLE SEMANTICS

undefined will only be used for obtaining the unique supported two-valued model.
Hence, interpretations of undefined from the point of view of computation (such
as non-halting) are not actually necessary in this chapter.

All semantical considerations presented in this paper are with respect to ar-
bitrary preinterpretations.

6.1 Three-valued Logics

A three-valued interpretation of a program P is a pair (T, F) of disjoint sets
T,F  Bp. Note that the notation used here is different from the one of Section
4.3, but is easily seen to be equivalent. Given such an interpretation I = (T, F),
a ground atom A is true (t) in I if A € T, false (f) in [ if A € F, and undefined
(u) otherwise; —=A is true in I if and only if A is false in I, A is false in I if and
only if A is true in I and —A is undefined in [ if and only if A is undefined in 1.

Given I = (T, F), we denote T by I* and F by I~. Thus, I = (I*,I7). If
I I~ = Bp, we call I a total three-valued interpretation of the program P.
Total three-valued interpretations can be identified with elements of Ip.

Given a program P, the set Ip3 of all three-valued interpretations of P forms a
complete partial order (in fact, complete semi-lattice) with the ordering < defined
by

I< if and only if It *tand I~ -

with least element (), )) which we will denote by L. Notice that total three-valued
interpretations are maximal elements in this ordering.

In our present context, it will be sufficient to give truth tables for conjunction
and disjunction, and we will make use of three different three-valued logics which
we are now going to define. It should be noted here that the truth tables for
disjunction are the same in all three logics and that disjunction is commutative.

The first logic, which we will denote by L;, evaluates conjunction as in Fit-
ting’s Kripke-Kleene semantics [Fit85] (in fact, as in Kleene’s strong three-valued
logic, see [FBJ90]). This work built on [Myc84] and was subsequently studied in
the literature e.g. in [Kun87, AP93, Nai98]. Disjunction will be evaluated differ-
ently though, as indicated by the truth table in Table 6.1.

The second three-valued logic, Lo, will be used for studying acceptable pro-
grams and is non-commutative under conjunction. It will be sufficient to evaluate
u f to u instead of f and leaving the truth table for £, otherwise unchanged.
This way of defining conjunction was employed in [And97] and [BFMS98], see
also the discussion of LISP in [FBJ90]. The truth table is again given in Table
6.1.

The third logic, L3, will be used for studying locally hierarchical and acyclic
programs. For this purpose, we use a commutative version of £, where we evaluate
f uto uinstead of f, see the discussion in [FBJ90] of Kleene’s weak three-valued
logic in relation to Pascal. The truth table is shown in Table 6.1.

Let P be a normal logic program, and let £; denote one of the three-valued
logics above, where 7 = 1,2 or 3. Corresponding to each of these logics we define

94



CHAPTER 6. FITTING-STYLE SEMANTICS

Logic £ Logic L, Logic L3
p ¢ |p q pVa|p q pVqg|p q pVg
t t t t t t t t
t u u u u u u u
t f f t f t f t
u t u u u u u u
u u u u u u u u
u f f u u u u u
f t f t f t f t
f u f u f u u u
f f f f f f f f
Operator Sp; = Pp Opy Ops

Table 6.1: Truth tables for the logics £, Lo, and Lj.

an operator Fp on Ipz as follows. For I € Ips, let Fp(I) = (T,F) where T
denotes the set

{A € Bp | there is A < body € ground(P) s.t. body is true; in I},
and F' denotes the set
{A € Bp | for every A < body € ground(P), body is false; in I}.

Of course, true; and false; here denote truth respectively falsehood in the logic
L;. Notice that if A is not the head of any clause in P, then A is false in Fp(I)
for any I.

It is clear that Fp is monotonic in all three cases. We set Fp10 = 1,

Fpta = Fp(Fpt(a—1)) for a a successor ordinal, and

Fpta = | Fptp for o alimit ordinal.

B<a

Since F'p is monotonic, it has a least fixed point by the Knaster-Tarski theorem
1.1.7 which is equal to Fp T« for some ordinal « called the closure ordinal of P
(for the chosen logic L;).

Throughout the sequel, we will denote Fp by ®p;, Pps or ®pj if the chosen
logic is correspondingly L1, L5 or L3. The appropriate symbol is also included in
Table 6.1 for ease of reference. Note that the behaviour of each of these operators
depends only on the evaluation of conjunction. In fact, ®p; is the very same
operator as used in [Fit85]. We will also denote this operator by ®p.

6.1.1 Proposition If we evaluate implication such that the partial truth table
in Table 6.2 is satisfied, then for each i = 1,2,3, ®p; is a local consequence
operator.
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= = o e~
e = N L)

rf-rf—rFrFrf—rf—T

Table 6.2: Desired implication properties for 3-valued logics.

Proof: Immediate by Definitions 4.3.7 and 4.3.10. |

6.1.2 Proposition Let P be a normal logic program and let I,I',I" € Ip3 be
such that I < I' < I". Then we have

Cpa(I) < Ppa(l') < Ppa(l”).

Proof: The following observations are clear from the given truth tables, and
indeed suffice. If a body of a clause is true (false) in L3, then it is true (false) in
Lo. If it is true (false) in Ly, then it is true (false) in £,. |

We investigate the relationship between ®p and 7T for a given program P,
extending some results in [AP93].

6.1.3 Lemma Let P be a normal logic program, let I € Ip and let  be a partial
interpretation for P with + I ¢ =, Then ®p( )" Tp(I) “®p( ).
Furthermore, if * =1 =°¢ ~ so that is total, then ®p( )" = Tp(I) =
C(I)p( )7.

Proof: Let A € ®p( )*. Then A must be the head of a clause A <«
Ay, ..., Ag, 0By, ..., 0By, in ground(P) with A; € T and B; € ~ for all
t=1,...,kyand j =1,...,ky. By assumption, it follows that for these values of
iand j, A; € [ and B; € I, and hence A € Tp(I).

For the second inclusion, it suffices to show that ®p( )~  “Tp(I). Let A €
®p( ). Then, for every clause A < Ay,..., Ay, "By, ..., By, in ground(P),
we have some A; € ~ orsome Bj € . Hence, for every such clause, we have
some A; € I or some B; € I, which implies that A € Tp([).

For the last statement, it suffices to note that a conjunction L, L, of literals
is true in  if and only if it is true in I if and only if it is not false in . [ |

The following straightforward corollary provides the essential link between
the ®-operator, the single-step operator Tp and convergence in (). Intuitively
speaking, iterates of Tp are “squeezed between” the iterates of ®p.

6.1.4 Corollary Let I,, = Ti(0) and let , = ®p1tn. Then, for all n € N, we

. + C —_
obtain [ I, o
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The following now easily carries over from [AP93], and is in fact a direct
consequence of Lemma 6.1.3.

6.1.5 Proposition Let P be a normal logic program and let I = (IT,17) be a
total interpretation for P. Then [ is a fixed point of ®p if and only if IT is a
fixed point of Tp. Furthermore, if ®p has exactly one total fixed point M, then
M is the unique fixed point of Tp.

Proof: Let I be a fixed point of ®p. Then I™ I" I~ and by Lemma 6.1.3
we obtain It = ®p(I)t  Tp(IT) “Pp(I)” =1 = IT. Conversely, let I* be
a fixed point of Tp. By Lemma 6.1.3, we obtain ®p([)" =Tp(I*) =1t =" =
¢@p(I)~, and therefore ®p(I)* = I and ®p(I)~ = I~. The last statement now
follows immediately. [

Collecting together the previous results now yields convergence in () of iterates
of TP.

6.1.6 Proposition Let P be a normal logic program and assume that M = &p*1
w is total. Then T%(()) converges in @ to M*, and M™* is the unique supported
model Mp of P.

Proof: Using the notation from Corollary 6.1.4, we obtain M* = + and
M- = .- Since M is total, we obtain from Propositions 4.2.2 and 6.1.5 that
M™ is the limit in @ of the sequence I,,. Since totality of ®p 1w implies that it
is the unique fixed point of ®p, it therefore equals (M™, M), so that M is the

unique fixed point of Tp by Proposition 6.1.5. [

6.1.7 Proposition Let P be a normal logic program, let Fp denote ®p;, for
1 = 1,2,3, and assume that M = Fp 1« is total, where « is the corresponding
closure ordinal of P. Then M™ is the unique two-valued supported model of P.
Furthermore, the transfinite sequence (Fp1 )z converges in the atomic topology
to M.

Proof: By totality of M, Propositions 6.1.2 and 6.1.5 we obtain M™ as a fixed
point of Tp. Since M is the least fixed point of Fp and is maximal in Ip3, it is

the unique fixed point of Fp. The convergence results follows as in Proposition
6.1.6. m

Given a ground atom A which occurs as the head of an element A + C
of ground(P), we form the pseudo clause, or simply clause, A < \/,C; whose
body \/,C; is the (possibly infinite) disjunction of the bodies C; of all clauses in
ground(P) whose head is A; we call A the head of the pseudo clause A < \/,C;.
The set of all such pseudo clauses will be denoted by P*. It will be convenient
to assign “truth” values to \/.C;, relative to the logics £; by in fact assigning
truth values to arbitrary disjunctions of literals and then employing the same
sort of abuse for “disjunctions” of ground literals which was established earlier
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for conjunction. This is done as follows: ,C; will be assigned value true (t) if
and only if at least one Cj is true and none are undefined; it will be assigned
value undefined (u) if and only if at least one C; is undefined; it will be assigned
value false (f) if and only if all the C; are false. These definitions are the natural
extension to possibly infinite disjunctions of the values given iteratively to finite
disjunctions by the truth tables in Table 6.1.

Letting Fp denote any one of the ®p;, for i = 1,2,3, we define an operator
Fp« on Ip3 as follows. For I € Ip3, set Fp«(I) = (T, F), where T is the set of
all ground atoms which occur as the head of a pseudo clause in P* whose body
is true in I, and F' is the set of all ground atoms which occur as the head of a
pseudo clause whose body is false in I. As before, ®p- ; will denote Fp- when the
chosen logic is £;, i = 1,2, 3. Note that Fp- is again monotonic for any choice of
underlying logic. Ordinal powers Fp« 1T o are defined as for Fp. We will denote
the operator ®p-; also by ®%;, and ®p, by Pp.

6.1.8 Example We give an example illustrating the program transformation P*.
Let P be the (propositional) program

a<b
a4 c
b«
céc

then P* is

a+bVec
b+
c+c¢

Let I be the three-valued interpretation ({b}, (). Then ®p; (1) = ({a, b}, D), which
is also the least fixed point of ®p;. However, since c¢ is undefined in I, we have
Pp1(I) = ({b},0), which is the least fixed point of ®p« ;. The difference between
®p; and Pp-; results from the way in which disjunction is defined, see the fol-
lowing proposition, Proposition 6.1.10. In fact, in this context it is worth noting
an observation made by one of the referees of [HS99a], as follows. In classical
two-valued logic, the programs (a <~ b) (a < ¢) and a < (bV ¢) are equivalent
simply because of the distributive laws and De Morgan’s law that —b A— ¢ and
(b V ¢) are equivalent. In the Logics £;, i = 1,2,3, =b A— ¢ and —(bV ¢) are not
equivalent as can easily be verified by, for example, taking b to be true and ¢ to
be undefined. In fact, the rule a <— (bV ¢) with disjunctive body is weaker (leaves
more undefined) than the two separate rules a < b and a «+ c.

6.1.9 Proposition If we evaluate implication such that the partial truth table
in Table 6.2 is satisfied, then for each ¢ = 1,2,3, ®; is a local consequence
operator.
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Proof: Immediate by Definitions 4.3.7 and 4.3.10. |

6.1.10 Proposition Let P be a normal logic program and let I,I',I" € Ip3 be
such that 7 < I' < I". Then we have

Pp-3(I) < Ppeo(I') < Dps i (1"),
and for F' denoting any of the ®;, for i = 1,2, 3, we have
Fp* (I) S FP(I) and Fp* (I)_ = FP(I)_

Proof: The proof is along the same lines as the proof of Proposition 6.1.2 noting
that in a disjunction ,C; which is true, no Cj is undefined. |

6.2 Acceptable Programs

We are able to characterize acceptable programs by means of the operator ®p- o,
and we do this next. We will need the following proposition.

6.2.1 Proposition Suppose that P is acceptable with respect to a level mapping
l. Then Mp = ®p; tw is total, M} is the unique supported model of P and P is
acceptable with respect to [ and M.

Proof: The first statement carries over directly from [AP93], where it was shown
for Herbrand preinterpretations. The second statement was shown in Theorem
5.2.12. [

6.2.2 Lemma Let P be acceptable. Then M = ®p- 5 Tw is total. Furthermore,
M = ®pytw, and M is the unique supported model M} of P.

Proof: Let [ be a level mapping with respect to which P is acceptable. By Propo-
sition 6.2.1, P is acceptable with respect to [ and M} . Assume that there is a
ground atom A which is undefined in M. Without loss of generality we can as-
sume that [(A) is minimal. Then by definition of Lo, there is precisely one pseudo
clause in P* of the form A <— .C; in which at least one of the Cj, say C}, is
undefined. Thus, there must occur a left-most ground body literal B in C; which
is undefined in M, and this ground literal is to the left in C; of the first ground
literal which is false in M. Hence, all ground literals occurring to the left of B
must be true in M. Since M < Mp by Proposition 6.1.10, all these ground lit-
erals must also be true in M} . By acceptability of P we therefore conclude that
[(B) I(A), contradicting the minimality of [(A). By Proposition 6.1.10, the
second statement holds. The last statement follows from Proposition 6.1.7. N
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6.2.3 Definition Let P be acceptable. Define the mapping [p as follows: [p(A)
is the lowest ordinal « such that A is not undefined in ®p- 1 (a  1).

6.2.4 Proposition Let P be acceptable. Then [p is an w-level mapping and
P is acceptable with respect to [p and Mp. Furthermore, if [ is another level
mapping with respect to which P is acceptable, then (p(A) < I(A) for all A € Bp.
In particular, [p is exactly the canonical acceptable-level mapping defined in
Construction 5.2.16.

Proof: By Lemma 6.2.2, [p is indeed an w-level mapping.
Let A be the head of a ground clause C in P with [p(A) = n. Then the body
,Ci of the corresponding pseudo clause in P* is either true or false (i.e. is not
undefined) in N = ®p. 5 tn. If .C; is true, each C; evaluates to true or false in
N If C; evaluates to true in N (and at least one must), then all ground literals
in C; are true in N, and therefore have level less than or equal to n — 1. If C;
evaluates to false in N, then there must be a ground literal in C; which is false in
N such that all ground literals occurring to the left of it are true in N'. Moreover
all these ground literals are not undefined in N and hence have level less than or
equal to n — 1. A similar argument applies if ,C; is false in NV. Since N' < Mp,
it is now clear that the clause C satisfies condition (5.1) of acceptability given in
Definition 5.0.2 with respect to [p and Mp.

Now let [ be another level mapping with respect to which P is acceptable.
By Proposition 6.2.1, P is acceptable with respect to [ and Mp. Let A € Bp
with [(A) = n. We show by induction on n that I[(A) > (p(A). If n = 0, then A
appears only as the head of unit clauses, and therefore [p(A) = 0. Now let n > 0.
Then in every clause with head A, the left prefix of the corresponding body, up to
and including the first ground literal which is false in Mp, contains only ground
literals L with [(L) n. By the induction hypothesis, (p(L) n for all these
ground literals L and, consequently, Ip(A) < I(A) by definition of [p.

The last statement follows from Theorem 5.2.21, where it is shown that the
given minimality property characterizes [p. [

We are now in a position to characterize acceptable programs.

6.2.5 Theorem Let P be a normal logic program. Then P is acceptable if and
only if M = ®p- 5 Tw is total.

Proof: By Lemma 6.2.2 it remains to show that totality of M implies acceptabil-
ity. Define the w-level mapping lp for P as in Definition 6.2.3. Since M is total,
lp is indeed an w-level mapping for P. We will show that P is acceptable with
respect to [p and M.

Arguing as in the proof of the previous proposition, let A be the head of a
ground clause C in P with [p(A) = n. Then the corresponding body C' evaluates
to true or false in N' = ®p. 5 T n. If it evaluates to true in A, then all ground
literals in C are true in A/, and therefore have level less than or equal to n — 1. If
it evaluates to false in NV, then there must be a ground literal in C' which is false
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in A such that all ground literals occurring to the left of it are true in /. Again,
all these ground literals are not undefined in N and hence have level less than or
equal to n — 1. Since N' < M, the clause C satisfies the condition of acceptability
given in Definition 5.0.2. |

In [Mar96], it was shown that the class of programs which terminate under
Chan’s constructive negation [Cha88| coincides with the class of programs which
are acceptable with respect to a model based on a preinterpretation whose do-
main is the Herbrand universe and contains infinitely many constant and function
symbols, cf. Section 5.2. We therefore obtain the following result.

6.2.6 Theorem A normal logic program P terminates under Chan’s construc-
tive negation if and only if ®p- 9 Tw is total, where ®p- 5 is computed with respect
to a preinterpretation whose domain is the Herbrand universe and contains in-
finitely many constant and function symbols.

We are also able to characterize acceptability as follows.

6.2.7 Proposition A normal logic program P is acceptable if and only if there
exists an w-level mapping [ for P and a model [ for P such that the following is
satisfied: Condition (5.1) of Definition 5.0.2 holds and whenever I = body for all
clauses A <— body in ground(P), we have I = A.

Proof: Let P be a program which is acceptable with respect to a level mapping [
and a model I. Then P is acceptable with respect to its unique supported model
M and [ by Theorem 5.2.12, so condition (5.1) is satisfied with respect to M.
Since M is supported, the additional condition is also satisfied with respect to
M.

Conversely, let [ and I be such that condition (5.1) and the additional condi-
tion in the statement of the proposition are satisfied. Since I is a model and the
additional condition holds, we obtain that I is a supported model. So I, restricted
to the predicate symbols in Neg},, is a supported model of P~ which suffices. W

6.3 Locally Hierarchical Programs

We will now give a new characterization of locally hierarchical and acyclic pro-
grams along the lines of Theorem 6.2.5, using the operator ®p- ;.

6.3.1 Lemma Let P be locally hierarchical with respect to the level mapping [
and let A € Bp be such that I(A) = a. Then A is true or false in ®p« 37T (o 1).
In particular, there exists an ordinal ap such that ®p- 3T ap is total.

Proof: The proof is by transfinite induction on a. The base case follows directly
from the fact that if a = 0, then A appears as head of unit clauses only. Now let
a = [ 1 be a successor ordinal. Then all ground literals appearing in bodies of
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clauses with head A have level less than or equal to 5. By the induction hypothesis,
they are all not undefined in ®p- 31 (8 1) and therefore A is either true or false
in ®p« 31 (o 1).If @ is a limit ordinal, then all ground literals occurring in bodies
of clauses with head A have level strictly less than a. Hence, by the induction
hypothesis and since « is a limit ordinal, all these ground body literals are not
undefined in ®p- 31, and therefore A is true or false in ®p- 31 (o 1). [ |

6.3.2 Corollary Let P be a locally hierarchical program with level mapping
l:Bp — aand let M = ®p;ta. Then M is total and Mp = MT is the unique
supported model of P.

Proof: By Propositions 6.1.2 and 6.1.10, we have ®p- 318 < $p3t < Pp; 13
for all ordinals /3. Since ®p- 3 1T v is total by Lemma 6.3.1, the given statement
holds using Proposition 6.1.7. [

6.3.3 Definition Let P be locally hierarchical. Define the level mapping [p for
P as a function [p : Bp — ap where [p(A) is the least ordinal a such that A is
true or false in ®p« 31 (a ). +1

6.3.4 Proposition Let P be locally hierarchical with respect to some level map-
ping [. Then [p is a level mapping for P and, for all A € Bp, we have [p(A) < [(A).
Furthermore, [p coincides with the canonical lh-level mapping of Construction
5.1.1.

Proof: The mapping [p is indeed a level mapping by Lemma 6.3.1. Let A € Bp
with [(A) = o. We show the given minimality statement by transfinite induction
on a. If a« = 0, then A appears as the head of unit clauses only, and so (p(A) = 0.
If « = 1isasuccessor ordinal, then all ground literals L occurring in bodies of
clauses with head A have level [(L) < (. By the induction hypothesis, we obtain
Ip(L) < 8 for all those ground literals, and so [p(A) < o = [(A) by construction
of [p. If v is a limit ordinal, then all ground literals L occurring in bodies of
clauses with head A have level [(L) . Since [p(L) < I(L) and since « is a limit
ordinal, we obtain that all these ground literals L are not undefined in ®p- 3T«
and therefore [p(A) < o =1[(A) as desired.

The last statement follows since the minimality property just proved charac-
terizes the canonical lh-level mapping as was shown in Proposition 5.1.4. [

Note that it is an easy corollary of the previous results that if a program P is
acyclic, then ®p- 3w is total.

6.3.5 Theorem A normal logic program P is locally hierarchical if and only if
®p- 3T« is total for some ordinal . It is acyclic if and only if ®p- 31w is total.

Proof: Let P be a normal logic program such that ®p- 31« is total for some o.
We define a mapping lp : Bp — « as in Definition 6.3.3. From the definition of
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the logic L3 it is now obvious that P is indeed locally hierarchical with canonical
lh-level mapping [p. The reverse was shown in Lemma 6.3.1. The statement for
acyclic programs now follows similarly. [

6.4 ®*-Accessible Programs

Our investigations of acceptable and locally hierarchical programs suggest we
define a class of programs by the property that ®p-; T is total for some ordinal
a. We will do this next, show that this class contains exactly the ®*-accessible
programs, and also that this class is computationally adequate.

6.4.1 Definition We define the class [®*] of normal logic programs as follows. A
normal logic program P is contained in [®*], if ®p- ;T is total for some ordinal
a.

6.4.2 Theorem Every program in [®*] has a unique supported model. Further-
more, this class contains all acceptable and all locally hierarchical programs.

Proof: Immediate by Propositions 6.1.7 and 6.1.10. |

6.4.3 Definition The canonical level mapping wrt. ®* for a given program in
[®*] is denoted by [* and defined as follows. For every A € Bp, set [*(A) = a,
where « is the minimal ordinal such that A is true or false in ®p- ;1 (a 1).

The following is immediate by Proposition 6.1.10.

6.4.4 Proposition If P is acceptable or locally hierarchical with canoni-

cal acceptable-level mapping, respectively canonical lh-level mapping, [p, then
I*(A) > lp(A) for all ground atoms A.

6.4.5 Proposition Let P be a normal logic program. Then P is contained in
[®*] if and only if the following property holds for some model I and some level
mapping [ for P: For each clause A < Ly,..., L, in ground(P), we either have
IEL L, and [(A) > I(L;) for alli = 1,...n, or there exists i € {1,...,n}
such that I = L;, I = A and [(A) > [(L;). Furthermore [*(A) < [(A) for every
Ac€ Bp.

Proof: The first statement follows immediately from the definition of the logical
connectives in the logic £1, using a proof by transfinite induction.

The minimality property of [* is shown by transfinite induction along the same
lines as in the proofs of the Propositions 6.2.4 and 6.3.4. [ |

6.4.6 Corollary [®*] contains exactly all ®*-accessible programs.

103



CHAPTER 6. FITTING-STYLE SEMANTICS

Proof: The proof is analogous to the proof of Proposition 6.2.7, using Proposition
6.4.5. m

It was shown in Section 5.1 that the class of all locally hierarchical programs
is computationally adequate in the sense that every partial recursive function
can be computed with such a program if the use of safe cuts is allowed. For ®*-
accessible programs, the cut need not be used, and we will show this next. The
proof basically shows that given a partial recursive function, there is a definite
program as given in [L1088] which computes that function. This program will turn
out to be a ®*-accessible program.

6.4.7 Theorem Let f be a partial recursive function. Then there exists a definite
®*-accessible program which computes f.

Proof: We will make use of the definite program P; given in [L1088, Theorem 9.6],
and we refer the reader to the proof of this theorem for details. It is easily seen
that we have to consider the minimalization case only. In [L1088], the following
program Py was given as an implementation of a function f which is the result
of applying the minimalization operator to a partial recursive function g, which
is in turn implemented by a predicate p,. We abbreviate Xi,..., X, by X.

pr(X)Y) + py(X,0,U),r(X,0,U,Y)
"(X,Y,0,Y)
r(X,Y,s(V),Z) < py(X,s(Y),U),r(X,s(Y),U,Z)

This program is not ®*-accessible. However, we can replace it with a program Pj’c
which has the same procedural behaviour and is $*-accessible. In fact, we replace
the definition of r by

"(X,Y,0,Y)
r(X,Y,s(V),Z) < p,(X,s(Y),U),r(X,s(Y),UZ),ltY, ),

where the predicate [t is in turn defined as

14(0, (X)) +
It(s(X), s(Y)) ¢ It(X,Y)

and is obviously ®*-accessible. By a straightforward analysis of the original pro-
gram Py, it is clear that the addition of lt(y, z) in the second defining clause of
r does not alter the procedural behaviour of the program. Since It and p, are

®*-accessible, it is now easy to see that r is ®*-accessible, and so therefore is Pj’c.
[ |

It is worth noting that negation is not needed here in order to obtain full
computational power, so Theorem 6.4.7 strenghtens the result of [L1088] referred
to in the proof. By contrast, as already noted, definite locally hierarchical pro-
grams seem not to provide full computational power. Regardless of some known
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drawbacks in SLDNF-resolution, it is interesting to know that relative to it the
class of all ®*-accessible programs has full computational power neither the
class of acyclic nor even the class of acceptable programs has this property.

6.5 &-Accessible Programs
We carry over our methods to the study of ®-accessible programs.

6.5.1 Definition Let P be a normal logic program. Then P is contained in [®]
if and only if ®p T« is total for some ordinal «.

6.5.2 Definition Let P be in [®]. For each A € Bp, let [p(A) denote the least
ordinal a such that A is not undefined in ®p 1 (v 1). We call the resulting
mapping lp the canonical level mapping for P wrt. ®.

6.5.3 Theorem The class [®] contains exactly the ®-accessible programs.

Proof: Let P be in [®], let [p be its canonical level mapping wrt. @, let « be
its closure ordinal wrt. ®p and let Mp = ®pta™ be its unique supported (two-
valued) model.

(a) Let A € Mp and [p(A) = (. By definition of [p and ®p there exists a clause
A « Ly,...,L, in ground(P) such that the L;,..., L, are true in ® 1 3, and
hence are also true in Mp. Again by definition of [p we obtain [p(A) > Ip(L;) for
all 7.

(b) Let A € Mp and Ip(A) = [. By definition of Ip and ®p we obtain that for
any clause A < Lq,..., L, in ground(P) we must have that L, L, is false
in ®p1 . So there must be some 7 such that L; is false in @51 and [(L;) by
definition of /p, and hence Ip(A) > lp(L;). Thus, P is ®-accessible with respect
to Mp and lp.

Conversely, let P be ®-accessible, so that P satisfies conditions (i) and (ii) of
Definition 5.0.4 with respect to a model I and a level mapping [. We show by
induction on f that any A € Bp with [(A) = ( is not undefined in ®p1 (5 )
and, furthermore, that I and ®p1 (5 1) agree on A.

If [(A) = 0, then A must be the head of a unit clause or does not appear in any
head. In the first case, A is true in ®p 1 1, and in the second case, A is false
in ®p 1 1. Note that in the first case A is also true in I since condition (i) of
Definition 5.0.4 applies and [ is a model of P. Also, in the second case, A is also
false in I since condition (ii) of Definition 5.0.4 applies.

Now let [(A) = . If there is no clause in ground(P) with head A, then A is false
in®pT1 < Ppt(f 1) and also false in I since condition (ii) of Definition 5.0.4
applies. So assume there is a clause in ground(P) with head A. By definition of
d-accessibility, either condition (i) or condition (ii) of Definition 5.0.4 applies.

If condition (i) applies, then there is a clause A < Li,...,L, in ground(P)
such that I(Ly),...,l(L,) (A) and therefore, by the induction hypothesis, the
Lq,..., L, are not undefined in ®p 15 and I agrees with ®p 1/ on them. Now,
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since [ is a model of P and I = Ly, ..., L,, we obtain that A is true in I and by
definition of ®p also in Pp1 /.

If condition (ii) applies, then for each clause A <— Ly, ..., L, in ground(P) there
is some i such that [(A) > [(L;) and L; is false in I. Hence we obtain that L; is
false in ®p 1/ by the induction hypothesis and it follows that A is false in both
Iand ®p1(8 ). +1 [

6.5.4 Theorem Let P be ®-accessible with unique supported model M. Then
M is minimal as a two-valued model.

Proof: Let M be a model of P, and let [ be the canonical level mapping of
P wrt. ®. Assume that there exists some A € M\ . Without loss of generality,
we can assume that A is chosen such that [(A) is minimal. By Definition 5.0.4 we
obtain that there is a clause A < By, ..., Bg, 7 Bgi1, ..., 7By, in ground(P) with
head Aand I(B;)  (A) for all atoms B; in the body. Since By 1, ..., B, € M, we
obtain Byy1,..., By, € . By minimality of [(A) we also obtain By, ..., By, €

Now, since  is a model of P, we must have A €  which is a contradiction to
our assumption. [ |

6.5.5 Program Theorem 6.5.4 cannot be generalized to all programs with
unique supported models: the program

q<p
P Dpq
P 7, g

has a unique supported model {p, ¢}, but {¢} is also a model (though not sup-
ported), and so {p, ¢} is not minimal as a two-valued model.

Not also that for ®*-accessible programs the unique supported model is in
general not least as a two-valued model as can be seen from the program consisting
of the single clause p < q.

6.5.6 Theorem The definite programs in [®] are exactly the definite programs
with unique supported models.

Proof: This follows immediately from [Fit85, Proposition 7.3|: for a definite pro-
gram P with least fixed point (I*,17) of ®p, both I and Bp \ I~ are fixed
points of the single-step operator Tp, and in fact I™ is the least and Bp \ I~ is
the greatest supported model of P. Since P has only one supported model we
obtain It = Bp \ I and therefore P € [®]. |
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6.6 Summary and Further Work

We have provided alternative characterizations of the classes of programs studied
in Chapter 5, using operators on different three-valued logics. These logics turn
out to be very closely related, and the novelty of this approach lies in the fact that
the truth value undefined is employed in order to mirror aspects of the programs
which are denotational, and not operational.

With this approach it was possible to characterize acceptable programs, i.e.
programs which are terminating under SLDNF-resolution, and it is obvious to ask
whether this approach can be carried over to termination analysis with respect to
other resolution methods, or to other semantics which are based on many-valued
logics, as referred to in the introduction of this chapter.
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Chapter 7

Stable Model Semantics

The stable model semantics and the supported model semantics share the prop-
erty that a program may have several meanings under these semantics, which is
not the case under other semantics such as the well-founded [GRS91] or the weakly
perfect model semantics [PP90]. The ambiguity of the stable model semantics,
however, which at first sight seems to be an undesirable feature of it, has been
put to use in a programming paradigm called answer set programming, which has
currently been implemented in several forms, see [MT99] for an overview.

Stable models are always supported but not vice versa, so the stable model
semantics can be viewed as a refinement of the supported model semantics. In
this chapter, we will discuss some issues relating the two, and an application of
the multivalued Kleene theorem 2.4.6.

In Section 7.1, we employ our results on ®*-accessible programs and a theorem
due to [Fag91] in order to describe a class of programs for which their stable and
their supported models coincide. Section 7.2 concerns the stable model semantics
for disjunctive programs and how to relate it to the non-disjunctive case. Finally,
in Section 7.3, we apply Theorem 2.4.6 in order to obtain stable models for a
certain class of extended disjunctive programs, related to [KM98].

In this chapter, we will work over Herbrand interpretations only.

We will first give some preliminary definitions and results that will be needed
in presenting our own results; they can all be found in [GL91, KM98], and in
[GL88| for the non-disjunctive case. For most of this chapter, we will work with
disjunctive programs, so we will shortly introduce them and their stable model
semantics.

7.0.1 Definition Let Lit be the set of all ground literals in a first-order language
L. A rule r is an expression of the form

(L1 V V L, + Ln—l—l L,, not Lm—l—l not Lk)
where L; € Lit for each ¢. Rules are usually written as

Ll,...,Ln%L,H_l,...,Lm,not Lm+1,...,not Ly.
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Given such a rule r, we set Head(r) = {Li,..., Ly}, Pos(r) = {Lps1,..., L}
and Neg(r) = {Lmy1,--., Lg}. A rule r is said to be disjunctive if n > 2, and
non-disjunctive otherwise. An extended disjunctive program is a countable set of
disjunctive rules. If all the rules are non-disjunctive, the program is said to be
non-disjunctive. The term extended refers to the use of two kinds of negation,
one being classical negation, occurring in the literals of the clause, the other one
being the negation not, which can be interpreted as negation as failure.

As an example of an extended disjunctive program we recall a version of the
famous “Tweety” scenario.

7.0.2 Program

flies(X') < bird(X),not penguin(X)
abnormal(X), flies(X) < bird(X)
—flies(X) « penguin(X)
bird(X)
penguin(tweety) «—
) <

bird(bob

< penguin(X)

The intended meaning of this program is that tweety is a penguin and a bird,
does not fly, and is abnormal. But bob is a bird which does fly, since there is no
evidence that bob is a penguin. Also, we have no evidence that bob is abnormal.
This meaning is captured in the stable model semantics, introduced below.

Note that if P is a normal logic program, then ground(P) is an extended
disjunctive logic program, which is in fact non-disjunctive and contains only one
kind of negation. Since negation, —, in the case of normal logic programs can be
understood from a procedural point of view as negation as failure, we interpret the
occurrence of each negation — in ground(P) as an instance of not. So ground(P),
viewed as an extended disjunctive program, is non-disjunctive and contains only
the negation not, so that all literals occurring in ground(P) are from this point
of view in fact positive, i.e. atoms. As is customary in the literature, we will
continue to use the symbol — in this case to indicate negation as failure. Note that
we assume that extended disjunctive programs are already given in ground form,
while non-disjunctive programs may contain variable symbols. The identification
of a program P with ground(P) does not pose any difficulties in the context of
our discussion.

In order to describe the answer set semantics, or stable model semantics, for
extended disjunctive programs, we first consider programs without negation, not.
Thus, let IT denote a disjunctive program in which Neg(r) is empty for each rule
r € II. A subset X of Lit, i.e. X € 2% is said to be closed by rules in II if,
for every r € II such that Pos(r) X, we have that Head(r) N X = (). The set
X € 2M% is called an answer set for II if it is a minimal subset of Lit such that
the following two conditions are satisfied.
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1. If X contains complementary literals, then X = Lit.

2. X is closed by rules in II.

We denote the set of answer sets of IT by «(II). If IT is non-disjunctive, then
a(I) is a singleton set, i.e. IT has only one answer set. However, if IT is disjunctive,
then «(II) may contain more than one element.

Now suppose that II is a disjunctive program that may contain not. For a set
X € 2%, consider the program IT* defined as follows.

1. If 7 € T1 is such that Neg(r) N X is not empty, then we remove r i.e. r € IT.

2. If r € TI is such that Neg(r) N X is empty, then the rule 7' belongs to IT¥,
where 7' is defined by Head(r') = Head(r), Pos(r’) = Pos(r) and Neg(r') = 0.

The program transformation (IT, X) — II¥ is called the Gelfond-Lifschitz
transformation of II with respect to X.

It is clear that the program II* does not contain not and therefore o (II¥)
is defined. We say that X is an answer set or stable model of Il if X € « (HX).
So, answer sets are fixed points of the operator GL introduced by Gelfond and
Lifschitz in [GLI1], where GL(X) = o (IT"). We note that the operator GL is in
general not monotonic, and call it the Gelfond-Lifschitz operator.

In the current and the following chapter, we will also make slight use of the
well-founded semantics, and we refer to [GRS91] for definitions and preliminary
results.

7.1 Unique Supported and Stable Models

Since there exist many different semantics for logic programs, it is natural to ask
when these semantics coincide. We will see in Theorem 8.2.3, that ®-accessible
programs are well-behaved from this point of view since all major semantics
turn out to be the same for these programs. In this section, we will investigate a
condition, in the non-disjunctive case, under which the stable models of a program
are exactly the supported models of the program.

7.1.1 Proposition There is a program P which has a unique supported model
but no stable model, and whose well-founded model is not total.

Proof: Consider the following program P:
p < p
p < P

We obtain Tp({p}) = {p} and Tp(0) = {p}, so {p} is the unique supported model
of P. However, the Gelfond-Lifschitz transformation using {p} deletes the second
clause and keeps the first. The resulting program has minimal model (), so {p}
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is not a stable model. Since totality of the well-founded model implies that the
well-founded model is stable [GRS91], we obtain that P does not have a total
well-founded model. |

We define well-supported Herbrand models following [Fag91, Fag94].

7.1.2 Definition An interpretation I of a program P is called well-supported if
there exists a strict well-founded partial ordering < on I such that for any atom
A € I there exists a (ground) clause A < By,...,B,,~C},...,~C,, such that
IEB B, A—C A= C,, and B; < Aforeachi=1,...,n.

The following theorem was given in [Fag91, Theorem 2.1].

7.1.3 Theorem For a normal logic program P, the well-supported models of P
are exactly the stable models of P.

Given a program P, we will denote by P’ the program which is obtained from
P as follows: P’ is the set of all clauses A < A;,..., A, for which there is a
clause A < Ay,...,A,,~By,...,7B,, in P. Thus P’ denotes the program which
is obtained by omitting all negative literals in all the clauses in P, and we note
that P’ is definite.

We can now characterize a class of programs for which stable and supported
models coincide. Recall that all stable models are supported.

7.1.4 Theorem Let P be a program such that P’ is ®*-accessible. Then the
supported models of P are exactly the stable models of P.

Proof: Let M be a supported model of P. We show that M is well-supported.

(1) M is a supported model of the Gelfond-Lifschitz transformation PM of
P with respect to M. In order to show this, let A < body be a clause in PM,
and assume that body is true in M. Then the body of a corresponding clause in
ground(P) is also true with respect to M by definition of P and hence A is true
with respect to M. So M is a model of PM. To show supportedness, assume that
A € M. Then there is a clause A < body in P with M [ body. By definition of
PM we obtain that there is a corresponding clause in P whose body is true in
M. So M is supported as a model of PM.

(2) Since P’ is ®*-accessible, it has a unique supported model . We show
that M . Assume that this is not the case, i.e. that there is A € M \
with /(A) minimal. Since M is a supported model of P, we know that there is
a clause A < body in PY with M | body. But body is also the body of a clause
in P' with head A. So by ®*-accessibility of P’, and since A € by assumption,
there exists a literal B in body with [(B) [(A) and | B, and since P’ is
definite, we obtain B € M and B €  which contradicts minimality of [(A) in
our choice of A. So M

(3) We show now that M is well-supported as a model of P. Let A € M. Since
M is a supported model of P there exists a clause A «+ By,...,B,~C,...,~C),
in ground(P) such that the body of this clause is true in M. From the inclusion
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M it follows that By,...,B, € . Now since P’ is ®*-accessible we obtain
[(A) > I(B;) for all i = 1, ..., n. Therefore, the strict ordering < on M defined by
B < Cifand onlyifI{(B)  (C) establishes that the model M is well-supported.

|

The result in Theorem 7.1.4 cannot be generalized by replacing ®* with &:
there exists a program P such that P’ is ®-accessible and such that P has a
supported model which is not a stable model. In order to see this, let P be the
program given in the proof of Proposition 7.1.1. Then P’ has a unique supported
model M = {p} and is ®-accessible. So M is indeed a supported model of P but
not a stable model of P.

7.2 Stable Models and Supported Models in the
Disjunctive Case

We study stable and supported models in the disjunctive case. In particular, we
will provide a framework for casting disjunctive programs into non-disjunctive
ones, and study relationships between the models before and after the transfor-
mation. We will work with disjunctive logic programs, i.e. with extended disjunc-
tive programs where all literals occurring in the program are in fact positive, i.e.
atoms. Moreover, not will be taken to mean classical negation, —. One immediate
effect of this imposition that Head(r) can only contain positive literals (whether
or not the restriction on not is imposed) is to restrict the elements of an answer
set to be positive literals also, as shown by the following lemma.

7.2.1 Lemma Suppose that the head of each clause in a disjunctive program II
contains only positive literals. Then any answer set for II contains only positive
literals.

Proof: Suppose that X is a set of literals which is closed by rules in ITIZ for

some € 24 Let Y denote the set which results by removing from X all the

negative literals in X. Then Y is closed by rules in I1%. To see this, suppose

that » € I and that Pos(r) Y is true. Then Pos(r) X is also true, and so
Head(r) NY = Head(r) N X = 0.

Therefore, by minimality, an answer set of I can only contain positive literals.

[ |

Notice that this lemma makes redundant the condition 1. concerning comple-
mentary literals in the first part of the Definition 7.0.1 of an answer set.

Thus, for the rest of this section, the most general form of rule r that we shall
consider in this section is the following

Al;---aAn%Bn+17---;Bm;_'Bm+17---;_'Bk7

where all A;, B; are atoms. Therefore, we have Head(r) = {A,..., A, }, Pos(r) =
{Bn+1,--.,Bn} and Neg(r) = {Bu+1, - - -, Br}-
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In fact, the members of the class of disjunctive programs thus defined are
precisely the disjunctive databases considered in [Prz88]. We will continue to use
the notation II for a typical disjunctive program even with this restriction in
place. Hence, IT denotes a possibly infinite set of rules of the sort just described.

Normal Derivatives of Disjunctive Logic Programs

The Lemma 7.2.1 focuses attention on the sets of positive ground literals in the
first order language £ underlying II i.e. on the power set I of the Herbrand
base By of II. We intend to relate answer sets to supported models of normal
logic programs associated with I, and Lemma 7.2.1 will assist us in doing this.
Therefore, typical elements of Iy will be denoted either by I or by X, depending
on the context. The first step in the direction we want to go is provided by the
following definition, and it will be convenient to write a typical rule r in IT in the
form H, < body,.

7.2.2 Definition Suppose that I is a disjunctive logic program. The single-step
operator Ty associated with 11 is the multivalued mapping from Iy to the power
set 2/ of I;; defined by: J € Ty(I) if and only if the following conditions are
satisfied.

(i) For each rule H, < body, in II such that I = body,, there exists an A in
H, such that A € J.

(ii) For all A € J, there exists a rule H, < body, in II such that I |= body, and
A belongs to H,.

Notice that this definition reduces to the usual definition of the single-step
operator Tp in case that II is a normal logic program P.

7.2.3 Theorem Suppose that II is a disjunctive logic program. Then we have
I € Ty(I),i.e. Iis a fixed point of 7, if and only if the following conditions are
satisfied.

(a) I is a model for II, i.e. for every rule H, < body, in II such that body, is
true with respect to I, we have that H, is also true with respect to I.

(b) For every A € I, there is a rule H, < body, in IT such that body, is true
with respect to [ and A € H,.

By analogy with the non-disjunctive case, we call an interpretation I (i.e. an
element of I1;) which fulfills condition (b) above a supported interpretation. Thus,
I € Ty(I) if and only if I is a supported model for II.

Proof: Suppose that I € T(I) and let H, < body, be a rule in II such that
body, is true with respect to I. For (a), it remains to show that there is an atom
A in H, such that A € I, which is the case by condition (i) of Definition 7.2.2.
Condition (b) follows directly from (ii) of Definition 7.2.2.
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Conversely, suppose that conditions (a) and (b) are satisfied by I. We have
to show that I € Ty(I), i.e. that conditions (i) and (ii) of Definition 7.2.2 are
satisfied for I = J. Both however follow directly from conditions (a) and (b),
respectively. [ |

We study next how to derive a normal program from a disjunctive one.

7.2.4 Definition Suppose that II is a disjunctive logic program. A normal
derivative P of II is defined to be a (ground) normal logic program P consisting
of possibly infinitely many clauses which satisfies the following conditions.

(a) For every rule H, < body, in II there exists a clause A < body, in P such
that A belongs to H,.

(b) For every clause A < body, in P there is a rule H, < body, in II such that
A belongs H,.

Note that condition (b) simply states that all clauses in P have to be derived
from rules in IT by condition (a).

7.2.5 Theorem Let II be a disjunctive logic program and let I € I. Then
J € T (1) if and only if J = Tp(I) for some normal derivative P of II.

Proof: Let P be a normal derivative of IT and suppose that J = Tp(I). We have
to show that J € Ty(I) i.e. that J satisfies conditions (i) and (ii) of Definition
7.2.2.

For (i), let H, < body, be a rule in I such that body, is true with respect to
I. By condition (a) of the previous definition, there exists a clause A < body,. in
P such that A belongs to H,. By definition of T, we have A € J as required.

For (ii), let A be in J. Then there exists a clause A < body in P such that
body is true with respect to I. By condition (b) of the previous definition, there
exists a rule H < body in II such that A belongs to H as required.

Conversely, suppose that J € Ty(I) i.e. that J satisfies conditions (i) and (ii)
of Definition 7.2.2. We have to show that there exists a normal derivative P of
IT such that J = Tp(I). To do this, we define the ground normal program P as
follows.

(1) Let H, < body, be a rule in IT such that body, is true with respect to I.
Then by condition (i) there is an atom A in H, such that A € J. Let P contain
all clauses A < body, for such A.

(2) For every rule H, < body, in II such that body, is not true with respect
to I, we choose an atom A in H, arbitrarily. Let P contain all clauses A < body,
thus defined.

(3) P contains only clauses defined by (1) and (2).

Obviously, P is a normal derivative of II.

Now let A € J. Then by (1) there exists a clause A < body in P such
that body is true with respect to I. Consequently, A € Tp(I). Conversely, let
A € Tp(I). Then there is a clause A <— body in P such that body is true with
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respect to I. By (1) and (3) there exists a rule H < body in II such that A
belongs to H, and by (1) again, we obtain A € J as required. [

The previous theorem allows us to conclude the existence of supported mod-
els for any given disjunctive program II provided any normal derivative of II has
such a model. In particular, if any normal derivative of II is acceptable, or locally
hierarchical, or locally stratified!, or definite, then IT has at least one supported
model. Conversely, if a given disjunctive program II has a supported model, there
exists a normal derivative of II which has a supported model. This fact is impor-
tant from our point of view since we are focussing on normal derivatives of II in
the belief that they simplify the study of II.

A disjunctive database 11 is a finite disjunctive logic program consisting of
nn € N (ground) rules. We call ny the order of II.

7.2.6 Proposition Let II be a disjunctive database of order ny = n € N consist-
ing of the rules rq,rs,...,r,. For every k € {1,...,n}, let d denote the number
of disjunctions occurring in the head of 7. Then IT has at most [];_, (2‘11c — 1)
normal derivatives. Therefore, for any I € Iy we have [Tii(I)| < [[;", (2% — 1).

Proof: Let r; be a rule in 1. Every normal derivative P of II contains at least

one and at most dj, clauses generated by 7. Consequently, there are Z’{:l (;’;) =

( O (m)) — (dk-) = 2% — 1 possibilities for clauses in P derived from 7, and

m=0 \dy
the first statement in the conclusion follows immediately from this. The second
part of the conclusion now follows from Theorem 7.2.5. [ |

For any disjunctive database which happens to be a normal logic program,
the bound in the previous corollary turns out to be 1, so that this bound is sharp.

Normal Derivatives and the Answer Set Semantics

We now return to answer set semantics, and the final results of this section bring
together the ideas developed thus far by relating answer sets of II and supported
models of normal derivatives of II.

7.2.7 Theorem Suppose that IT is a disjunctive logic program in which Head(r)
contains only positive literals for each rule » € II, and in which not denotes
classical negation. Then given an answer set X € 2M* for II, there is a normal
derivative P of II such that Tp(X) = X.

Proof: We have X € «o(I1*). Consider IT* and the following normal derivative P
of IT which we construct by reference to the step by step construction of IIX. Let r
be a rule in IT and suppose for ease of notation that r takes the form H, < body,.

First, suppose that Neg(r)NX = (), so that r € TI*. We choose an atom, A say,
from the head H, of r arbitrarily and include the clause A < body, in P. Since

LCf. Chapter 8.
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Neg(r) N X = ) we see that X  body,, and therefore this clause contributes
nothing to Tp(X).

Now suppose that Neg(r) N X = (). Then the rule 7’ belongs to IIX, where r’
is defined by Head(r’) = Head(r), Pos(r’) = Pos(r) and Neg(r') = (). Since X is
an answer set for IT*, we have the statement Pos(r’) X = Head(r')N X = ()
holding true. The first subcase of this case is when Pos(r’)  X. Again, we select
an atom A in Head(r') = Head(r) arbitrarily and include the clause A < body,
in P. Since Pos(r) = Pos(r') X, we have X = body, once more. Therefore,
this clause also contributes nothing to Tp(X).

Finally, consider the subcase of the previous case in which Pos(r’) X, so
that Pos(r) = Pos(r’)  X. For each atom A € Head(r') N X = Head(r)N X
include the clause A < body, in P, not including repetitions of this clause. Since
Pos(r) X and Neg(r)NX =0, we have X = body,. Thus, T»(X) includes all
the A € Head(r) N X for each rule r such that Pos(r)  X. Therefore, we have
Tp(X) X, and P is a normal derivative of IT by construction. Thus, it remains
to show that Tp(X) = X.

Suppose it is the case that Tp(X) C X i.e. that there is an x € X such that
for each rule r in II* with Pos(r) X we have x € X NHead(r). We show that
this supposition leads to the contradiction that Y = X \ {z} C X is an answer
set for TI*. Indeed, if r is a rule in IT* such that Pos(r) Y, then Pos(r) X
and so Head(r) N Y = Head(r) N X = ). Thus, Y is closed by rules in IT¥. But
this contradicts the minimality of X and concludes the proof. [

As an immediate corollary of our results, we can recover the result of [GLI1]
that an answer set for IT is a model for IT (and hence the name answer set
semantics or stable model semantics).

7.2.8 Corollary Suppose that Il is a disjunctive logic program. Then any answer
set X for IT is a model for II.

Proof: By Theorem 7.2.7, there is a normal derivative P of II such that Tp(X) =
X. Therefore, we have X € Tj;(X) by Theorem 7.2.5. It now follows that X is a
supported model for IT by Theorem 7.2.3. [ |

The following result is a first step towards a converse of Theorem 7.2.7.

7.2.9 Proposition Suppose that I is a disjunctive logic program which satisfies
the hypothesis of Theorem 7.2.7. Suppose also that X € 2'* and that P is a
normal derivative of IT such that Tp(X) = X. Then X is closed by rules in TT*.

Proof: Let 7' € II* be an arbitrary rule. Then there is a rule r in II of the form
H, < body, such that Neg(r)N X = (), Head(r') = Head(r) and Pos(r') = Pos(r).
Suppose that Pos(r’)  X. Then Pos(r) X and therefore X = body,, since
Neg(r) N X = (). But P is a normal derivative of II and therefore there must be
a clause in P of the form A < body,, where A € Head(r). By definition of the
single-step operator Tp, we have A € Tp(X) and hence we have A € X since
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Tp(X) = X. Therefore, Head(r') N X = Head(r) N X = (). Thus, X is closed by
rules in [1* as stated. |

Proposition 7.2.9 raises the problem of characterizing those normal derivatives
whose fixed points are answer sets for II. Indeed, the same problem can be put
for all the other semantics which have been proposed for disjunctive programs
and databases.

7.3 Signed Semi-disjunctive Programs

As already mentioned, the multivalued Knaster-Tarski theorem 2.1.4 was applied
in [KM98] in order to find answer sets for a certain class of extended disjunctive
programs, see Lemma 7.3.2 and Theorem 7.3.3 below. In this section, we will
define a subclass of these programs to which the multivalued Kleene theorem
2.4.6 can be applied instead.

Recall, that the operator GL is in general not monotonic. However, for non-
disjunctive programs it is antimonotonic in that we have GL(X) D GL(Y") when-
ever X Y. This fact is used in order to obtain a monotonic operator by applying
the operator GL twice. For this purpose, we partition a given program, if possible,
into two suitable subprograms, following [KM98].

7.3.1 Definition An extended disjunctive logic program II is said to be signed
if there exists S € 2%, called a signing, such that every rule r € II satisfies one
of the following conditions.

1. If Neg(r) N S is empty, then Head(r) S and Pos(r) S. Let IIg be the
subprogram of II consisting of those rules which satisfy this condition.

2. If Neg(r)NS is not empty, then Head(r)NS = Pos(r)NS = () and Neg(r) S.
Let IIg be the subprogram of II consisting of those rules which satisfy this
condition, where S denotes the set Lit \ S.

Clearly, the programs Ilg and Ilg are disjoint and IT = IIg Ilg. A signed
program II is said to be semi-disjunctive if there exists a signing S such that I1g
is non-disjunctive.

We borrow from [KM98] that, for signed semi-disjunctive programs, the op-
erator T : 25 — 22° defined by

is monotonic with respect to the ordering O which is the dual of the order of
subset inclusion, . In fact, for the remainder of this section we will be concerned
with decreasing orbits, and w-continuity with respect to decreasing orbits etc. So,
let us note that 2'%* is a complete lattice with respect to , and therefore the
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ordering D on 2"* turns this set into an w-cpo (with bottom element). Since it
is natural to think of the ordering  on 2M* rather than its dual, the notions
and results of this section will be formulated with respect to . But, in fact,
we will later on apply the dual version of the multivalued Kleene theorem 2.4.6,
where the notions of monotonicity, w-continuity and w-cpo will be taken to mean
the duals of the corresponding notions introduced in Section 2.4, see for example
Lemma 7.3.2.

The following lemma, [KM98, Lemma 2], establishes the dual of the hypothesis
(2.1) on T which was used in Theorem 2.1.4.

7.3.2 Lemma With the notation already established, let II be a signed semi-
disjunctive program, let (X3) be a decreasing orbit of 7" in 2% and let X denote
5 Xp- Then there exists S such that € T'(X) and X.

From this lemma, it follows by the multivalued Knaster-Tarski theorem 2.1.4
that the operator T has a fixed point. The proof of the next theorem from [KM98]
was based on this observation.

7.3.3 Theorem Let II be a signed semi-disjunctive program which is safe? with
respect to the partition (IIg,Ilg), where S is a signing for which IIg is non-
disjunctive. Then II has a consistent answer set i.e. an answer set which does not
contain any complementary literals.

The proof of this result utilizes only the single fact from Lemma 7.3.2 that a
fixed point of T' can be found (by applying Theorem 2.1.4). So, if a fixed point of
T can be found by other means, the proof of Theorem 7.3.3, as given in [KM98|,
is still valid.

Now, if II is a program as in Theorem 7.3.3 and, in addition to this, T is
w-continuous (using the notion dual to the one from Definition 2.4.5), then we
obtain the fixed point of T from the proof of Theorem 2.4.6 using no more than
w iterations. We will see that a finiteness condition together with an acyclicity
condition suffices to achieve this.

7.3.4 Definition A program II is said to be of finite type if, for each L € Lit,
the set of rules in IT with L in their head is finite®. A program II is called acyclic
if there is a (level) mapping [ : Lit — N, such that [(L) = [(=L) for each literal
L and, for every rule r in IT and for all L in Head(r) and all L' in Pos(r) Neg(r),
we have [(L) > [(L').

The condition on a program that it is of finite type was used in [Sed95] in
order to establish Theorem 4.2.6 concerning continuity, in the atomic topology,
of the immediate consequence operator of a normal logic program i.e. of a non-
disjunctive program. Later on it was shown in [Sed97]| that continuity in the

2This concept is defined in [KM98], but it will not be needed here.
3When working with non-ground programs, a sufficient condition to obtain this for the
ground instantiation of the program is the absence of local variables. See also Example 7.3.8.

118



CHAPTER 7. STABLE MODEL SEMANTICS

atomic topology is closely related to continuity in quasimetric spaces. Thus, in
the light of Section 2.4, it is not surprising that programs of finite type make an
appearance again in our present setting. Cf. also Definition 4.3.11.

We now inductively define the following sets for a signed semi-disjunctive
program with signing S.

X =Lit,
Y;' =« (Hé(l) )
Xip1 € o (IIY) with Xiyy  X;
X=X,
€N
Y= Y.
1€N

Indeed, these sets are well-defined since Ilg, and therefore H?i, is non-
@ HXl
disjunctive for each i, and since the operator T, where T(X;) = « HS( )

as above, is monotonic. With this notation, we have the following lemma.

7.3.5 Lemma Let II be a signed semi-disjunctive program with signing S such
that I1g is of finite type. Then the following hold with respect to the ordering
on 2t

(i) The sequence X; is decreasing. We set X =  Xj.

(ii) The sequence H?i of programs is increasing with respect to set-inclusion,
and TI3' = II3.

(iii) The sequence Y; is increasing. We set Y = ;.

(iv) The sequence H? of programs is decreasing with respect to set-inclusion,
and 1Y =1IY.

(v) YV =a(IIF).
(vi) X is closed by rules in ITY.

(vii) For each L in X, there is a rule r in II} with L € Head(r) such that the
following two conditions are satisfied.

(vii.1) Pos(r) X.
(vii.2) For any literal L' € Head(r) with L' = L, we have L' € X.

Proof: (i) This follows immediately from the definition of the X;.
(ii) This follows from (i), (iii) follows from (ii), and (iv) follows from (iii).
(v) If L € Y, then there is i € N such that L € Y; = o (II37) for all 4 > i .
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Since the sequence H?i of programs is increasing with respect to set-inclusion and
I3 IIF for each i, we obtain L € o (II¥) and therefore Y « (II¥). Now let
r be a clause in I15. If Pos(r) Y, then there is i € N such that Pos(r) Y;.
But each Y; is closed by rules in H?i and H?i is non-disjunctive for each 7, hence
we obtain that Head(r) € Y;. So Head(r) € Y and it follows that Y is closed by
rules in 1 . Since answer sets of II§ are sets which are minimally closed by rules
in IT¥ and since Y« (II¥), we obtain that Y = o (I1).

(vi) This was shown in [KM98].

(vii.1) Let L € X be a literal. We know that L € X, for all n. But X, is minimally
closed by rules in Hg”, therefore we also know that, for each n, there must be
a rule r in II}" with L € Head(r) and Pos(r)  X,. Since Il is of finite type,
we also know that there are only finitely many rules r in ITy" with L € Head(r).
But H?H H? for all 7, so it follows that there must be a rule r in Hg with
L € Head(r) such that Pos(r) X, for all i. Hence Pos(r) X.

(vii.2) Let ri,...,7, be all the rules in IT with L € Head(r;) and Pos(r;) X,
noting that ng is of finite type so that there exist only finitely many such rules.
There must now be a j € N such that, for all j > j , we have that each r; is
a rule in H? with Pos(r;) X by (vii.1). Now, for each ¢ = 1,...,n, suppose
that there is a literal L; = L in Head(r;) with L; € X. Then we have L; € X; for

Y; .
g, which

contradicts the fact that X; is minimally closed by rules in H?. [

all 7 > j . It is now easy to see that X; \ {L} is closed by rules in II

If the program Ilg additionally satisfies the acyclicity condition, then X is
already a fixed point of T, as we show next.

7.3.6 Theorem Let II be a signed semi-disjunctive program with signing S such
that Il is of finite type and is acyclic. Let (X,) be a decreasing w-orbit of 7" in
2% and let X = | X,,. Then X € T(X).

Proof: We know from Lemma 7.3.2 that there is X with € T(X). Assume

"= X\ =0. Since IT} is acyclic, there must be an L € ' of minimal level.
But L € X so, by Lemma 7.3.5 (vii), there must be a rule r which satisfies
conditions (vii.l) and (vii.2). By (vii.1) and minimality of the level of L, we

obtain Pos(r) and since  is closed by rules in IIY, there must be a literal
L' € Head(r) with L' € . But X, so we obtain L' € X and L' = L by
(vii.2), and therefore L €  contradicts L € . |

As already mentioned above, the proof of Theorem 7.3.3 now carries over
directly from [KM98], so that each signed semi-disjunctive program which is safe
with respect to the partition (Ilg, IIg), where S is a signing for which Il is non-
disjunctive and Ilg is of finite type and acyclic, has a consistent answer set. From
the proof of Theorem 7.3.3 together with Theorem 7.3.6, this answer set turns
out to be Y X, with notation as defined in the paragraph preceding Lemma
7.3.5. The novelty of this theorem lies in the fact that the answer set can be found
by applying the operator 7' no more than w times.
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We conclude with two examples which show that the conditions of being
acyclic and of finite type are indeed necessary. We will use the notation from
Lemma 7.3.5.

7.3.7 Program Let II be the ground instantiation of the following program,
where x denotes a variable and 0 a constant.

p(z) < not ¢(x)
q(s(z)) < not p(z)
r(0) < ¢(z),not p(z)
The program IT is signed with signing S = {p(s"(0)) | » € N} and is trivially
semi-disjunctive. Note, however, that [Iz is not of finite type but is acyclic. We
now make the following calculations:

X =Lit,

Y =0,

Xi={r(0)} {q(s"(0 )) |n>i} fori>1,
Yi={p(s"(0)) [ n = i} fori > 1.

As expected, the set X = X, = {r(O)} is not a fixed point of T nor is
X Yo = {r(0)}U {p(s"(0)) | n € N} an answer set of II. However, taking
X ;1 =T(X ) =0, which is a fixed point of T', we obtain {p(s"(0)) | n € N} as
answer set of II.

The following example shows that the acyclicity condition on Il cannot be
dropped.

7.3.8 Program Let II be the ground instantiation of the following program,
where x is a variable and a constant symbol 0 is added to the language underlying
I1.

t(x)

+ not ¢(x)
q(s(x)) « not p(x)
r(z) < q(z),n0t p(z)
r(z) < r(s(z)),not t(z)
The program II is signed with respect to the signing S = {p(s™(0)),¢(s™(0)) | n €
N} and is trivially semi-disjunctive. Note, however, that due to the last clause

in the above program, Il5 is not acyclic but is of finite type. We now make the
following calculations:

t(x
p(x

) <
)
)
) <

X =Llit,

Y =0,

X; ={q(s"(0)) | n>i}U {r(s"(0)) | n € N} for i > 1,
Y ={p(s"(0)) | n=0,...,i—1} fori > 1.
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As expected, the set X =, X; = {r(s"(0)) | n € N} is not an answer set of Il
nor is X Y ={r(s"(0)) | n € N}JU {p(s™(0)) | n € N} an answer set of II.
However, if we keep on iterating and calculate

Y 1 =a () = {p(s"(0)) | n € N}, and
X 4 =T(X)=0

we obtain X ; as fixed point of 7" and {p(s"(0))} as answer set of II.

7.4 Summary and Further Work

We have discussed relationships between the stable model semantics and the
supported model semantics, and applied a fixed-point theorem from Chapter 1 to
the Gelfond-Lifschitz operator for extended disjunctive programs. We note that
our methods of obtaining normal programs from disjunctive ones as in Section 7.2
correspond to relationships between the multivalued fixed-point theorems from
Chapter 2 and the respective single-valued theorems from Chapter 1.

Stable models can be understood in the framework of default theories due to
R. Reiter, and are important for the currently emerging programming paradigm
called answer set programming. Domain-theoretic investigations of the stable
model semantics have been undertaken in [ZR97a, ZR97b, ZR98, RZ98|, where
disjunctive programs were treated using Smyth powerdomains instead of mul-
tivalued mappings. Relationships to the work presented in this chapter suggest
themselves but remain to be worked out.

We finally note that there is a subtle difference between programs P and their
ground instantiations ground(P). Every program P can be cast into a possibly
infinite ground program by associating it with ground(P). However, a count-
ably infinite ground program cannot in general be converted into a finite pro-
gram containing variables. While this does not cause any restrictions concerning
the denotational analysis of these programs, there is certainly a difference when
talking about operational aspects, e.g due to the presence of floundering under
SLDNF-resolution. We would also like to mention [Fer94], where classes of models
are characterized in topological terms. This work is based on (possibly infinite)
ground programs, and, due to our observations above, can not be carried over
without modifications to the case of finite programs with variables.
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Perfect and Weakly Perfect
Model Semantics

The perfect model semantics was proposed in [Prz88] as a suitable semantics for
locally stratified programs, introduced below, which are a common generalization
of both locally hierarchical and stratified programs [ABW88|. It turned out to be
too restrictive, however, and the approach was generalized in [PP90] to the so-
called weakly stratified programs, resulting in the weakly perfect model semantics.

In Section 8.1, we will study the perfect model semantics for locally stratified
programs from an iterative point of view, inspired by an approach followed in
[ABWSS] for stratified programs. In Section 8.2, we investigate ®-accessible pro-
grams from the point of view of the weakly perfect model semantics and show,
that all major semantic approaches coincide for these programs.

We will work over Herbrand interpretations only.

8.1 Locally Stratified Programs
We first define stratified programs due to [ABW88].

8.1.1 Definition Let P denote a normal logic program. Then P is said to be
stratified if there is a partition P = P; P,, of P such that the following
two conditions hold for ¢ =1,...,m:

(1) If a predicate symbol occurs positively in a clause in P;, then its definition is

contained within i<i P;.

(2) If a predicate symbol occurs negatively in a clause in P;, then its definition

is contained within i<i P;.

We adopt the convention that the definition of a predicate symbol p occurring
in P is contained in P; whenever its definition is empty. Thus, each predicate
symbol occurring in P is defined but it may have empty definition; in particular,
P, itself may be empty.
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In order to treat non-monotonic operators, the powers of an operator 1" map-
ping a complete lattice into itself were defined in [ABWS88] as follows:

TH0(I) = I
Tt(n 1)) =T(Tta()) Tta(l)
Ttw(I) = ZOZOTTn(I).

Of course, T1n(I) is not equal to T™(I) unless T is monotonic and I T'(I).
Indeed, the sequence (T 1T n(I)), is always monotonic increasing. However, this
concept can be used to construct a minimal supported model Mp for any stratified
program P as follows: put M =0, My = Tp tw(M ),..., My, =Tp, Tw(My_1).
Finally, let Mp = M,,. This construction is due to [ABW88|.

We next define locally stratified programs due to [Prz88] which generalize
both stratified and locally hierarchical programs.

8.1.2 Definition A normal logic program P is called locally stratified if there
exists a level mapping | : Bp — ~ for P such that for every clause A <«
Ay, ..., Ap, By, ..., 1B, in ground(P) we have [(A) > I(A;) and I(A) > I(B;)
for all ¢ and j.

While the defining conditions for locally hierarchical programs prevent the
occurrence of recursion, the conditions for locally stratified programs prevent only
recursion through negation, hence allow to control the negation which occurs
in the program, as we will see below, without restricting the use of recursion
otherwise. In particular, each definite program is locally stratified.

We will now carry over the above mentioned treatment of stratified programs
to the case of locally stratified programs.

8.1.3 Definition Let P denote a normal logic program and let [ : Bp — 7
denote a level mapping, where v > 1. For each n satisfying 0  n < v, let Py,
denote the set of all clauses in ground(P) in which only atoms A with [(A)
occur, and recall the notation £,, for the set of all atoms A of level [(A) less than
n. We define Ty © (£,) = (L4) by Tjy(I) = Tp, (I). The mapping T} is
called the immediate consequence operator restricted at level n.

Thus, the idea formalized by this definition is to “cut-off” at level n.

8.1.4 Construction Let P be a locally stratified program and let [ : Bp — 7
denote a level mapping, where v > 1. We construct the transfinite sequence
(In)ney inductively as follows. For each m € N, we put Iji ) = T{j(0) and set

I, = It ). If n € y, where n > 1, is a successor ordinal, then for each m € N

m=0
we put Ir, ) = ﬂ%([n,l) and set I, = °  Ijpm). If n € v is a limit ordinal, we
put I, = | _.In. Finally, we put Ijp; = n<7In-

The main technical lemma we need is as follows. For its proof, which is by
transfinite induction, it will be convenient to put Ij,,, = I, for all m € N
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whenever n is a limit ordinal; thus statement (b) in the lemma makes sense for
all ordinals n.

8.1.5 Lemma Let P be a normal logic program which is locally stratified with
respect to the level mapping [ : Bp — <, where v > 1. Then the following
statements hold.

(a) The sequence (I,,)ne is monotonic increasing in n.

(b) For every n € ~, where n > 1, the sequence (/[pm) is monotonic increasing
in m.

(c) For every n € vy, where n > 1, I,, is a fixed point of Tj,.

(d) IfI(B) and B € I,,, where B € Bp, then for every m € v with n< m<e
have B € I, and hence B € Ijp). In particular, if [(B) and B € Ij,11,m
for some m € N, then B € I,, and hence B € Ijp.

Proof: It is immediate from the construction that the sequence (I,),e, is mono-
tonic increasing in n, and this establishes (a).

The main work is in establishing (b) and (¢), which we treat simultaneously. To
do this, we need to note the technical fact that, for each n € v, we can partition
Pny1 as Py P(n), where P(n) denotes the subset of ground(P) consisting of
those clauses whose head has level n. Thus, Tj,111(I) = Tin)(I)  Tpm) (1) for any
I € Ip; note that if A € Tpg,)(1), then [(A) = n.

Let (n) be the proposition, depending on the ordinal n, that (I, ;) is mono-
tonic increasing in m and that I, is a fixed point of T%,;. Suppose that (n) holds
for all n @, where a@ < = is some ordinal. We must show that («) holds.
Indeed, (1) holds since Py is a definite program and the construction of I; is
simply the classical construction of the least fixed point of Tj;;, and therefore we
may assume that « > 2. It will be convenient to break up the details of the case
when « is a successor ordinal into a sequence of steps.

Case 1. @« =k 1 is a successor ordinal. Thus, (k) holds.
Step 1. We establish the recursion equations:

Tigy1,0 = Iy
Ijsrma) = Lo Ty (Ljps1,m))

and the first is immediate. Putting m = 0, we have Ijpy11) = Thet11(Ie) = T (k)

Tp(k) ([k) = Ik Tp(k) (Ik) = Ik Tp(k) ([[k+1,0]); LlSiIlg the fact that Ik is a fixed point
of Ty. Now suppose that the second of these equations holds for some m > 0.
Then [[k+1,(m+1)+1} = T[/c+1]([[k+1,m+1}) = T[k} (I[k+1,m+1]) TP(k) (I[k+1,m+1]) =
T[k] (Ik Tp(k)(l[k+1’m])) Tp(k)(l[k+1’m+1}), and it suffices to show that T[k} (Ik

Tp(k)(l[kJer])) = I,. So suppose that A € T[k](Ik Tp(k) (I[k+1,m]))- Thus,
there is a clause in Py of the form A <« A;,..., Ay, ~B;,...,~B;, where
Al; - 7Ak1 e I Tp(k) (I[k+1,m}) and Bl: ceey Bl1 € I Tp(k) (I[k+1,m})- But then
level considerations and the hypothesis concerning P imply that Ay, ..., Ag, € Ix
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and By,..., By, € Ij. Therefore, A € Ty (Ix) = I, and we have the inclusion
Tiy(Ie  Tpuy(Ijg+1,m)))  Ik. The reverse inclusion is demonstrated in like fash-
ion, showing that the second of the recursion equations holds with m replaced by
m 1 and hence, by induction on m, that it holds for all m.

Step 2. We have the inclusions Tp(k)(fk) Tp(k)([k Tp(k)([k)) Tp(k) (Ik
TrawyIy  Tpey(Ik))) - .-

These inclusions are established by methods similar to those we have just em-
ployed and we omit the details.

It is now clear from this fact and the recursion equations in Step 1 that
(Itk+1,m))> or (Ija,m]), is monotonic increasing in m. Since monotonic increasing
sequences converge to their union in @, and Ijy1y,, is an iterate of I, it now
follows by Theorem 4.2.5 that I, is a model for Pq].

Step 3. If B € Bp and [(B) , then B € Iy if and only if B € Ij.

Indeed, if B € I, then it is clear from the recursion equations of Step 1 that
B € I;;1. On the other hand, if B € I}, then it is equally clear from the recursion
equations and level considerations that, for every m € N, B € Ij;41,,) and hence
that B € I, as required.

Step 4. Iy is a supported model for Py 4.

To see this, suppose that A € I, = ;O:of[kﬂ,m]- Then there is m € N such
that A € Ijpi1mi1) = T[Zfll] (I) for all m > m . Thus, A € ﬂkﬂ](T[Z’j;l] (Iy)) =
Tte41](Lik+1,m0))- Hence, there is a clause A <— Ay, ..., Ay, =By, ..., 2By, in Py
such that each A; € Ijpi1,m) and no Bj € Ijpy1my- But I(B;) k& for each j
since P is locally stratified. Since B; € Ijj41,m,), we now see from the recursion
equations that B; € I. From the result in Step 3 we now deduce that, for each
J, Bj € Iy4y. Since it is obvious that each A; belongs to Ij,,, we obtain that
A € Tyy1y(Igs1). Thus, Iyy Tigga)(Ze41) and therefore Iy is a supported
model for Py, or a fixed point of Tj; ), as required.

Thus, (a) holds when « is a successor ordinal.

Case 2. o is a limit ordinal.

In this case, it is trivial that (If, ) is monotonic increasing in m. Thus, we have
only to show that I, is a fixed point of T i.e. a supported model for P}, and we
show first that I, is a model for Py;. Let A € Tj,)(/,). Then there is a clause A «+
Ay A, 1By, ..., 0By in Py such that Aq,..., Ay, € I, and By,..., B, €
I,,. Indeed, by the definition of P, and the hypothesis concerning P, there is n

a such that the clause A < Ay,..., Ay, =By, ..., B, belongs to Pp,,. Since the
sequence (I,)ney is monotone increasing and I, =  _ I, there is n; such
that Ay,..., Ay, € I, and By,...,B;, € I,,. Choosing ny = max{n ,n;}, we
have A < Ay,..., Ay, ~DBy,...,mB;, € Py, and also A,,..., A, € I,, and
By,...,B;, € I,,. Therefore, on using the induction hypothesis we have A €
Ttpy)(In,) = I, I, Hence, Ty (1,) I, as required.

To see that I, is supported, let A € I,. By monotonicity of (I,,)nc, again and
the identity I, = ,_,I,, there is a successor ordinal n > 1 such that A € I,
for all n such that n < mn  «. In particular, we have A € I,,, = ;::0[[710,771]'
Therefore, there is m; € N such that A € Ijyg 1] = Ting) (110 (Ing-1)). Con-

[no]
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sequently, there is a clause A < Ay,..., Ay, ~By,..., =B, in Py, such that
A, ,Akl S T[Zlol}(jno—l) = I[no,ml] Ino I, and By,..., Bk1 S I[no,ﬂn]' But
[(B;) — 1 for each j and so no B; belongs to I,,,_; by Step 3 of the grevious
case. Therefore, by this step, no B; belongs to I, and by iterating this we see
that, for every m € N, no B; belongs to I,,im,. Therefore, no B; belongs to I,.
Hence, we have A € Tj,/(/a)  Tja)(a) or in other words that I,  Tjq(/a), as
required.

It now follows that (n) holds for all ordinals n, and this completes the proof
of (b) and (¢). In particular, we see that the recursion equations obtained in Step
1 hold for all ordinals &, and we record this fact in the corollary below. Indeed, all
that is needed to establish these equations is the fact that each I} is a fixed point
of Tjj, and to note that the proof just given shows also that Ip; is a fixed point
of Tp. In turn, (d) of the lemma now follows from this observation by iterating
Step 3.

The proof of the lemma is therefore complete. [ |

It can be seen here, and it will be seen again later, that the importance of
(d) is the control it gives over negation in the manner illustrated in the proof
just given that I, is a supported model for Py . It is also worth noting that
the construction produces a monotonic increasing sequence by means of a non-
monotonic operator, and that Lemma 8.1.5 plays a role here similar to that played
by [ABW88, Lemma 10].

8.1.6 Corollary Suppose the hypotheses of Lemma 8.1.5 all hold. Then:

(1) For all ordinals n and all m € N we have the recursion equations

[[n+1,0] =1,
Invima) = In Tremy(Ing1,m))-

(2) If P is in fact locally hierarchical, then for every ordinal n > 1 we have
Iniim) = In - Tpwy(In) for all m € N, where P(n) is defined as in the proof
of Lemma 8.1.5, and therefore the iterates stabilize after one step.

Proof: That (1) holds has already been noted in the proof of Lemma 8.1.5.
For (2), it suffices to prove that Tpq(I,) = Tpmy(In  Trpm(ly)). So sup-
pose therefore that A € Tpw)(In  Tpm)(In)). Then there is a clause A <
Ay, ., Ay, 2By,...,2B;, in P(n) such that Ay,..., Ay € I, Tpwy(l,) and
Bi,....By, € I, Tpm)(In). From these statements and by level considerations,
we have Ay,..., Ay, € I, and By,..., By, € I,. Therefore, A € Tp,(1,) so that
Tram)(In Tpwmy(In))  Tpm)(In). The reverse inclusion is established similarly to
complete the proof. [ |

Statement (2) of this corollary makes the calculation of iterates very easy to
perform in the case of locally hierarchical programs.
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8.1.7 Theorem Suppose that P is a normal logic program which is locally strat-
ified with respect to the level mapping [ : Bp — 7. Then I;p is a minimal
supported model for P.

Proof: That Ijp) is a supported model for P follows from the proof of
Lemma 8.1.5, and so it remains to show that I;p; is minimal. To do this, we
establish by transfinite induction the following proposition: “if .J Iipy and
Tp(J) J, then I, J for all n € v, where n > 1”7, and this clearly suffices.
Indeed, Tiyy(J) Tp(J) J and therefore J is a model for Pyj. But, as already
noted in proving Lemma 8.1.5, I; is the least model for P;; by construction, since
Py is definite. Therefore, I,  .J and the proposition holds with n = 1.

Now assume that the proposition holds for all ordinals n « for some ordinal
a € 7, where a > 1; we show that it holds with n = a.
Case 1. « =k 1 is a successor ordinal, where k& > 0.
We have I ~J. We show by induction on m that Iy ., J for all m. Indeed,
with m = 0 we have I,y = I, J. Suppose, therefore, that Ij;y1,,,) J for
some m > 0. Let A € Ijpi1mot1) = Tie411(T7,° ;1 (Zk)). Then there is a clause A <

[k+1]

A, ,Akl, -Bq,..., _‘Bh in P[k:-i—l] such that Aq,..., Ak1 S ,T[Zlil] (Ik) = I[/H-l,mo]
and By, ..., B;, € Ijgi1,m,)- But I(Bj) for each j. Applying Lemma 8.1.5 (d)
we see that no B; belongs to I;p; and consequently no B; belongs to .J because
J  Ijp). Since Ijpq1,m,) J by assumption, we have A;,..., Ay, € J. Therefore,
A€ Tyy(J) Tp(J) J, and from this we obtain that Ijpy1me41y J as
required to complete the proof in this case.
Case 2. « is a limit ordinal.
In this case, I, = I, and I, .J for alln  « by hypothesis. Therefore,
I, J as required.

Thus, the result follows by transfinite induction. [ |

n<o

The following definition is due to [Prz88]. Indeed it was shown in [Prz88] that
each locally stratified program has a unique perfect model. Our proof in Theorem
8.1.9 below, using our previously obtained results, however, is more constructive.

8.1.8 Definition Suppose that P is a locally stratified normal logic program,
and let [ denote the associated level mapping. Given two distinct models M and
N for P, we say that N is preferable to M if, for every ground atom A in N\ M,
there is a ground atom B in M \ N such that [(A) > [(B). Finally, we say that
a model M for P is perfect if there are no models for P preferable to M.

Notice that the requirement [(A) > [(B) is dual to the requirement A B
relative to the priority relation  defined in [Prz88|.

8.1.9 Theorem Suppose that P is a normal logic program which is locally strat-
ified with respect to a level mapping [ : Bp — 7, where 7 is a countable ordinal.
Then Ijp) is a perfect model for P and indeed is the only perfect model for P.

Proof: Suppose that there is a model N for P which is preferable to Ijp (and
therefore distinct from Ijp)); we will derive a contradiction.
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First note that N\ /;p; must be non-empty, otherwise we have N I;p;. But
this inclusion forces equality of N and Ijp) since Ijp) is a minimal model for P,
and therefore N and Ijp are not distinct. This means that there is a ground atom
Ain N \ Ijp], which can be chosen so that [(A) has minimum value; let B be a
ground atom in Ijp; \ N corresponding to A in accordance with Definition 8.1.8,
and which satisfies [(A) > [(B).

Next we note that Tr(N) Tp(N) N, since N is a model for P. Hence,
N is a model for Fyj, which implies that I, N since Iy is the least model
for the definite program Ppyj. Therefore, B can be chosen so that B € I, \ N,
with minimal n > 1. Now n cannot be a limit ordinal, otherwise we would
have I,, = m<n01m, from which we would conclude that B € I, \ N for some
m  n contrary to the choice of n . Thus, n must be a successor ordinal and,
therefore, B can be chosen so that B € I, \ N, where m is such that
Itng.mi) \ N = 0 whenever my , ; indeed, since Iy N, we must have n. > 1
and m > 1 also. Consequently, B € Ting({jng,mo-17) \ IV showing that there is
a clause B <+ Cy,...,Cy,—Dy,...,mDy in Py, with the property that each
Ci € Itngmo—1) and 1o D; € Ijng me—1]- Since (D) — 1 for each j, we see that
none of the D; belong to Ijp) by Lemma 8.1.5 (d). But all the Cj, if there are any,
must belong to N by the choice of the numbers n and m . Moreover, there must
be at least one D; and indeed at least one belonging to N. For if there were no
D; or we had each D; € N, then we would have B € Tp, (N) Tp(N) N,
using again the fact that N is a model for P. But this leads to the conclusion that
B € N, which is contrary to B € Ijpj \ N. Thus, there is a D = D; € N\ Ijp),
for some j, satisfying I(D)  (B)  (A). Since A was chosen in N\ Ijp) to have
smallest level, we have a contradiction.

This contradiction shows that Ijp; must be a perfect model for P as required.
The last statement in the theorem concerning uniqueness of Ijp; now follows from
[Prz88, Theorem 4]. |

Since it is shown in [Prz88] that perfect models are independent of the local
stratification, we also have the following result.

8.1.10 Corollary If P is a normal logic program which is locally stratified with
respect to two level mappings /1 and [y, then the corresponding models Ijp) and
Iip,) are equal.

8.1.11 Program Since locally stratified programs are a generalization of locally
hierarchical programs it is clear that each locally hierarchical program has a
unique perfect model. This does not hold, however, for ®*-accessible programs.
Indeed, the program

P 7q
q < r,p

is ®*-accessible (even acceptable) with respect to the unique supported model
M = {p}. However, I = {q} is also a model of this program and while I is
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preferable to M, M in turn is also preferable to I, so P does not have a perfect
model.

It also follows from [Prz88, Theorem 4] and Theorem 8.1.9 above that Ijp
coincides with the model Mp of [ABWS88] when P is stratified. However, for
the sake of completeness we next present a proof of this fact using the methods
established thus far. To do this, it will be convenient to introduce the concept
T n(I) for a mapping T : Ip — Ip and I € Ip. In fact, T fy n(I) is defined
inductively as follows:

TH0(I) =1
Th(n D) =T(Ttn) I

Thw() = ZOZOTﬂn(I).

8.1.12 Theorem Let P be a stratified normal logic program. Then Ijp; = Mp.

Proof: As usual, we take the stratification to be P =P, ... P, and we will
show by induction that I, = Mj for Kk =1,...,m and that I}, = M, for k > m.
From this we clearly have Ijp) = M,, = Mp as required.

With the definition of the level mapping we are currently using and with
the conventions we have made regarding the stratification, we note first that the

equalities Py = ground(P, P, ... Fj)and P(k—1) = ground(Fy) both hold
for k=1,...,m, where P(k) is as defined in the proof of Lemma 8.1.5.
Now P = ground(P,) is definite, even if empty, and so it is immediate

that Tp, 1 i(M ) = Tp, Ti(M ) for all ¢ and that I; = M;. So suppose next
that Tp,,, 1 i(My) = Tp,,, T (M) for all 7 and that I, = M, for some
k > 0. Then T’p,H_2 ﬂ O(Mk—i—l) = Mk:-H = TPk+2 T O(Mk—i—l) and also I[k+2’0] =
Ijy1 = My = Tp,,, TO(Mj41). So now suppose that Tp,_, tm(Myqq) = Tp,,, T
m(Mpy11) and that Ijy9.m = Tp,,, T m(Mg.) for some m > 0. Then Tp,, 1
(m  )(Mys1) = Tpy, (Thp Tt m(Mpy1))  Miga and Tp Pl 1)(Mysa) =
Tp,.,(Tp,,, T m(My41)) Tp,., T m(Mpy1), and it is clear that Tp,_, f (m
1)(Mg11)  Tp,,,T(m  1)(Myyq). For the reverse inclusion, we note that under
our present hypotheses we have Tp, ., T(m 1)(Myy1) = Tp,,,(Tp, ., M m(Mpy1))
Tp,,, ' m(Mj41) and so it suffices to show that Tp,, tm(Mry1) Tp,, (T, 1
m(Mpgy1)) Mgy or in other words that Ikiom  Tpg+1)(Lk+2,m))  Let1. Since
this latter set is equal to Ijy42m+1] by the recursion equations of Corollary 8.1.6,
the inclusion we want follows from the monotonicity of the sets Ij 2, relative to
m. We conclude, therefore, that Tp,, (m  1)(Myy1) = Tp,,, T(m ) (Mpq1).
Finally, ljpyomi1) = lkvr Tresr)Lprom) = Mesr Tr o, (To,, Tm( My ) =
Mk-l-l TPIc+2 (Tpk+2 ﬂm(Mk-H)) = TPk-+2 ﬂ (m 1)(Mk+1) = TPk+2 T(m 1)(Mk+1)7

by the conclusions of the previous paragraph. Therefore, I o my1) = Tp,, T
(m  1)(Mj41). From this we obtain, by induction, the equality Ijpyom = Tp,,, T
m(Mp1) for all m and with it the equality I o = My o as required. [

The details of the induction proof just given also establish the following propo-
sition.

130



CHAPTER 8. PERFECT AND WEAKLY PERFECT MODEL SEMANTICS

8.1.13 Proposition Let P=PFP; ... P, be a stratified normal logic program.
Then we have Tp, ,, i(My) = Tp,,, Ti(My) for all i and k = 0,...,m — 1.

8.2 Weakly Perfect Model Semantics

When studying various classes of programs, the question naturally arises as to
how such classes relate to other classes known in the literature. From the defini-
tion, it follows immediately that the unique supported model class of all locally
hierarchical programs is contained in the class of all locally stratified programs.
In this section, we will relate the class of all ®-accessible programs to the notion
of weak stratification.

[t was pointed out in [BF91, Remark 5.3] that the original definition of weakly
stratified programs in [PP90] is ambiguous since the two conditions

(a) All strata of a program P consist of trivial components only.
(b) All layers of a program P are definite programs.

which were originally used for defining weakly stratified programs are not equiv-
alent. We will call a program weakly stratified-a if condition (a) holds, and weakly
stratified-b if condition (b) holds. For a discussion of this, see [BF91, Section 5],
and we refer to the same publication for notation concerning weakly stratified
programs.

In [PZ98], it was shown that each acceptable program [AP93] is weakly
stratified-a. From [GRS91, Corollary 4.3], we immediately obtain that each ®-
accessible program has a total well-founded model, ie. is effectively stratified
[BF91]. Again from [BF91, Proposition 5.4], we obtain that a program which
is weakly stratified-b, is also effectively stratified.

It is easy to see that a program which is weakly stratified-b, is also weakly
stratified-a. In the opposite direction, we have the following result.

8.2.1 Theorem If P is weakly stratified-a and if there does not exist a clause
A < body in ground(P) with =A occurring in body, then P is weakly stratified-b.

Proof: Since P is weakly stratified-a, all minimal components are trivial. Let
A < body be a clause in the bottom layer. Without loss of generality assume that

body contains some negative literal =B, ie.! B , with A = B by assumption.
Since the component containing A is trivial, we obtain A > B and therefore we
obtain a contradiction. |

It is clear from the last result that a locally hierarchical program is weakly
stratified-a if and only if it is weakly stratified-b. This does in fact also hold for
locally stratified programs.

We will now generalize a result from [PZ98], that all acceptable programs are
weakly stratified-a.

14“<” denotes the dependency relation taken from the dependency graph of P [PP90].
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8.2.2 Theorem If P is ®-accessible, then P is weakly stratified-a and the unique
supported model Mp of P is also its weakly perfect-a model.

Proof: Let Mp be the unique supported model of P and let [ be its canonical
level mapping wrt. ®. We can also assume without loss of generality that for each
level « there exists some A € Bp with [(A) = «.

(1) We first show that all components of the bottom stratum S(P) of P are trivial.
Assume that this is not the case, i.e. that there exists a minimal component
C  S(P) which is not trivial. Then there must be some A € C with [(A)
minimal, and some A" € C' with A = A’. Note that A A" and A’ A [BF91,
Definition 5.1]. Let B be an arbitrary atom occurring in a ground clause with
head A. Then B A" and therefore B A, and by minimality of C' we obtain
B € C. So all atoms B occurring in bodies of clauses in ground(P) with head A
belong to C'. Since P is ®-accessible, however, there must exist some choice of B
for which we have [(B)  (A), and this contradicts the minimality of I(A). Note
that the bottom stratum contains all atoms of level 0, and hence is non-empty.
(2) The model M of the bottom layer is compatible with Mp, i.e. if a literal is
true, respectively false, in M, then it is true, respectively false, in Mp. In order
to see this, note that for every atom A in a minimal component, the bottom layer
L(P) contains all clauses with head A and all clauses with head being any of the
body atoms of clauses in the bottom layer. Since the program P is ®-accessible, it
is easy to see that the subprogram formed by the bottom layer is also ®-accessible
and has a unique supported model which is compatible with Mp.

Now let A be an atom in L(P) which occurs negatively in the body of some
clause. Since all components are trivial, A must also be the head of the same
clause, i.e we have A A. If B is another body atom in the same clause, then we
obtain B and A B which contradicts triviality of all components. Hence,
if some atom A occurs negatively in a clause in L(P), then the clause is of the
form A < —A. All models of L(P) must therefore assign the truth value true
to all atoms occurring negatively in L(P). The program which is obtained from
omitting all these clauses is definite and has a least model which agrees with Mp.
If we add to this model all atoms which occur negatively in L(P), we obtain the
least model of L(P).

(3) We show that P/M is ®-accessible (see [BF91]). This is indeed the case since
(2) holds, and is easily seen by applying Theorem 6.5.3.

(4) We can now apply steps (1), (2) and (3) via transfinite induction as in [PP90],
which yields that P is indeed weakly stratified-a and that Mp is the weakly
perfect-a model of P. Thus, the proof is complete. [ |

8.2.3 Theorem Let P be ®-accessible. Then P has a unique supported model
Mp which is the unique stable model, the well-founded model, a minimal two-
valued model, and the weakly perfect-a model of P.

Proof: We know that Mp = ®p T« for some ordinal o and that Mp is total. By
Theorem 6.5.4, we know that M} is a minimal two-valued model of P, and by

132

<A

<l



CHAPTER 8. PERFECT AND WEAKLY PERFECT MODEL SEMANTICS

Theorem 8.2.2 we know that Mp is the weakly perfect-a model of P. By [GRS91,
Corollary 4.3], Mp = ®p T« is a subset of the well-founded model of P, and since
Mp is total, it must coincide with the well-founded model. By [GRS91, Corollary
5.6], totality of the well-founded model implies that it coincides with the unique
stable model of the program. This completes the proof. |

8.2.4 Program Acceptable programs are not necessarily weakly stratified-b, as
can be seen from the following program.

p
pP<q,p

The bottom layer contains the clause p < ¢, —p and is therefore not a definite
program.

8.2.5 Program On the other hand, there exist programs with unique supported
models which are not weakly stratified-a. To see this, note that the following
program

D q
q <P
P&

has unique supported model {p}. However, it has {p, ¢} as a minimal component
which is not trivial.

8.3 Summary and Further Work

We have provided an iterative approach to the perfect model semantics of locally
stratified programs and located the classes of programs discussed in Chapters 5
and 6 in the context of other standard semantics. Figure 8.1 on page 134 extends
Figure 5.1 on page 91 incorporating the results from Section 8.2.

Of course, the results in Section 8.1 indicate possible research concerning
the extent to which iterative approaches can be applied to other semantics. The
results in Section 8.2 clarify some relationships between classes of programs known
from the literature, which also is a field of further study.
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acyclic definite
acceptable stratified
®-- accessible locally hierarchical
®= accessible locally stratified

®— accessible

weakly stratified-a

Figure 8.1: Dependencies between classes of programs. If a class is depicted lower
in the diagram, this indicates that it is more general.
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Chapter 9

Logic Programs and Neural
Networks

Logic Programs and Neural Networks are two important paradigms in Artificial
Intelligence. Their abilities, and our theoretical understanding of them, however,
seem to be rather complementary. Logic Programs are highly recursive and well
understood from the point of view of declarative semantics. Neural Networks can
be trained but yet lack a declarative reading. Recent publications, for example
[BDJT99, HK94, HSK99, Zha99], suggest studying the relationships between the
two paradigms with the long-term aim of merging them in such a way that the
advantages of both can be combined.

The results we wish to discuss draw heavily on the work of Holldobler, Kalinke
and Storr [HK94, HSK99], which we will in part generalize. It will be convenient
to briefly review their approach and their results. For our investigations, it will
be sufficient to consider Herbrand interpretations only.

In [HK94], a strong relationship between propositional logic programs, i.e.
programs without variable or function symbols, and 3-layer feedforward and re-
current networks was established. For each such program P, a 3-layer feedforward
network can be constructed which computes the single-step operator T associ-
ated with P. To this end, each atom in P is represented by one or more units in
the network. If the program is such that iterates of Tp, for any initial value, con-
verge to a unique fixed point of Tp, then the network can be cast into a recurrent
network which settles down into a unique stable state corresponding to the fixed
point. On the other hand, for each 3-layer network a propositional logic program
P can be constructed such that the corresponding operator Tp is computed by
the network.

In [HSK99], an attempt was made to obtain similar results for logic programs
which are not propositional, that is, for programs which allow variables. The main
obstacle which has to be overcome in this case is that the Herbrand base is in
general infinite; it is therefore not possible to represent an atom by one or more
units in the network. The solution suggested in [HSK99] uses a general result
due to Funahashi [Fun89], see Theorem 9.1.1, which states that every continuous
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function on a compact subset of the real numbers can be uniformly approximated
by certain types of 3-layer neural networks. By casting the Tp-operator into such
a function, approximating the single-step operator is shown to be possible.

In order to obtain a continuous real-valued function from Tp, metrics were
employed in [HSK99]. For acyclic! logic programs, a complete metric can be
obtained which renders the single-step operator a contraction, see Section 5.1. By
identifying the single-step operator with a mapping on the reals, a contractive, and
therefore continuous, real-valued function is obtained which represents the single-
step operator. This function can in turn be approximated by neural networks due
to the result of Funahashi mentioned above. For certain kinds of acyclic programs,
namely such which admit an injective level mapping, the resulting network can
then again be cast into a recurrent network which settles down into a unique
stable state corresponding to the unique fixed point of the operator.

In this chapter, we will investigate a more general approach to representing
the single-step operator for (non-propositional) normal logic programs by neural
networks.

In Section 9.1, we will use Theorem 4.2.6 which characterizes continuity of
the single-step operator in the atomic topology, and apply the approximation
theorem of Funahashi in order to approximate single-step operators by neural
networks.

In Section 9.2, we will show that for any given normal logic program, its as-
sociated single-step operator can be realized as a Borel-measurable real-valued
function. An approximation theorem due to Hornik, Stinchcombe and White
[HSW89], see Theorem 9.2.1, can then be applied to show that each single-step
operator for any normal logic program can be approximated arbitrarily well by
neural networks in a metric g, defined in measure-theoretic terms in Section 9.2.

Cantor Topology

Recall from Section 4.2, that Ip can be identified with the powerset of Bp, and
that it can therefore also be identified with the set 257 of all functions from Bp
to {0,1} (or to any other two-point space). Using this latter identification, the
topology @ becomes a topology on the function space 27, and is exactly the
product topology (of point-wise convergence) on 257 if the two-point space is
endowed with the discrete topology.

If we interpret Ip as the set of all functions from Bp to {0,2}, so that we
now take the two-point space as {0,2}, we can identify Ip with the set of all
those real numbers in the unit interval [0, 1] which can be written in ternary form
without using the digit 1; in other words we can identify Ip with the Cantor set.
The product topology mentioned above then coincides with the subspace topol-
ogy inherited from the natural topology on the real numbers, and the resulting
space is called the Cantor space C. Thus, the Cantor space C is homeomorphic

!These programs were called recurrent in [HSK99].
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to the topological space (Ip, @), and in the following ¢ : Ip — C will denote a
homeomorphism between Ip and C. It is well-known that the Cantor space is
a compact subset of R and we can define [(z) = max{y € C : y < z} and
u(z) = min{y € C : y > z} for each x € [0, 1].

Neural Networks

A 8-layer feedforward network (or single hidden layer feedforward network) con-
sists of an input layer, a hidden layer, and an output layer. Each layer consists of
finitely many computational units. There are connections from units in the input
layer to units in the hidden layer, and from units in the hidden layer to units
in the output layer. The input-output relationship of each unit is represented
by inputs x;, output y, connection weights w;, threshold 6, and a function ¢ as

follows:
y=0o ( w;x; — 9) .

The function ¢, which we will call the squashing function of the network, is usually
non-constant, bounded and monotone increasing, and sometimes also assumed to
be continuous. We will specify the requirements on ¢ that we assume in each case.

We assume throughout that the input-output relationships of the units in the
input and output layer are linear. The output function of a network as described
above is then obtained as a mapping f : R" — R with

f(l'l,...,l',«) = Cj¢ ( wjixi_9j> s
i 7

where r is the number of units in the input layer and the constants c; correspond
to weights from hidden to output layers.
We refer to [Bis95] for background concerning artificial neural networks.

Measurable Functions

A collection M of subsets of a set X is called a o-algebra if (i) O € M; (ii) if
A € M then its complement A € M; (iii) if (A,) is a sequence of sets in M, then
the union A, € M. The pair (X, M) is called a measurable space. A function
f: X — X is said to be measurable with respect to M if f~1(A) € M for each
AeM.

If M is a collection of subsets of a set X, then the smallest o-algebra o(M)
containing M is called the o-algebra generated by M. In this case, a function
f: X — X is measurable with respect to o(M) if and only if f~'(A4) € o(M)
for each A € M. If B is the subbase of a topology 7, and B is countable, then
o(B) =o(T). If B is a subbase of the natural topology on R, then o(B) is called
the Borel-o-algebra on R, and a function which is measurable with respect to this
o-algebra is called Borel-measurable. A measure on (R,o(B)) is called a Borel-
measure.
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We refer the reader to [Bar66, Bau92] for background concerning elementary
measure theory.

9.1 Approximating Continuous Single-Step Op-
erators by Neural Networks

Under certain conditions, given in Theorem 4.2.6, the single-step operator asso-
ciated with a logic program is continuous in the atomic topology. By identifying
the space of all interpretations with the Cantor space, a continuous function on
the reals is obtained which can be approximated by 3-layer feedforward networks.
We investigate this next.

The following Theorem can be found in [Fun89, Theorem 2].

9.1.1 Theorem Suppose that ¢ : R — R is non-constant, bounded, monotone

increasing and continuous. Let R™ be compact, let f : — R be a con-
tinuous mapping and let £ > 0. Then there exists a 3-layer feedforward network
with squashing function ¢ whose input-output mapping f : — R satisfies

max,ex d(f(z), f(x)) €, where d is a metric which induces the natural topol-
ogy on R.

In other words, each continous function f: — R can be uniformly approx-
imated by input-output functions of 3-layer networks.

We already know that the Cantor space C is a compact subset of the real
line and that the topology which C inherits as a subspace of R coincides with
the Cantor topology on C. Also, the Cantor space C is homoeomorphic to Ip
endowed with the atomic topology (), see Theorem 4.2.4. Hence, if the Tp-operator
is continuous in @), we can identify it with a mapping «(7Tp) : C — C : © —
(Tp(¢7'(x))) which is continous in the subspace topology of C in R.

9.1.2 Theorem Let P be a normal logic program. If, for each I € Ip and for
each A € Bp with A € Tp(I), either there is no clause in P with head A or
there is a finite set S(I,A) = {Ay,..., Ak, By, ..., By } of elements of Bp satis-
fying the properties (i) and (ii) of Theorem 4.2.6, then Tp (more precisely +(7p))
can be uniformly approximated by input-output mappings of 3-layer feedforward
networks.

In particular, this holds for the operator Tp if P does not contain any local
variables or is acyclic with injective level mapping.

Proof: Under the conditions stated in the theorem, the single-step operator Tp
is continuous in the atomic topology. Using a homeomorphism ¢ : Ip — C, the
resulting function +(Tp) is continuous on the Cantor space C, which is a compact
subset of R. Applying Theorem 9.1.1, +(Tp) can be uniformly approximated by
input-output functions of 3-layer feedforward networks.

Now if P does not contain any local variables, then Tp is obviously continuous
in () by Theorem 4.2.6. Now let P be acyclic with injective level mapping and let
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A € Bp\Tp(I) for some I € Ip. Since the level mapping is finite, there exist only
finitely many atoms which occur in bodies of clauses with head A, which suffices
by Theorem 4.2.6. |

9.2 Approximating the Single-Step Operator by
Neural Networks

By Theorem 9.1.1, continuous functions can be uniformly approximated by input-
output functions of 3-layer feedforward networks. It is also possible to approxi-
mate each measurable function on R, but in a much weaker sense. We will inves-
tigate this in the present section.

The following was given in [HSW89, Theorem 2.4]

9.2.1 Theorem Suppose that ¢ is a monotone increasing function from R onto
(0,1). Let f : R" — R be a Borel-measurable function and let p be a probability
Borel-measure on R". Then, given any ¢ > 0, there exists a 3-layer feedforward
network with squashing function ¢ whose input-output function f : R* — R
satisfies

0u(f, f) =inf{0 >0 p{w :|f(z) — f(x)| >0} }

In other words, the class of functions computed by 3-layer feedforward neural
nets is dense in the set of all Borel-measurable functions f : R" — R relative to
the metric g, defined in Theorem 9.2.1.

We have already noted that the operator T is not continuous in the topology
(@ in general, nor is it continuous in the Scott topology on Ip in general. We
proceed to show next that the single step operator has the pleasing property that
it is measurable with respect to o(Q) for arbitrary programs, and therefore that
it can always be extended to a Borel-measurable function on R.

9.2.2 Proposition Let P be a normal logic program and let Tp be its associated
single-step operator. Then Tp is measurable on (Ip,0(G)) = (Ip,0(Q)).

Proof: We need to show that for each subbasic set G(L), we have T, (G(L)) €
o(G).

First, let L = A be an atom. If A is not the head of any clause in ground(P),
then T (G(A)) = 0 € o(G). If A is the head of a clause in ground(P), then there
are at most countably many clauses

A+ Aila . 7Aiki7 _|BZ'1, cey _'Bz'li
in ground(P) with head A, and we obtain

TEI(Q(A)) = Q(Ail,...,Aiki,—'Bil,...,—'Bili)
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which is indeed in o(G).

Now suppose that L = —A is a negative literal. If A is not the head of any
clause in ground(P), then T5'(G(=A)) = Ip € o(G). So assume that A is the
head of some clause in ground(P). If there is a unit clause with head A, then
Tp'(G(=A)) = 0 € o(G). So assume that none of the clauses in ground(P) with
head A is a unit clause. Then there are at most countably many clauses

A $— Ail; e 7Aiki7 _|BZ'1, cey _'Bz'li
in ground(P) with head A. We then obtain
Tp'(G(-A) = G(-An) G(~Aw,)  (By) (Bi,)

i

which is indeed in o(G). |

By means of Proposition 9.2.2, we can now view the operator Tpr as a mea-
surable function «(Tp) on C by identifying Ip with C via the homeomorphism .
Since C is measurable as a subset of the real line, this operator can be extended?
to a measurable function on R and we obtain the following result.

9.2.3 Theorem Given any normal logic program P, the associated operator Tp
(more precisely +(7Tp)) can be approximated in the manner of Theorem 9.2.1 by
input-output mappings of 3-layer feedforward networks.

This result is somewhat unfortunate since the approximation stated in Theo-
rem 9.2.1 is only almost everywhere, i.e. pointwise with the exception of a set of
measure zero. The Cantor set, however, is a set of measure zero. Nevertheless, we
are able to strengthen this result a bit by giving an explicit extension of Tp to
the real line. We define a sequence (T;,) of measurable functions on R as follows,
where [(z) and u(x) are as defined earlier, and for each i € N we set

3i-1
2

D;= [(2k—1)37"2k 37,

k=1

and for each 7 > 2 we define

W(Tp)(z) ifzeC

T (:E) N L(TP)(O) ifz< O
B (Tp)(1) ifx>1

0 otherwise

(Tp)(i(e))  ENGIATNED (1 () i € D,
T1 (.’L’) = ‘

0 otherwise
Ly = (@@) R @ (@) ifre D,
l 0 otherwise.

2E.g. as a function T': R — R with T'(z) = «(Tp(:7'(2))) if z € C and T'(z) = 0 otherwise.
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We define the function 7' : R — R by T'(z) = sup,;T;(x) and obtain T'(z) =
L(Tp(x)) forallz € Cand T(«(I)) = o(Tp(I)) for all I € Ip. Since all the functions
T;, for 1 > 1, are piecewise linear and therefore measurable, the function 7" is also
measurable. Intuitively, T" is obtained by a kind of linear interpolation.

If © : Bp — N is a bijective mapping, then we can obtain a homeomorphism
v : Ip — C from i as follows: we identify I € Ip with x € C where x written in
ternary form has 2 as its i(A)th digit (after the decimal point) if A € I, and 0
as its i(A)th digit if A € I. If I € Ip is finite or cofinite®, then the sequence of
digits of (/) in ternary form is eventually constant 0 (if [ is finite) or eventually
constant 2 (if I is cofinite). Thus, each such interpretation is the endpoint of a
linear piece of one of the functions 7;, and therefore of T.

9.2.4 Corollary Given any normal logic program P, its single-step operator
Tp (more precisely (Tp)) can be approximated by input-output mappings of
3-layer feedforward networks in the following sense: for every ¢ > 0 and for
every I € Ip which is either finite or cofinite, there exist a 3-layer feedforward
network with input-output function f and x € [0, 1] with |z — +(I)| such that

|«(Tp(1)) = f(2)|

Proof: We use a homeomorphism ¢ which is obtained from a bijective mapping
t : Bp — N as in the paragraph preceeding the Corollary. We can assume that the
measure p from Theorem 9.2.1 has the property that p{[z,x €]} < e for each
x € R Let e > 0 and I € Ip be finite or cofinite. Then by construction of T" there
exists an interval [t(I),¢(f)+ §] with 6 5 (or analogously [t(I) — 6, (/)]) such
that 7" is linear on [+(1), t(I)+6] and |T'(+(1)) =T (x)| 5 forallx € [v(1),(I)4+6].
By Theorem 9.2.1 and the previous paragraph, there exists a 3-layer feedforward
network with input-output function f such that g,(7, f) d, that is, p{x :
|T(x) — f(x)] > 6} . By our condition on p, there is € [¢(I),t(I)+ 6] with
T (x)—f(x)] <0< 5. We can conclude that |c(Tp(1))—f(z)] = [T(c(1))—f(z)] <
T((I)) —T(x)] |T(z)— f(x)] as required. |

It would be of interest to strengthen this approximation for sets other than the
finite and cofinite elements of Ip, although it is interesting to note that the finite
interpretations correspond to compact elements in the sense of domain theory,

see [SHLGY94] and Definition 1.1.4.

9.3 Summary and Further Work

There are two aspects to this work. On the one hand, one can consider the problem
of approximating the Tp operator, associated with logic programs P, by means
of input-output functions of multi-layer neural networks, as we have done here.
This, in detail, involves relating properties of the network to classes of programs
for which the approximation is possible. It also involves the consideration of what

31 Ip is cofinite if Bp \ I is finite.
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mathematical notions of approximation are useful and appropriate. Here we have
discussed two well-known ones: uniform approximation on compacta, and a notion
of approximation closely related to convergence in measure. Both these strands
need further investigation, and this section is an account of work to date which is
at an early stage of development. In the other direction, and we have not discussed
this at all here except in passing, is to view logic programs as fundamental and to
view the approximation process as a means of giving semantics to neural networks
based on the declarative semantics of logic programs. There is considerable point
in doing this in that the semantics of logic programming is well understood whilst
that of neural networks is not, but is something to be taken up elsewhere, probably
including work on quantitative logic programming as in [Mat99].

At the detailed mathematical level, the mapping P — Tp is not injective. So,
although the single-step operator can basically be used to represent a program
semantically, different programs may have the same single-step operator. This
fine tuning is lost by our representation of logic programs by neural networks.
However, passing to classes of programs with the same single-step operator is
something that is often done in the literature on semantics and in fact is ex-
actly the notion of subsumption equivalence due to [Mah88]. Moreover, there
exist uncountably many homeomorphisms ¢ : Ip — C; for example, every bijec-
tive mapping from Bp to N gives rise to such a homeomorphism as observed in
the paragraph preceeding Corollary 9.2.4. So there is a lot of flexibility in the
choice of + and therefore in how one embeds Ip in R. The homeomorphism used
in [HSK99] employed the quaternary number system.

In [HSK99], as mentioned in the beginning of this chapter, the neural network
obtained by applying the approximation theorem of Funahashi was cast into a
recurrent network which settled down in a unique stable state corresponding to
the unique fixed point of the single-step operator of the underlying program P.
Strong assumptions had to be placed on P to make this possible: P was required
to be acyclic with an injective level mapping. Acyclicity of the program yields the
existence of a complete metric on Ip with respect to which its single-step operator
is a contraction, see Section 5.1. For larger classes of programs, such as the ®*-
accessible programs, we have seen that it is also possible to find metrics such
that the single-step operator is a contraction: In Section 5.3 we have seen how to
construct a complete d-metric g for a given ®*-accessible program P, and since
Tp is a contraction with respect to o, see Proposition 5.3.4, it is also a contraction
with respect to the complete metric d associated with o as in Proposition 3.1.11.

It turns out, however, that the metric d thus obtained cannot in general be
topologically imbedded into the real line. In order to see this, note that for the
d-metric p associated with a ®*-accessible program there may be an uncountable
number of interpretations  such that o( K= 0, namely for example all
with I. Each such |, however, becomes an isolated point with respect
to the topology induced by d, i.e. the singleton set containing is open and
closed in this topology. Now, if (Ip,d) could be topologically imbedded in the
real line using an imbedding ¢, then for each as above we would have that
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{¢( )} is open and closed in the topological subspace t(Ip) of the real line, i.e.
that there is an open interval J C R such that J N {¢(Ip)} = {¢( )}. Assuming
uncountably many isolated points  in (Ip,d), we could therefore construct a
partition of R into uncountably many intervals, which is impossible by a well-
known result from general topology. Hence we conclude that (/p,d) cannot in
general be topologically imbedded into the real line.

From the considerations just presented we conclude that alternative metrics
or even methods have to be investigated in order to carry over the result from
[HSK99] mentioned above for acyclic programs with injective level mappings to
more general classes.
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Chapter 10

Conclusions

There are many aspects to this work, which are in fact closely interconnected. We
want to conclude with a short discussion of different points of view from which
the work in this thesis can be put into a more general perspective.

Logic Programming and Non-monotonic Reason-
ing

The denotational aspects of logic programming with negation are still not suffi-
ciently understood. We contribute to this general line of research by using topo-
logical methods for the analysis of fixed-point semantics. Recently, some studies
of topological approaches to inductive logic programming have been undertaken
[GNAJBDO00] which is a field of further study.

Knowledge Representation and Reasoning

Logic programming can also be understood as a simple model of reasoning, and
the behaviour of the single-step operator as an inductive perspective on it. Since
many of our results were concerned with understanding the dynamics of this op-
erator, they can be understood as an approach to understand the dynamics of
reasoning, as motivated for example in [BDJ*99]. Extensions, e.g. to quantita-
tive logic programming paradigms which incorporate probabilistic or fuzzy logic
structures, suggest themselves.

Comparison and Integration of Paradigms

The single-step operator obtains its iterative behaviour from a relatively simple
set of rules, has a very complex dynamics which is difficult to understand, and
sometimes produces meaningful results as limits of the iterations. From this per-
spective, analogies to chaos theory and topological dynamical systems come into
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view, and indeed some few investigations along these lines have already been un-
dertaken. They also open up connections to other paradigms like artificial neural
networks, as in Chapter 9.

Denotational Semantics and Domain Theory

In recent years, quantitative aspects of domain theory, using generalized met-
rics, have been studied intensively. The study of denotational logic programming
semantics from a generalized metric point of view can be understood as a con-
tribution to this general area of research. It is not surprising, for example, that
injectivity of level mappings has made its appearance in several chapters, since the
finite and cofinite interpretations correspond to the notion of compact elements
in domain theory.

Investigations concerning domain theory in logic programming have also been
undertaken by Rounds and Zhang [ZR97a, ZR97b, RZ98, ZR98]|, and relationships
between their approach and the results in this thesis remain to be worked out. The
topological perspective of our work gives a continuous point of view on the discrete
logic programming paradigm and should also be transferable to quantitative logic
programming paradigms as mentioned above.

Topology (in Computer Science)

General topology allows one to naturally build a bridge between the discrete and
the continuous, which is an important line to investigate since computing is in-
herently discrete while the world, which computing is supposed to model, is often
perceived as continous. The results in this thesis contribute to this discussion by
providing a continous framework for the study of the discrete logic programming
paradigm, as it was also suggested in [BDJ"99]. We have also contributed to some
topological aspects of domain theory and to the study of fixed-point theorems in
general.

The author hopes that his results constitute valuable contributions to the
above mentioned areas of research.
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