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Abstra
t 

Many fxed-point theorems are essentially topologi
al in nature. Among them 

are the Bana
h 
ontra
tion mapping theorem on metri
 spa
es and the fxed-
point theorem for S
ott-
ontinuous mappings on 
omplete partial orders. The 

latter theorem is fundamental in denotational semanti
s sin
e semanti
 operators 

in most programming language paradigms satisfy its requirements. The use of 

negation in logi
 programming and non-monotoni
 reasoning, however, renders 

some semanti
 operators to be non-monotoni
, hen
e dis
ontinuous with respe
t 

to the S
ott topology, and therefore invalidates the standard approa
h, so that 

alternative methods have to b e sought. In this thesis, we investigate topologi
al 

methods, in
luding generalized metri
 fxed-point theorems, and their appli
abil-
ity to the analysis of semanti
 operators in logi
 programming and non-monotoni
 

reasoning. 

In the frst part of the thesis, we present w eak versions of the Bana
h 
ontra
-
tion mapping theorem for single-valued and multivalued mappings, and investi-
gate relationships b e t ween the underlying spa
es. In the se
ond part, we apply 

the obtained results to several semanti
 paradigms in logi
 programming and 

non-monotoni
 reasoning. These investigations will also lead to a 
learer under-
standing of some of the relationships between these semanti
 paradigms and of the 

general topologi
al stru
tures whi
h underly the b e h a viour of the 
orresponding 

semanti
 operators. \e will also obtain some results related to termination prop-
erties of normal logi
 programs, 
larify some of the relationships between diferent 

semanti
 approa
hes in non-monotoni
 reasoning, and will establish some results 


on
erning the 
onversion of logi
 programs into artif
ial neural networks. 
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Chapter 0  

Introdu
tion  

Through the use of the fxed-point theorem for S
ott-
ontinuous fun
tions, The-
orem 1.1.3, topologi
al 
onsiderations naturally 
ome into view in the area of 

denotational semanti
s. Sin
e in most programming paradigms semanti
 opera-
tors are S
ott-
ontinuous, hen
e monotoni
, this theorem yields least fxed points 

for these operators, and these fxed p o i n ts are interpreted as the denotational 

semanti
s of the programs in question. This is also the 
ase for logi
 programs 

without negation, 
alled defnite logi
 programs. 

In order to in
rease expressiveness and fexibility, h o wever, it is desirable that 

negation may be used in logi
 programming. Standard semanti
 operators in this 

paradigm, though, are either not monotoni
 or, if they are monotoni
, they are 

not S
ott-
ontinuous, hen
e do not in general a
hieve their least fxed p o i n ts as 

the limit of a sequen
e of iterations as in the S
ott-
ontinuous 
ase. The above 

mentioned approa
h using Theorem 1.1.3 is therefore invalid and other methods 

have to be sought, whi
h in
lude (1) the use of alternative semanti
 operators as 

e.g. in [Fit85, GRS91, GL88, HS99a], (2) restri
ting the syntax of the programs 

under 
onsideration as e.g. in [AB\88, Cav89, Prz88, SH97], and (3) applying 

alternative fxed-point theorems as e.g. in [Fit85, K K M 9 3 , KM98, PCR00
, HS00]. 

\e will tou
h all three approa
hes in this thesis while our main fo
us is on (3). 

In the 
ase that a semanti
 operator is monotoni
, but not S
ott-
ontinuous, 

then a theorem for monotoni
 operators on 
hain-
omplete partial orders, Theo-
rem 1.1.7, is the main alternative and has indeed been employed in the 
ontext of 

logi
 programming and non-monotoni
 reasoning, e.g. for the Fitting semanti
s 

[Fit85], 
f. Chapter 6, and for the well-founded semanti
s [GRS91]. Some seman-
ti
 operators, however, among them the immediate 
onsequen
e operator and the 

Gelfond-Lifs
hitz operator [GL91], are non-monotoni
 and neither Theorem 1.1.3 

nor Theorem 1.1.7 
an b e applied. A natural alternative fxed-point theorem in 

this 
ase is the Bana
h 
ontra
tion mapping theorem, Theorem 1.2.2, on metri
 

spa
es. 

Sin
e it is not a priori 
lear whether the spa
es on whi
h the semanti
 oper-
ators a
t are metrizable in a way su
h that the operators are 
ontra
tions and 

satisfy the hypotheses of the Bana
h 
ontra
tion mapping theorem, it is natural 

to ask for fxed-point theorems whi
h are more general, i.e. a
t on generalized 

6  



CHAPTER 0. INTRODU
TION  

metri
 spa
es. The development of su
h fxed-point theorems, the analysis of the 

respe
tive underlying spa
es, and investigations 
on
erning their appli
ability t o 

logi
 programming semanti
s form the heart of this thesis. 

There are several ways how to generalize the notion of a metri
 su
h that a 

version of the Bana
h 
ontra
tion mapping theorem 
an b e retained, in
luding 

generalized ultrametri
s, quasimetri
s and dislo
ated metri
s. 

Generalized ultrametri
s have their origin in valuation theory, and difer from 


onventional ultrametri
s in that the distan
e fun
tion maps not into the reals 

but into a more general partially ordered set. A numb e r of fxed-point theorems 

for these spa
es have been obtained and been introdu
ed to the area of logi
 pro-
gramming [PC90, PCR93, KKM93, SH97, BMPC99, HS99b, PCR00
, PCR00b, 

PCR00a], 
f. also Theorem 1.3.4. 

Quasimetri
s [Smy91, BvBR96, Rut96], and quasi-uniformities [FL82, S m y87], 

whi
h are non-symmetri
 distan
es, have re
ently been studied extensively in 

the Topology in Computer S
ien
e 
ommunity. Due to their strong relationships 

with order stru
tures, a fxed point theorem whi
h re
on
iles Theorems 1.1.3 and 

1.2.2 has b e e n obtained [Smy87, Rut96], 
f. Theorem 1.6.3. Logi
 programming 

semanti
s in the 
ontext of quasimetri
s was studied in [Sed97, HS99
]. 

Dislo
ated metri
s were studied under the notion of metri
 domains in 

[Mat86], where also a fxed-point theorem was given whi
h generalizes the Bana
h 


ontra
tion mapping theorem, 
f. Theorem 1.4.6. They difer from 
onventional 

metri
s in that the distan
e b e t ween a p o i n t and itself may b e non-zero. The 

slightly stronger notions of partial and weak partial metri
s have re
ently b e e n 

studied further [Mat92, Mat94, O'N95, EH98, He
99, \a
00]. 

Apart from the quest for generalized metri
 fxed-point theorems whi
h 
an 

b e applied to the semanti
 analysis of logi
 programs, some investigations using 

general topologi
al approa
hes have been undertaken in the literature. This 
an be 

tra
ed ba
k to [Bat89, BS89b, BS89a], where the query topology on the spa
e of all 

Herbrand interpretations was introdu
ed. This topology was later on generalized 

to arbitrary preinterpretations [Sed95] and 
alled the atomi
 topology. The atomi
 

topology is a Cantor topology and 
an be 
hara
terized using logi
al notions, and 

it sems to b e a very appropriate topology for normal logi
 programs and the 

results presented in this thesis support this 
laim. In fa
t, all models obtained by 

iterating non-monotoni
 operators in this thesis are limits in the atomi
 topology 

of these iterates. 

Topologi
al approa
hes to the fxed-point semanti
s of normal logi
 programs 

enable us to better understand the b e h a viour of semanti
 operators whi
h arise 

in this 
ontext. In fa
t, it is 
lear that a (topologi
al) spa
e of interpretations 

together with su
h an operator 
an b e understood as a topologi
al dynami
al 

system, in a naive sense. Su
h a p o i n t of view was hinted at in [SH97, SH99], 

but further results remain to b e obtained, and this presents a whole bundle of 

new proje
ts. \e will not follow t h i s line of thought here but refer the reader to 

[BDJ+99] for motivational ba
kground. 

7  



CHAPTER 0. INTRODU
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Topologi
al results in logi
 programming semanti
s also allow u s to establish 

theoreti
al relationships b e t ween the theories of logi
 programming and of ar-
tif
ial neural networks [HK94, HSK99]. \e present only some basi
 results in 

Chapter 9, and the study of these relationships again presents a proje
t in its 

own right. 

From a more general perspe
tive, topologi
al investigations in theoreti
al 
om-
puter s
ien
e are a natural tool to build a bridge between dis
rete and 
ontinuous 

paradigms, whi
h is an obje
t of study in many felds right now. The author 

hopes that the work presented in this thesis will b e a valuable 
ontribution to 

this dis
ussion. 

Some of the work in this thesis has already been presented at 
onferen
es and 

workshops, see e.g. [HS99a, HS99b, HS99
, HS00, SH97, SH99]. All the material 

has been rearranged, expanded, and brought i n to a more general 
ontext. All re-
sults in this thesis whi
h are not my o wn are indi
ated as su
h b y giving referen
e 

to the literature. 

0.1 Stru
ture of the Thesis 

The thesis is divided into two parts. 

Part I 
ontains an overview of fxed-point theorems on generalized metri
 

spa
es, both for single-valued (Chapter 1) and for multivalued mappings (Chapter 

2), and a dis
ussion of relationships between underlying spa
es (Chapter 3). This 

part assumes no knowledge in logi
 programming and should b e of independent 

interest. 

Part I I fo
uses on appli
ations of results from Part I and some other results 

related to logi
 programming semanti
s. After some general 
onsiderations on 

topologi
al stru
tures for normal logi
 programs (Chapter 4), we dis
uss sev-
eral semanti
 paradigms, in
luding the supported model semanti
s (Chapter 5), 

some semanti
 approa
hes related to the Fitting semanti
s (Chapter 6), the sta-
ble model semanti
s (Chapter 7), and the perfe
t and weakly perfe
t model se-
manti
s (Chapter 8). After some 
onsiderations 
on
erning relationships between 

logi
 programming and artif
ial neural networks (Chapter 9), we 
lose with some 

general 
on
lusions (Chapter 10). 

In Chapters 1 and 2, we present fxed-point theorems for single-valued and 

multivalued mappings on generalized metri
s. Although most of these theorems 

are already known from the literature, we in
lude new alternative proofs and 

some general investigations 
on
erning the underlying spa
es. 

Chapter 3 investigates possibilities for 
onversion b e t ween some of the spa
es 

from Chapters 1 and 2. \e obtain new alternative proofs for some of the fxed-
point theorems of the earlier 
hapters, a deeper insight into their relationships, 

and general methods for 
asting spa
es of interpretations into generalized metri
s, 

whi
h will be of use in the se
ond part of the thesis. 

8  
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Chapter 4 reviews the S
ott topology and the atomi
 topology on spa
es of 

interpretations. The atomi
 topology is then generalized to many-valued logi
s 

leading to a very general framework for topologi
al investigations of many-valued 

semanti
 operators. 

In Chapter 5, we fo
us on the supported model semanti
s and in parti
ular 

on uniquely determined programs, i.e. programs whi
h have unique supported 

models. Step-by-step we relax synta
ti
al and semi-synta
ti
al 
onditions, leading 

to a hierar
hy of 
lasses of programs generalizing the a
y
li
 programs. As these 


lasses be
ome more general we in turn apply more and more general fxed-point 

theorems from Chapter 1, ea
h appli
ation leading to a unique fxed-point f o r t h e 

investigated programs, and to methods for obtaining these as topologi
al limits. 

An approa
h using three-valued logi
s in the style of [Fit85] is employed in 

Chapter 6. Again, we obtain a hierar
hy of 
lasses of programs whi
h i s s h o wn to 


oin
ide with the one presented in Chapter 5. 

Chapter 7 investigates the stable model semanti
s, both in the disjun
tive 

and the non-disjun
tive 
ase. Relationships b e t ween the stable model semanti
s 

and the supported model semanti
s are obtained, and a multivalued fxed-point 

theorem from Chapter 2 is applied. 

The perfe
t and the weakly perfe
t model semanti
s are studied from a topo-
logi
al point of view in Chapter 8. The 
lasses des
ribed in Chapters 5 and 6 are 

lo
ated with respe
t to these semanti
s and generalized. 

The main body of the thesis 
loses in Chapter 9 where relationships between 

logi
 programs and artif
ial neural networks, using topologi
al methods, are stud-
ied. In parti
ular, we address the problem of 
onverting normal logi
 programs 

into neural networks. 

Ea
h 
hapter 
ontains a Summary and Further Work se
tion at the end, 

and fnal 
on
lusions will b e given in Chapter 10. \e pro
eed now with some 

preliminaries and notation. 

0.2 Notation 

Most of the notation and notions whi
h appear in the thesis will be introdu
ed in 

the main text when they are needed for the frst time. For easy referen
e, an index 

is in
luded at the end of the thesis, whi
h 
 o n tains pointers to the defnitions. \e 

note that some of the terminology will b e overloaded, i.e. the same notion may 

have slightly diferent meanings in diferent 
ontexts, to keep 
onsisten
y with 

the literature. This should pose no parti
ular problem if 
are is taken as to whi
h 

kind of spa
e one is 
urrently working with. It will b e 
onvenient now to make 

some general 
omments on notation and 
onventions whi
h will b e employed in 

the sequel. 

The set of natural numbers will b e denoted by N , and of real numbers by 

+
J; by J we denote the set of all positive r e a l numbers in
luding zero. Ordinals  

will usually be denoted by Greek letters, and the frst infnite ordinal by w. Ea
h 

9  
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ordinal is identifed with the set of all its prede
essors, i.e. for ea
h ordinal o we 

have {p I p  o  } = {p I p E o}, and using this 
onvention, we identify w with N . 

If o is a su

essor ordinal, we denote its prede
essor by o- 1, and the su

essor 

of an arbitrary ordinal o will be denoted by o  1.  

If f : X - } is a fun
tion and A � X, we set f(A) = {f(a) I a E A}. 

Ordinal powers of fun
tions are defned as follows. Let f : X - X be a 

fun
tion on a set X, and let x E X. \e defne f (x) = x and for ea
h su

essor 

++1(xordinal o 1  w  e defne f ) = f(f+(x)). If o is a limit ordinal, we will require 

several methods in the sequel how t o d e f n e f+(x), and we will defne these on the 

spot for the respe
tive 
ontext. Thus, if we defne f+(x) for ea
h limit ordinal o, 

it will be unambiguous in ea
h 
ase what all ordinal powers of the given fun
tion 

f are. 

A partially ordered set (A,:) is dire
ted if for all x, y E A there exists z E A 

su
h that x : z and y : z. For ea
h p E A w e defne tp = {, E A I p : ,}. 

A net (x,),EA 

is a net in the topologi
al sense i.e. the index set A is dire
ted, 

and the index set will be omitted, i.e. the net will be written as (x,) or even just 

x, 

when the meaning is 
lear from the 
ontext; the notation (x,)A 

will also b e 

used. For ea
h , E A, x, 

is 
alled an element of the net (x,)A. G iv en a net (x,)A 

and an element p E A, we 
all the subnet (x,),>f 

= (x,)hf 

of (x,)A 

a tail of 

(x,)A. 

A net with index set equal to w, or equivalently N , is 
alled a sequen
e. A 

transfnite sequen
e is a net where the index set is an ordinal. A 
hain is a 

linearly ordered family of elements of a given partially ordered set. An w-
hain 

is a sequen
e whi
h is a 
hain. 

If X is a set and f : X - X is a fun
tion then ea
h x E X with f(x) = x 

is 
alled a fxed point of f . If X 
arries a partial order :, then ea
h x E X with 

f(x) : x is 
alled a pre-fxed p oint of f . If f is a mapping from X to the powerset 

2x of X, then f is 
alled a multivalued mapping on X. In this 
ase, ea
h x E X 

with x E f(x) is 
alled a fxed point of f . E a 
 h single-valued mapping f on a set 

X 
an b e identifed with a multivalued mapping by identifying ea
h f(x) E X 

with {f(x)} E 2x . \e will assume throughout that multivalued mappings are 

non-empty, i.e. that f(x)  = 0 for all x E X. 

A distan
e fun
tion on a set X is a mapping from X x X to a given set 

A, where A will always b e either the set of real numbers J or some partially 

ordered set. A generalized ultrametri
 is a distan
e fun
tion whi
h maps into a 

partially ordered set and satisfes some spe
if
 further 
onditions whi
h will b e 

given in Defnition 1.3.1. In 
ontrast to this, a generalized metri
 is a distan
e 

fun
tion whi
h either maps into J and satisfes the triangle inequality (Miv) 

of Defnition 1.2.1, or whi
h maps into a partially ordered set and satisfes the 


orresponding strong triangle inequality (Uiv) of Defnition 1.3.1. This usage of 

the term generalized is not entirely 
onsistent, but is adopted here in order to 


ompromise between established notation and 
onvenien
e: The term generalized 

ultrametri
 refers to a spe
if
 stru
ture (Defnition 1.3.1) and is standard. The 

term generalized metri
 refers to all notions appearing in this thesis whi
h 
an 

10  



CHAPTER 0. INTRODU
TION  

b e understood as generalizations of metri
s (or ultrametri
s) in a naive sense. 

This 
ontrasts to the use of this notion in some of the literature where the term 

generalized metri
 refers to quasi-pseudo-metri
s only, see Defnition 1.2.1. 

\e will usually denote distan
e fun
tions with d, unless the requirement t h a t 

self-distan
es of p o i n ts are zero is dropped ((Mi) in Defnition 1.2.1, (Uii) in 

Defnition 1.3.1), in whi
h 
ase we will usually denote them by f to help the 

reader. All generalized metri
 spa
es are supposed to be non-empty. 

Some of the major fxed-point theorems will be given names for 
onvenien
e. 

Theorem 1.1.3, for example, will b e 
alled the Kleene theorem, and it will b e 

referred to as either the Kleene theorem, or the Kleene theorem, Theorem 1.1.3, 

or more simply, with a slight abuse of language, the Kleene theorem 1.1.3. Other 

named theorems will be referred to analogously. It is not 
laimed that the names 

given to theorems in this thesis are histori
ally 
orre
t, see [LNS82]. 

Notation for logi
 programming basi
ally follows [Llo88]. 

Given a frst order language £, a normal logi
 program, referred to as logi
 

program or simply program, is a fnite set of 
lauses of the form 

�(A + L1 

� � � � � Ln), 

where n E N may difer b e t ween 
lauses, A is an atom in £ and L1, . . . , L n 

are 

literals, i.e. atoms or negated atoms, in £. As is 
ustomary in logi
 programming, 

we will write su
h a 
lause as 

A + L1, . . . , L n, 

and A is 
alled the head of the 
lause, ea
h Li 

is 
alled a body literal of the 
lause 

and their 
onjun
tion L1, . . . , L n 

is 
alled the body of the 
lause. \e allow n = 0, 

by an abuse of notation, in whi
h 
ase the body is empty and the 
lause is 
alled a 

unit 
lause or a fa
t. \ e will o

asionally use the notation A + body for 
lauses, 

i.e. body in this 
ase stands for the 
onjun
tion of the body literals of the 
lause. 

If no negation symbol o

urs in a logi
 program, it is 
alled a defnite or positive 

logi
 program. A v ariable in a 
lause is said to be lo
al if it o

urs in the body of 

the 
lause, but not in the 
orresponding head. 

0.2.1 Program The following is an example of a normal logi
 program: 

distlist([ ]) + 

distlist([HIT ]) + distlist(T ), -memb er(H , T ) 

memb er( X, [XIT ]) + 

memb er(X, [HIT ]) + memb er(X , T ) 

In the above example, upper
ase letters denote variable symbols. The 
onstant 

symb o l [ ] is interpreted as the empty list and [HIT ] as a list with head H and 

tail T , hen
e [.I.] is a fun
tion symbol with arity 2. The intended meaning of the 

program is that member(x, l) is true if x is an element of the list l, and distlist(l) 

11  
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is true if l is a list of mutually distin
t elements. Under a logi
 programming 

system like Prolog, the above program 
an indeed be used to 
he
k whether a list 


onsists of mutually distin
t elements. 

Given a preinterpretation J for a frst order language £ underlying a given 

logi
 program P , the set of all ground instan
es of atoms o

urring in P , under 

J , will be denoted by BpP,  

, or just by Bp 

if this will 
ause no misunderstandings. 

In the 
ase of J being the Herbrand preinterpretation 
orresponding to £, w e will 


all Bp 

the Herbrand base of P . The set of all ground instan
es of 
lauses in P 

(with respe
t to an arbitrary, but fxed preinterpretation J) will b e denoted by 

ground(P ). The set of all interpretations of P under J will be denoted by IpP,  

or 

simply by Ip . Ea
h I E Ip 

is identifed with the set of all ground atoms whi
h 

are true with respe
t to I, i.e. we identify Ip 

with the p ower set 2Bp , and for 

ea
h I E Ip 

we have {A E Bp 

I I I= A} = {A E Bp 

I A E I}. Due to this 

identif
ation, the set Ip 


arries a natural order stru
ture, namely set-in
lusion. 

If I is an interpretation of a program P , w e denote its 
omplement Bp 

\ I by 


I. 

Given a program P , the language underlying P is the frst order language 

with 
onstant, fun
tion, and predi
ate symbols being, respe
tively, the 
onstant, 

fun
tion, and predi
ate symbols o

urring in P ; if no 
onstant s y m bol is present, 

however, we add the symb o l 0 as a 
onstant symb o l to the language. If we state 

that J is an (arbitrary) preinterpretation it is always assumed that J is suitable for 

the program in question, i.e. it is a preinterpretation for the language underlying 

the program. 

0.2.2 Defnition Given a logi
 progam P and a preinterpretation J , we defne 

the single-step operator or immediate 
onsequen
e operator TpP,  

, or simply Tp , 

as a mapping from Ip 

to Ip 

as follows. For ea
h I E Ip 

we set Tp (I) to b e the 

set of all A E Bp 

for whi
h there exists a 
lause A + L1, . . . , L n 

in ground(P ), 

su
h that I I= L1 

Ln. 

The usefulness of the operator Tp 

in the semanti
 analysis of logi
 programs 

rests on the fa
t that the models of P are exa
tly the pre-fxed points of Tp 

[Llo88]. 

A model of P is 
alled a supported model (or model of the Clark 
ompletion1 of 

P [Cla78]) if it is a fxed p o in t of Tp 

[AB\88]. 

A level mapping for a program P is a mapping l : Bp 

- o, where o is an 

ordinal. If o = w, l is 
alled an w-level mapping. \e always assume that a level 

mapping is extended to ground literals by setting l(-A) = l(A) for all A E Bp . 

\e fnally remark that the term semanti
s in this thesis refers to de
larative 

or denotational semanti
s, and we will use the term pro
edural semanti
s if we 

want to refer to the pro
edural, or operational aspe
ts. 

1 The 
orresponden
e between supported models and models of the Clark 
ompletion is in 

fa
t via a standard identif
ation. 
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Chapter 1 

Fixed-point Theorems for 

Single-valued Mappings 

\e present fxed-point theorems whi
h will be applied in Part II of the thesis, and 

some further results. Se
tion 1.1 
ontains the fundamental fxed-point theorems 

on partially ordered sets whi
h play a 
entral role in the denotational semanti
s 

of logi
 programs. Se
tion 1.2 introdu
es generalized metri
s where the distan
e 

fun
tions map into the real numbers, and re
alls the Bana
h 
ontra
tion map-
ping theorem. Se
tion 1.3 re
alls the PrieB-Crampe and Ribenboim theorem on 

generalized ultrametri
 spa
es, in
luding an alternative proof, and dis
usses its 

relation to the Bana
h 
ontra
tion mapping theorem. Se
tion 1.4 dis
usses the 


orresponding fxed-point theorem by Matthews on dislo
ated metri
s and some 

topologi
al matters 
on
erning these spa
es. The latter two theorems are then 

merged in Se
tion 1.5, and fnally, in Se
tion 1.6, the Rutten-Smyth theorem on 

quasimetri
s is dis
ussed. 

1.1 Partial Orders 

The set of all interpretations of a logi
 program, with respe
t to a given prein-
terpretation, is essentially a p o werset. \ith the subset ordering, it be
omes a 


omplete latti
e. \e present two 
lassi
al fxed-point theorems on weaker order 

stru
tures, whi
h play a fundamental role in logi
 programming semanti
s. 

1.1.1 Defnition A partially ordered set (D, :) is 
alled an w-
omplete partial 

order (w-
po) if 

(1) there exists l E D su
h that for all a E D we have l : a (l is 
alled the 

bottom element of D) and 

(2) if a : a1 

: . . . is an w-
hain in D, th en supiEN 

ai 

exists in D. 

1.1.2 Defnition Let D and E be w-
pos and let f : D - E b e a fun
tion. 

(1) f is 
alled monotoni
 if a : b implies f(a) : f(b) for all a, b E D. 
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(2)  f is 
alled w-
ontinuous if it is monotoni
 and for every w-
hain a : a1 

: . . . 

we have f(supiEN 

ai) = supiEN 

f(ai). 

The following theorem is of fundamental importan
e in the theory of denota-
tional semanti
s. 

1.1.3 Theorem (Kleene theorem) Let D be an w-
po and let f : D - D 

be an w-
ontinuous fun
tion. Then f has a least fxed p oin t a. Furthermore, 

a = sup fn(l).nEN 

Proof: \e s k et
h the well-known proof. The sequen
e (fn(l))nEN 

is an in
reasing 


hain, hen
e has a supremum a. By 
ontinuity o f f , w e obtain f(a) = a, hen
e a 

is a fxed point whi
h turns out to b e least sin
e for any other fxed point b of f 

we obtain fn(l) : b by an easy indu
tion argument. • 

If P is a defnite logi
 program, then the hypotheses of Theorem 1.1.3 are 

satisfed by the operator Tp 

, w h i 
 h i s w ell-known [Llo88]. In Part II of the thesis, 

we will study programs with negation, in whi
h 
ase semanti
 operators are not 

ne
essarily w-
ontinuous, and sometimes not even monotoni
, so that Theorem 

1.1.3 
annot be applied. 

The notion of w-
ontinuity is a weak version of S
ott-
ontinuity, whi
h is 

usually defned on S
ott-Ershov domains, introdu
ed next. 

1.1.4 Defnition A partially ordered set (D, i) is 
alled a (S
ott-Ershov) do-
main with set D
 

of 
ompa
t elements (see [SHLG94]), if the following 
onditions 

hold: 

(i) (D, i) is a 
omplete partial order (
po), that is, D has a bottom element 

l, and the supremum sup A exists for all dire
ted subsets A of D. 

(ii) The elements a E D
 

are 
hara
terized as follows: whenever A is dire
ted 

and a i sup A, then a i x for some x E A. 

(iii) For ea
h  x E D, the set approx(  x) = {a E D
 

I a i x} is dire
ted and 

x = sup approx(  x) (this property is 
alled algebrai
ity of D). 

(iv) If the subset  A of D is 
onsistent (there exists x E D su
h that a i x 

for all a E A), then sup A exists in D (this property is 
alled 
onsistent 


ompleteness of D). 

\e will usually denote the order relation by i if the order stru
ture under 
on-
sideration is a domain. 

Several important fa
ts emerge from these 
onditions, in
luding the existen
e 

of fun
tion spa
es (the 
ategory of domains is 
artesian 
losed). Moreover, the 


ompa
t elements provide an abstra
t notion of 
omputability. Domains were 

introdu
ed independently by D.S. S
ott and Y.L. Ershov as a means of provid-
ing stru
tures for modelling 
omputation, and to provide spa
es to support the 
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denotational semanti
s approa
h to understanding programming languages, see 

[SHLG94]. 

The standard topology on a domain is the S
ott topology, defned as follows. 

1.1.5 Defnition Let (D, i) b e a domain. The set {t
 I 
 E D
} is a base for a 

topology, 
alled the S
ott topology on D. A fun
tion f : D - D is 
alled S
ott-

ontinuous if it is 
ontinuous with respe
t to the S
ott topology. Equivalently 

(see [SHLG94]), f is S
ott 
ontinuous if and only if it is monotoni
 and for ea
h 

dire
ted set A D we have sup f(A) = f(sup A). 

It is 
lear that every domain is a 
po and every 
po is an w-
po. Likewise, 

every S
ott-
ontinuous fun
tion on a domain is also w-
ontinuous. Theorem 1.1.3 

is often stated in less general form on domains for S
ott-
ontinuous fun
tions, or 

even on 
omplete latti
es. 

If an operator is monotoni
 but not S
ott-
ontinuous, the existen
e of a least 

fxed point 
an still be guaranteed, although not as the limit of an w-
hain. 

1.1.6 Defnition A partial order D is 
alled 
hain-
omplete if every 
hain in D 

has a supremum. 

1.1.7 Theorem (Knaster-Tarski theorem) Let (D, :) b e a 
hain-
omplete 

partial order, let f : D - D be monotoni
, and let a E D be su
h th a t a : f(a). 

Then f has a least fxed p o in t x above a and there exists a least ordinal I su
h 

that f 1(a) = x. 

Proof: \e sket
h the well-known proof. For any limit ordinal o defne f+(a) = 

sup{ff(a) I p o}, from whi
h we obtain a transfnite in
reasing sequen
e of 

iterates of f . L et I be an ordinal whose 
ardinality is greater than the 
ardinality 

of D. T hen f 1(a) m ust be a fxed point of f whi
h is above a. • 

\e fnd it 
onvenient to introdu
e names for Theorems 1.1.3 and 1.1.7, al-
though this is not always done. \e will 
all Theorem 1.1.3 the Kleene theorem, 

and Theorem 1.1.7 the Knaster-Tarski theorem. \e would like to note that this 

notation is not standard, but will be very 
onvenient in the sequel. 

1.2 Metri
s 

\e introdu
e some notions of generalized metri
s and state the Bana
h 
ontra
-
tion mapping theorem for 
onventional metri
s. 

1.2.1 Defnition Let X b e a set and let f : X x X - J
+ b e a fun
tion, 
alled 

a distan
e fun
tion. Consider the following 
onditions: 

(Mi) For all x E X, f(x, x) = 0. 

(Mii) For all x, y E X, if f(x, y) = f(y, x ) = 0 then x = y. 

16  



 

 

 

 

 

CHAPTER 1. FIXED-POINT THEOREMS FOR SINGLE-VALUED MAPPINGS  

notion satisfes (Mi) (Mii) (Miii) (Miv) (Miv') 

metri
 x x x x 

ultrametri
 x x x (x) x 

pseudometri
 x x x 

pseudo-ultrametri
 x x (x) x 

quasimetri
 x x x 

quasi-ultrametri
 x x (x) x 

dislo
ated metri
 x x x 

dislo
ated ultrametri
 x x (x) x 

dislo
ated quasimetri
 x x 

dislo
ated quasi-ultrametri
 x (x) x 

quasi-pseudo-metri
 x x 

quasi-pseudo-ultrametri
 x (x) x 

Table 1.1: Generalized metri
s: Defnition 1.2.1. 

(Miii) For all x, y E X, f(x, y) = f(y, x ). 

(Miv) For all x, y, z E X, f(x, y) : f(x, z) f(z, y ). 

(Miv') For all x, y, z E X, f(x, y) : max{f(x, z), f (z, y )}. 

If f satisfes 
onditions (Mi) to (Miv), then it is 
alled a metri
. If it satisfes 


onditions (Mi), (Miii) and (Miv), it is 
alled a pseudometri
. If it satisfes (Mii), 

(Miii) and (Miv), we w ill 
 a ll it a dislo
ated metri
 (or simply d-metri
). A quasi-
metri
 satisfes 
onditions (Mi), (Mii) and (Miv). Condition (Miv) will be 
alled 

the triangle inequality. I f a (pseudo-, quasi-, d-) metri
 satisfes the strong trian-
gle inequality (Miv'), then it is 
alled a (pseudo-, quasi-, d-) ultrametri
. These 

defnitions are listed in Table 1.1; an x indi
ates that the respe
tive 
ondition is 

satisfed. (x) indi
ates that the respe
tive 
ondition is automati
ally satisfed. 

1.2.2 Theorem (Bana
h 
ontra
tion mapping theorem) Let (X , d ) be a 


omplete metri
 spa
e, 0 : , 1 and let f : X - X b e a fun
tion whi
h 

is a 
ontra
tion with 
ontra
tivity fa
tor ,, i.e. satisfes d(f(x), f (y)) : ,d(x, y) 

for all x, y E X (with x = y). Then f has a unique fxed p oin t whi
h 
an b e 

obtained as the limit of the sequen
e (fn(x)) for any x E X. 

Proof: \e sket
h the well-known proof. For any x E X, the sequen
e (fn(x)) is 

a Cau
hy sequen
e whi
h 
onverges to a unique limit x by 
ompleteness of the 

spa
e. Sin
e f is a 
ontra
tion, it is 
ontinuous, hen
e x is a fxed point of f , 

and is easily shown to be unique. • 

It is well-known that the requirement , 1 
annot b e relaxed in general, as 


an b e seen from the fun
tion  
x 

1 for x 2 1
xf : J - J : x- 

2 otherwise, 
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whi
h satisfes the 
ondition d(f(x), f (y)) d(x, y) for all x, y E J with x = y, 

where d is the natural metri
 on J, but has no fxed point sin
e f(x) > x for all 

x E J. If X is 
ompa
t, however, the requirement on , 
an b e relaxed. 

1.2.3 Theorem Let (X , d ) b e a 
ompa
t metri
 spa
e and let f : X - X be a 

fun
tion whi
h is stri
tly 
ontra
ting , i.e. satisfes d(f(x), f (y)) d(x, y) for all 

x, y E X with x = y. T hen f has a unique fxed p o in t. 

Proof: The fun
tion d(x) = d(x, f(x)) is 
ontinuous sin
e f is 
ontinuous. 

Therefore, it a
hieves a minimum m on X. Assume d(x ) = m > 0. Then 

d(f(x )) = d(f(x ), f (f(x ))) d(x , f (x )) = d(x ) = m whi
h is a 
ontra-
di
tion. Hen
e m = 0 and f has a fxed p o in t. 

Assume x and y are fxed points of f and x = y. Then d(x, y) = 

d(f(x), f (y)) d(x, y) whi
h is a 
ontradi
tion. Therefore, the fxed p o i n t of 

f is unique. • 

The above result 
an b e found e.g. in [DG82]. 

1.3 Generalized Ultrametri
s 

The origin of generalized ultrametri
s lies in valuation theory. They difer from 


onventional metri
s in that the distan
e fun
tion takes values in general partially 

ordered sets instead of the real numbers. \e introdu
e generalized ultrametri
s 

and dislo
ated generalized ultrametri
s, state the PrieB-Crampe and Ribenboim 

theorem 1.3.4 whi
h is the analogue on these spa
es of the Bana
h 
ontra
tion 

mapping theorem 1.2.2, and study the notion of spheri
al 
ompleteness of gener-
alized ultrametri
 spa
es in how it relates to 
ompleteness and 
ompa
tness for 


onventional metri
s. \e also give a 
onstru
tive proof of a part of the PrieB-
Crampe and Ribenboim theorem. 

1.3.1 Defnition Let X b e a set and let r b e a partially ordered set with least 

element 0. \e 
all (X , f , r) (or simply (X , f )) a generalized ultrametri
 spa
e 

(gum) if f : X x X - r is a fun
tion su
h that for all x, y, z E X and all I E r 

we have: 

(Ui) f(x, y) = 0 implies x = y. 

(Uii) f(x, x) = 0. 

(Uiii) f(x, y) = f(y, x ). 

(Uiv) If f(x, y) : I and f(y, z ) : I, th en f(x, z) : I. 

If f satisfes 
onditions (Ui), (Uiii) and (Uiv), but not ne
essarily (Uii), we 
all 

(X , f ) a dislo
ated generalized ultrametri
 spa
e or simply a d-gum spa
e, 
f. Table 

1.2. Condition (Uiv) will be 
alled the strong triangle inequality for gums. 

\e will o

asionally refer to the set r a s the distan
e set of (X , f ). 
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notion satisfes  (Ui) (Uii) (Uiii) (Uiv) 

generalized ultrametri
 (gum) x x x x 

dislo
ated generalized ultrametri
 (d-gum) x x x 

Table 1.2: (Dislo
ated) generalized ultrametri
s: Defnition 1.3.1. 

It is 
lear that every (
onventional) ultrametri
 spa
e is also a generalized 

ultrametri
 spa
e. 

The following defnitions prepare Theorem 1.3.4 and are taken from [PCR00a]. 

1.3.2 Defnition Let (X , f , r) b e a d-gum spa
e. For 0 = I E r and x E X, 

the set B1 

(x) = {y E X I f(x, y) : I} is 
alled a (I-)ball in X with 
entre or 

midpoint x. A d-gum spa
e is 
alled spheri
ally 
omplete if, for any 
 hain C, with  
respe
t to set-in
lusion, of non-empty balls in X, we have C = 0. A fun
tion 

f : X - X is 
alled 

(1)  non-expanding if f(f(x), f (y)) : f(x, y) for all x, y E X, 

(2)  stri
tly 
ontra
ting on orbits if f(f 2(x), f (x)) f(f(x), x ) for every x E X 

with x = f(x), and 

(3)  stri
tly 
ontra
ting if f(f(x), f (y))  f(x, y) for all x, y E X with x = y. 

The requirement in the defnition of spheri
al 
ompleteness that all balls are 

non-empty 
an b e dropped when working in a gum instead of a d-gum, sin
e in 

the frst 
ase all balls are always non-empty. 

\e will need the following observations, whi
h are well-known for ordinary 

ultrametri
 spa
es, see [PCR93]. 

1.3.3 Lemma Let (X , f , r) b e a d-gum spa
e. For o, p  E r and x, y E X the 

following statements hold. 

(1) If o : p and B+(x) n Bf(y) = 0, then B+(x) Bf(y). 

(2) If B+(x) n B+(y) = 0, then B+(x) = B+(y). In parti
ular, ea
h element of a 

ball is also its 
entre. 

(3)  B0(xPy)(x) = B0(xPy)(y). 

Proof: Let a E B+(x) and b E B+(x) n Bf(y). Then f(a, x) : o and f(b, x) : o, 

hen
e f(a, b) : o : p. Sin
e f(b, y) : p, we have f(a, y) : p, hen
e a E Bf(y), 

whi
h proves the frst statement. The se
ond follows by symmetry and the third 

by repla
ing f(x, y) by o and applying (2). • 

For the following, see [PCR00
]. \e will give s e v eral alternative proofs later. 
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1.3.4 Theorem (Prie:-Crampe and Ribenboim theorem) Let (X , d ) be a 

spheri
ally 
omplete generalized ultrametri
 spa
e and let f : X - X b e non-
expanding and stri
tly 
ontra
ting on orbits. Then f has a fxed point. Moreover, 

if f is stri
tly 
ontra
ting on X, th en f has a unique fxed p o in t. 

Note that every 
ompa
t ultrametri
 spa
e is spheri
ally 
omplete by the 

fnite interse
tion property. The 
onverse is not true: let X be an infnite set and 

take d(x, y) = 1 if x = y and d(x, x) = 0 for all x. Then (X , d ) is not 
ompa
t 

but spheri
ally 
omplete. The relationship b e t ween spheri
al 
ompleteness and 


ompleteness is given by the next proposition. Similar investigations have b e e n 

undertaken in [PC90] in the 
ase of totally ordered distan
e sets. 

1.3.5 Proposition Let (X , d ) b e an ultrametri
 spa
e. If X is spheri
ally 
om-
plete then it is 
omplete. The 
onverse does not hold in general. 

Proof: Assume that (X , d ) is spheri
ally 
omplete and that (xn) is a Cau
hy 

sequen
e in (X , d ). Then, for every k E N , there exists a least nk 

E N su
h that 

for all n, m 2 nk 

we have d(xn, x m) : 

k
1 . \e note that nk 

in
reases with k. Now   

onsider the set of balls B = B i (xnk 

) I k E N . By (Uiv), B is a de
reasing 
hain 

k 

of balls and has non-empty interse
tion B by spheri
al 
ompleteness of (X , d ). 

Let a E B. Then it is easy to see that (xn) 
onverges to a (hen
e B = {a} is a 

one-point set sin
e limits in (X , d ) are unique) and therefore (X , d ) i s 
omplete. 

In order to show that the 
onverse does not hold in general, defne an ultra-
-min{mPn} if n = m andmetri
 d on N as follows. For n, m E N , let d(n, m) = 1 2 

d(n, n) = 0 for all n E N . The topology indu
ed by d is then the dis
rete topology 

on N , and the Cau
hy sequen
es with respe
t to d are exa
tly the sequen
es whi
h 

are eventually 
onstant. So (N , d ) is 
omplete. Now 
onsider the 
hain of balls Bn 

of the form {m E N I d(m, n) : 1 2 

-n}. Then we obtain Bn 

= {m I m 2 n} for 

all n E N . So Bn 

= 0. • 

Note also that with the notation from the se
ond part of the proof, the su
-

essor fun
tion n - n 1 is stri
tly 
ontra
ting, but does not have a fxed point. 

By Proposition 1.3.5 and the remarks pre
eding it, we obtain that the notion of 

spheri
al-
ompleteness is stri
tly less general than 
ompleteness, and is stri
tly 

more general than 
ompa
tness. 

\e will now follow a line of thought from [PC90], only slightly 
hanged (the 

original version was for linearly ordered distan
e set), and with the proofs adapted 

to the more general setting. 

1.3.6 Defnition Let (xÆ)Æk0 

b e a (possibly transfnite) sequen
e of elements 

of a gum (X , d ). Then (xÆ) is said to b e pseudo-
onvergent if for all o p 

I f we have d(xf, x 1) d(x+, x f). The transfnite sequen
e (JÆ)Æ+1k0 

with 

JÆ 

= d(xÆ, x Æ+1) is then stri
tly monotoni
 de
reasing. If f is a limit ordinal, 

then any x E X with d(x, xÆ) : JÆ 

for all Æ f is 
alled a pseudo-limit of the 

transfnite sequen
e (xÆ)Æk 0 

. 
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The spa
e (X , d ) is 
alled trans-
omplete if every pseudo-
onvergent transfnite 

sequen
e (xÆ)Æk 0 

, where f is a limit ordinal, has a pseudo-limit in X. 

1.3.7 Proposition If x is a pseudo-limit of (xÆ)Æk 0 

, where f is a limit ordinal, 

then the set of all pseudo-limits of (xÆ) is given by Lim(xÆ) = {z E X I d(x, z) 

JÆ 

for all Æ f }. 

Proof: Let z E Lim(xÆ). Sin
e d(z, x ) JÆ 

and d(x, xÆ) : JÆ 

we obtain 

d(z, x Æ) : JÆ 

for all Æ. Conversely, let z b e a pseudo-limit of (xÆ). Sin
e 

d(x, xÆ+1), d (z, x Æ+1) : JÆ+1 

for all Æ f, we obtain d(x, z) : JÆ+1 

JÆ 

for 

all Æ f . • 

1.3.8 Proposition A generalized ultrametri
 spa
e is spheri
ally 
omplete if and 

only if it is trans-
omplete. 

Proof: Let X b e trans-
omplete and let B b e a de
reasing 
hain of balls in X. 

\ithout loss of generality assume that B does not have a minimal element and is 

in fa
t stri
tly de
reasing. Then we 
an sele
t a 
oinitial sub
hain (BÆ)Æk 0 

of B, 

where f is a limit ordinal, i.e. (BÆ)Æk 0 

is a transfnite sequen
e of balls. Sin
e this 

transfnite sequen
e is stri
tly de
reasing, we know that for every Æ there exists 

xÆ 

E BÆ 

\ BÆ+1, and the transfnite sequen
e (xÆ)Æk 0 

is pseudo-
onvergent, hen
e 

has a pseudo-limit x. Sin
e d(x, xÆ) : d(xÆ, x Æ+1) and xÆ, x Æ+1 

E BÆ 

we obtain 

x E BÆ 

for all Æ, hen
e x E B. 

Conversely, let X b e spheri
ally 
omplete and let (xÆ) b e pseudo-
onvergent. 

Let JÆ 

= d(xÆ, x Æ+1) and BÆ 

= B;Æ 

(xÆ). For o p we have xf 

E B+ 

n Bf 

and 

therefore that (BÆ) is a de
reasing 
hain of balls by Lemma 1.3.3. By spheri
al 


ompleteness, there is some x E BÆ 

whi
h is a pseudo-limit of (xÆ). • 

\e 
an now give a 
onstru
tive proof of the se
ond part of Theorem 1.3.4 

under the restri
tion that r is linearly ordered. The proof is inspired by [KKM93], 


f. also Se
tion 2.2. 

1.3.9 Theorem Let (X , d, r) b e a spheri
ally 
omplete generalized ultrametri
 

spa
e where r is linearly ordered and let f : X - X b e stri
tly 
ontra
ting on 

X. Then f has a unique fxed p o in t. 

Proof: Choose some x E X and let x1 

= f(x ). \e indu
tively defne a transf-
nite sequen
e as follows. Our indu
tion hypothesis is that for all ordinals p  o
the sequen
e (xf)fk + 

is pseudo-
onvergent. \e also assume, without loss of gen-
erality, that none of the xf 

is a fxed point of f . 

If o = p 1 1 is the su

essor of a su

essor ordinal, then let x+ 

= 

f(xf+1). Sin
e f is stri
tly 
ontra
ting, the obtained sequen
e (xf)f<+ 

is pseudo-

onvergent. 

If o is a limit ordinal, then (xf)fk + 

is pseudo-
onvergent by the indu
tion 

hypothesis. Then 
hoose x+ 

to b e one of its pseudo-limits, whi
h is possible by 
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Proposition 1.3.8, and let I1  I2  o. T h e n by the indu
tion hypothesis 

d(x12 , x +) : d(x12 

, x 12+1)

 d(x1i , x 12). 

So the resulting sequen
e is also pseudo-
onvergent. 

If o = p  1 is the su

essor of a limit ordinal, where xf 

is 
onstru
ted as 

in the previous paragraph, then let x+ 

= f(xf). \e have to show that for all 

I1  I 2 

: p we have d(x12 , x +)  d(x1i , x 12 

). 

First assume that I2 

is a limit ordinal. For every I 1 I2 

we obtain 

d(x1+1, x +) d(x1, x f) : d(x1, x 12) sin
e f is stri
tly 
ontra
ting and by the 

indu
tion hypothesis, and d(x1+1, x 12 

) d(x1, x 12) by the following argument: 

d(x1+1, x 12) : J1+1 

J1 

= d(x1 

, x 1+1), hen
e x1 

E B;,+i(x1+1) = (x12)B;,+i

whi
h suÆ
es. By (Uiv) we 
on
lude that d(x12 , x +)  d(x1 

, x 12) as required. 

It remains to show the 
ase where I2 

is a su

essor ordinal. \e obtain 

d(x12 , x +)  d(x12-1, x f)

 d(x1i , x 12) 

sin
e f is stri
tly 
ontra
ting and by the indu
tion hypothesis. 

\e 
onstru
ted a transfnite sequen
e (x+) whi
h is pseudo-
onvergent. \e 

also obtain a 
orresponding sequen
e J+ 

in r, where J+ 

= d(x+, x ++1), whi
h is 

stri
tly de
reasing. If we assume that no point i n ( x+) is a fxed point, then there 

must be an ordinal I su
h that J+ 

= 0 for all o > I , where 0 is the least element 

of r. This, however, 
ontradi
ts the assumption that no p o i n t in (x+) is a fxed 

point. 

In order to fnish the proof, we need to show uniqueness of the fxed point. 

Suppose y is another fxed p o in t of f . Then d(x, y) = d(f(x), f (y)) d(x, y) 

whi
h is a 
 o n tradi
tion. Hen
e the fxed p o i n t is unique. • 

An alternative 
onstru
tive proof is given in Se
tion 1.5. 

1.4 Dislo
ated Metri
s 

Dislo
ated metri
s were studied under the name of metri
 domains in [Mat86]. \e 

pro
eed now with the defnitions needed for stating the Matthews theorem, whi
h 

is the generalized Bana
h 
ontra
tion mapping theorem on these spa
es, that is, 

we will defne 
onvergen
e, Cau
hy sequen
es and 
ompleteness for dislo
ated 

metri
s as in [Mat86]. As it turns out, these notions 
an b e 
arried over dire
tly 

from 
onventional metri
s. Then, we will investigate the topologi
al stru
ture 

underlying the notion of dislo
ated metri
, whi
h will lead to a proof of the 

Matthews theorem whi
h is in the spirit of the proof of the Bana
h 
ontra
tion 

mapping theorem. 

1.4.1 Defnition A sequen
e (xn) in a d-metri
 spa
e (X , f ) 
onverges with re-
spe
t to f (or in f) if there exists an x E X su
h that f(xn, x ) 
onverges to 0 as 

n - . I n this 
ase, x is 
alled a limit of (xn) (in f). 
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1.4.2 Proposition Limits in d-metri
 spa
es are unique. 

Proof: Let x and y be limits of the sequen
e (xn). By properties (Miii) and (Miv) 

of Defnition 1.2.1, it follows that f(x, y) : f(xn, x ) f(xn, y ) - 0 as n - . 

Hen
e f(x, y) = 0 and by property (Mii) of Defnition 1.2.1 it follows that x = y. 

• 

1.4.3 Defnition A sequen
e ( xn) in a d-metri
 spa
e is 
alled a Cau
hy sequen
e 

if for ea
h E > 0 there exists n E N su
h that for all m, n 2 n we have 

f(xm, x n)  E . 

1.4.4 Proposition Every 
onvergent sequen
e in a d-metri
 spa
e is a Cau
hy 

sequen
e. 

Proof: Let (xn) b e a sequen
e whi
h 
onverges to some x, and let E > 0 be 

Earbitrarily 
hosen. Then there exists n E N with f(xn, x ) 

2 

for all n 2 n . For 

Em, n 2 n we then obtain f(xm, x n) : f(xm, x ) f(x, xn) 2 

2 

= E. Hen
e (xn) 

is a C au
hy sequen
e. • 

1.4.5 Defnition A d-metri
 spa
e (X , f ) is 
alled 
omplete if every Cau
hy 

sequen
e in X 
onverges with respe
t to f. A fun
tion f : X - X is 
alled a 


ontra
tion if there exists 0 : , 1 su
h that f(f(x), f (y)) : ,f(x, y) for all 

x, y E X. 

1.4.6 Theorem (Matthews theorem) Let (X , f ) b e a 
omplete d-metri
 

spa
e and let f : X - X b e a 
ontra
tion. Then f has a unique fxed p o in t. 

A proof of this theorem was given in [Mat86], and we will from now on refer to 

it as the Matthews theorem. \ e will give an alternative proof later whi
h is more 

in the spirit of the proof of the original Bana
h 
ontra
tion mapping theorem. 

\e will now investigate a topologi
al point of view of dislo
ated metri
s fol-
lowing the outline given by the defnitions at the beginning of this se
tion. Sin
e 


onstant sequen
es do not in general 
onverge in d-metri
 spa
es, a 
 o n ventional 

topologi
al approa
h is not feasible, and notions of neighb o u r h o o d s , 
 o n vergen
e 

and 
ontinuity will have to b e modifed. 

Dislo
ated Neighbourhoods 

1.4.7 Defnition An (open E-)ball in a d-metri
 spa
e (X , f ) with 
entre x E X 

is a set BE(x) = {y E X I f(x, y)  E} where E > 0. 

Note that balls may b e e m p t y in d-metri
 spa
es. In fa
t, the above defnition 

of ball does not imply that the 
entre of a ball is 
ontained in the ball itself: 

the point may b e dislo
ated from the ball, and hen
e our usage of the term 

�dislo
ated". 
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CHAPTER 1. FIXED-POINT THEOREMS FOR SINGLE-VALUED MAPPINGS  

1.4.8 Proposition Let (X , f ) b e a d-metri
 spa
e. 

(a) The following three 
onditions are equivalent: 

(i) For all x E X, w e have f(x, x) = 0. 

(ii) f is a metri
. 

(iii) For all x E X and all E > 0, we have BE(x) = 0. 

(b) The spa
e (X 

' , f ), where X 

' = {x E X I f(x, x) = 0 }, is a metri
 spa
e. 

Proof: (a) That (i) implies (ii) is obvious, as is (ii) implies (iii). \e show (iii) 

implies (i). Sin
e BE(x) = 0 for all E > 0, there exists, for ea
h E > 0, some y E X 

with f(x, y) E. But, for all y E X, we have f(x, x) : 2 f(x, y), and hen
e 

f(x, x)  E for all E > 0. Therefore, f(x, x) = 0. 

(b) Obviously, ( X 

' , f ) is a d-metri
 spa
e. The assertion now follows immediately 

from (a). • 

\e pro
eed with the investigation of dislo
ated metri
s from a topologi
al 

point of view. 

1.4.9 Defnition Let X b e a set. A relation Æ X x  (X) (written infx) is 


alled a d-membership relation (on X) if it satisfes the following property for all 

x E X and A,B X: 

x Æ A and A B implies x Æ B. (1.1) 

\e say x is below A" if x Æ A. 

The below"-relation is a generalization of the membership relation from set-
theory, whi
h will allow u s to defne a suitable notion of neighb o u r h o o d . 

1.4.10 Defnition Let X b e a set, let Æ be a d-membership relation on X and 

let Ux 

= 0 b e a 
olle
tion of subsets of X for ea
h x E X. \e 
all (Ux, Æ ) 

a d-neighbourhood system (d-nbhood system) for x if it satisfes the following 


onditions. 

(Ni) If U E Ux, then x Æ U . 

(Nii) If U, V E Ux, then U n V E Ux. 

(Niii) If U E Ux, then there is a V U with V E Ux 

su
h that for all y Æ V we 

have U E Uy. 

(Niv) If U E Ux 

and U V , then V E Ux. 

Ea
h U E Ux 

is 
alled a d-neighbourhood (d-nbhood) of x. Finally, l e t X be a set, 

let Æ b e a d-membership relation on X and, for ea
h x E X, let (Ux, Æ ) be a 

d-nbhood system for x. Then (X, U , Æ ) (or simply X) is 
alled a d-topologi
al 

spa
e, where U = {Ux 

I x E X}. 
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Note that points may h a ve e m p t y d-nbhoods and that Defnition 1.4.10 is ex-
a
tly the defnition of a topologi
al neighbourhood system if Æ is the membership 

relation E. 

Proposition 1.4.11, next, shows that d-nbhood systems arise naturally from 

d-metri
s. 

1.4.11 Proposition Let (X , f ) b e a d-metri
 spa
e. Defne the d-membership 

relation Æ as the relation {(x, A) I there exists E > 0 for whi
h BE(x) A}. F or 

ea
h x E X, let Ux 

b e the 
olle
tion of all subsets A of X su
h that x Æ A. Then 

(Ux, Æ ) i s a d-nbhood system for x for ea
h x E X. 

Proof: It is easy to see that Æ is indeed a d-membership relation.  

(Ni) is obvious. Note that we also have the reverse property: if x Æ U , th en U E U x.  

(Nii) If x Æ U, V , then there are balls A, B with 
entre x su
h that A U and  

B V . \ithout loss of generality let A b e the smaller of the balls A and B.  

Then A = A n B U n V .  

(Niii) Let U E U x, that is, x Æ U . Then there is a ball B with 
entre x su
h that  

B U and B E U x. N o w let y Æ B be arbitrary. \ e h a ve to show th a t y Æ U . But  

y Æ B implies that there is a ball B 

' with 
entre y su
h that y Æ B 

' B U . So  

y Æ U .  

(Niv) This is obvious sin
e x Æ U V implies x Æ V . •  

\e note that if (X , f ) is a metri
 spa
e, then the above 
onstru
tion yields 

the usual topology asso
iated with a metri
. 

The set of balls of a d-metri
 does not in general yield a 
onventional topology. 

In this respe
t, the axioms defning a dislo
ated metri
 are diferent from those 

defning a partial metri
 in [Mat92, Mat94], whi
h are as follows. 

1.4.12 Defnition Let X b e a set and let p : X x X - J
+ b e a fun
tion. \e 


all p a partial metri
 on X if it satisfes the following axioms. 

(Pi) For all x, y E X, x = y if and only if p(x, x) = p(x, y) = p(y, y ). 

(Pii) For all x, y E X, p(x, x) : p(x, y). 

(Piii) For all x, y E X, p(x, y) = p(y, x ). 

(Piv) For all x, y, z E X, p(x, z) : p(x, y) p(y, z ) - p(y, y ). 

A weak partial metri
 is a distan
e fun
tion satisfying 
onditions (Pi), (Piii) 

and (Piv) of Defnition 1.4.12, i.e. 
ondition (Pii) of small self-distan
es is not 

required. These spa
es were studied e.g. in [EH98, He
99, O'N95], and we note 

that [O'N95] works with partial metri
s where negative distan
es are allowed. 

It is easy to see that any (weak) partial metri
 is a d-metri
. Furthermore, the 

set of balls with respe
t to a ( w eak) partial metri
 does indeed yield a topology, 

and strong relationships between the topologies arising from partial metri
s and 

topologies dis
ussed in domain theory 
an be established. \e refer the reader to 
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[Mat92, Mat94, EH98, \a
00] for a 
omprehensive dis
ussion of these matters 

sin
e our main 
on
ern here is with the more general notion of dislo
ated metri
. 

\e will not follow the lines mentioned in this paragraph sin
e dislo
ated metri
s 

will suÆ
e for the purpose of our appli
ations. 

1.4.13 Proposition Any d-ultrametri
 satisfes (Pii), (Piii) and (Piv), but not 

ne
essarily (Pi). 

Proof: Let (X , f ) b e a d-ultrametri
 spa
e and let x, y, z E X.  

(Pii) By the strong triangle inequality, we obtain f(x, x) : max{f(x, y), f (y, x )}  

and by symmetry we obtain the desired inequality.  

(Piii) follows from (Miii).  

(Piv) By the strong triangle inequality, w e obtain f(x, z) : max{f(x, y), f (y, z )}.  

\ithout loss of generality, we 
an assume that f(x, y) 2 f(y, z ). Sin
e by (Pii)  

we have f(y, y ) : f(y, z ), we obtain f(x, z) : f(x, y) : f(x, y) f(y, z ) - f(y, y ).  

Let X b e a set and defne f on X x X to b e identi
ally 1. Then f is a d-
ultrametri
 on X whi
h does not satisfy (Pi). • 

Convergen
e and Continuity 

On
e the notion of d-nbhood is defned, it is straightforward to adapt the notion 

of 
onvergen
e to d-topologi
al spa
es. 

1.4.14 Defnition Let (X, U , Æ ) b e a d-topologi
al spa
e and let x E X. A 

(topologi
al) net (x,) d-
onverges to x E X if for ea
h d-nbhood U of x we have 

that x, 

is eventually in U , that is, there exists some , su
h that x, 

E U for ea
h 

, > , . 

Note that if for some x E X we have 0 E Ux, then the 
onstant sequen
e 

(x) does not d-
onverge. In fa
t, if 0 E Ux, then no net in X d-
onverges to x. 

Note also that the notion of 
onvergen
e obtained in Defnition 1.4.14 is a natural 

generalization of 
onvergen
e with respe
t to a d-metri
, and we investigate this 

next. 

1.4.15 Proposition Let (X , f ) be a d-metri
 spa
e and let (X, U , Æ ) be the d-
topologi
al spa
e obtained from it via the 
onstru
tion in Proposition 1.4.11. Let 

(xn) be a sequen
e in X. Then (xn) 
 o n verges in f if and only if (xn) d-
onverges 

in (X, U , Æ ). 

Proof: Let (xn) b e 
onvergent in f to some x E X, so that f(xn, x ) - 0 as 

n - , and let U b e a d-nbhood of x. Then there exists E > 0 su
h that 

BE(x) U . Sin
e f(xn, x ) - 0, there exists n su
h that xn 

E BE(x) U for all 

n > n and hen
e (xn) d-
onverges to x. 

Conversely, l e t ( xn) be d-
onvergent to some x E X, that is, for ea
h d-nbhood 

U of x there exists n su
h that xn 

E U for ea
h n > n . F or ea
h E > 0, BE(x) is a 
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d-nbhood of x. Sin
e E 
an be 
hosen arbitrarily small, we m ust have f(xn, x ) - 0 

as n - , as required. • 

\e pro
eed with defning 
ontinuity on d-topologi
al spa
es. 

1.4.16 Defnition Let X and } be d-topologi
al spa
es and let f : X - } be a 

fun
tion. Then f is d-
ontinuous at x E X if for ea
h d -n bhood V of f(x ) in } 

there is a d-nb h o o d U of x in X su
h that f(U) V . \e say f is d-
ontinuous 

on X if f is d-
ontinuous at ea
h x E X. 

The following theorem shows that the notion of d-
onvergen
e 
 a n b e 
 hara
-
terized via nets, by analogy with 
onventional topology. 

1.4.17 Theorem Let X and } b e d-topologi
al spa
es and let f : X - } be 

a fun
tion. Then f is d-
ontinuous if and only if for ea
h net (x,) in X whi
h 

d-
onverges to some x E X, ( f(x,)) is a net in } whi
h d-
onverges to f(x ) E } . 

Proof: Let f be d-
ontinuous at x and let x, 

be a net whi
h d-
onverges to x . 

Let V b e a d-nbhood of f(x ). Then there exists a d-nbhood U of x su
h that 

f(U) V . Sin
e x, 

is eventually in U , we obtain that f(x,) is eventually in V , 

and hen
e f(x,) d-
onverges to f(x ). 

Conversely, i f f is not d-
ontinuous at x , then for some d-nb h o o d V of f(x ) 

and for all U E U we have f(U) V . T h us for ea
h U E U there is an xu 

E Ux0 

x0 

with f(xu) E V . Then (xu) is a net in X whi
h d-
onverges to x whilst f(xu) 

does not d-
onverge to f(x ). • 

\e h a ve generalized 
onvergen
e from d-metri
s to d-topologies. However, we 

still la
k a notion of 
ontinuity in terms of d-metri
s. \e will investigate this 

next, and this will enable us to give a proof of the Matthews theorem 1.4.6 whi
h 

is analogous to the standard proof of the Bana
h 
ontra
tion mapping theorem. 

1.4.18 Proposition Let (X , f ) and ( } , f 

' ) be d-metri
 spa
es, let f : X - } be 

a fun
tion and let (X, U , Æ ) and (}, V, Æ 

' ) b e the d-topologi
al spa
es obtained 

from (X , f ), respe
tively (} , f 

' ), via the 
onstru
tion in Proposition 1.4.11. Then 

f is d-
ontinuous at x E X if and only if for ea
h E > 0 there exists a Æ > 0 su 
h 

that f(BÆ(x )) BE(f(x )). 

Proof: Let f b e d-
ontinuous at x E X and let E > 0. Then BE(f(x )) is a 

d-nbhood of f(x ). By defnition of d-
ontinuity, there exists a d-nb h o o d U of 

x with f(U) BE(f(x )). But sin
e U is a d-nbhood of x , there exists a ball 

BÆ(x ) U and therefore f(BÆ(x )) f(U) BE(f(x )). 

Conversely, assume that the E-Æ-
ondition on f holds and let V be a d-nbhood 

of f(x ). Then there exists E > 0 w ith BE(f(x )) V and Æ > 0 w ith f(BÆ(x )) 

BE(f(x )) V . Sin
e BÆ(x ) is a d-nbhood of x we obtain d-
ontinuity o f f . • 

1.4.19 Proposition Let (X , f ) b e a d-metri
 spa
e, let f : X - X b e a 
on-
tra
tion with 
ontra
tivity fa
tor , and let (X, U , Æ ) b e t h e d-topologi
al spa
e 
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CHAPTER 1. FIXED-POINT THEOREMS FOR SINGLE-VALUED MAPPINGS  

obtained from (X , f ) via the 
onstru
tion in Proposition 1.4.11. Then f is d-

ontinuous. 

EProof: Let x E X and let E > 0 b e arbitrarily 
hosen. For Æ = 

, +1 

, we ob-
Etain d(f(x), f (x )) : ,d(x, x ) : , 

, +1 

E for all x E BÆ 

(x ), and therefore 

f (BÆ 

(x )) BE 

(f(x )) as required. • 

Proof of Theorem 1.4.6: \ith our preparations, the proof follows the proof of 

the Bana
h 
ontra
tion mapping theorem on metri
 spa
es, and we only sket
h 

the details here. 

Let x E X b e arbitrarily 
hosen. Then the sequen
e (fn (x)) is a Cau
hy n EN 

sequen
e and 
onverges in (X , f ) to some p o in t y. Sin
e f is a 
ontra
tion, it is 

also d-
ontinuous by Proposition 1.4.19 from whi
h we obtain y = lim fn (x) = 

f(lim fn -1(x)) = f(y) b y Theorem 1.4.17. Uniqueness follows sin
e if z is a fxed 

point o f f , then f(x, z) = f(f(x), f (z)) : ,f(x, z) and therefore f(x, z) = 0, and 

hen
e x = z by (Mii). • 

1.5 Dislo
ated Generalized Ultrametri
s 

The following theorem gives a partial unif
ation of the Matthews theorem 1.4.6 

and the PrieB-Crampe and Ribenb o i m theorem 1.3.4. The proof of the latter 

theorem given in [PCR93] in fa
t 
arries over dire
tly to our more general setting 

of d-gums. 

1.5.1 Theorem Let (X , f , r) b e a spheri
ally 
omplete d-gum spa
e and let 

f : X - X b e non-expanding and stri
tly 
ontra
ting on orbits. Then f has a 

fxed point. If f is stri
tly 
ontra
ting on X, then the fxed point is unique. 

Proof: Assume that f has no fxed p o in t. Then for all x E X we have 

f(x, f(x)) = 0 . \ e defne the set B by B = {B0 (xP, (x ))(x) I x E X}, and note that 

ea
h ball in this set is non-empty. \ e also note that B0 (xP, (x ))(x) = B0 (xP, (x ))(f(x)) 

by Lemma 1.3.3. Now let C b e a maximal 
hain in B. Sin
e X is spheri
ally 


omplete, there exists z E C. \e show that B0 (z P, (z ))(z) B0 (xP, (x )) 

for all 

x E X and hen
e, by maximality, that B0 (z P, (z ))(z) is the smallest ball in the 


hain. Let B0 (xP, (x ))(x) E C. Sin
e z E B0 (xP, (x ))(x), and noting our earlier obser-
vation that B0 (xP, (x ))(x) = B0 (xP, (x ))(f(x)) for all x, we get f(z, x ) : f(x, f(x)) 

and f(z, f (x)) : f(x, f(x)). By non-expansiveness of f , we get f(f(z), f (x)) : 

f(z, x ) : f(x, f(x)). It follows by (Uiv) that f(z, f (z)) : f(x, f(x)) and there-
fore that B0 (z P, (z ))(z) B0 (xP, (x ))(x) by Lemma 1.3.3 for all x E X, sin
e x was 


hosen arbitrarily. N o w, sin
e f is stri
tly 
ontra
ting on orbits, f(f(z), f 

2(z)) 

f(z, f (z)), and therefore z E B0 (, (z )P, 

2 (z ))(f(z)) c B0 (z P, (z ))(f(z)). By Lemma 

1.3.3, this is equivalent t o B0 (, (z )P, 

2 (z ))(f(z)) c B0 (z P, (z ))(z), whi
h is a 
ontradi
-
tion to the maximality o f C. So f has a fxed point. 

Now let f b e stri
tly 
ontra
ting on X and assume that x, y are two dis-
tin
t fxed points of f . Then we get f(x, y) = f(f(x), f (y)) f(x, y) whi
h is 

impossible. So the fxed p o i n t of f is unique in this 
ase. • 
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\e next give a 
onstru
tive proof of a spe
ial 
ase of Theorem 1.5.1. 

1.5.2 Theorem Let (X , d, r) b e a spheri
ally 
omplete dislo
ated generalized 

ultrametri
 spa
e with r = {2-+ I o : I} for some ordinal I. \e order r by 

2-+ 2-f if p  o , and denote 2-1 by 0. If f : X - X is any stri
tly 
ontra
ting 

fun
tion on X, then f has a unique fxed p o in t. 

Proof: Let x E X. T hen f(x) E f(X) and d(f(x), x ) : 2- sin
e 2- is the max-
imum distan
e possible b e t ween any two p o i n ts in X. Now, d(f(f(x)), f (x)) : 

2-1 : 2- sin
e f is stri
tly 
ontra
ting, and by (Uiv) it follows that d(f 2(x), x ) : 

2- . By the same argument, we obtain d(f 3(x), f 

2(x)) : 2-2 : 2-1 and therefore 

d(f 3(x), f (x)) : 2-1. In fa
t, an easy indu
tion argument along these lines shows 

that d(fn+1(x), f 

m(x)) : 2-m for m : n. Again by (Uiv), we obtain that the 

sequen
e of balls of the form B2-n (fn(x)) is a des
ending 
hain (with respe
t to 

set-in
lusion) if n is in
reasing, and therefore has non-zero interse
tion B sin
e 

X is spheri
ally 
omplete. \e therefore 
on
lude that there is x E B with 

d(x , f 

n(x)) : 2-n for ea
h n E N . 

For ea
h n E N we argue as follows. Sin
e d(f(x ), f 

n+1(x))  d(x , f 

n(x)) : 

2-n n+1(x)) : 2-(n+1) : 2-nand d(x , f , w e obtain d(f(x ), x ) : 2-n. Sin
e this 

is the 
ase for all n E N , we obtain d(f(x ), x ) : 2- . 

It is straightforward to 
ast the above observations into a transfnite indu
tion 

argument, and we obtain the following 
onstru
tion: 

Choose x E X arbitrarily. F or ea
h ordinal o : I, w e defne f+(x) as follows. If 

o is a su

essor ordinal, then f+(x) = f(f+-1(x)) as usual. If o is a limit ordinal, 

then we 
 hoose f+(x) as som e x+ 

whi
h has the property that d(x+, f 

f(x)) : 2-f , 

and the existen
e of su
h an x+ 

is guaranteed by spheri
al 
ompleteness of X. 

The resulting transfnite sequen
e f+(x) has the property that 

d(f++1(x) d(f 1+1(x), f 

+(x)) : 2-+ for all o : I. Consequently, , f 

1(x)) = 

2-1 = 0, and therefore f 1(x) must be a fxed point of f . 

Finally, x1 

= f 1(x) 
an be the only fxed point of f . To see this, suppose 

y = x1 

is another fxed p o in t of f . Then we obtain f(y, x 1)  f(y, x 1), from the 

fa
t that f is stri
tly 
ontra
ting, whi
h is impossible. • 

Another alternative proof of this theorem will be given at the end of Se
tion 

3.4. 

1.6 Quasimetri
s 

Quasimetri
s are a 
onvenient w ay of re
on
iling metri
 and order stru
tures. \e 

give the relevant defnitions in order to state the Rutten-Smyth theorem 1.6.3, 

in the form in whi
h it appears in [Rut96]. A more general version was given in 

[Smy87] on quasi-uniformities. 

1.6.1 Defnition A sequen
e (xn) in a quasimetri
 spa
e (X , d ) is a (forward) 

Cau
hy sequen
e if, for all E > 0, there exists n E N su
h that for all n 2 m 2 n 
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we have d(xm, x n) E. A Cau
hy sequen
e (xn) 
onverges to x E X if, for all 

y E X, d(x, y) = lim d(xn, y ). Finally, X is 
alled CS-
omplete if every Cau
hy 

sequen
e in X 
onverges. 

Note that limits of Cau
hy sequen
es in quasimetri
 spa
es are unique. Given 

a quasimetri
 spa
e (X , d ), d indu
es a partial order :d 

on X by setting x :d 

y 

if and only if d(x, y) = 0. If (X , d ) is a quasimetri
 spa
e, then (X , d 

*) is a metri
 

spa
e, where d*(x, y) = max{d(x, y), d (y, x )}. 

1.6.2 Defnition Let X be a quasimetri
 spa
e. A fun
tion f : X - X is 
alled 

(1)  CS-
ontinuous if, for all Cau
hy sequen
es (xn) in X with lim xn 

= x, ( f(xn)) 

is a C au
hy sequen
e and lim f(xn) = f(x), 

(2)  non-expanding if d(f(x), f (y)) : d(x, y) for all x, y E X, and 

(3)  
ontra
tive if there exists some 0 : 
 1 su
h that d(f(x), f (y)) : 
 d(x, y) 

for all x, y E X. 

Contra
tive mappings are not ne
essarily CS-
ontinuous as was p o i n ted out 

in [Rut96], where a lso a p ro o f o f th e following theorem 
an b e found. 

1.6.3 Theorem (Rutten-Smyth theorem) Let (X , d ) b e a CS-
omplete 

quasimetri
 spa
e and let f : X - X b e non-expanding. 

(1) If f is CS-
ontinuous and there exists x E X with x :d 

f(x), then f has a 

fxed point, and this fxed p o i n t i s least above x with respe
t to :d. 

(2) If f is CS-
ontinuous and 
ontra
tive, then f has a unique fxed p o in t. 

Moreover, in both 
ases the fxed point 
an be obtained as the limit of the Cau
hy 

sequen
e (fn(x)), where in (1) x is the given p oin t, and in (2) x 
an b e 
hosen 

arbitrarily. 

Let (X, :) be a partially ordered set. Defne a fun
tion d< 

: X x X - J
+ by 

0  if x : y
d<(x, y) = 

1  otherwise. 

Then it is easily 
he
ked that (X , d <) is a quasi-ultrametri
 spa
e, and d< 

is 
alled 

the dis
rete quasimetri
 on X. Note that :d� 

and : 
oin
ide for a g i v en partial 

order :. 

By virtue of this defnition and the defnition of :d 

for a given quasimetri
 d, 

Part (1) of Theorem 1.6.3 generalizes the Kleene theorem 1.1.3. Part (2) general-
izes the Bana
h 
ontra
tion mapping theorem 1.2.2, 
f. also [Rut96, Smy87] and 

Proposition 2.4.4. 
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spa
e name of theorem referen
e numb e r symb o l 

w-
po Kleene 1.1.3 K 


hain-
omplete Knaster-Tarski 1.1.7 KT 

partial order 


omplete metri
 Bana
h 1.2.2 B 


ompa
t metri
  1.2.3 
p 

gum PrieB-Crampe and 1.3.4 PCR 

Ribenb o i m 

d-metri
 Matthews 1.4.6 M 

d-gum  1.5.1 dPCR 

quasimetri
 Rutten-Smyth 1.6.3 RS 

Table 1.3: Summary of single-valued fxed-point theorems. 

Figure 1.1: Dependen
ies between fxed-point theorems from Chapter 1. If a the-
orem is depi
ted lower in the diagram, this means that it is more general. See 

Table 1.3 for the abbreviations. 

1.7 Summary and Further Work 

\e have presented a numb e r of theorems on diferent order stru
tures and gen-
eralized metri
s, whi
h are 
olle
ted in Table 1.3. 

The dependen
ies b e t ween these theorems are depi
ted in Figure 1.1, where 

the letters abbreviate the theorems as listed in Table 1.3. The abbreviation �
pu" 

stands for the fa
t that stri
tly 
ontra
ting fun
tions on 
ompa
t ultrametri
 

spa
es have unique fxed p o i n ts, whi
h is an easy 
orollary of Theorem 1.2.3. 

\e note that the PrieB-Crampe and Ribenboim theorem 1.3.4 
an b e proven 

using the Knaster-Tarski theorem 1.1.7, analogous to a proof in [EH98] of the 

Bana
h 
ontra
tion mapping theorem 1.2.2 from the Kleene theorem 1.1.3, see 

Se
tion 3.3. Also, the dislo
ated PrieB-Crampe and Ribenb o i m theorem 1.5.1, 

respe
tively the Matthews theorem, 
an b e proven using the non-dislo
ated ver-
sion, i.e. the PrieB-Crampe and Ribenboim theorem 1.3.4, respe
tively the Bana
h 


ontra
tion mapping theorem 1.2.2, see Se
tions 3.4 and 3.1, respe
tively. 

\e list a numb e r of questions arising from our results. 
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Question 1.1 Is there a reasonable notion of d-open set 
orresponding to the 

notions of d-neighbourhood, d-
onvergen
e and d-
ontinuity as in 

Se
tion 1.4? 

Question 1.2 \hat are ne
essary and suÆ
ient 
onditions su
h that a spheri
ally 


omplete gum is 
ompa
t? 

Question 1.3 Is there a quasimetri
 version of the PrieB-Crampe and Ribenboim 

theorem 1.3.4? 

Question 1.4 \hi
h of the theorems in Figure 1.1 allow for 
ommon generaliza-
tions? 
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Chapter 2 

Fixed-point Theorems for 

Multivalued Mappings 

\e briefy present fxed-point theorems for multivalued mappings on partial or-
ders and generalized metri
s, and study some of the relationships between them. 

It turns out that many fxed-point theorems from Chapter 1 
an b e 
arried over 

to a multivalued setting. In Se
tion 2.1, we 
arry over the Knaster-Tarski theorem 

1.1.7. In Se
tion 2.2, we present a m ultivalued version of the Bana
h 
ontra
tion 

mapping theorem 1.2.2. Se
tion 2.3 is 
on
erned with multivalued variants of the 

PrieB-Crampe and Ribenboim theorem and Se
tion 2.4 introdu
es a theorem for 

multivalued mappings on quasimetri
s whi
h re
on
iles the theorems on partial 

orders and metri
s analogous to the Rutten-Smyth theorem 1.6.3. 

2.1 Partial Orders 

\e review a multivalued version of the Knaster-Tarski theorem 1.1.7 due to 

[KM98]. A multivalued Kleene theorem will be presented in Se
tion 2.4. 

2.1.1 Defnition Let T : X - 2x b e a multivalued mapping defned on X. An 

orbit of T is a net (xi)iE+ 

in X, where o denotes an ordinal, su
h t h a t xi+1 

E T (xi) 

for all i E o. An orbit (xi)iE+ 

of T is 
alled an w-orbit if o is the frst limit ordinal, 

w. An orbit (xi)iE+ 

of T will b e said to b e eventually 
onstant if there is a tail 

(xi)f<i 

of (xi)iE+ 

whi
h is 
onstant in that xi 

= xj 

for all i, j E o satisfying 

p : i, j. 

If T : X - 2x is a m ultivalued mapping and x is a fxed point of T , then we 

obtain an orbit of T whi
h i s e v entually 
onstant b y setting x = x = x1 

= x2 

. . . . 

Conversely, suppose that (xi)iE+ 

is an orbit of T with the property t h a t xi+1 

= xi 

for all i E o satisfying p : i, for some ordinal p E o. Then xf 

= xf+1 

E T (xf) 

and we h a ve a fxed point xf 

of T . T h us, having a fxed point a n d h a ving an orbit 

whi
h is eventually 
onstant are essentially equivalent 
onditions on T . 
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2.1.2 Defnition A multivalued mapping T defned on a partially ordered set 

X will b e said to b e monotoni
 if, for all x, y E X satisfying x : y and for all 

a E T (x), there exists b E T (y) su 
h that a : b. 

2.1.3 Defnition An orbit (xi)iE+ 

of T is said to be in
reasing if we have xi 

: xj 

for all i, j E o satisfying i : j, and is said to b e eventually in
reasing if some 

tail of the orbit is in
reasing. Finally, an in
reasing orbit (xi)iE+ 

of T is said to 

be tight if, for all limit ordinals p E o, w e have xf 

= sup {xi 

I i p }. 

Suppose that (xi)iE+ 

is an in
reasing orbit of T and that p E o is a limit 

ordinal. Then xf+1 

is an element of T (xf) su
h that xi 

: xf+1 

for all i p , and 

of 
ourse sup{xi 

I i p } : xf 

: xf+1 

if the supremum exists. In parti
ular, any 

in
reasing orbit (xi)iE+ 

whi
h is tight (if su
h exists) must satisfy the following 


ondition: 

For any limit ordinal p, there exists x (= xf+1) E T (sup{xi 

I i p }) 

su
h that sup{xi 

I i p } : x. (2.1) 

This 
ondition is a slight v ariant of a 
ondition whi
h w as identifed in [KM98] 

as a suÆ
ient 
ondition for the existen
e of fxed points of monotoni
 multivalued 

mappings. In fa
t, the following result was established in [KM98], ex
ept that it 

was formulated for de
reasing orbits and infma and we h a ve 
 hosen to work with 

the dual notions instead, to maintain 
onsisten
y. 

2.1.4 Theorem (Knaster-Tarski multivalued) Let X b e a 
omplete partial 

order and let T : X - 2x b e a multivalued mapping whi
h is non-empty, mono-
toni
 and satisfes (2.1). Then T has a fxed p o in t. 

\e omit details of the proof of this result ex
ept to observe that, starting with 

the b o tto m element x = l of X, the 
ondition (2.1) permits the 
onstru
tion, 

transfnitely, of a tight orbit (xi) of T . Sin
e this 
an b e 
arried out for ordinals 

whose underlying 
ardinal is greater than that of X, we are for
ed to 
on
lude 

that (xi) is eventually 
onstant and therefore that T has a fxed p o in t. 

Noting that sup{xi 

I i p } = sup{xi+1 

I i p }, one 
an view (2.1) s
hemat-
i
ally as the statement �sup{T (xi) I i p} : T (sup{xi 

I i p})" and it 
an 

therefore be thought of as a rather natural, weak 
ontinuity 
ondition on T whi
h 

is automati
ally satisfed by any monotoni
 single-valued mapping T on a 
po. 

The question of when the orbit 
onstru
ted in the previous paragraph be
omes 


onstant in w steps as in the single-valued Kleene theorem 1.1.3 is a question of 


ontinuity and will be taken up in Se
tion 2.4. 

Theorem 2.1.4 was established in [KM98] in order to show the existen
e of 

(
onsistent) answer sets for a 
lass of disjun
tive programs 
alled signed programs, 

see Se
tion 7.3. At the end of Se
tion 7.3, we w ill g iv e examples whi
h sh o w th a t 

it sometimes is ne
essary to work transfnitely in pra
ti
e, a point w h i 
 h justifes 

the name �Knaster-Tarski theorem" applied to Theorem 2.1.4. 

34  



 
 

 

�

CHAPTER 2. FIXED-POINT THEOREMS FOR MULTIVALUED MAPPINGS  

Thus, to summarize, monotoni
ity o f T together with (2.1) appears to give, for 

multivalued mappings, an exa
t analogue of the fxed-point theory for monotoni
 

single-valued mappings due to Knaster-Tarski. Moreover, there are appli
ations to 

the semanti
s of disjun
tive programs whi
h parallel those made in the standard, 

non-disjun
tive 
ase. 

2.2 Metri
s 

\e present a result due to [KKM93] w h i 
 h i s a m ultivalued version of the Bana
h 


ontra
tion mapping theorem 1.2.2. 

2.2.1 Defnition Let (X , d ) be a metri
 spa
e. A multivalued mapping T : X -
2x is 
alled a 
ontra
tion if there exists a real numb e r k 1 su
h that for every 

x E X, for every y E X, and for all a E T (x), there exists b E T (y) su
h that 

d(a, b) : kd (x, y). 

The following result is taken from [KKM93]. An alternative proof will be given 

in Se
tion 2.4. 

2.2.2 Theorem (Bana
h multivalued) Assume that X is a 
omplete metri
 

spa
e, and that T i s a m ultivalued 
ontra
tion on X su
h that, for every x E X, 

the set T (x) is 
losed and non-empty. Then T has a fxed p o in t. 

This theorem was established with a spe
if
 obje
tive in view, namely, t o s h o w 

the existen
e of answer sets for disjun
tive logi
 programs whi
h are 
ountably 

stratifed [KKM93]. 

2.3 Generalized Ultrametri
s 

\e present multivalued versions of the PrieB-Crampe and Ribenb o i m theorem 

1.3.4. 

2.3.1 Defnition Let (X , d, r) b e a generalized ultrametri
 spa
e (so that r is 

a partially ordered set). A multivalued mapping T on X is 
alled stri
tly 
on-
tra
ting , respe
tively, non-expanding if, for all x, y E X with x = y and for 

every a E T (x), there exists an element b E T (y) su
h that d(a, b) d(x, y), 

respe
tively, d(a, b) : d(x, y). 

The mapping T is 
alled stri
tly 
ontra
ting on orbits, if for every x E X 

and for every a E T (x) with a = x, there exists an element b E T (a) with 

d(a, b)  d (a, x). 

For T : X - 2x , let Ix 

= {d(x, y) I y E T (x)} and, for a subset � r, 

denote by Min � the set of all minimal elements of �. 

The following theorem was proved in [PCR00
]. Although we know of no 

spe
if
 appli
ation of it, we believe it will prove to b e useful by virtue of the 

general nature of the set r. 
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2.3.2 Theorem (Prie:-Cramps and Ribenboim multivalued) Let (X , d ) 

b e a spheri
ally 
omplete generalized ultrametri
 spa
e. Let T : X - 2x be 

non-empty, non-expanding and stri
tly 
ontra
ting on orbits. Moreover, assume 

that for every x E X, Min Ix 

is fnite and that every element of Ix 

has a lower 

bound in Min Ix. Then T has a fxed point. 

The following ideas were 
onsidered in [KKM93]. \e show that the notions 

defned there basi
ally 
oin
ide with those from generalized ultrametri
s. 

2.3.3 Defnition A semigroup is a set V together with an asso
iative binary 

operation : V x V - V . If is also 
ommutative, then the semigroup is 
alled 


ommutative or Abelian. A semigroup is 
alled a semigroup with 0 if there exists 

an element 0 E V su
h that 0 u = u  0= u for all u E V . 

By an ordered semigroup with 0 w e mean a semigroup with 0 on whi
h there 

is an ordering : satisfying: 0 : v for all v E V , and if v1 

: v2 

and v1 

' : v2
' , then 

v 

' v2
' .v1 1 

: v2 

2.3.4 Defnition Let V b e an ordered Abelian semigroup with 0 and let X be 

an arbitrary set. A g-metri
 on X is a mapping d : X x X - V whi
h satisfes 

the following 
onditions for all x, y, z E X. 

1. d(x, y) = 0 if and only if x = y. 

2. d(x, y) = d(y, x ). 

3. d(x, y) : d(x, z) d(z, y ). 

A pair (X , d ) 
onsisting of a set X and a g-metri
 d on X is 
alled a g-metri
 

spa
e. 

In [KKM93], g-metri
s were 
alled generalized metri
s, but we have 
hanged 

the notation sin
e the notion of generalized metri
 is used diferently in this 

thesis. \e will in fa
t not work with g-metri
s in the sequel sin
e the strongly 

related generalized ultrametri
s will suÆ
e for our purposes. \e investigate this 

relationship next; the following defnitions are again taken from [KKM93]. 

2.3.5 Defnition Let V denote the set of all expressions of the type 0 or 2-+ , 

where o is a 
ountable ordinal. An order is defned on V by: 0 : v for every 

v E V , and 2-+ : 2-f if and only if p : o. As a semigroup operation u v, we 

2-+ -(++1)will use the maximum max(u, v). It will be 
onvenient to write 

1
2 

= 2 . 

2.3.6 Defnition Assume that o is either a 
ountable ordinal or w1, the frst 

un
ountable ordinal, and that v = ( vf)fk + 

is a de
reasing family of elements of 

V . Let X b e a g-metri
 spa
e, and let (xf)fk + 

b e a family of elements of X. 

(i) (xf) is said to v-
luster to x E X if, for all p, we have d(xf, x ) vf 

whenever p  o . 
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(ii) (xf) is said to b e v-Cau
hy if, for all p and I, we have d(xf, x 1 

) vf 

whenever p  I  o . 

(iii)  X is said to be 
omplete if for every v, every v-Cau
hy family v-
lusters to 

some element in X. 

(iv) A set A X will b e 
alled 
omplete if for every v, whenever a v-Cau
hy 

family 
onsists of elements of A, it v-
lusters to some element of A. 

A strong relationship b e t ween the notion of 
ompleteness of g-metri
s with 

the notion of trans-
ompleteness, Defnition 1.3.6, for generalized ultrametri
s 

is obvious. \e show that they 
oin
ide by showing equivalen
e b e t ween 
om-
pleteness for g-metri
s and spheri
al 
ompleteness for generalized ultrametri
s, 


f. Proposition 1.3.8. G )
2.3.7 Defnition A mapping T : X - 2x is 
alled a 

1
2 

-
ontra
tion if, for every 

x E X, for every y E X and for every a E T (x), there exists b E T (y) su
h that 

d(a, b) : 

1
2 

d(x, y). 

The following theorem was proved in [KKM93]. 

2.3.8 Theorem Let X b e a 
omplete g-metri
 spa
e, let T b e a multivalued G
1 

)
2 

-
ontra
tion on X su
h that T (x) is not empty for some x E X (i.e. T is not 

identi
ally empty), and suppose that for every x E X the set T (x) is 
omplete. 

Then T has a fxed p o in t. 

\e present some results relating the results just given to the notion of spheri
al 


ompleteness we dis
ussed earlier. 

Let (X , d ) b e a g-metri
 spa
e with respe
t to V as given in Defnition 2.3.5. 

Then d is in fa
t a generalized ultrametri
 spa
e and vi
e-versa. 

2.3.9 Proposition Let (X , d ) b e a 
omplete g-metri
 spa
e with respe
t to V . 

Then X is spheri
ally 
omplete as an ultrametri
 spa
e. G )
Proof: Let B = Bv1 

(xf) b e a de
reasing 
hain of balls in X, and without 

fk + 

loss of generality assume that it is stri
tly de
reasing and that o is a limit ordinal. 

\e have to show that B = 0. L et v = ( vf)f. S in 
e B is a 
hain, it is easy to see 

that (xf+1)f 

is v-Cau
hy and therefore, by 
ompleteness of X, (xf+1) v-
lusters 

to some x E X. By defnition, this means that d(xf+1, x )  vf 

and therefore that 

x E Bv1 

(xf+1) = Bv1 

(xf) for all p. T hus, x E B. • 

2.3.10 Proposition Let (X , d, V ) b e a spheri
ally 
omplete generalized ultra-
metri
 spa
e. Then X is 
omplete as a g-metri
 spa
e. 
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Proof: Let v= (vf) b e a de
reasing family of elements of V whi
h is, without 

loss of generality, stri
tly de
reasing, and let (xf) b e v-Cau
hy. For v E v, e.g. ( )
v = 2 

-+ , let v 

' denote 2-(++1). T hen B = 

� (xf) is a de
reasing 
hain of balls Bv
1 f 

in X. By spheri
al 
ompleteness, it has non-empty i n terse
tion. Choose x E B. 

Then for all p we obtain d (xf, x ) : v 

' vf, i.e. (xf) v-
lusters to x. •f

This means, by virtue of Theorem 2.3.2, that we 
an reformulate the assump-
tions in Theorem 2.3.8 and thereby obtain the following theorem whi
h in fa
t is 

a spe
ial 
ase of [PCR00
, (3.4)]. 

2.3.11 Theorem Let X be a spheri
ally 
omplete generalized ultrametri
 spa
e 

(with respe
t to V ) and let T b e m ultivalued, non-empty and stri
tly 
ontra
ting 

on X and s.t. T (x) is spheri
ally 
omplete for all x E X. Then T has a fxed 

point. 

2.4 Quasimetri
s 

\e study a multivalued version of the Rutten-Smyth theorem 1.6.3, whi
h will 

lead to a m ultivalued version of the Kleene theorem 1.1.3. 

2.4.1 Defnition Let (X , d ) be a quasimetri
 spa
e. A multivalued mapping T : 

X - 2x is 
alled a 
ontra
tion if there exists a , with 0 : , 1 su 
h that, for all 

x, y E X and for all a E T (x), there exists b E T (y) satisfying d(a, b) : ,d(x, y). 

\e say that T is non-expanding if, for all x, y E X and for all a E T (x), there 

exists b E T (y) satisfying d(a, b) : d(x, y). 

These defnitions are 
learly extensions of well-known defnitions made for 

single-valued mappings, and indeed 
ollapse to them in the 
ase that T is single-
valued. An obvious and natural defnition of 
ontinuity of T is the following: 

for every Cau
hy sequen
e (xn) in X with limit x and for every 
hoi
e of yn 

E 

T (xn), we have that (yn) is a Cau
hy sequen
e and lim yn 

E T (x). In fa
t, the 

weaker defnition following, whi
h is implied by the one just given, suÆ
es for our 

purposes and will be used throughout. 

2.4.2 Defnition Let T : X - 2x b e a m ultivalued mapping defned on a quasi-
metri
 spa
e (X , d ). \e say that T is 
ontinuous if we have lim xn 

E T (lim xn) 

for every w-orbit (xn) of T whi
h is a Cau
hy sequen
e. 

Again, this defnition 
ollapses to a natural one in the 
ase that T is 

single-valued. In fa
t, if T is single-valued, it simply states the 
ondition that 

lim T (xn) = lim xn+1 

= lim xn 

= T (lim xn) for every w-orbit whi
h is a Cau
hy 

sequen
e, whi
h i s a w eaker 
ondition than that of CS-
ontinuity as in Defnition 

1.6.2(1). 

Finally, i f ( X , d ) is a quasimetri
 spa
e, we defne the asso
iated partial order 

:d 

on X by x :d 

y if and only if d(x, y) = 0 , 
f. Se
tion 1.6. 
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The main result of this se
tion is the following theorem, whi
h generalizes the 

Rutten-Smyth theorem 1.6.3. 

2.4.3 Theorem (Rutten-Smyth multivalued) Let (X , d ) b e a CS-
omplete 

quasimetri
 spa
e and let T : X - 2x denote a non-empty and 
ontinuous 

multivalued mapping on X. Then T has a fxed p o i n t if either of the following 

two 
onditions holds: 

(a)  T is a 
ontra
tion. 

(b)  T is non-expanding and there is x E X and x1 

E T (x ) su
h that d(x , x 1) = 

0 i.e. x :d 

x1. 

Proof: (a) Let x E X. Sin
e T (x ) = 0, we 
an 
hoose x1 

E T (x ). Sin
e T is 

a 
ontra
tion, there is x2 

E T (x1) su 
h that d(x1, x 2) : kd (x , x 1). Applying this 

argument repeatedly, we obtain a sequen
e (xn) su
h that for all n 2 0 we have 

xn+1 

E T (xn) and d(xn+1, x n+2) : kd (xn, x n+1). Thus, (xn) is an w-orbit. Using 

the triangle inequality, w e obtain 

m-1 m-1

d(xn, x n+m) : 

 
d(xn+i, x n+i+1) : 

 
kn+id(x , x 1) : 

kn 

d(x , x 1). 

1 - k 

i=  i= 

Thus, (xn) is a (forward) Cau
hy sequen
e in X and therefore is an w-orbit of T 

whi
h is Cau
hy. Sin
e X is 
omplete, (xn) has a lim it x . N ow, by 
ontinuity of 

T , we obtain x E T (x ) and x is a fxed point of T , as required. 

(b) Let x E X and x1 

E T (x ) satisfy d(x , x 1) = 0. Sin
e T is non-expanding, 

there is x2 

E T (x1) with d(x1, x 2) : d(x , x 1) = 0. Indu
tively, we obtain a  k-1sequen
e (xn) su
h that xn+1 

E T (xn) and d(xn, x n+k) : d(xn+i, x n+i+1) = i= 

0. Hen
e, (xn) is an orbit of T whi
h is forward Cau
hy and therefore has a limit 

x . By 
ontinuity of T again, we see that x is a fxed point of T . • 

The proof given here of Part (a) of Theorem 2.4.3 is, up to the last step, exa
tly 

the same as the frst half of the proof of the multivalued Bana
h 
ontra
tion 

mapping theorem 2.2.2 established in [KKM93], ex
ept that we are working with 

a quasimetri
 rather than with a metri
 and therefore 
are needs to b e taken 

that no use is made of symmetry. On the other hand, the proof we give next of 

Theorem 2.2.2, whi
h roughly 
orresponds to the se
ond half of the proof given 

in [KKM93], is shorter and te
hni
ally somewhat simpler than the proof given in 

[KKM93]. 

\e s h o w next that Theorem 2.4.3 in
ludes both the multivalued Bana
h 
 o n -
tra
tion mapping theorem of [KKM93] just mentioned, and also a natural exten-
sion of the Kleene theorem 1.1.3 to multivalued mappings, see Theorem 2.4.6. As 

stated earlier, this unif
ation is in dire
t analogy with the single-valued 
ase. 

Proof of Theorem 2.2.2 \e show that the 
ondition that T (x) is 
losed for 

every x together with that of T b e i n g a 
 o n tra
tion implies that T is 
ontinuous, 

and the result then follows from Part (a) of Theorem 2.4.3. 
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First note that (X , d ) b e i n g a 
omplete metri
 spa
e means that (X , d ) is 


omplete as a quasimetri
 spa
e, and obviously T satisfes (a) of Theorem 2.4.3. 

Now suppose that (xn) is an orbit of T whi
h i s a f o r w ard Cau
hy sequen
e and 

hen
e a Cau
hy sequen
e; we want to show that x E T (x ), where x is the 

limit of (xn). 

Sin
e T is a 
ontra
tion, for every n there exists yn 

E T (x ) su
h that 

d(xn+1, y n) : kd (xn, x ). Therefore, d(yn, x ) : d(yn, x n+1) d(xn+1, x ) : 

kd (xn, x ) d(xn+1, x ). Hen
e, we have yn 

- x . But ea
h yn 

E T (x ), and 

T (x) is 
losed for every x. Consequently, the limit x of the sequen
e yn 

also 

belongs to T (x ). So, x E T (x ), and it follows that T is 
ontinuous as required. 

• 

\e next turn our attention to demonstrating that Theorem 2.4.3 
ontains a 

version of the Kleene theorem for multivalued mappings. It will b e ne
essary to 

make some preliminary observations, as follows, 
on
erning partially ordered sets 

and the quasimetri
s they 
arry. \e refer to [Rut96] for these results. 

2.4.4 Proposition Let (X, :) b e a partial order and let (X , d ) denote the as-
so
iated quasimetri
 spa
e, i.e. d = d< 

as in Se
tion 1.6. Then the following 

hold. 

(i) A non-empty multivalued mapping T : X - 2x is monotoni
 if and only if 

it is non-expanding. 

(ii) A sequen
e (xn) in X is eventually in
reasing in (X, :) if and only if it is a 

Cau
hy sequen
e in (X , d ). 

(iii) The partially ordered set (X, :) is w-
omplete if and only if (X , d ) is 
om-
plete as a quasimetri
 spa
e. Furthermore, in the presen
e of either form of 


ompleteness, the limit of any Cau
hy sequen
e is the least upper bound of 

any in
reasing tail of the sequen
e. 

Noti
e that neither Part (iii) of this result nor the next defnition assumes the 

presen
e of a bottom element. 

2.4.5 Defnition Let the partial order (X, :) be w-
omplete and let T : X - 2x 

b e a non-empty multivalued mapping on X. \ e say that T is w-
ontinuous if T 

is monotoni
 and, for any w-orbit (xn) of T whi
h is eventually in
reasing, we 

have sup(xn) E T (sup(xn)), where the supremum is taken over any in
reasing tail 

of (xn). 

\e obtain fnally the following Kleene theorem for multivalued mappings as 

an easy 
orollary of our Theorem 2.4.3. Some of its appli
ations will be dis
ussed 

in Se
tion 7.3. 

2.4.6 Theorem (Kleene multivalued) Let (X, :) be an w-
omplete partial 

order (with bottom element) and let T : X - 2x b e a non-empty, w-
ontinuous 

multivalued mapping on X. Then T has a fxed point. 
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spa
e name of theorem referen
e numb e r 

w-
po Kleene multivalued 2.4.6 


po Knaster-Tarski multivalued 2.1.4 


omplete metri
 Bana
h multivalued 2.2.2 

gum PrieB-Crampe and 2.3.2 

Ribenb o i m m ultivalued 

quasimetri
 Rutten-Smyth multivalued 2.4.3 

Table 2.1: Summary of multivalued fxed-point theorems. 

Proof: Sin
e (X, :) is w-
omplete, the asso
iated quasimetri
 spa
e (X , d ) (i.e. 

d = d< 

as in Se
tion 1.6) is 
omplete by Proposition 2.4.4. Furthermore, T is 

monotoni
, sin
e it is w-
ontinuous, and is therefore non-expanding by Proposi-
tion 2.4.4 again. On taking x = l and x1 

E T (x ) arbitrarily, we have x and 

x1 

satisfying d(x , x 1) = 0. The result will therefore follow from Part (b) of The-
orem 2.4.3 as soon as we have established that T is 
ontinuous in the sense of 

Defnition 2.4.2. 

Let (xn) be any w-orbit of T whi
h is a Cau
hy sequen
e. Then (xn) is even-
tually in
reasing and, by w-
ontinuity o f T , w e have sup(xn) E T (sup(xn)), where 

the supremum is taken over any in
reasing tail of (xn). In other words, we have 

lim xn 

E T (lim xn) and hen
e we have the 
ontinuity o f T that we require. • 

The Kleene theorem for single-valued mappings T asserts that the fxed point 

produ
ed by the usual proof is the least fxed point o f T . This assertion does not 

immediately 
arry over to the 
ase of multivalued mappings T without additional 

assumptions. One su
h simple, though rather strong, 
ondition is the following: 

for ea
h x E X, assume that T (x) has a least element Nx 

and that Nx 

: Ny 

whenever x : y. T o see that this suÆ
es, suppose that x is any fxed point o f T , 

and 
onstru
t the orbit (xn) of T by setting x = l and xn+1 

= Nxn 

for ea
h n. 

Then (xn) 
onverges to a fxed point x. Noting that l : x and that Nx 

: x, we 

see that xn 

: x for all n. Hen
e, x : x. 

2.5 Summary and Further Work 

\e summarize the fxed-point theorems presented in this 
hapter in Table 2.1, 

and note that these theorems have 
orresponding versions in the single-valued 


ase whi
h have been 
arried over. The obvious task of 
arrying over further 

single-valued fxed-point theorems along the same lines remains and should pose 

no parti
ular diÆ
ulties. 

\e note that in the appli
ations in Part II of the thesis, all gums will always 

have some ordinal, in reverse order, as distan
e set as in Defnition 2.3.5, see 

also Se
tions 3.2 and 3.3. This is 
aused by the fa
t that the gums arising in our 

appli
ations are derived from level mappings whi
h are themselves mappings into 

ordinals. 
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\e will employ m ultivalued mappings in the 
ontext of disjun
tive logi
 pro-
grams in Se
tion 7.3, where multivalued mappings naturally arise as semanti
 

operators. In [ZR97a, ZR97b, ZR98], the authors avoid using multivalued map-
pings in the same 
ontext by using operators on p o werdomains instead. And in-
deed, the monotoni
ity notions used in this 
hapter 
orrespond to p o werdomain 


onstru
tions, more spe
if
ally to the Hoare p o werdomain [SHLG94], whi
h is 

an alternative to the Smyth p o werdomain employed in [ZR98]. Details of these 

relationships remain to b e worked out. 
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Chapter 3 

Conversions b e t ween Spa
es 

\e study relationships b e t ween the diferent spa
es from Chapters 1 and 2. In 

parti
ular, we will fo
us on the representation of some of the spa
es by others, 

whi
h will in some 
ases lead to alternative proofs for the respe
tive fxed-point 

theorems. 

In Se
tion 3.1, we will establish relationships b e t ween 
onventional metri
s 

and dislo
ated metri
s. \e will obtain several methods of obtaining dislo
ated 

metri
s from metri
s, some of whi
h will b e applied in Part I I of the thesis, 

and we will show how the Matthews theorem 1.4.6 
an b e derived from the 

Bana
h 
ontra
tion mapping theorem 1.2.2. In Se
tion 3.2, we will see how S
ott-
Ershov domains 
an be 
ast into generalized ultrametri
 spa
es, whi
h will also be 

applied in Part II of the thesis. In Se
tion 3.3 we will 
ast generalized ultrametri
 

spa
es into domains and derive another alternative proof of the PrieB-Crampe and 

Ribenboim theorem. Finally, in Se
tion 3.4, we will study relationships b e t ween 

gums and d-gums analogous to Se
tion 3.1. 

\e w ould like to note that quasimetri
s are strongly related to partial orders, 

and we refer to [Smy87, Smy91, BvBR96, Rut96] for these matters sin
e we will 

not make any spe
if
 use of these relationships in the sequel. 

3.1 Metri
s and Dislo
ated Metri
s 

In this se
tion, we w i l l i n vestigate relationships between 
onventional metri
s and 

d-metri
s. First note that if f is a 
ontra
tion with 
ontra
tivity fa
tor , on a 

d-metri
 X, w e have f(f(x), f (x)) : ,f(x, x) for all x E X. Sin
e the requirement 

f(x, x) = 0 for all x E X renders a d-metri
 to b e a metri
, we are interested in 

understanding the fun
tion u0 

: X - J defned by u0(x) = f(x, x). 

3.1.1 Defnition Let (X , f ) b e a d-metri
 spa
e. The fun
tion u0 

: X - J : 

x - f(x, x) is 
alled the dislo
ation fun
tion of f. 

Depending on the 
ontext, dislo
ation fun
tions are sometimes 
alled weight 

fun
tions, e.g. in [Mat94, \a
00]. 
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3.1.2 Lemma Let (X , f ) be a d-metri
 spa
e. Then u0 

: X - J is d-
ontinuous. 

Proof: Re
alling the observations following Defnition 1.4.14, let x E X and let 

(x,) b e a net in X whi
h d-
onverges to x, that is, for ea
h E > 0 there exist , 

su
h that f(x,, x )  E for all , > , . Sin
e u0(x,) = f(x,, x ,) : 2f(x,, x ) for all 

,, w e obtain u0(x,) - 0 for in
reasing ,. It remains to show t h a t u0(x) = 0, and 

this follows from u0(x) = f(x, x) : 2f(x,, x ), sin
e the latter term tends t o 0 f o r 

in
reasing ,. • 

The following is a general result whi
h shows how d-metri
s 
an b e obtained 

from 
onventional metri
s. 

3.1.3 Proposition Let (X , d ) b e a metri
 spa
e, let u : X - J
+ b e a fun
tion 

and let T : J
+ x J

+ - J
+ b e a symmetri
 operator whi
h satisfes the triangle 

inequality. Then (X , f ) with 

f(x, y) = d(x, y) T (u(x), u (y)) 

is a d-metri
 spa
e and u0(x) = T (u(x), u (x)) for all x E X. In parti
ular, if  

T (x, x) = x for all x E J
+ , then u0  u.  

Proof: (Mii) If f(x, y) = 0, then d(x, y) T (u(x), u (y)) = 0. Hen
e d(x, y) = 0  

and x = y.  

(Miii) Obvious by symmetry of d and T .  

(Miv) Obvious sin
e d and T satisfy the triangle inequality. •  

Completeness also 
arries over if some 
ontinuity 
onditions are imposed. 

3.1.4 Proposition Using the notation of Proposition 3.1.3, let u b e 
ontinuous 

as a fun
tion from (X , d ) to J
+ (endowed with the usual topology), and let T 

b e 
ontinuous as a fun
tion from the topologi
al produ
t spa
e (J+ )2 to J
+ , 

satisfying the additional property T (x, x) = x for all x. If (X , d ) is a 
omplete 

metri
 spa
e, then (X , f ) is a 
omplete d-metri
 spa
e. 

Proof: Let (xn) b e a Cau
hy sequen
e in (X , f ). Thus, for ea
h E > 0, there 

exists n E N su
h that for all m, n 2 n we have d(xm, x n) : d(xm, x n) 
T (u(xm), u (xn)) = f(xm, x n) E. So (xn) is also a Cau
hy sequen
e in (X , d ) 

and therefore has a unique limit x in (X , d ). In parti
ular, we have xn 

- x in 

(X , d ) and also u(xn) - u(x) and T (u(xn), u (x)) - T (u(x), u (x)) = u(x). \e 

have to show that f(xn, x ) 
onverges to 0 as n - . For all n E N we obtain 

f(xn, x ) = d(xn, x ) T (u(xn), u (x)) - u(x) = u0(x), and it remains to show th a t 

f(x, x) = 0 . But this follows from the fa
t that (xn) is a Cau
hy sequen
e, sin
e 

this implies that u(xn) = u0(xn) = f(xn, x n) - 0 as n - , h en 
e b y 
ontinuity 

of u we obtain u(x) = 0. • 

\e 
an also obtain a partial 
onverse of Proposition 3.1.3. 
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3.1.5 Proposition Let (X , f ) be a d-metri
 spa
e whi
h satisfes 
ondition (Piv) 

from Defnition 1.4.12 and let T : J
+ x J

+ - J
+ b e a symmetri
 operator su
h 

that T (x, x) = x for all x E J
+ and whi
h satisfes the inequality 

T (x, y) 2 T (x, z) T (z, y ) - T (z, z ) 

for all x, y, z E J
+ . Then (X , d ) w ith 

d(x, y) = f(x, y) - T (u0(x), u 0(y)) 

is a pseudometri
 spa
e. 

Proof: (Mi) For all x E X we have d(x, x) = f(x, x) - u0(x) = 0.  

(Miii) Obvious by symmetry of f and T .  

(Miv) For all x, y E X we obtain  

d(x, y) = f(x, y) - T (u0(x), u 0(y)) 

: f(x, z) f(z, y ) - f(z, z ) - (T (u0(x), u 0(z)) T (u0(z), u 0(y)) - u0(z)) 

= f(x, z) - T (u0(x), u 0(z)) f(z, y ) - T (u0(z), u 0(y)) 

= d(x, z) d(z, y ) 

• 

An example of a natural operator T whi
h satisfes the requirements of Propo-
sitions 3.1.3, 3.1.4 and 3.1.5 is 

1 

T : J
+ x J

+ - J
+ : ( x, y) - (x y),

2


f. [Mat92]. 

\e dis
uss a few more examples of d-metri
s whi
h are partly taken from 

[Mat92]. 

3.1.6 Example Let d b e the metri
 d(x, y) = 

1
2 

Ix - yI on J
+ , let u : J

+ - J
+ 

b e the identity fun
tion, and defne T (x, y) = 

2
1 (x y). Then f as defned in 

Proposition 3.1.3 is a d-metri
 and f(x, y) = 

1
2 

Ix - yI 

1
2 

(x y) = max{x, y} for 

all x, y E J
+ . 

3.1.7 Example Let I be the set of all 
losed intervals on J. T hen d : Ix  I - J
+ 

defned by 

1 

d([a, b], [
, d]) = (Ia - 
I Ib - dI)
2 

is a metri
 on I. Let u : I - J
+ b e defned by 

u([a, b]) = b - a 

and let T b e defned as in Example 3.1.6. Then the 
onstru
tion in Proposition 

3.1.3 yields a d-metri
 f su
h that 

f([a, b], [
, d]) = max{b, d} -min{a, 
} 
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for all [a, b], [
, d] E I . 

Indeed, we obtain 

1 1 1 1 

f([a, b], [
, d]) = d([a, b], [
, d]) b - a d - 
 

2 2 2 2 

1 

= (Ib - dI b d Ia - 
I - a - 
)
2 

1 1 

= (Ib - dI  ( b d)) (Ia - 
I - (a 
))
2 2 

= max{b, d} -min{a, 
}. 

3.1.8 Example (J+ , f ) where f : ( x, y) - x y is a dislo
ated metri
 spa
e. 

The following proposition gives an alternative w ay of obtaining d-ultrametri
s 

from ultrametri
s. \e will apply this in Se
tion 5.2. 

3.1.9 Proposition Let (X , d ) be an ultrametri
 spa
e and let u : X - J
+ be a 

fun
tion. Then (X , f ) with 

f(x, y) = max{d(x, y), u (x), u (y)} 

is a d-ultrametri
 and f(x, x) = u(x) for all x E X. If u is 
ontinuous as a fun
tion 

from (X , d ), then 
ompleteness of (X , d ) implies 
ompleteness of (X , f ). 

Proof: (Mii) and (Miii) are obvious. 

(Miv 

' ) \e obtain for all x, y, z E X 

f(x, y) = max{d(x, y), u (x), u (y)} 

: max{d(x, z), d (z, y ), u (x), u (y)} 

: max{d(x, z), u (x), u (z), d (z, y ), u (y)} 

= max {f(x, z), f (z, y )}. 

For 
ompleteness, let (xn) b e a C a u 
 hy sequen
e in (X , f ). Then (xn) is a Cau
hy 

sequen
e in (X , d ) and 
onverges to some x E X. \e then obtain f(xn, x ) = 

max{d(xn, x ), u (xn), u (x)} - u(x) as n - . As in the proof of Proposition 

3.1.4 we obtain u(x) = 0 whi
h 
ompletes the proof. • 

\e i n vestigate the relationship between the Matthews theorem 1.4.6 and the 

Bana
h 
ontra
tion mapping theorem 1.2.2. 

3.1.10 Proposition Let (X , f ) b e a d-metri
 spa
e and defne d : X x X - J 

by d(x, y) = f(x, y) for x = y and d(x, x) = 0 for all x E X. Then d is a metri
. 

Proof: \e obviously have d(x, x) = 0 for all x E X. If d(x, y) = 0 then either 

x = y or f(x, y) = 0, and from the latter we also obtain x = y. Symmetry is 
lear. 

\e want to show that d(x, y) : d(x, z) d(z, y ) for all x, y, z E X. If d(x, z) = 

f(x, z) and d(z, y ) = f(z, y ) then the inequality is 
lear. If d(x, z) = 0 then x = z 

and the inequality redu
es to d(x, y) : d(x, y) whi
h holds. If d(z, y ) = 0 then 

z = y and the inequality redu
es to d(x, y) : d(x, y) whi
h holds. • 
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3.1.11 Proposition Let (X , f ) b e a d-metri
 spa
e and defne d : X x X - J 

by d(x, y) = f(x, y) for x = y and d(x, x) = 0 for all x E X. If the metri
 d is 


omplete, so is f, and if f is a 
ontra
tion relative t o f then f is also a 
ontra
tion 

relative t o d. 

Proof: If (xn) is a Cau
hy sequen
e in f, then for all E there exists n su
h that 

f(xk, x m) E for all k , m 2 n . Consequently, we also obtain d(xk, x m) E for 

all k , m 2 n , and sin
e d is 
omplete, the sequen
e (xn) 
onverges in d to some 

x and d(xn, x ) - 0 as n - . It remains to show that f(xn, x ) - 0 as n - . 

\e 
onsider two 
ases. 

(1) Assume that the sequen
e (xn) is su
h that there exists n with xm 

= x 

for all m 2 n . Then f(xm, x ) = d(xm, x ) for all m 2 n , i.e. f(xm, x ) - 0, and 

hen
e f(xn, x ) - 0. 

(2) Assume that there exist infnitely many nk 

E N su
h that xnk 

= x. Sin
e 

(xn) is a Cau
hy sequen
e with respe
t to f we obtain f(xnk 

, x )  Efor all E > 0, 

i.e. f(x, x) = 0. Hen
e f(xn, x ) = d(xn, x ) for all n E N as required. 

Let x, y E X and assume f(f(x), f (y)) : ,f(x, y) for some 0 : , 1. If 

f(x) = f(y) then d(f(x), f (y)) = 0, hen
e d(f(x), f (y)) : ,d(x, y). If f(x) = 

f(y) then x = y and so d(f(x), f (y)) = f(f(x), f (y)) : ,f(x, y) = ,d(x, y) as 

required. • 

3.1.12 Proposition Let (X , f ) b e a 
omplete d-metri
 spa
e and defne d : 

X x X - J by d(x, y) = f(x, y) for x = y and d(x, x) = 0 for all x E X. Then 

the metri
 d is 
omplete, and if f is a 
ontra
tion relative to d then f is not 

ne
essarily a 
 o n tra
tion relative t o f. 

Proof: Let (xn) be a Cau
hy sequen
e in d. If ( xn) e v entually be
omes 
onstant, 

the sequen
e obviously 
onverges in d. So assume this is not the 
ase, and it 


an b e noted that then the sequen
e (xn) 
ontains infnitely many mutually dis-
tin
t points. Indeed it is easy to see that otherwise (xn) would not b e a Cau
hy 

sequen
e. Now defne a subsequen
e (yn) whi
h is obtained from (xn) by remov-
ing multiple o

urren
es of p o i n ts in (xn): For ea
h n E N let yn 

= xk 

where 

k is minimal with the property that for all m n we have xk 

= ym. Sin
e 

(yn) is a subsequen
e of the Cau
hy sequen
e (xn) we obtain that (yn) is also a 

Cau
hy sequen
e. Now f o r a n y t wo elements y, z in the sequen
e (yn) w e have that 

d(y, z ) = f(y, z ) b y defnition of d, and hen
e (yn) 
 o n verges in f to some y E X. 

Hen
e (yn) also 
onverges in d to y . \e show next that (xn) 
onverges to y in 

d. Let E > 0 be arbitrarily 
hosen. Sin
e xn 

is a Cau
hy sequen
e with respe
t to 

Ed there exists an index n1 

su
h that d(xk, x m) 

2 

for all k , m 2 n1. Sin
e (yn) 


onverges to y in f, we also know that there is an index n2 

with yn2 

= xn3 

for 

Esome index n3 

su
h that n3 

2 n1 

and d(yn2 

, y ) 

2 

. For all xn 

with n 2 n3 

we 

then obtain d(xn, y ) : d(xn, x ) d(xn3 

, y )  Eas required. n3 

Let X = {0, 1} and defne a mapping f : X - X by f(x) = 0 for all x E X. 

Let f be 
onstant equal to 1. Then f is a 
omplete d-metri
 and f is a 
ontra
tion 
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relative to d. However f(f(0), f (1)) = f(0, 1), so f is not a 
ontra
tion relative 

to f. • 

\e 
 a n n o w prove the Matthews theorem 1.4.6 by using the Bana
h 
ontra
-
tion mapping theorem 1.2.2. 

Alternative proof of Theorem 1.4.6 Let (X , f ) be a 
omplete d-metri
 spa
e 

and f a 
 o n tra
tion relative t o f. Defne d as above. Then d is a 
omplete metri
 

and f is a 
ontra
tion relative t o d. So f has a unique fxed point b y the Bana
h 


ontra
tion mapping theorem. • 

3.2 Domains as Generalized Ultrametri
 Spa
es 

It is our intention here to 
ast domains into ultrametri
 spa
es. Usually, domains 

are endowed with the S
ott topology, w h i 
 h is one of the T (but not T1) topologies 

of interest in theoreti
al 
omputer s
ien
e. However, as we will see, domains 
an 

b e e n d o wed with the stru
ture of a spheri
ally 
omplete ultrametri
 spa
e. This is 

not something normally 
onsidered in domain theory. However, given that there 

are many ultrametri
s whi
h are useful in theoreti
al 
omputer s
ien
e, it suggests 

that a study of the properties of generalized ultrametri
 spa
es, as 
arried out e.g. 

in [Kuh99, Rib96, BMPC99, PC90, PCR93, PCR00
, PCR00b, PCR00a], from 

this viewpoint i s worthy of 
onsideration. 

\e n o w 
ast an arbitrary domain into an ultrametri
 spa
e. For this purpose, 

let I denote an arbitrary 
ountable ordinal, and let r1 

denote the set {2-+ I o 
-+ 2-fI} of symb o ls 2 ordered by 2-+ if and only if p  o. 

3.2.1 Defnition Let r : D
 

- I b e a fun
tion, 
alled a rank fun
tion, form 

r1+1 

and denote 2-1 by 0. Defne dr 

: D x D - r1+1 

by dr(x, y) = inf {2-+ I 
 i 

x if and only if 
 i y for every 
 E D
 

with r(
)  o}. 

Then (D , d r) is an ultrametri
 spa
e said to b e indu
ed by r. The defnition 

of dr 

is a variation of a 
onstru
tion made by M.B. Smyth in [Smy91, Example 

5], and applied to level mappings in logi
 programming in [Sed97]. Indeed, the 

intuition behind dr 

is that two elements x and y of the domain D are �
lose" if 

they dominate the same 
ompa
t elements up to a 
ertain rank (and hen
e agree 

in this sense up to this rank); the higher the rank giving agreement, the 
loser 

are x and y. F urthermore, (D , d r) is spheri
ally 
omplete. The proof of this 
laim 

does not make use of the existen
e of a bottom element o f D, so this requirement 


an b e omitted. The main idea of the proof is 
aptured in the following lemma 

whi
h shows that 
hains of balls give r i s e t o 
 hains of elements in the domain. It 

depends on the following elementary fa
ts, see also Lemma 1.3.3. 

3.2.2 Fa
t (1) If I : Æ and x E BÆ(y), then B1 

(x) BÆ(y). Hen
e every point 

of a b a ll is also its 
entre. 

(2) If B1 

(x) c BÆ(y), then Æ : I (thus I  Æ, if r is totally ordered). 
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It will simplify notation in the following proof to denote the ball B2-a (x) by 

B+(x). 

3.2.3 Lemma Let Bf(y) and B+(x) b e arbitrary balls in (D , d r). Then the fol-
lowing statements hold. 

(1) For any z E Bf(y), we have {
 E approx(  z) I r(
) p} = {
 E approx(  y) I 

r(
)  p }. 

(2)  Bf 

= sup {
 E approx(y) I r(
)  p} and B+ 

= sup{
 E approx(  x) I r(
)  o} 

both exist. 

(3)  Bf 

E Bf(y) and B+ 

E B+(x). 

(4) \henever B+(x) Bf(y), we have Bf 

i B+. 

Proof: (1) Sin
e dr(z, y ) : 2-f, the frst statement f o l l o ws immediately from the 

defnition of dr. 

(2) Sin
e the set {
 E approx(z) I r(
)  p} is bounded by z, for any z and p, th e 

se
ond statement follows immediately from the 
onsistent 
ompleteness of D. 

(3) By defnition, we obtain Bf 

i y. Sin
e Bf 

and y agree on all 
 E D
 

with 

r(
)  p , the frst statement in (3) holds, and the se
ond similarly. 

(4) First note that x E Bf(y), so that Bf(y) = Bf(x) and the hypothesis 
an be 

written as B+(x) Bf(x). \e 
onsider two 
ases. 

(i) If p : o, then using (1) and noting again that x E Bf(y) we get Bf 

= sup{
 E 

approx(  y) I r(
) p} = sup{
 E approx(  x) I r(
) p} i sup{
 E approx(x) I 

r(
)  o } = B+ 

as required. 

(ii) If o p, then we 
annot have B+(x) c Bf(x) and we therefore obtain 

B+(x) = Bf(x) and 
onsequently B+(Bf) = Bf(Bf) = Bf(B+) using (3). \ith 

the argument of (i) and noting this time that y E B+(x), it follows that B+ 

i Bf. 

\e want to show that B+ 

= Bf. Assume in fa
t that B+ 

� Bf. Sin
e any 

point of a ball is its 
entre, we 
an take z = Bf 

in (2), twi
e, to obtain Bf 

= 

sup{
 E approx(Bf) I r(
) p} and B+ 

= sup{
 E approx(  Bf) I r(
) o}. 

Thus, the supposition B+ 

� Bf 

means that sup{
 E approx(Bf) I r(
) o} � 

sup{
 E approx(  Bf) I r(
) p}. Sin
e {
 E approx(  Bf) I r(
) o} {
 E 

approx(  Bf) I r(
) p}, there must b e some d E {
 E approx(Bf) I r(
) p} 

with d i sup{
 E approx(Bf) I r(
) o} = B+. Thus, there is an element 

d E D
 

with r(d) p satisfying d i B+ 

and d i Bf. This 
ontradi
ts the fa
t 

that dr(B+, B f) : 2-f . Hen
e, B+ 

� Bf, and sin
e B+ 

i Bf, it follows that 

B+ 

= Bf 

and therefore that Bf 

i B+ 

as required. • 

3.2.4 Theorem The ultrametri
 spa
e (D , d r) is spheri
ally 
omplete. 

Proof: By the previous lemma, every 
hain (B+(x+)) of balls in D gives rise to a 


hain (B+) in D in reverse order. Let B = sup B+. N ow let B+(x+) be an arbitrary 

ball in the 
hain. It suÆ
es to show that B E B+(x+). Sin
e B+ 

E B+(x+), we 
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have dr(B+, x +) : 2-+. But dr 

is a generalized ultrametri
 and so it suÆ
es to 

show that dr(B , B +) : 2-+. For every 
ompa
t element 
 i B+, we have 
 i B 

by 
onstru
tion of B. Now let 
 i B with 
 E D
 

and r(
) o. \e have to 

show that 
 i B+. Sin
e 
 is 
ompa
t and 
 i B, there exists Bf 

in the 
hain 

with 
 i Bf. If B+(x+) Bf(xf), then Bf 

i B+ 

by Lemma 3.2.3 and therefore 


 i B+. If Bf(xf) c B+(x+), then o p, and sin
e 
 i Bf, 
 is an element of 

the set {
 E approx(  xf) I r(
)  o} = {
 E approx(x+) I r(
) o}. Sin
e B+ 

is 

the supremum of the latter set, we have 
 i B+ 

as required. • 

This result will be applied in Se
tion 5.1. 

3.3 Generalized Ultrametri
 Spa
es as Domains 

\e will give an alternative proof of the PrieB-Crampe and Ribenb o i m theorem 

whi
h is inspired by [EH98], where the Bana
h 
 o n tra
tion mapping theorem 1.2.2 

was proven from the Kleene theorem 1.1.3. \e will prove the PrieB-Crampe and 

Ribenboim theorem using the Knaster-Tarski theorem 1.1.7. For this purpose, we 

will again impose the 
ondition on the generalized ultrametri
 spa
e (X , d, r), 

that r is of the form {2-+ I o : I} for some ordinal I, ordered as in Se
tion 3.2 

and in Defnition 2.3.5 by 2-+ : 2-f if p : o. Su
h a generalized ultrametri
 

spa
e will hen
eforth be 
alled a gum with ordinal distan
es. Re
all that we denote 

2-1 by 0. 

The main te
hni
al tool whi
h was employed in [EH98] is the spa
e of for-
mal balls asso
iated with a given metri
 spa
e. \e will extend this notion to 

generalized ultrametri
s. 

Let (X , d, r) be a generalized ultrametri
 spa
e with ordinal distan
es and let 

B 

' X be the set of all pairs (x, o) w ith x E X and o E r. \e defne an equivalen
e 

relation r on B 

' X by setting (x1, o 1) r (x2, o 2) if and only if o1 

= o2 

and 

d(x1, x 2) : o1. The quotient spa
e BX = B 

'X/ r will b e 
alled the spa
e of 

formal balls asso
iated with (X , d, r), and 
arries an ordering i whi
h is well-
defned (on representatives of equivalen
e 
lasses) by (x, o) i (y, p ) if and only 

if d(x, y) : o and p : o. \e denote the equivalen
e 
lass of (x, o) by [(x, o)], 

and note of 
ourse that the use of the same symb o l i b e t ween equivalen
e 
lasses 

and their representatives should not 
ause 
onfusion. 

3.3.1 Proposition The set BX is partially ordered by i. Moreover, X is spher-
i
ally 
omplete if and only if BX is 
hain-
omplete. 

Proof: Let X b e spheri
ally 
omplete and let [(xf, p )] be an as
ending 
hain in 

BX. Then Bf(xf) is a 
hain of balls in X with non-empty interse
tion, and let 

x E Bf(xf). Then d(xf, x ) : p for all p. Hen
e the 
hain [(xf, p )] in BX has 

[(x, 0)] as an upper bound. Now 
onsider the set A of all o E r su
h that [(x, o)] 

is an upper b o u n d of [(xf, p )]. Sin
e we are working with ordinal distan
es only, 

the set A has a supremum I, and hen
e [(x, I)] is a least upper bound of the 


hain [(xf, p )]. 

50  



�

�
 

 

 

 
 

 

  

  

  

 

 

 

      

   

   

 

CHAPTER 3. CONVERSIONS BETWEEN SPA
ES  

Now let BX b e 
 hain-
omplete and let (Bf(xf)) , where A r, be a 
hain 

fEA

of balls in X. Then [(xf, p )] is an as
ending 
hain in BX and has a least upper 

bound (x, I), and hen
e B1(x) Bf(xf). • 

3.3.2 Proposition The fun
tion l : X - B X : x - [(x, 0)] is inje
tive and l(X) 

is the set of all maximal elements of BX. 

Proof: Inje
tivity of l follows from (Ui). The observation that the maximal el-
ements of BX are exa
tly the elements of the form [(x, 0)] 
ompletes the proof. 

• 

Given a stri
tly 
ontra
ting mapping f on a generalized ultrametri
 spa
e 

(X , d, r) with ordinal distan
es, we defne a fun
tion Bf : BX - B X by 

f(x), 2-(++1)G ) G ) 

if 2-+ = 0 

x, 2 

-+ -
(f(x), 0) if 2-+ = 0. 

3.3.3 Proposition If f is stri
tly 
ontra
ting, then Bf is monotoni
. 

Proof: Let (x, 2-+) i (y, 2-f), so that d(x, y) : 2-+ and o : p. If 2-+ = 0, 

2-+there is nothing to show, so assume = 0. It only remains to show that 

: 2-(++1)d(f(x), f (y)) , whi
h holds sin
e f is stri
tly 
ontra
ting, and that 

o  1 : p  1 if 2-f = 0, and that o  1: p if 2-f = 0 and o = p, whi
h are 

easy to see. • 

Alternative proof of Theorem 1.3.4 Let (X , d, r) b e a spheri
ally 
omplete 

generalized ultrametri
 spa
e with ordinal distan
es, and let f : X - X be 

stri
tly 
ontra
ting. Then BX is a 
hain-
omplete partially ordered set, and Bf 

is a monotoni
 mapping on BX. F or B E B X, w e denote by tB the upper 
one 

of B , that is, the set of all B E B X with B i B. 

Let x E X b e arbitrarily 
hosen, assume without loss of generality that 

x = f(x), and let o b e an ordinal su
h that d(x, f(x)) = 2-+. Then (x, 2-+) i G )
f(x), 2-(++1) , and by monotoni
ity of Bf we obtain that Bf maps t [(x, 2-+)] 

into itself. Sin
e t [(x, 2-+)] is a 
hain-
omplete partial order with bottom element 

[(x, 2-+)], we obtain by the Knaster-Tarski theorem 1.1.7 that Bf has a least fxed 

point i n t [(x, 2-+)] whi
h we will denote by B . 

It is 
lear by defnition of Bf that B must b e maximal in BX, and hen
e is 

of the form [(x , 0)]. From Bf [(x , 0)] = [(x , 0)] we obtain f(x ) = x , so that x 

is a fxed point of f . 

Now assume that y = x is another fxed p o in t of f . Then d(x , y ) = 

d(f(x ), f (y)) d(x , y ) sin
e f is stri
tly 
ontra
ting. This 
ontradi
tion es-
tablishes that f has no fxed p o in t other than x . • 
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3.4 Generalized Ultrametri
s and Dislo
ated 

Generalized Ultrametri
s 

\e investigate the relationship between the PrieB-Crampe and Ribenboim theo-
rem 1.3.4 and it's dislo
ated version, Theorem 1.5.2. 

3.4.1 Proposition Let (X , f ) be a dislo
ated generalized ultrametri
 spa
e and 

defne d : X xX - J by d(x, y) = f(x, y) for x = y and d(x, x) = 0 for all x E X. 

Then d is a generalized ultrametri
. 

Proof: The proof is straightforward following Proposition 3.1.10. • 

3.4.2 Proposition Let (X , f ) be a dislo
ated generalized ultrametri
 spa
e and 

defne d : X x X - J by d(x, y) = f(x, y) for x = y and d(x, x) = 0 for all 

x E X. If d is spheri
ally 
omplete then f is spheri
ally 
omplete, and if f is 

stri
tly 
ontra
ting relative t o f then f is also stri
tly 
ontra
ting relative t o d. 

Proof: \e frst show that non-empty balls in f 
ontain all their midpoints. So 

let {y I f(x, y) : o} b e some non-empty ball in f with midpoint x. Then there 

exists some z E {y I f(x, y) : o} and we obtain f(x, x) : f(x, z) by (Uiv) and 

sin
e f(x, z) : o we have x E { y I f(x, y) : o}. Hen
e, every non-empty ball in 

f is also a ball with respe
t to d. 

Now let B b e a 
hain of non-empty balls in f. Then B is also a 
 hain of balls 

in d and has non-empty interse
tion by spheri
al 
ompleteness of d as required. 

Let x, y E X with x = y and assume f(f(x), f (y)) f(x, y). If f(x) = f(y) 

then d(f(x), f (y)) = 0, hen
e d(f(x), f (y))  d(x, y). If f(x) = f(y) then x = y 

and so d(f(x), f (y)) = f(f(x), f (y))  f(x, y) = d(x, y) a s required. • 

3.4.3 Proposition Let (X , f ) b e a spheri
ally 
omplete dislo
ated generalized 

ultrametri
 spa
e and defne d : X x X - J by d(x, y) = f(x, y) for x = y and 

d(x, x) = 0 for all x E X. Then d is spheri
ally 
omplete, and if f is stri
tly 


ontra
ting relative to d then f is not ne
essarily stri
tly 
ontra
ting relative to 

f. 

Proof: Let B b e a 
hain of balls in d. If B 
ontains a ball B = {x} for some 

x E X, then x is in the interse
tion of the 
hain. So assume that all balls in B 


ontain more than one point. 

Now let B1(xm) = {x I d(x, xm) : I} be a ball in B and let xm 

= z E B1(xm). 

Then f(xm, x m) : f(xm, z ) = d(xm, z ) : o, hen
e B1(xm) = {x I f(x, xm) : I}. 

It follows that B is also a 
hain of balls in f and has non-empty interse
tion as 

required. 

Let X = {0, 1} and defne a mapping f : X - X by f(x) = 0 for x E X. Let 

f be 
onstant equal to 1. Then (X , f, {0, 1}), where 0 1 is spheri
ally 
omplete 

and f is stri
tly 
ontra
ting relative to d. However f(f(0), f (1)) = f(0, 1), so f 

is not stri
tly 
ontra
ting relative t o f. • 
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\e 
an now use Theorem 1.3.4 to give a n easy proof of Theorem 1.5.2. 

Alternative proof of Theorem 1.5.2 Using Proposition 3.4.1, we obtain a 

generalized ultrametri
 spa
e (X , d ), whi
h is spheri
ally 
omplete by Proposition 

3.4.3. By Proposition 3.4.2, the fun
tion f is stri
tly 
ontra
ting relative to d. 

Hen
e, by Theorem 1.3.4, f has a unique fxed p o in t. • 

\e 
lose by giving two 
onstru
tions of d-gums from gums. 

3.4.4 Proposition Let (X , d , r) be a generalized ultrametri
 spa
e with ordinal 

distan
es and let u : X - r b e a fun
tion. Then the distan
e fun
tion 

f(x, y) = sup{d(x, y), u (x), u (y)} = max{d(x, y), u (x), u (y)} 

is a dislo
ated generalized ultrametri
 on X. 

Proof: (Ui) and (Uiii) are trivial. For (Uiv) see the proof of Proposition 3.1.9. • 

This result will be applied in Se
tion 5.4. 

3.4.5 Proposition Let (X , d , r) be a generalized ultrametri
 spa
e with ordinal 

distan
es, let z E X, and defne a fun
tion 

f : X x X - r : ( x, y) - max{d(x, z), d (y, z )}. 

Then (X , f , r) is a dislo
ated generalized ultrametri
 spa
e. Furthermore, if 

(X , d ) is spheri
ally 
omplete, then so is (X , f ). 

Proof: Clearly, f is a d-gum. For spheri
al 
ompleteness, note that every non-
empty ball in (X , f ) 
ontains z whi
h suÆ
es. • 

This result will be applied in Se
tion 5.5. 

3.5 Summary and Further Work 

\e h a ve 
 o vered two main themes in this 
hapter, whi
h are (1) the relationships 

b e t ween the dislo
ated and non-dislo
ated versions of the Bana
h 
ontra
tion 

mapping theorem 1.2.2 and the PrieB-Cramps and Ribenboim theorem 1.3.4, re-
sulting in alternative proofs of the Matthews theorem 1.4.6 and Theorem 1.5.1, 


overed in Se
tions 3.1 and 3.4 and (2) relationships b e t ween S
ott-Ershov do-
mains and generalized ultrametri
 spa
es, 
overed in Se
tions 3.2 and 3.3. 

The proof of the Matthews theorem 1.4.6 in Se
tion 3.1 involved the 
asting of 

a d-metri
 into a metri
, hen
e impli
itly allows to introdu
e a metrizable topol-
ogy on the d-metri
 spa
e. In Se
tion 1.4, in the paragraph after Defnition 1.4.12, 

we noted that partial and weak partial metri
s, whi
h are also d-metri
s, allow f o r 

a natural topology obtained from open balls. Thus we h a ve t wo natural topologies 

on partial and weak partial metri
s, and an obvious question is how these two 
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relate. Further investigations on (weak) partial metri
 spa
es are 
urrently b e -
ing undertaken by diferent authors, e.g. in [EH98, \a
00], and domain-theoreti
 

arguments naturally 
ome into view in this 
ontext. 

Generalized ultrametri
s have, to the best of our knowledge, not b e e n stud-
ied in the 
ontext of domain theory beforehand. Se
tions 3.2 and 3.3 provide a 

frst step towards su
h investigations. The domain-theoreti
 proof of the PrieB-
Crampe and Ribenboim theorem 1.3.4 in Se
tion 3.3, for example, suggests the 

possibility of a domain-theoreti
 treatment of non-monotoni
 operators in logi
 

programming, possibly related to the work of [RZ98, Z R 9 7 a , Z R 9 7 b , ZR98], where 

the operator 
orresponding to the stable model semanti
s [GL88], 
f. Chapter 7, 

is studied from a domain-theoreti
 p o i n t of view. In the publi
ations just men-
tioned, operators in three-valued logi
 as in [Fit85] play an important role, and 

they will also b e 
onsidered in this thesis in Chapter 6. 

\e fnally note that the 
onstru
tions used for 
asting domains into general-
ized ultrametri
s as in Se
tion 3.2, and for 
asting generalized ultrametri
s into 


hain-
omplete partial orders as in Se
tion 3.3, are not inverse to ea
h other, and 

it remains to be investigated under what 
onditions inverses 
an be found. 
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Chapter 4 

Topologies for Logi
 

Programming Semanti
s 

If P is a defnite logi
 program, then the operator Tp 

is 
ontinuous in the S
ott 

topology on Ip 

, and has a least fxed point due to the Kleene theorem 1.1.3. This 

fxed p o i n t 
orresponds very well to the pro
edural semanti
s of the program 

under logi
 programming systems like Prolog [Llo88]. In the 
ase of normal pro-
grams, the single-step operator is no longer monotoni
, and the S
ott topology 

is insuÆ
ent for analyzing its behaviour. An alternative t o t h e S
ott topology in 

this 
ase is the Cantor topology on Ip 

, also 
alled the atomi
 topology Q. The 

results presented in this part of the thesis support the 
laim that Q is the major 

alternative 
 hoi
e of a topology for logi
 programming semanti
s. 

In Se
tion 4.1, we will shortly review the S
ott topology on Ip 

in the form in 

whi
h it was presented in [Sed95]. In Se
tion 4.2, we dis
uss the atomi
 topology 

and present some frst results whi
h support the 
laim that it is a highly suitable 

topology for our analysis. In Se
tion 4.3, we w i l l i n trodu
e a generalization of the 

atomi
 topology for multi-valued logi
s. 

In this 
hapter, we will work under fxed but arbitrary preinterpretations. 

4.1 S
ott Topology (Positive Atomi
 Topology) 

\e shortly review the S
ott topology on the spa
e of all interpretations of a 

program. For proofs of the results in this se
tion, see [Sed95]. 

4.1.1 Defnition Let P b e a logi
 program. The set {Q(A) I A E Bp 

} with 

Q(A) = {I E Ip 

I A E I} is a subbase of a topology, the positive atomi
 topology 

Q+ on Ip 

. 

Note that a basi
 open set in Q+ is of the form Q(A1) n n Q (An), whi
h 

we will write as Q(A1, . . . , A n). If Bp 

is 
ountable, e.g. in the 
ase when the 

preinterpretation is Herbrand, we note that Q+ is se
ond 
ountable. 

The topology Q+ 
an b e 
hara
terized by 
onvergen
e using the following 

proposition. 
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4.1.2 Proposition A net (I,) 
onverges in Q+ to I E Ip 

if and only if every 

element of I is eventually an element of I,, i.e. if and only if for ea
h A E Bp 

there exists , su
h that A E I, 

for all , 2 , . 

4.1.3 Proposition The positive atomi
 topology Q+ on Ip 


oin
ides with the 

S
ott topology on Ip 

. 

4.1.4 Proposition Let (In) b e a sequen
e in Ip 

. Then the following hold. 

(1) (In) has a greatest limit in Q+, denoted by gl(In). 

(2) gl(In) = {A E Bp 

I A E In 

eventually}. 

(3) If (In) is eventually monotoni
 in
reasing, say (Ik)k>k0 

is monotoni
 in
reas- 
ing, then gl(In) = k>k0 

Ik. 

If P is a defnite program, then the operator Tp 

is S
ott-
ontinuous on Ip 

, 

hen
e admits a least fxed point Np 

by the Kleene theorem 1.1.3. The supported 

model Np 

is also the least model of P and is interpreted as the intended mean-
ing of P , sin
e it 
orresponds very well to the pro
edural b e h a viour under logi
 

programming systems [Llo88]. 

In the spe
ial 
ase of Herbrand preinterpretations, the positive atomi
 topol-
ogy is 
alled the positive query topology, whi
h was introdu
ed and analyzed in 

[Bat89, BS89b, BS89a], and only later on generalized to arbitrary preinterpreta-
tions. 

4.2 Cantor Topology (Atomi
 Topology) 

\e introdu
e the atomi
 topology due to [Sed95] and prove some frst results 

whi
h support the 
laim that it is a very suitable topology for the analysis of 

non-monotoni
 semanti
 operators. 

4.2.1 Defnition Let P be a logi
 program. The set {Q(A) I A E Bp 

} {Q(-A) I 

A E Bp 

}, where Q(A) = {I E Ip 

I A E I} and Q(-A) = {I E Ip 

I A E I}, is a 

subbase of a topology, the atomi
 topology Q on Ip 

. 

The atomi
 topology was frst developed, analyzed, and applied in the spe
ial 


ase of Herbrand preinterpretations in [Bat89, BS89b, BS89a], where it was 
alled 

the query topology, and later on generalized to arbitrary preinterpretations in 

[Sed95]. 

Note that the basi
 open sets of Q are of the form Q(A1)n�  �nQ(Ak)nQ(-B1 

)n 

n Q(-B1), whi
h we will write as Q(A1, . . . , A k, -B1, . . . , -B1). Clearly, Q is 

fner than Q+ and is se
ond 
ountable if the domain of the preinterpretation is 


ountable. 

The atomi
 topology 
an be 
hara
terized by 
onvergen
e using the following 

result due to [Sed95]. 
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4.2.2 Proposition A net (I,) 
onverges in Q to I E Ip 

if and only if every 

element i n I is eventually in I, 

and every element not in I is eventually not in I,, 

i.e. for ea
h A E I there exists , su
h that for all , 2 , we have A E I, 

and for 

ea
h A E Bp 

with A E I there exists ,1 

su
h that for all , 2 ,1 

we have A E I,. 

\e re
all two further results on the atomi
 topology due to [Sed95]. 

4.2.3 Proposition The atomi
 topology on Ip 


oin
ides with the produ
t topol-
ogy on 2Bp , where 2 = {0, 1} is endowed with the dis
rete topology. 

4.2.4 Theorem (Ip 

, Q ) is a totally dis
onne
ted 
ompa
t Hausdorf spa
e. It is 

also se
ond 
ountable and metrizable if the domain of the 
hosen preinterpretation 

is 
ountable. It is homeomorphi
 to the Cantor set in the real line, if Bp 

is 


ountably infnite. 

\e will now present some results whi
h underline the importan
e of the atomi
 

topology as an alternative t o t h e S
ott topology in a non-monotoni
 
ontext. 

4.2.5 Theorem Let P b e a normal logi
 program. 

(1) If for some I E Ip 

the sequen
e (T 

n(I)) 
onverges in Q to some N , then N p 

is a model for P . 

(2) If the sequen
e (T 

n(I)) does not 
onverge in Q for any I E Ip 

, then P has p 

no supported model. 

Proof: Suppose T p
n(I) - N in Q for some I E Ip 

. \e have to show that 

Tp 

(N) N . Let A E Tp 

(N). By defnition of Tp 

, there exists a ground instan
e 

A + A1, . . . , A ki 

, -B1, . . . , -B1i 

of a 
lause in P with Ak 

E N and B1 

E N for 

k = 1, . . . , k 1, l = 1, . . . , l 1. By Proposition 4.2.2, there is an n E N , su
h that 

for all n 2 n , Ak 

E T 

n(I) and B1 

E T 

n(I) for all k , l . By defnition of Tp 

and p p 

the above 
lause we have that A E T 

m(I) for all m 2 n  1. Hen
e, A E T 

n(I)p p 

eventually and therefore, by Proposition 4.2.2 again, A E N , whi
h proves the 

frst statement. 

Now, if N is a supported model for P , then (T 

n(N)) is 
onstant with value p 

N , so the se
ond statement is trivially true. • 

Let P b e a normal logi
 program and let I E Ip 

b e su
h that the sequen
e 

(T 

n(I)) 
onverges in Q to some N E Ip 

. Then by Theorem 4.2.5, N is a model for p 

P . If, furthermore, Tp 

is 
ontinuous in Q, or at least 
ontinuous at N , th en N = 

lim T p
n+1(I) = lim Tp 

(T p
n(I)) = Tp 

(lim T p
n(I)) = Tp 

(N). So N is a supported 

model in this 
ase. 

Continuity of the immediate 
onsequen
e operator is studied in detail in 

[Sed95], and we borrow the following result, whi
h will b e of use in Chapter 

9. 

4.2.6 Theorem Let P b e a normal logi
 program. Then Tp 

is 
ontinous in Q if 

and only if, for ea
h I E Ip 

and for ea
h A E Bp 

with A E Tp 

(I), either there is no 
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lause in P with head A or there is a fnite set S(I, A ) = {A1, . . . , A k, B 1, . . . , B k 

} 

of elements of Bp 

with the following properties: 

(i) A1, . . . , A k 

E I and B1, . . . , B k 

E I. 

(ii) Given any 
lause C with head A, at least one -Ai 

or at least one Bj 

o

urs 

in the body of C. 

As a 
orollary, one obtains that programs without lo
al variables have 
ontin-
uous single-step operators, and also that the single-step operator is not in general 


ontinuous for arbitrary programs. 

4.2.7 Theorem Let P b e a normal logi
 program and let I E Ip 

b e su
h that 

the sequen
e (In), with In 

= T 

n(I ), 
onverges in Q to some N E Ip 

. If, for every p 

A E N , no 
lause whose head mat
hes A 
ontains a lo
al variable, then N is a 

supported model. 

Proof: \e have to show that N Tp 

(N). So let A E N . By 
onvergen
e in Q 

and Proposition 4.2.2, there exists n E N su
h that A E T 

n(I ) for all n 2 n . p 

By hypothesis, there are only fnitely many 
lauses in ground(P ) with head A. 

Let C b e the (fnite) set of all atoms o

urring in positive b o d y literals and D 

the (fnite) set of all atoms o

urring in negative b o d y literals of those 
lauses. 

Let C1 

= C n N and D1 

= D \ N . Sin
e In 

-N in Q, there is an n1 

E N su
h G )
that C1 

In 

and D1 

Bp 

\ In 

for all n 2 n1. Sin
e A E Tp 

Imax{n0 

Pni} , there 

is a 
lause A + A1, . . . , A ki 

, -B1, . . . , -B1i 

in ground(P ) with Ak 

E C1 

N and 

B1 

E D1 

Bp 

\ N for k = 1 , . . . , k 1, l = 1 , . . . , l 1. Hen
e A E Tp 

(N) as required. 

• 

In the sequel, it will often be ne
essary to tranfnitely iterate the operator Tp 

before a fxed point is rea
hed. The following result is an obvious, but fundamental 

generalization of Theorem 4.2.5. 

4.2.8 Theorem Let P be a normal logi
 program and let I E Ip 

and defne, for 

ea
h limit ordinal o, � � ( )
T 

+(I) = A E Bp 

I A is eventually in T 

f(I) .p p 

fk + 

If, for some limit ordinal I , the tranfnite sequen
e (T 

1 (I))1k 1 


onverges in Q,p 

0 

then the limit of this sequen
e is a model of P . 

Proof: The proof is a straightforward adaptation of the proof of Theorem 4.2.5 

and is omitted. • 
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4.3 Generalized Atomi
 Topologies 

\e generalize the atomi
 topology to multivalued logi
s. 

In the following, let P b e a normal logi
 program. \e 
onsider logi
s, un-
derlying P , with fnitely many truth values t , t 1, . . . , t n-1. A n interpretation un-
der su
h a logi
 is a tuple I = (I , . . . , I n-1) where ea
h Ii 

is a set of ground 

atoms from P su
h that all Ii 

are mutually disjoint and Ii 

= Bp 

, where Bp 

is the set of all ground atoms from the frst order language underlying P . For 

every i = 0 , . . . , n - 1, ea
h atom in Ii 

has truth value ti 

under I, and we write 

v1(A) = ti 

for A E Ii. The truth value t will be abbreviated as t and we say that 

an atom A with v1(A) = t is true in I. The fun
tion v : Ip 

x Bp 

: ( I, A ) - v1(A), 

expanded to formulas as se
ond arguments using suitable truth tables for the 

logi
al 
onne
tives, is 
alled the valuation fun
tion of the logi
. The set of all 

interpretations of P will be denoted by Ip Pn 

. 

4.3.1 Defnition An interpretation I E Ip Pn 

is 
alled a model of P if v1(C) = t 

for every ground instan
e C of any 
lause in P . 

\e defne a topology on Ip Pn 

as follows. 

4.3.2 Defnition Identify Ip Pn 

with the set {v1 

: I E Ip Pn 

}. There obviously is 

a bije
tive 
orresponden
e b e t ween the two sets by ea
h I 
orresponding to v1 . 

Endowing {t , . . . , t n-1} with the dis
rete topology, w e obtain a produ
t topology 

Q on Ip Pn 

whi
h will be 
alled the generalized atomi
 topology. 

Topologi
al Properties 

The following two propositions follow from well-known results from elementary 

topology [\il70]. Note that Q is a topology of p o i n twise 
onvergen
e sin
e it is 

a produ
t topology of the dis
rete topology on a fnite set. 

4.3.3 Proposition For A E Bp 

and ti 

a truth value, let Q(A, ti) = {I E Ip Pn 

I 

v1(A) = ti}. Then Q is the topology generated by the subbase {Q(A, ti) I A E 

Bp 

, i E { 0, . . . , n - 1}}. 

4.3.4 Proposition A net I, 

in Ip Pn 


onverges in Q if and only if for every A E Bp 

there exists some ,A 

su
h that v1> 

(A) is 
onstant for all , 2 ,A. In this 
ase, the 

limit I of the net I, 

is given by v1(A) = v1>A 

(A) for ea
h A E Bp 

. 

\e immediately obtain that Q is indeed a generalization of Q. 

4.3.5 Proposition If the 
hosen logi
 is the 
lassi
al (two-valued) logi
, then Q 


oin
ides with the atomi
 topology Q on Ip Pn 

= IpP 2 

= Ip 

. 

The following theorem also follows from the fa
t that Q is a produ
t topology 

of the dis
rete topology on a fnite set. 
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4.3.6 Theorem The generalized atomi
 topology Q is a totally dis
onne
ted 


ompa
t Hausdorf topology. It is se
ond 
ountable if the domain of the 
hosen 

preinterpretation is 
ountable. 

Consequen
e Operators 

4.3.7 Defnition An operator T on Ip Pn 

is 
alled a 
onsequen
e operator for 

P if for every I E Ip Pn 

the following 
ondition holds: For every ground 
lause 

A + body in P , where vT (1)(A) = ti, say, and v1 

(body) = tj, say, we have that 

the truth table for ti 

+ tj 

yields the truth value true. 

Obviously, the single-step operator Tp 

for normal logi
 programs P is a 
on-
sequen
e operator. 

4.3.8 Theorem Let T be a 
onsequen
e operator for P and let I E Ip Pn 

. If T 

m(I) 


onverges in Q to some N E Ip Pn 

, then N is a model of P . If, furthermore, T is 


ontinuous in Q, then N is a fxed p o in t of T . 

Proof: Let Im 

= T 

m(I) for ea
h m and let A E Bp 

with vM (A) = ti. Then we 

obtain v1ki 

(A) = ti 

for all k1 

2 k for some k E N by 
onvergen
e in Q. Let 

A + body be a ground 
lause in P . S in 
e T is a 
onsequen
e operator, we obtain 

that for any k2 

> k , v1k2 

(body) m ust have some value tj 

su
h that ti 

+ tj 

yields 

truth value true. Sin
e body is a fnite 
onjun
tion of ground atoms, and sin
e 

Im 


onverges in Q, there must therefore exist some l E N , 
hosen large enough, 

su
h that for all l 2 l , v1z(body) evaluates to some tj 

whi
h is independent of l 

and su
h that ti 

+ tj 

yields truth value true. Consequently, again by 
 o n vergen
e 

in Q, the 
lause A + body evaluates to true under N . Sin
e the 
lause was 

arbitrarily 
hosen, N is a model of P . 

T 

n+1(IIf T is 
ontinuous in Q, w e obtain N = lim ) = T (lim T 

n(I)) = T (N). 

• 

4.3.9 Corollary Let T be a 
onsequen
e operator, P be a normal logi
 program, 

and N be a fxed point of T . Then N is a model of P . 

Proof: Sin
e the sequen
e T 

n(N) is 
onstant, it follows by Theorem 4.3.8 that 

N is a model of P . • 

Continuity 

4.3.10 Defnition Let A E Bp 

and denote by BA 

the set of all b o d y atoms of 


lauses with head A that o

ur in ground(P ). A 
onsequen
e operator T is 
alled 

lo
al if for every A E Bp 

and any two interpretations I, E Ip Pn 

whi
h agree on 

all atoms in BA, we have vT (1)(A) = vT (K)(A). 
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The restri
tion of being lo
al imposed on a 
onsequen
e operator is very weak 

and is obviously satsifed by the single-step operator in 
lassi
al two-valued logi
. 

The following defnition, whi
h gives a 
ondition whi
h is weaker than the 

absen
e of lo
al variables, 
an be found in [Sed95, Defnition 2]. 

4.3.11 Defnition Let C be a 
lause in P and A E Bp 

su
h that A unifes with 

the head of C. The 
lause C is said to be of fnite type relative to A if C has only 

fnitely many diferent ground instan
es with head A. The program P will be said 

to be of fnite type relative to A if ea
h 
lause in P is of fnite type relative t o A, 

i.e. if the set of all 
lauses in ground(P ) with head A is fnite. Finally, P will be 

said to be of fnite type if P is of fnite type relative t o A for every A E Bp 

. 

4.3.12 Proposition Let P b e a normal logi
 program of fnite type and let T 

b e a lo
al 
onsequen
e operator for P . Then T is 
ontinuous in Q. 

Proof: Let I E Ip Pn 

b e an interpretation and let G2 

= Q(A, ti) b e a subbasi
 

neighbourhood of T (I) in Q, and note that G2 

is the set of all E Ip Pn 

su
h that 

vK 

(A) = ti. \ e need to fnd a neighbourhood G1 

of I su
h that T (G1) G2. 

Sin
e P is of fnite type, the set BA 

is fnite. Hen
e the set G1 

= 

Q(B , v 1 

(B)) is a fnite interse
tion of open sets and therefore open. Sin
e BEBA 

ea
h E G1 

agrees with I on BA, we obtain vT (K)(A) = vT (1)(A) = ti 

for ea
h 

E G1 

by lo
ality o f T . Hen
e, T (G1) G2. • 

4.4 Summary and Further Work 

\e h a ve des
ribed diferent topologies on the spa
e of all interpretations of a logi
 

program: the S
ott topology, the atomi
 topology, and generalized atomi
 topolo-
gies. From this p o i n t of view this spa
e, together with some semanti
 operator 

asso
iated with a given program, 
an b e interpreted as a topologi
al dynami
al 

system, in a naive sense, and allows us to study these operators in a topologi
al 


ontext instead of an order-theoreti
 one as in the 
lassi
al 
ase. Su
h a p o i n t o f 

view will be put to work e.g. in Chapter 9, where we will establish some 
onne
-
tions between logi
 programming and artif
ial neural networks. 

The atomi
 topology provides a very natural notion of 
onvergen
e on the 

spa
e of all interpretations, and in fa
t it is diÆ
ult to imagine a reasonable notion 

of 
onvergen
e in this 
ontext whi
h is not 
losely related to the 
hara
terization 

in Proposition 4.2.2. As we will see in Chapter 5, if a net 
onverges with respe
t to 

any of the generalized metri
s studied in this thesis, then this net also 
onverges 

with respe
t to Q, although not vi
e-versa in general. So all the topologies whi
h 


apture the 
onvergen
e notions asso
iated with these generalized metri
s will be 

topologies whi
h are fner than the atomi
 topology. 

The generalized atomi
 topology of Se
tion 4.3 will not b e put to mu
h 

use in the sequel. The general observations made, however, open up the pos-
sibility of studying non-monotoni
 semanti
 operators on many-valued logi
s, 
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whi
h is something whi
h has, to our knowledge, not b e done before, as seman-
ti
 operators on many-valued logi
s are usually designed to b e monotoni
, as in 

[My
84, Fit85, PP90, GRS91, And97, BFMS98, Nai98, CS00]. As a frst step to-
wards su
h i n vestigations, it should be useful to study these monotoni
 operators 

in the 
ontext of generalized atomi
 topologies. 
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Chapter 5 

Supported Model Semanti
s 

In this 
hapter, we w i l l s h o w that some of the fxed-point theorems from Chapter 

1 are appli
able to the single-step operator Tp 

under some 
onditions on the pro-
grams P . In parti
ular, we will apply the PrieB-Crampe and Ribenboim theorem 

1.3.4 (Se
tion 5.1), the Matthews theorem 1.4.6 (Se
tion 5.3) and Theorem 1.5.1 

(Se
tions 5.4 and 5.5). Sin
e all these fxed-point theorems yield, if appli
able, 

the existen
e of a unique fxed point for Tp 

, the 
onditions whi
h will be imposed 

on the programs in order to apply the theorems will always have the efe
t that 

the programs under 
onsideration have unique supported models, i.e. are uniquely 

determined [BS89b]. Su
h 
lasses of programs for whi
h all programs in the 
lass 

have a unique supported model, will be 
alled unique supported m o del 
lasses, and 

examples are the a
y
li
 programs [Cav89, Bez89, AB90], the lo
ally hierar
hi
al 

programs [Cav89, Cav91], and the a

eptable programs [AP93, AP94, Mar95]. 

The latter 
lass is important sin
e it has a strong relationship to termination 

properties under SLDNF-resolution [AP93] and under Chan's 
onstru
tive nega-
tion [Mar96], and we will devote Se
tion 5.2 to a more thorough study of these 

programs. 

\e begin with defning the 
lasses of programs whi
h will b e studied in this 


hapter. \e will work over arbitrary preinterpretations. 

5.0.1 Defnition A normal logi
 program P is 
alled lo
ally hierar
hi
al if there 

exists a level mapping l : Bp 

- o, for some ordinal o, su
h that for ea
h 
lause 

A + L1, . . . , L n 

in ground(P ) and for all i = 1, . . . , n we have l(A) > l(Li). If l 


an b e 
hosen as an w-level mapping, then P is 
alled a
y
li
. 

\e note that Program 0.2.1 is a
y
li
. 

The 
onditions of being lo
ally hierar
hi
al or a
y
li
 are purely synta
ti
al. 

In [AP93], these 
onditions have been relaxed to semi-synta
ti
 requirements 

by employing interpretations with 
ertain 
onditions. Our remaining defnitions 

follow these lines, and the following one is taken dire
tly from [AP93]. 

5.0.2 Defnition Let P b e a normal logi
 program and let p, q b e predi
ate 

symb o l s o

urring in P . 
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1.  p refers to q if there is a 
lause in P with p in its head and q in its body. 

2.  p depends on q if (p, q) is in the refexive, transitive 
losure of the relation 

refers to. 

3. Negp 

denotes the set of predi
ate symb o l s in P whi
h o

ur in a negative 

literal in the b o d y of a 
lause in P . 

4. Neg 

* denotes the set of all predi
ate symb o l s in P on whi
h the predi
ate p 

symb o l s in Neg depend. p 

5.  P 

- denotes the set of 
lauses in P whose head 
ontains a predi
ate symb o l 

from Neg 

* .p 

Let P be a normal logi
 program, let l : Bp 

- w b e a le v el mapping and let I be 

a model of P whose restri
tion to the predi
ate symb o l s in Neg 

* is a supported p 

model of P 

-. Then P is 
alled a

eptable (with respe
t to l and I) p r o vided that 

the following 
ondition holds. 

For ea
h ground instan
e A + L1, . . . , L n 

of a 
lause in P 

and for all i E { 1, . . . , n } we have: (5.1) 

i-1 
if I I= Lj, then l(A) > l (Li). 

j=1 

\e re
all the following example program from [AP93]. 

5.0.3 Program Suppose that Q is an a
y
li
 fnite graph. Then the program 

win(X) + move(  X , } ), -win(} ) 

move(  a, b) + for all (a, b) E Q 

is a

eptable but not a
y
li
. Again, upper
ase letters denote variable symbols, 

while lower
ase letters denote 
onstant symb o l s . 

\e 
an further relax Defnition 5.0.2 as follows. 

5.0.4 Defnition A normal logi
 program P is 
alled <*-a

essible if and only if 

there exists a level mapping l for P and a model I for P whose restri
tion to the 

predi
ate symbols in Neg 

* is a supported model of P 

-, su
h that the following p 


ondition holds. For ea
h 
lause A + L1, . . . , L n 

in ground(P ), we either have 

I I= L1 

Ln 

and l(A) > l (Li) for all i = 1 , . . . , n or there exists i E { 1, . . . , n } 

su
h that I I= Li 

and l(A) > l (Li). 

\e 
all P < 

* -a

essible if it is <*-a

essible and l is an w-level mapping. 

P is 
alled <-a

essible if and only if there exists a level mapping l for P and 

a model I for P su
h that the following 
ondition holds. Ea
h A E Bp 

satisfes 

either (i) or (ii): 
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(i) There exists a 
lause A + L1, . . . , L n 

in ground(P ) with head A su
h that 

I I= L1 

Ln 

and l(A) > l (Li) for all i = 1 , . . . , n . 

(ii) For ea
h 
lause  A + L1, . . . , L n 

in ground(P ) with head A there exists 

i E { 1, . . . , n } su
h that I I= Li, I I= A and l(A) > l (Li). 

\e 
all P < -a

essible if it is <-a

essible and l is an w-level mapping. 

5.1  A
y
li
 Programs and Lo
ally Hierar
hi
al 

Programs 

In this se
tion, we will apply the Bana
h 
ontra
tion mapping theorem 1.2.2 to 

a
y
li
 programs and the PrieB-Crampe and Ribenboim theorem 1.3.4 to lo
ally 

hierar
hi
al programs. \e will also show that the 
lass of all lo
ally hierar
hi
al 

programs, although synta
ti
ally very restri
ted, is 
omputationally adequate in 

the sense that ea
h partial re
ursive fun
tion 
an b e 
omputed, under SLDNF-
resolution, by su
h a program, if the use of safe 
uts is allowed. 

\e begin our study of lo
ally hierar
hi
al programs by showing how su
h a 

program P 
an b e endowed with a 
anoni
al level mapping lp 

whi
h is smallest 

in a 
ertain obvious sense. 

5.1.1 Constru
tion Let P b e a program whi
h is lo
ally hierar
hi
al with re-
spe
t to a level mapping l. \e defne a level mapping lp 

on Bp 

as follows. For 

every A E Bp 

whi
h does not o 
 
 u r as a head in ground(P ), let lp 

(A) = 0. For 

every A E Bp 

whi
h o

urs as the head of a unit 
lause but not as the head of 

any non-unit 
lause, let lp 

(A) = 0. N ow let A E Bp 

be su
h th a t A is the head of 

some non-unit 
lause(s) in ground(P ). Let BA 

b e the 
olle
tion of body-literals 

o

urring in these 
lauses. Note that BA 

is fnite for every A if P has no lo
al 

variables. Now suppose that for every B E BA, lp 

(B) is already defned. Let 

NA 

= supBEBA 

lp 

(B) and set lp 

(A) = NA  1, if NA 

is a su

essor ordinal, and 

set lp 

(A) = NA, if NA 

is a limit ordinal. Then lp 

is obtained by transfnitely 

iterating this pro
edure. \e will refer to lp 

, as defned above, as the 
anoni
al 

lh-level mapping of P and, further, Ip 

will denote the smallest ordinal o su
h 

that lp 

(A) E o for all A E Bp 

. 

5.1.2 Proposition Let P be a program whi
h is lo
ally hierar
hi
al with respe
t 

to some level mapping l. Then lp 

, as defned above, is a total fun
tion on Bp 

and 

P is lo
ally hierar
hi
al with respe
t to lp 

. Moreover, if P has no lo
al variables, 

then Ip 

: w and hen
e P is a
y
li
. 

Proof: First we show that dom(lp 

) = Bp 

. Suppose there is A E Bp 

\ dom(lp 

). 

\ithout loss of generality w e 
an further suppose that l(A) is m inim al for A with 

this property. Then there must b e some B E BA 

with B E dom(lp 

), otherwise 

lp 

(A) is defned in the pro
ess given in Constru
tion 5.1.1. Sin
e P is lo
ally 
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hierar
hi
al, we have l(B) l(A) whi
h 
ontradi
ts the 
hoi
e of A with l(A) 

minimal. Therefore, lp 

is a (total) level mapping, and obviously P is lo
ally 

hierar
hi
al with respe
t to it. Finally, if P has no lo
al variables, then the set 

BA 

is fnite for every A E Bp 

, and so lp 

maps into w. Hen
e, Ip 

: w. • 

The 
onstru
tion above of the level mapping lp 


an b e used to determine 

whether or not a given program P is lo
ally hierar
hi
al, and the following 
orol-
lary is immediate. 

5.1.3 Corollary Let P be an arbitrary normal logi
 program. Then P is lo
ally 

hierar
hi
al if and only if dom(lp 

) = Bp 

, where lp 

is 
onstru
ted as in Constru
-
tio n 5 .1 .1 . F urthermore, if P is lo
ally hierar
hi
al, it is lo
ally hierar
hi
al with 

respe
t to lp 

. 

5.1.4 Proposition Let P be a program whi
h is lo
ally hierar
hi
al with respe
t 

to a level mapping l. Then for every A E Bp 

, we have lp 

(A) : l(A). 

Proof: Suppose the 
on
lusion is false. Thus, there is A E Bp 

with l(A)  lp 

(A), 

and su
h that l(A) is minimal. Then, for all B E B A, w e have l(B)  l(A) be
ause 

P is lo
ally hierar
hi
al. Therefore, by minimality o f l(A), we have l(B) 2 lp 

(B) 

for all B E B A. By defnition of lp 

, we see that lp 

(A) = min {o I o > l p 

(B), B E 

BA} : min{o I o > l(B), B E BA} : l(A). From this we obtain lp 

(A) : l(A), 

giving the required 
ontradi
tion. • 

Appli
ation of the PrieB-Crampe and Ribenboim Theorem 

\e regard Ip 

as a domain, under set in
lusion, whose set of 
ompa
t elements is 

the set I
 

of all fnite subsets of Bp 

, see Se
tion 3.2. 

5.1.5 Defnition Let P b e a normal logi
 program and let l : Bp 

- I be a 

level mapping. \e defne the rank fun
tion r1 

indu
ed by l by setting r1(I) = 

max{l(A) I A E I} for every I E I
, w ith I non-empty, and taking r1(0) = 0. T he 

generalized ultrametri
 obtained from a rank fun
tion in this way, see Defnition 

3.2.1, will be denoted by d1 

and 
alled the gum indu
ed by l. 

Note that d1 

is spheri
ally 
omplete by Theorem 3.2.4. 

The following proposition will make it easier to 
al
ulate distan
es whi
h 

depend on r1. To simplify notation, defne £+ 

= {A E Bp 

I l(Bp 

)  o} for ea
h 

ordinal o. 

5.1.6 Proposition Let P b e a normal logi
 program, let l : Bp 

- I b e a level 

mapping for P and let I, J E Ip 

. Then d1(I, J ) = inf{2-+ I I n £ + 

= J n £ +}, 

i.e. d1(I, J ) = 2 

-+, where o is the least ordinal su
h that I and J difer on some 

atom of level o. 
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Proof: Immediate by the observation that, for every I E Ip 

, I = sup{{A} I A E 

I}. • 

\e note that we 
ould have used the 
hara
terization in Proposition 5.1.6 in 

order to defne d1 

more dire
tly. T h e generalized metri
 d1 

is in fa
t fundamental 

for the remaining 
hapter and will be the basis for the defnitions of the generalized 

metri
s employed in the sequel. 

Our main result in this se
tion is the following theorem. 

5.1.7 Theorem Let P b e a normal logi
 program whi
h is lo
ally hierar
hi
al 

with respe
t t o a l e v el mapping l : Bp 

- I. T hen Tp 

is stri
tly 
ontra
ting with 

respe
t to the generalized ultrametri
 d1 

indu
ed by l, and Tp 

has a unique fxed 

point and hen
e P has a unique supported model. 

Proof: Let I1, I 2 

E Ip 

and suppose that d1(I1, I 2) = 2 

-+ .  

Case 1. o = 0.  

Let A E Tp 

(I1) with l(A) = 0. Sin
e P is lo
ally hierar
hi
al, A must b e the  

head of a unit 
lause in ground(P ). From this it follows that A E Tp 

(I2) also. By  

the same argument, if A E Tp 

(I2) with l(A) = 0, then A E Tp 

(I1). Therefore,  

Tp 

(I1) n £ 1 

= Tp 

(I2) n £ 1, a n d hen
e we have  

d1(Tp 

(I1), T p 

(I2)) : 2 

-1 2 

- = d1(I1, I 2) 

as required. 

Case 2. o > 0. 

In this 
ase, I1 

and I2 

difer on some element of Bp 

with level o, but agree on 

all ground atoms of lower level. Let A E Tp 

(I1) with l(A) : o. Then there is 

a 
lause A + A1, . . . , A ki 

, -B1, . . . , -B1i 

in ground(P ), where k1, l 1 

2 0, su
h 

that for all k , j we have Ak 

E I1 

and Bj 

E I1. Sin
e P is lo
ally hierar
hi
al 

and I1 

n £ + 

= I2 

n £ +, it follows that for all k , j we have Ak 

E I2 

and Bj 

E I2. 

Therefore, A E Tp 

(I2). By the same argument, if A E Tp 

(I2) with l(A) : o, th en 

A E Tp 

(I1). Hen
e we have Tp 

(I1) n £ ++1 

= Tp 

(I2) n £ ++1, and it follows that 

(I2)) : 2 

-(++1) 2 

-+d1(Tp 

(I1), T p 

= d1(I1, I 2) 

as required. 

Thus, Tp 

is stri
tly 
ontra
ting. Therefore, by the PrieB-Crampe and Riben-
boim theorem 1.3.4, Tp 

has a unique fxed p o i n t and therefore P has a unique 

supported model as 
laimed. • 

In the 
ase that l is an w-level mapping, d1 

is a 
onventional ultrametri
 and 

the Bana
h 
ontra
tion mapping theorem 1.2.2 
an b e applied analogously to 

Theorem 5.1.7. 

5.1.8 Theorem Suppose P is a
y
li
 with level mapping l. Then Tp 

is a 
on-
tra
tion with respe
t to the ultrametri
 d1 

with 
ontra
tivity fa
tor 

1
2 

. Therefore, 

Tp 

has a unique fxed point by the Bana
h 
ontra
tion mapping theorem 1.2.2, 

and hen
e P has a unique supported model. 
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\e note also that it was shown in [Sed97] that the 
onventional ultrametri
 

d1, for an w-level mapping l, generates the atomi
 topology on Ip 

in the 
ase that 

£n 

is fnite for ea
h n E w. If this fniteness 
ondition is not imposed on the level 

mapping, then the topology generated by d1 

is fner than the atomi
 topology, 

whi
h means that the sequen
e (T 

n(I)), for ea
h I , whi
h 
onverges in p 

E Ip 

d1 

to the unique supported model of P by the proof of the Bana
h 
ontra
tion 

mapping theorem 1.2.2 and Theorem 5.1.8, also 
onverges with respe
t to the 

atomi
 topology. 

In the 
ase of a lo
ally hierar
hi
al program P , w e 
an obtain a similar result 

by 
onsidering ordinal powers of Tp 

by setting T 

+(I), for ea
h limit ordinal o to p ( )
T 

fb e the set of all A E Bp 

su
h that A is eventually in (I) , and obtain, p 

fk + 

by the alternative proof of the PrieB-Crampe and Ribenb o i m theorem given in 

Theorem 1.3.9, that the transfnite sequen
e 
onsisting of the ordinal p o wers of 

Tp 

at any given I E Ip 


onverges in Q to the unique supported model of P ; in 

fa
t this follows easily from the fa
t given in the proof of Theorem 1.3.9 that 

the transfnite sequen
e (T 

+) is pseudo-
onvergent with respe
t to d1, and that G ) 

p 

T 

+ ++1d1 p 

, T is stri
tly de
reasing and eventually 0 for in
reasing o. p 

Computational Adequa
y of Lo
ally Hierar
hi
al Programs 

\e will show next that every partial re
ursive fun
tion 
an b e implemented by 

a lo
ally hierar
hi
al program with 
uts, and we will return to this in Chapter 6 

from a diferent perspe
tive. For details about SLDNF-resolution and about 
uts, 

see [Llo88]. 

For 
onvenien
e, we establish the following notation for every lo
ally hierar-

hi
al program P . F or A E Bp 

, w e say that P I= A if and only if A E Np 

. \ e say 

that P fsLDNF 

A if and only if there is an SLDNF-derivation for P  {+ A}. R e-

all that an SLDNF-derivation founders [AP93] if a non-ground negative literal 

is sele
ted at some stage in the derivation. 

5.1.9 Theorem Let P b e a lo
ally hierar
hi
al program and let A E Bp 

with 

P fsLDNF 

A. Then P I= A. If Ip 

= w, and the SLDNF-derivation of P  {+ A} 

does not founder, then P fsLDNF 

A if and only if P I= A. In parti
ular, if P is 

without lo
al variables, then P I= A if and only if P fsLDNF 

A. 

Proof: By [Llo88, Proposition 14.2], Np 

is the unique model of the Clark 
om-
pletion 
omp(P ) [Cla78, AB\88] of P . By [Llo88, Theorem 15.4], the frst state-
ment immediately holds. Now let Ip 

= w and P I= A b e su
h that the SLDNF-
derivation of P  {+ A} does not founder. Then, by [AP93, Corollay 4.11], all 

SLDNF-derivations of P  {+ A} are fnite and, therefore, P fsLDNF 

A whi
h 

proves the se
ond statement. If P is without lo
al variables, then P is a
y
li
 

by Proposition 5.1.2 and obviously does not founder on any ground goal, whi
h 


ompletes the proof using the se
ond statement. • 

\e establish next the result that every partial re
ursive fun
tion 
an be 
om-
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puted by a lo
ally hierar
hi
al program with 
uts. \e take the p o i n t of view 

(following [Llo88]) that a 
ut does not afe
t the de
larative semanti
s of a pro-
gram. \hen talking about SLDNF-resolution for lo
ally hierar
hi
al programs 

with 
uts, we assume that the sele
tion fun
tion always sele
ts the leftmost lit-
eral and, as dis
ussed in [Llo88], that the 
ut prunes" the sear
h tree. To obtain a 

well-defned pro
edural semanti
s of a given program, we assume that the topmost 


lause whose head unifes with a 
urrent goal is always sele
ted frst, as imple-
mented in standard Prolog systems. So, for what follows, SLDNF-resolution is 

performed in the way just des
ribed. 

For 
onvenien
e, we will denote ground terms by lower
ase letters and vari-
ables by upper
ase letters when refering to a predi
ate. Thus, p(x1, . . . , x n, } ) 

means that all xi 

are ground and } is a variable. \e write (P , A ) fsLDNF 

B 

if P  {+ A} has an answer substitution e (via SLDNF-resolution) su
h that 

Ae = B. 

5.1.10 Theorem Identify N with the set of terms {sn(0) I n E N } by identify-
ing s with the su

essor fun
tion. Let f be an n-ary partial re
ursive fun
tion. 

Then there exists a lo
ally hierar
hi
al program P, 

with 
uts and an (n 1)-ary 

predi
ate symb o l p, 

su
h that the following hold: 

1. A 
all to P, 

with goal p, 

(x1, . . . , x n, } ) or p, 

(x1, . . . , x n, y ) terminates via 

SLDNF-resolution if (x1, . . . , x n) E dom(f) and ba
ktra
king over the goal 

fails immediately. 

2. (P, 

, p , 

(x1, . . . , x n, } )) fsLDNF 

p, 

(x1, . . . , x n, y ) if a n d only if (x1, . . . , x n) E 

dom(f) and f(x1, . . . , x n) = y. 

3. For every p, 

(x1, . . . , x n, y ) E Bp 

the following are equivalent: 

(a) P I= p(x1, . . . , x n, y ) 

(b) P fsLDNF 

p(x1, . . . , x n, y ) 

(
) f(x1, . . . , x n) = y. 

Proof: \e follow [SSSS82] and [Llo88] with modif
ations where ne
essary. The 

proof is by indu
tion on the numb e r q of appli
ations of 
omposition, primitive 

re
ursion, and minimalization needed to defne f . 

Suppose frst that q = 0. T hus f must be either the zero fun
tion, the su

essor 

fun
tion, or a proje
tion fun
tion. 

Zero fun
tion 

Suppose that f is the zero fun
tion defned by f(x) = 0. Defne P, 

to be the 

program p, 

(X, 0) + . 

Su

essor fun
tion 

Suppose that f is the su

essor fun
tion defned by f(x) = x  1. Defne P, 

to be the program p, 

(X , s (X)) + . 

Proje
tion fun
tion 
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Suppose that f is the proje
tion fun
tion defned by f(x1, . . . , x n) = xj 

for 

some j E { 1, . . . , n }. Defne Pj 

to be the program p, 

(X1, . . . , X n, X j) + . 

Clearly, for ea
h of the basi
 fun
tions, the program P, 

, as defned, is lo
ally 

hierar
hi
al with the desired properties. 

Next, suppose that the partial re
ursive fun
tion f is defned by q > 0 appli-

ations of 
omposition, primitive re
ursion, and minimalization. 

Composition 

Suppose that f is defned by 

f(x1, . . . , x n) = h(g1(x1, . . . , x n), . . . , g m(x1, . . . , x n)) 

where g1, . . . , g m 

and h are partial re
ursive fun
tions. By the indu
tion hypoth-
esis, 
orresponding to ea
h gi 

(or h), there is a lo
ally hierar
hi
al program Pgi 

(Ph) with 
uts and a predi
ate symb o l pgi 

(ph) satisfying the 
on
lusions of the 

theorem. \e 
an suppose that the programs Pgi 

, . . . , P gm 

, P h 

do not have any 

predi
ate symbols in 
ommon. Defne P, 

to b e the union of these programs to-
gether with the 
lause 

p, 

(X1, . . . , X n,  ) + pgi 

(X1, . . . , X n, } 1), . . . , p gm 

(X1, . . . , X n, } m), 

h(}1, . . . , } m,  ), !. 

Obviously, P, 

is a lo
ally hierar
hi
al program with 
uts. Statement 1 is im-
mediate under the assertion of the indu
tion hypothesis, as is the 'if'-part of 

statement 2. The 'only-if' part is shown as in [Llo88]. For statement 3, the equiv-
alen
e of 3a and 3
 is immediate and the equivalen
e of 3b and 3
 is shown in a 

manner analogous to that employed in [SSSS82]. 

Primitive re
ursion 

Suppose that f is defned by 

f(x1, . . . , x n, 0) = h(x1, . . . , x n) 

f(x1, . . . , x n, y  1) = g(x1, . . . , x n, y, f (x1, . . . , x n, y )) 

where h and g are partial re
ursive fun
tions. By the indu
tion hypothesis, 
or-
responding to h (resp. g), there is a lo
ally hierar
hi
al program Ph 

(resp. Pg) 

with 
uts and a predi
ate symb o l ph 

(resp. pg) satisfying the 
on
lusions of the 

theorem. \e 
an also suppose that Ph 

and Pg 

do not have a n y predi
ate symb o l s 

in 
ommon. Defne P, 

to be the union of Ph 

and Pg 

together with the 
lauses 

p, 

(X1, . . . , X n, 0,  ) + ph(X1, . . . , X n,  ), !. 

p, 

(X1, . . . , X n, s (} ),  ) + p, 

(X1, . . . , X n, } , U ), p g(X1, . . . , X n, }, U  ,  ), !. 

Obviously, P, 

is a lo
ally hierar
hi
al program with 
uts. The desired properties 

are proven along the same lines as for 
omposition. 

Minimalization 

Suppose that f is defned by f(x1, . . . , x n) = µy(g(x1, . . . , x n, y ) = 0) where 

g is a partial re
ursive fun
tion. By the indu
tion hypothesis, 
orresponding to 
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g there is a lo
ally hierar
hi
al program Pg 

with 
uts and a predi
ate symb o l pg 

satisfying the 
on
lusions of the theorem. Defne P, 

to b e Pg 

together with the 


lauses 

p, 

(X1, . . . , X n, 0) + pg(X1, . . . , X n, 0, 0), !. 

p, 

(X1, . . . , X n, s ( )) + r(X1, . . . , X n, ), p g(X1, . . . , X n, s ( ), 0), !. 

r(X1, . . . , X n, 0) + -pg(X1, . . . , X n, 0, 0). 

r(X1, . . . , X n, s ( )) + r(X1, . . . , X n, ), -pg(X1, . . . , X n, s ( ), 0). 

Obviously, P, 

is a lo
ally hierar
hi
al program with 
uts. Again, statements 1 

and 2 a r e proven along the same lines as for 
omposition by taking into a

ount 

the fa
t that, if pg 

o 
 
 u r s in a subgoal of the 
omputation, it is always ground. 

Note that r(x1, . . . , x n, z ) E Np1 

if and only if (x1, . . . , x n, k ) E dom(g) and 

g(x1, . . . , x n, k ) = 0 for every k z, and that the goal r(x1, . . . , x n, ) subse-
quently yields all answer substitutions  /z (z = 0 , 1, 2, . . . ) with ( x1, . . . , x n, k ) E 

dom(g) and g(x1, . . . , x n, k ) = 0 for all k  z, whi
h yields the equivalen
e of 3b 

and 3
. To show the equivalen
e of 3a and 3
, note that P I= r(x1, . . . , x n, z ) if 

and only if P I= pg(x1, . . . , x n, k , 0) for all k  z. So P I= p, 

(x1, . . . , x n, z ) if and 

only if P I= pg(x1, . . . , x n, z, 0) and P I= pg(x1, . . . , x n, k , 0) for all k z. Now 

suppose f(x1, . . . , x n) = z. Then by the indu
tion hypothesis, the above yields 

that P I= p, 

(x1, . . . , x n, z ). Now suppose f(x1, . . . , x n) = z. \e 
onsider three 


ases: 

(1) g(x1, . . . , x n, z ) = 0. Then P I= p, 

(x1, . . . , x n, z ) immediately. 

(2) g(x1, . . . , x n, k ) = 0 for some k z . A gain P I= p, 

(x1, . . . , x n, z ) immediately. 

(3) (x1, . . . , x n, k ) E dom(g) for some k z. Then r(x1, . . . , x n, k ) o

urs as 

a subgoal of the 
omputation and, therefore, so does pg(x1, . . . , x n, k , 0). Note 

that g 
annot b e one of the basi
 fun
tions sin
e they are total. For the 

same reason, g 
annot b e defned by using 
omposition and primitive re
ursion 

on the basi
 fun
tions only. Consequently, at some point in the 
omputation, 

a subgoal p,0 

(x1, . . . , x n, y ) or p,0 

(x1, . . . , x n, } ) o

urs with f (x1, . . . , x n) = 

µy(g (x1, . . . , x n, y ) = 0) and (x1, . . . , x n) E dom(f ). There are two sub
ases 

to 
onsider: 

(i) g (x1, . . . , x n, m ) = 0 for all m E N . It is easily seen that in this 
ase P,0 

will not terminate on the subgoal p,0 

(x1, . . . , x n, } ) and will fail on the subgoal 

p,0 

(x1, . . . , x n, y ). 

(ii) (x1, . . . , x n, m ) E dom(g ) for some m E N . The 
ondition of this 
ase is ex-
a
tly as in 
ase (3). 

Thus, the argument 
an b e repeated. Sin
e every partial re
ursive fun
tion is 

defned by using minimalization only fnitely often, the 
on
lusion follows by in-
du
tion. • 

Theorem 5.1.10 shows that lo
ally hierar
hi
al programs with 
uts are 
om-
putationally adequate with respe
t to SLDNF-resolution as interpreter. \e note 

that the 
uts o

urring in the proof are safe in the sense that they 
ut only 

bran
hes of the sear
h tree whi
h do not 
ontain any su

ess bran
hes. 
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5.2 A

eptable Programs  

A

eptable programs were frst studied in detail in [AP93] where they were shown 

to 
oin
ide, basi
ally, with the programs whi
h are left-terminating. In [AP94, 

Apt95], they were further examined in the 
ontext of formal verif
ation under 

Prolog. The a

eptable programs therefore form an important 
lass. However, 

in order to show from the defnition that a given program P is a

eptable, it 

is ne
essary to determine a level mapping and a model for P whi
h satisfy the 


onditions of the defnition, see Defnition 5.0.2. But this may b e diÆ
ult to do, 

and it is therefore desirable to simplify this task, if possible, and we will now take 

some steps in this simplif
ation pro
ess by shedding light on the b e h a viour of 

the single-step operator in this 
ase. 

Most of the methods and results in this se
tion 
an easily b e 
arried over to 

the more general 
lasses of programs whi
h will be studied in the remaining part 

of the 
hapter. \e have de
ided to present them for the more spe
ial 
ase of 

a

eptable programs due to the importan
e of this 
lass of programs. 

A frst attempt at studying a

eptable programs from a topologi
al perspe
-
tive was made in [Fit94]. In this paper, a distan
e fun
tion d3 

asso
iated with 

a given a

eptable program was defned, whi
h a
ts on Ip 

. This distan
e fun
-
tion turns out to b e a dislo
ated metri
, and our approa
h builds heavily on 

this distan
e fun
tion, showing that it 
an b e put to good use for studying, and 


hara
terizing, a

eptability. 

The single-step operator Tp 

is in fa
t a 
ontra
tion with respe
t to d3 

if P 

is a

eptable, and we will see that 
onvergen
e of iterates of Tp 

in the atomi
 

topology follows from this, and the limit Np 

of the sequen
e of iterates of Tp 

will 

b e seen to be the unique supported model of P (Theorem 5.2.10). The existen
e 

of a unique supported model of an a

eptable program was already established 

in [AP93], in the 
ase of Herbrand preinterpretations. It was obtained as the 

supremum of the iterates of the monotoni
 three-valued operator <p 

from [Fit85], 


f. Chapter 6. Our 
hara
terization by means of Tp 

and Q simplifes this pro
ess 

sin
e the single-step operator is easier and more natural to apply. 

The topologi
al 
hara
terization of Np 

just des
ribed, will also easily allow 

us to establish the fa
t that a program P , whi
h is a

eptable with respe
t to 

some model I and level mapping l, is also a

eptable with respe
t to Np 

and l 

(Theorem 5.2.12). Even more, we will show that Np 

is the smallest of all models 

with respe
t to whi
h a

eptability o f P 
an b e established (Corollary 5.2.13). 

At this stage, we know that 
onvergen
e in Q of iterates of Tp 

is a ne

essary 


ondition for a

eptability of P . If this 
ondition is met, the limit Np 

thus ob-
tained is suitable for establishing a

eptability if a 
orresponding level-mapping 

is found. And in fa
t, every level mapping whi
h renders P a

eptable with re-
spe
t to some model, will also allow one to establish a

eptability of P with 

respe
t to Np 

(Theorem 5.2.12). The set of all these possible level mappings will 

fnally turn out to 
ontain a pointwise least element (Theorem 5.2.21). For this 

level mapping, whi
h will be 
alled the 
anoni
al a

eptable-level mapping lp 

for 

P , we will give an iterative 
onstru
tion, provided Np 

is known (Constru
tion 
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5.2.16). This 
onstru
tion, in fa
t, is appli
able to all programs and depends on a 

given model of the program. In this general 
ase, however, the 
onstru
tion may 

only lead to a partial mapping. From this, again, we d e r i v e a ne
essary 
ondition 

for a

eptability of P , namely that the 
onstru
tion of lp 

, using the model Np 

, 

yields a l e v el mapping whi
h is not partial (Proposition 5.2.17). 

The iterative methods for obtaining Np 

and lp 

then provide a means for 


hara
terizing, and establishing, a

eptability of a program in question. This is 

done by subsequently 
ondu
ting the following steps (Theorem 5.2.19). (1) Obtain 

iterates of Tp 

. If they 
onverge in Q, 
all the limit Np 

. If they don't 
onverge, 

then P is not a

eptable. (2) Obtain lp 

using Np 

. If lp 

is not total, then P is 

not a

eptable. (3) Che
k whether 
ondition (5.1) of Defnition 5.0.2 holds. If it 

holds, then P is a

eptable. If it does not hold, then P is not a

eptable. 

Condu
ting steps (1) and (2) above is by no means a trivial task and in fa
t 

is an unde
idable problem. Our 
hara
terization, however, sheds more light on 

the 
on
ept of a

eptability and might b e an aid for determining a

eptability 

if straightforward attempts fail. Simplif
ation of this pro
ess is a
hieved by a 

result whi
h allows to partition the program in question into subprograms in a 

way that subsequent establishment of a

eptability of the subprograms suÆ
es 

for determining a

eptability (Lemma 5.2.25 and Theorem 5.2.26). 

Finally, the results obtained will b e applied in order to show that both Np 

and lp 

are suitable for establishing termination of general non-ground queries. 

In order to simplify notation in this se
tion, we will abbreviate Neg* by N . p 

Remarks on Domains of Preinterpretation 

The 
hoi
e of a suitable domain of preinterpretation is essential in the sense that 

a program might be a

eptable under some 
hosen domain, and not be a

eptable 

under another. \e will illustrate this and the diÆ
ulties involved by means of a 

few example programs. 

5.2.1 Program  Let P1 

be the following program. 

r(0) + -p(0), -r(0) 

p(0) + -q(X) 

q(0) + 

Here, P 

- = and P is a

eptable with respe
t to the supported model 1 

P1 

{p(0), q (0)}, whose domain is the set {0, 1}, and the level mapping given by 

l(q(0)) = l(q(1)) = 0, l(p(0)) = l(p(1)) = 1, l(r(0)) = l(r(1)) = 2. However, P 

fails to have any supported models if the domain of preinterpretation 
ontains 

only the 
onstant and fun
tion symbols o

urring in the program. 

5.2.2 Program Let P2 

be the following program. 

r(0) + -q(X), -r(0) 

q(0) + 
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The program P2 

is a

eptable with respe
t to the domain {0}. H o wever, it has 

no supported model with respe
t to the set {0, 1} as domain of preinterpretation. 

Note that the programs P1 

and P2 

founder on some goals. 

Constru
tive negation in the sense of [Cha88] (
f. also [Mar96]), as a way 

to resolve foundering, does not 
over the general 
ase either, due to the follow-
ing two assumptions made in the 
ited papers: Chan in [Cha88, p. 113] assumes, 

throughout, the 
onsisten
y of the 
ompleted database, and also assumes [Cha88, 

p. 116] that the underlying language (i.e. the domain of preinterpretation) 
on-
tains infnitely many 
onstant symbols and fun
tion symb o l s . 

Consisten
y of the 
ompleted database is dependent on the 
hosen domain 

of preinterpretation (restri
ted here through the presen
e of infnitely many 
 o n -
stant and fun
tion symb o l s ) and, in fa
t, under the assumption 
on
erning the 

underlying language as above, we see that the 
ompleted database for program 

P2 

is not 
onsistent. 

Furthermore, 
onsider the following program. 

5.2.3 Program Let P3 

be the following program. 

r(0) + -q(X), r (0) 

q(0) + 

For program P3, the unique supported Herbrand model {q(0)} is 
ertainly the 

desired model. The program is also a

eptable with respe
t to this model. 

However, the goal + r(0), whi
h is bounded, does not terminate under Chan's 


onstru
tive negation. In [Mar96], however, it was shown that the set of all pro-
grams whi
h are a

eptable with respe
t to some preinterpretation J whose do-
main 
ontains infnitely many 
onstants and fun
tions, 
oin
ides with the set of 

all programs whi
h terminate under Chan's 
onstru
tive negation. Nevertheless, 

the result does not a

ount for programs whi
h are a

eptable with respe
t to a 

domain 
ontaining fnitely many 
onstants and fun
tions, but not with respe
t 

to a domain whi
h is 
onstrained as for 
onstru
tive negation. The Program P3 

displays this fa
t. 

In all previous examples, the Herbrand preinterpretation was too small to 

allow determination of a

eptability. Our fnal program shows that in some 
ases 

it may even be too large. 

5.2.4 Program Let P4 

be the following program. 

r(0) + -q(X), r (0) 

q(f(0)) + 

Under the domain {fn(0) I n E N }, this program is not a

eptable due to the 

existen
e of the fun
tion symb o l f , giving an instan
e of q(X) whi
h is false. 

However, P4 

is a

eptable with respe
t to a preinterpretation whose domain is 

the one-point s e t {0} and where f is interpreted as the identity fun
tion on {0}. 
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In fa
t, this example shows that the result from [AP93] whi
h states that every 

program whi
h is a

eptable with respe
t to a Herbrand preinterpretation has a 

unique supported Herbrand model, 
annot b e generalized to arbitrary preinter-
pretations in general. 

On the other hand, [AP93, Corollary 4.12] shows that every a

eptable pro-
gram is left terminating, whilst [AP93, Theorem 4.18] 
ontains the result that ev-
ery left terminating non-foundering program is a

eptable. Moreover, the proof 

given of this latter fa
t shows that one has a

eptability with respe
t to some 

Herbrand model, where the underlying domain of preinterpretation is 
onstru
ted 

using only the variable and 
onstant s y m bols o

urring in the program for su
h 

programs, we suggest the terminology Herbrand-a

eptable. Thus, an a

eptable 

program whi
h fails to b e Herbrand-a

eptable must founder on some ground 

query. Moreover, all the examples 
onsidered in [AP93] are Herbrand-a

eptable. 

In the following, as already noted, we will work over arbitrary preinterpreta-
tions. 

Fitting's Approa
h 

As already noted, it was frst shown in [AP93] that every (Herbrand-) a

eptable 

program has a unique supported model. In [Fit94], Fitting 
onsidered proving the 

same result by using metri
s and the Bana
h 
ontra
tion mapping theorem. His 

method depends on the following defnitions. A partial level mapping is a partial 

mapping l : Bp 

- o, where o is an ordinal. Re
all the notation £f 

for the set of 

all atoms A of level l(A) less than p. For the remainder of this se
tion, we will 


onsider only w-level mappings, i.e. o = N . 

5.2.5 Defnition Let P be a normal logi
 program with partial level mapping l. 

The pseudometri
 d asso
iated with l on Ip 

is defned as follows. For J, E Ip 

let 

d(J, ) = inf{2 

-n I £ m 

n dom(l) n J = £m 

n dom(l) n for all m : n}, 

where £m, for all m E N , is taken with respe
t to a (total) level mapping l 

' whi
h 

extends l. 

By [Fit94], any pseudometri
 asso
iated with a (partial) level mapping is 


omplete. 

If the level mapping is total, i . e . n o t a partial mapping, Defnition 5.2.5 
oin-

ides with the metri
 d1 

of Proposition 5.1.6. 

5.2.6 Defnition Let P b e a

eptable with respe
t to a level mapping l and a 

model I. \e defne the partial level mappings l1 

and l2 

as follows; re
all that we 

write N instead of Neg 

* . p 

1. dom(l1) = N , l1(A) = l(A) for all ground literals A in N . 

2. dom(l2) = 


N , l2(A) = l(A) for all ground literals A not in N . 
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The asso
iated pseudometri
s are denoted by d1 

and d2, respe
tively. Further-
more, we defne a fun
tion p : Ip 

- J by 

p(J) = inf {2 

-n I J n 


N n £ n 

I}. 

This form of p difers only slightly from that used in [Fit94] and 
an easily b e 

shown to be equivalent. Finally, f o l l o wing [Fit94] a g a i n , w e defne for all J, E Ip 

d3(J, ) = max{d1(J, I ), d 1(  ,I ), d 2(J, ), p (J), p ( )}. (5.2) 

\e note that this distan
e fun
tion d3 

depends b o t h on the level mapping l 

and on the interpretation I. \ e will dis
uss the intuition behind the defnition of 

d3 

after Proposition 5.2.8, whi
h w i l l p r o vide us with some understanding of this 

distan
e fun
tion. For the moment, we note that d3 

is a dislo
ated metri
, but 

that it is not in fa
t a metri
. Indeed, let P be the program 
onsisting of the three 

unit 
lauses p(0) +, q (0) +, q (1) +, where 0 and 1 are 
onstant symb o l s . Then 

P is a

eptable with respe
t to the Herbrand model I = {p(0), q (0), q (1)} and the 

zero level mapping l. A straightforward 
al
ulation shows that d3(J, 


I) = 1 for 

all J E Ip 

so that, in parti
ular, one has d3(

I, 


I) = 1 . Nevertheless, it will turn 

out to b e a useful tool in formulating some of our results. In fa
t, the following 

proposition, [Fit94, Proposition 7.1], does not need the assumption that d3 

is a 

metri
 and will be useful later. 

5.2.7 Proposition Let P be a

eptable with respe
t to a level mapping l and a 

model I. Then for all J, E Ip 

we have d3(Tp 

(J), T p 

( )) : 

1
2 

d3(J, ). 

Applying the Matthews Theorem 

\e start by examining the relationship between the atomi
 topology Q and Fit-
ting's dislo
ated metri
 d3. The following result will 
larify the b e h a viour of se-
quen
es whi
h 
onverge in d3. 

5.2.8 Proposition Let P be a

eptable with respe
t to a level mapping l and a 

model I. Let Jn 

b e a sequen
e whi
h 
onverges in d3 

to some J E Ip 

. Then the 

sequen
e Jn 


onverges to J in Q, and the following two 
onditions hold. 

(i) Jn 

n N 
onverges in Q to the model I n N of 
omp(P 

-). 

(ii) Jn 

n 


N 
onverges in Q to some I. 

Furthermore, we obtain J = ( I n N) . 

Proof: By hypothesis, we h a ve d3(Jn, J ) - 0 as n - . By defnition of d3 

this 

implies that d1(Jn, I ), d1(J, I ) and d2(Jn, J ) all tend to 0 as n - . Hen
e, by 

defnition of d1 

and d2, it follows that for all m E N there exists some n E N 

su
h that for all n 2 n we have 

Jn 

n N n £ m 

= I n N n £ m, 

J n N n £ m 

= I n N n £ m 

and 

Jn 

n 


N n £ m 

= J n 


N n £ m. 
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From these equations, it follows that for all m E N there exists some n E N 

su
h that for all n 2 n we have Jn 

n £ m 

= J n £ m 

whi
h proves 
onvergen
e of 

the sequen
e Jn 

to J in Q. 

\e also obtain that Jn 

n N and Jn 

n 


N 
onverge in Q to J n N respe
tively 

J n 
N . By defnition of d3 

we have d1(J, I ) = 0 whi
h implies that J nN = I nN . 

From the same defnition we obtain p(J) = 0 and therefore = J n
N I whi
h 


ompletes the proof. • 

As a 
orollary from the proof of Proposition 5.2.8, we obtain that 
onvergen
e 

in d3 

is independent of the 
hoi
e of level mapping. 

\e are now in a position to better understand the intuition underlying the 

defnition of d3 

given in equation (5.2). Essentially, the terms d1(J, I ) and d1(  ,I ) 

in this equation ensure that if d3(J, ) is small, then both J and are �
lose" 

(with respe
t to the pseudometri
 d1) to the 
hosen interpretation I, and this 


loseness depends only on the atoms 
ontained in N . Convergen
e in d3 

means 

that the sequen
e in question must tend towards the unique supported model 

I n N of P 

-. T h e remainder of the defnition 
onstrains what �
loseness" means 

on 


N . The term d2(  ,J ) ensures that and J share �enough" elements (of 

suitable level), and the p-fun
tion for
es both and J to be largely a subset of I 

on 


N . In terms of 
onvergen
e in d3, the distan
e fun
tion d3 


ould be understood 

as �fltering" a sequen
e towards a suitable subset of I, namely a subset whi
h 


oin
ides with I on N . 

5.2.9 Proposition The d-metri
 d3 

is 
omplete. 

Proof: Let Jn 

be a Cau
hy sequen
e with respe
t to d3. B y defnition of d3, this 

implies that d1(Jmi 

, I ), d1(Jm2 

, I ), d2(Jmi 

, J ), p(Jmi 

) and p(Jm2 

) all tend to 0 m2 

for m1, m 2 

> m and in
reasing m, and we obtain, as in the proof of Proposition 

5.2.8, that Jn 


onverges in Q to some J . An argument similar to that in the proof 

of Proposition 5.2.8 again shows that J is also the limit of Jn 

with respe
t to d3. 

• 

5.2.10 Theorem Let P b e a

eptable with respe
t to a level mapping l and a 

model I, and let E Ip 

be arbitrary. T h e n T 

n( ) 
onverges in Q to the unique p 

supported model Np 

of P . 

Proof: The d-metri
 d3 

is 
omplete by Proposition 5.2.9, and Tp 

is a 
ontra
tion 

with respe
t to d3 

by Proposition 5.2.7. So we 
an apply the Matthews theo-
rem 1.4.6, whi
h yields that the sequen
e T 

n( ) 
onverges in d3 

to the unique p 

supported model of P . Sin
e 
onvergen
e in d3 

implies 
onvergen
e in Q by P ropo-
sition 5.2.8, the proof is 
omplete. • 

Minimality of the Unique Supported Model 

\e will now p r o vide an alternative 
 hara
terization of the model Np 

. Re
all that 

we are working under a fxed but arbitrary preinterpretation. 
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5.2.11 Lemma Let P b e a

eptable and let I b e the set of all models with 

respe
t to whi
h P 
an b e established to b e a

eptable. Then Np 

n N = I n N 

for all I E I . In parti
ular, I n N = J n N for all I, J E I . F urthermore, we h a ve 

the minimality property Np 

I. 

Proof: The sequen
e Jn 

= T 

n(0) 
onverges with respe
t to d3 

and satisfes 
on-p 

ditions (i) and (ii) of Proposition 5.2.8 for all I E I . The frst statement follows 

then immediately from 
ondition (i) and the se
ond statement from 
ondition 

(ii). • 

The model thereby obtained will b e shown to b e suitable for demonstrating 

the a

eptability of the program in question. \e will need this result for our 


hara
terization of a

eptability in Theorem 5.2.19, and it will also give us an 

alternative 
 hara
terization of Np 

as an easy 
orollary. 

5.2.12 Theorem Let P b e a

eptable with respe
t to a level mapping l and a 

model I. Then P is a

eptable with respe
t to l and Np 

. 

Proof: Sin
e I n N = Np 

n N by Lemma 5.2.11, it remains to show that the 

a

eptability 
ondition (5.1) from Defnition 5.0.2 holds. Again by the same result, 

it remains to show the 
ondition for all 
lauses whi
h are not in P 

-. Sin
e Np 

n 

N = I n N , and therefore these agree on all ground atoms whi
h o

ur negatively 

in P , it suÆ
es to show that Np 

I, whi
h is the 
ase by Lemma 5.2.11. • 

5.2.13 Corollary Let P b e a

eptable and let I b e the set of all models with 

respe
t to whi
h P 
an b e established to be a

eptable. Then Np 

= I. 

Proof: This follows immediately from Lemma 5.2.11 and Theorem 5.2.12. • 

The Canoni
al Level Mapping for A

eptable Programs 

\e s h o w next how to obtain a level mapping for a given program whi
h is suitable 

for proving its a

eptability. The 
onstru
tion is based on Constru
tion 5.1.1 for 

lo
ally hierar
hi
al programs. For this purpose, let P b e a program and I a 

model of P . \e will now give a program transformation whi
h yields a lo
ally 

hierar
hi
al program from P and I if P is a

eptable with respe
t to I, allowing 

us to apply our earlier results. The program transformation is as follows: 

5.2.14 Program Transformation Let P b e a normal logi
 program and I a 

model of P . F or ea
h 
lause A + L1, . . . L n 

in ground(P ) determine the maximal 

i su
h that I I= L1 

Li. Then repla
e the given 
lause with A + L1, . . . , L i+1 

if i = n and by A + L1, . . . , L n 

if i = n. The resulting ground program will b e 


alled P1 

. 

If P is a

eptable with respe
t to I and l, then P1 

is lo
ally hierar
hi
al 

with respe
t to the w-level mapping l 

' whi
h is obtained by restri
ting l to Bpr
. 
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Therefore, we 
an obtain the 
anoni
al lh-level mapping lpr 

of P1 

by applying 

Constru
tion 5.1.1, and obtain by Corollary 5.1.3 that lpr 

is indeed a total fun
-
tion. Furthermore, by Proposition 5.1.4 we obtain that lpr 

(A) : l 

' (A) for all 

A E Bpr 

, and sin
e l 

' maps into w, the level mapping lpr 

also maps into w. This 

means, in parti
ular, that Constru
tion 5.1.1 is in fa
t not transfnite but 
loses 

of at w. 

5.2.15 Defnition \e now defne a level mapping lp 

for the given program P : 

For every A E Bp 

\ Bpr 

let lp 

(A) = 0 . For every A E Bpr 

let lp 

(A) = lpr 

(A). 

\e summarize the observations just dis
ussed. 

5.2.16 Constru
tion Let P b e a normal logi
 program and I a model of P . 

(1) Obtain P1 

from P and I using Program Transformation 5.2.14. 

(2) Obtain lpr 

from Constru
tion 5.1.1. 

(3) Obtain lp 

from Defnition 5.2.15. 

5.2.17 Proposition Let P b e a

eptable with respe
t to a model I. Then the 

following statements hold. 

(i)  P1 

, obtained from step (1) in Constru
tion 5.2.16 is lo
ally hierar
hi
al. 

(ii)  lpr 

, obtained from step (2) in Constru
tion 5.2.16 is total (with respe
t to 

Bpr 

) and maps into w. 

(iii)  lp 

, obtained from step (3) in Constru
tion 5.2.16 is total and maps into w. 

(iv)  P is a

eptable with respe
t to I and lp 

. 

Proof: It only remains to prove statement (iv), whi
h is immediate from the 

defnition of lp 

. • 

In the following, lp 

will also denote the (partial) level mapping as given in 

Constru
tion 5.2.16. It will be 
alled the 
anoni
al (partial) a

eptable-level map-
ping for P . 

The following is the key result in our 
hara
terization of a

eptability. 

5.2.18 Theorem Let P be a

eptable. Then P is a

eptable with respe
t to Np 

and lp 

. 

Proof: By Theorem 5.2.12, P is a

eptable with respe
t to l and Np 

. By Propo-
sition 5.2.17, P is then a

eptable with respe
t to lp 

and Np 

. • 

\e 
an now state the following 
hara
terization theorem. 

5.2.19 Theorem Let P be a normal logi
 program. Then P is a

eptable if and 

only if the following 
onditions are satisfed: 
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(1) The sequen
e (T 

n(0))nEN 


onverges in Q to some Np 

. p 

(2) The mapping lp 

, 
onstru
ted from P and I = Np 

as in Constru
tion 5.2.16, 

is total and takes values in the natural numbers. 

(3) P satisfes 
ondition (5.1) from Defnition 5.0.2 with respe
t to lp 

and Np 

. 

Proof: Let P b e a

eptable. Then (1) follows from Theorem 5.2.10, (2) follows 

from Proposition 5.2.17, and (3) follows from Theorem 5.2.18. The 
onverse is 

immediate. • 

Minimality Properties 

\e show that the 
anoni
al a

eptable-level mapping lp 

of P is least among all 

level mappings with respe
t to whi
h a

eptability 
an b e established. 

5.2.20 Lemma Let P be a

eptable with respe
t to Np 

and some level-mapping 

l. Then lp 

(A) : l(A) for all A E Bp 

. 

Proof: For A E BpM , we obtain lp 

(A) : l(A) by Proposition 5.1.4. If A E 

Bp 

\ BpMp 

p 

, then by defnition of lp 

we have lp 

(A) = 0 : l(A) as desired. • 

5.2.21 Theorem For any a

eptable program P , the 
anoni
al a

eptable-level 

mapping lp 

is least among all level mappings with respe
t to whi
h P 
an b e 

shown to b e a

eptable. More pre
isely, if P is a

eptable with respe
t to some 

model I and some level mapping l, then for all A E Bp 

we have lp 

(A) : l(A). 

Proof: Let P be a

eptable with respe
t to some model I and some level mapping 

l, and let A E Bp 

be arbitrarily 
hosen. By Theorem 5.2.12, P is a

eptable with 

respe
t to l and Np 

. By Lemma 5.2.20 we obtain lp 

(A) : l(A) as desired. • 

Partitioning A

eptable Programs 

In order to simplify the 
al
ulation of Np 

, we will use methods similar to those 

employed in [AB\88, Prz88, Mar95]. \e will use the following defnition whi
h i s 

similar to [Mar95, Defnition 4.1]. For any g i v en progam P , re
all that a predi
ate 

symb ol p is said to b e defned in a subprogram R of P if every 
lause whi
h 


ontains p in its head is 
ontained in R. The defnition of a predi
ate symb o l is 

the smallest subprogram R su
h that the predi
ate symb o l i s defned in R. This 

notion extends naturally to atoms. 

5.2.22 Defnition Let P be a program and Q and R b e t wo subprograms of P . 

\e say that R extends Q, written R > Q, if no predi
ate symb o l defned in R 

o

urs in Q. 
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The basi
 idea is to partition an a

eptable program in a suitable way su
h 

that Np 


an be obtained by 
al
ulating the 
orresponding models of the subpro-
grams in sequen
e. 

  
5.2.23 Defnition Let P b e a

eptable and P = P1 . . . Pk. \e 
all 

(P1, . . . , P k) an a

eptable stratif
ation of P if Pi+1 

> P i 

for all i = 1 , . . . , k - 1. 

By true and false, w e will subsequently denote atoms whi
h always evaluate 

to true and false, respe
tively. Now apply the following 
onstru
tion. 

Repla
e every atom in ea
h 
lause in ground(P1) whi
h does not o

ur in 

the head of any 
lause by false, and 
all the resulting program P1
' . By N1, we 

will denote Np 

restri
ted to the predi
ate symbols o

urring in P1, and by l1 

we 

will denote lp 

restri
ted to the predi
ate symbols o

urring in P1. \ e obtain the 

following result. 

5.2.24 Lemma Let P be a

eptable with a

eptable stratif
ation (P1, . . . , P k). 

Then the following hold. 

(i)  P1 

' is a

eptable. 

(ii) The sequen
e  T p
n 

i 

(0) of iterates 
onverges in the atomi
 topology to the 

unique supported model N1 

of P1
' . 

Proof: (i) P1 

' obviously is a

eptable with respe
t to N1 

and l1. 

(ii) By Theorem 5.2.10, the iterates 
onverge to a supported model of P1
' . By 

uniqueness of this model it 
oin
ides with N1. • 

Let Ni, for i = 1 , . . . , k , denote Np 

restri
ted to the predi
ate symb o l s d e f n e d 

in Pi. N o w suppose that for some i E { 1, . . . , k - 1} the programs P1
' , . . . , P i 

' have 

b e e n defned and that the following properties have b e e n established. 

1. P1
' , . . . , P i 

' are a

eptable. 

2. Ni 

is the unique supported model of P 

' and N1 

Ni 

is the unique i 

supported model of P1 

Pi. 

Then defne Pi
' 

+1 

by repla
ing all o

urren
es of atoms in ground(Pi+1) w hi
h 

are not defned in Pi+1, by true or false, respe
tively, depending on whether the 

atom is true or false, respe
tively, with respe
t to N1 

Ni. \ e then obtain 

the following result. 

5.2.25 Lemma Suppose the assumptions above hold. Then the following hold. 

(i)  Pi
' 

+1 

is a

eptable. 

(ii) The sequen
e T 

n (0) of iterates 
onverges in the atomi
 topology to the pi+i 

unique supported model Ni+1 

of P 

' 

i+1. 
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(iii) N1 

Ni+1 

is the unique supported model of P1 

Pi+1. 

Proof: (i) Ni+1 

is a supported model of Pi
' 

+1, sin
e Np 

is a supported model 

of P and Pi
' 

+1 

was obtained from Pi+1 

by repla
ing atoms with true or false 

a

ording to their value with respe
t to the model N1 

Ni, and this 
oin
ides 

with Np 

restri
ted to the predi
ate symbols defned in P1 

Pi+1. Therefore, 

Pi
' 

+1 

is a

eptable with respe
t to this model and lp 

restri
ted to the predi
ate 

symbols in Pi
' 

+1. 

(ii) Convergen
e is again ensured by the a

eptability of the program. Also, by 

Theorem 5.2.10, these iterates 
onverge to the unique supported model of Pi
' 

+1 

whi
h is exa
tly Ni+1 

by the observations made in (i). 

(iii) This is immediate by the assumption and (ii). • 

Putting all these results together, we obtain the following Theorem. 

5.2.26 Theorem Let P b e a

eptable with a

eptable stratif
ation 

(P1, . . . , P k). For i = 1, . . . , k let Ni 

b e 
onstru
ted as above. Then 

N1 

Nk 

= Np 

. 

Termination of Non-Ground Queries 

\e 
ite the following result from [Apt95, Theorem 5.7]. For a partial 
onverse, 

see [AP93]. 

5.2.27 Theorem Let P b e a

eptable with respe
t to a level mapping l and a 

model I. Then, for every literal L whi
h is bounded with respe
t to l, all SLDNF-
derivations of P  {+ L}, using the Prolog sele
tion rule, are fnite. In parti
ular, 

the goal {+ L} terminates under Prolog. 

\ith our preparations, the following result is easily obtained. 

5.2.28 Theorem Let P b e a

eptable with respe
t to a level mapping l and a 

model I, and let L b e a literal whi
h is bounded with respe
t to l. Then L is 

bounded with respe
t to lp 

. 

Proof: This follows immediately from the minimality of lp 

as established in 

Theorem 5.2.21. • 

\e will now dis
uss termination of non-ground, i.e. general, goals. The fol-
lowing notions were introdu
ed in [AP93]. 

A multiset or bag over a set � is an unordered sequen
e of elements of � . 

Given a (non-refexive) ordering on a set � , th e multiset ordering over (�, ) 

is an ordering of fnite multisets of the set � and is defned as follows. For two 

fnite multisets X and } over � , let X - } if and only if X = ( } \ { a}) for 

some fnite multiset su
h that b a for all b E . Finally, d e f n e the multiset 

ordering over (�, ) as the transitive 
losure of the relation -. The multiset 

whose elements are a1, . . . , a n 

will be denoted by bag(a1, . . . , a n). 

The following defnition is to be found in [AP93, Defnition 2.9]. 
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5.2.29 Defnition Let P be a program, l a l e v el mapping for P , I a model of P 

with I n N being a m odel for P 

-, and let k 2 0. 

(i) \ith ea
h ground goal G of the form + L1, . . . , L n 

we asso
iate a fnite mul-
tiset l1 

(G) of natural numbers defned by l1 

(G) = bag( l(L1), . . . , l (Ln(GP1))), 

where n(G, I) = min({n} { i E { 1, . . . , n } I I I= Li}). 

(ii) \ith ea
h goal G we asso
iate a set of multisets l 

' (G) defned by l 

' (G) = 1 1 

{l1 

(G 

' ) I G 

' is a ground instan
e of G}. 

(iii) A goal  G is 
alled bounded by k with respe
t to l and I if k 2 j for all 

j E l 

' (G), where l 

' (G) stands for the set-theoreti
 union of the elements 1 1 

of l 

' (G).1 

(iv) A goal is 
alled bounded with respe
t to l and I if it is bounded by some 

k 2 0 with respe
t to l and I. 

It was observed in [Apt95] that the 
hoi
e of level mapping and of the model 


an afe
t the 
lass of (general, non-ground) goals whose termination 
an b e 

established, sin
e the 
hoi
e of both the level mapping and the model afe
t the 

notion of boundedness for goals. However, we will prove that the model Np 

and the 
anoni
al a

eptable-level mapping lp 

are 
ompletely general for proving 

termination of non-ground goals. 

The following result is taken from [AP93, Corollary 4.11]. A partial 
onverse 

is also given there. 

5.2.30 Theorem Let P be an a

eptable program and G a bounded goal. Then 

all SLDNF-derivations of P  { G}, using the Prolog sele
tion rule, are fnite. 

Our minimality results allow u s to establish the following. 

5.2.31 Theorem Let P b e a

eptable with respe
t to a level mapping l and a 

model I, and let G b e a goal whi
h is bounded with respe
t to l and I. Then G 

is bounded with respe
t to lp 

and Np 

. 

Proof: Sin
e lp 

(A) : l(A) for all A E Bp 

by Theorem 5.2.21, it suÆ
es to show 

that n(G, Np 

) : n(G, I). This, however, follows dire
tly from the minimality 

properties given in Lemma 5.2.11 and Theorem 5.2.21. • 

\e note, fnally, that the model Np 

does not in general des
ribe the pro-

edural semanti
s of the program due to the possible presen
e of foundering 

intermediate goals, 
f. [AP93] and [Apt95]. The exa
t relationship b e t ween Np 

and the pro
edural semanti
s of P remains to be established. 

5.3 �w
: -A

essible Programs 

\e asso
iate a dislo
ated metri
 to ea
h <* -a

essible program, show that it 


oin
ides with the d-metri
 d3 

from Se
tion 5.2, and apply the Matthews theorem 

1.4.6. 
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In the following, P is a < 

* -a

essible program whi
h satisfes the defning 


onditions with respe
t to a model I and a level mapping l, see Defnition 5.0.4. 

For J, E Ip 

we now defne d(  , ) = 0 and d(J, ) = 2-n, where J and 

difer on some atom A E Bp 

of level n, but agree on all ground atoms of 

lower level, i.e. d 
oin
ides with the metri
 d1 

indu
ed by l. A s w as pointed out in 

[Fit94], and as we k n o w from Theorem 3.2.4, (Ip 

, d ) is a 
omplete metri
 spa
e, in 

fa
t even an ultrametri
 spa
e. \e also defne a fun
tion f : Ip 

- J by f( ) = 0 

if I and f( ) = 2 

-n, where n is the smallest integer su
h that there is an 

atom A E Bp 

with l(A) = n, I= A and I I= A. Finally, w e defne u : Ip 

- J 

by u( ) = max {f( 

' ), d ( \ 

' , I \ I 

' )}, where 

' , for any E Ip 

, denotes 

restri
ted to the predi
ate symb o l s whi
h are not in Neg 

* 

p 

, and f : Ip 

x Ip 

- J 

is defned by 

f(J, ) = max {d(J, ), u (J), u ( )} 

= max {d(J, ), f ( 

' ), d ( \ 

' , I \ I 

' ), f (J 

' ), d (J \ J 

' , I \ I 

' )}. 

\e 
all f the d-metri
 asso
iated with P , a n d w e will show next that it is 
omplete. 

5.3.1 Lemma  The fun
tion u : Ip 

- J defned by u( ) = max{f( 

' ), d ( \ 

' , I \ I 

' )} is 
ontinuous as a fun
tion from (Ip 

, d ) to J. 

Proof: Let m 

b e a sequen
e in Ip 

whi
h 
onverges in d to some E Ip 

. \e 

'  ' ' need to show that d( m 

\ , I \ I 

' ) 
onverges to d( \ , I \ I 

' ) and f( )m m


onverges to f( 

' ) as m - . Sin
e ( m) 
onverges to with respe
t to the 

metri
 d, it follows that for ea
h n E N there is mn 

E N su
h that and 

m, for all m 2 mn, agree on all atoms of level less than or equal to n. So, if 

f( ) = 2-n0 , say, that means that m 

and agree on all atoms of level less 

than or equal to n if m 2 mn0 

, and hen
e f( m) = f( ) for all m 2 mn0 

. Also, 

' '  ' ' if d( \ , I \ I ) = 2 

-n0 , say, then d( m 

\ , I \ I 

' )=d( \ , I \ I 

' ) for all m

m 2 mn0 

as required.  • 

Proposition 3.1.9 yields that f is a 
omplete d-ultrametri
 on Ip 

using Lemma 

5.3.1. 

5.3.2 Proposition Let P be a < 

* -a

essible program with respe
t to a level 

mapping l and a model I. Let the d-metri
 d3 

b e defned for P as in equation 

(5.2) of Defnition 5.2.6 for a

eptable programs. Then d3 


oin
ides with f as 

defned above. 

Proof: Clearly, f and p 
oin
ide, and we obtain u( ) = max{p( ), d 1(  ,I )} for 

all E Ip 

. Sin
e d2(J, ) : d(J, ) for all J, E Ip 

, it now remains to show 

that d(J, ) : d3(J, ). So assume that d(J, ) = 2-n, where J and difer 

on some atom A E Bp 

or level n whi
h is 
ontained in Neg 

* . But then either J p 

and I or and I difer on A, hen
e either d1(J, I ) or d1(  ,I ) is greater than or 

equal to 2-n. If A E Neg 

* , then d2(J, ) 2 2-n whi
h suÆ
es. • p 
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5.3.3 Proposition Let P be a < 

* -a

essible program and f its asso
iated d-
metri
. If ( n) is a sequen
e whi
h 
 o n verges in f to some , then ( n) 
 o n verges 

in the atomi
 topology on Ip 

. 

Proof: It is easy to see that if f( n, ) 2-k, then n 

and agree on all 

atoms of level less than k whi
h suÆ
es. • 

The proof of the following proposition 
arries over from the treatment of 

a

eptable programs in [Fit94], 
f. also Proposition 5.4.2. 

5.3.4 Proposition Let P be < 

* -a

essible and let f b e defned as above. Then 

the asso
iated immediate 
onsequen
e operator Tp 

is a 
ontra
tion on (Ip 

, f ) 

with 
ontra
tivity fa
tor 

1
2 

. 

By the Matthews theorem 1.4.6 we 
an now 
on
lude the following theorem. 

5.3.5 Theorem Ea
h < 

* -a

essible program has a unique supported model 

whi
h 
an b e obtained as the limit, in the atomi
 topology, of iterates of the 

single-step operator asso
iated with the program. 

Proof: Let P be < 

* -a

essible. Then (Ip 

, f ) is a 
omplete d-ultrametri
 spa
e 

and Tp 

is a 
ontra
tion relative to f. By Theorem 1.4.6, Tp 

has a unique fxed 

point whi
h is the unique supported model of P , and this fxed p oin t 
an b e 

obtained as the limit, in f, of iterates of Tp 

. By Proposition 5.3.3, the model 
an 

b e obtained as stated. • 

\e note the following relationship between <* -a

essible and a

eptable pro-
grams. If P is a <* -a

essible program, then it is possible to reorder the body lit-
erals in ea
h 
lause from ground(P ) s u 
 h that the resulting ground program is a
-

eptable. Thus <* -a

essible programs 
an be understood as �non-deterministi
" 

a

eptable programs. Note, however, that it is not in general possible to reorder 

the 
lauses in P itself in order to obtain an a

eptable program, whi
h 
an b e 

seen from the following example. 

5.3.6 Program Let P b e the program 
onsisting of the following 
lauses. 

p(0) +  

p(1) + r(1)  

q(1) +  

q(0) + r(0)  

r(x) + -p(x), -q(x)  

This program is not a

eptable, nor is the program obtained by swapping the 

two b o d y atoms in the last 
lause. However, the program is <* -a

essible with 

respe
t to the level mapping l with l(p(0)) = l(q(1)) = 0, l(r(0)) = l(r(1)) = 1 and 
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l(p(1)) = l(q(0)) = 2. Consequently, we are able to obtain a ground a

eptable 

program from ground(P ) as 

p(0) +  

p(1) + r(1)  

q(1) +  

q(0) + r(0)  

r(1) + -q(1), -p(1)  

r(0) + -p(0), -q(0).  

5.4 �
:-A

essible Programs 

\e 
arry over the results from Se
tion 5 . 3 t o < 

*-a

essible programs. 

In the following, P is a < 

*-a

essible program whi
h satisfes the defning 


onditions with respe
t to a model I and a level mapping l : Bp 

- I. \e let 

r = {2-+ I o : I} b e ordered as in Se
tion 3.2 and denote 2-1 by 0. 

2-+For J, E Ip 

we defne d(  , ) = 0 and d(J, ) = , where J and 

difer on some atom A E Bp 

of level o, but agree on all ground atoms of 

lower level, i.e. d 
oin
ides with the gum d1 

indu
ed by l, see Proposition 5.1.6. 

As was pointed out in Se
tion 5.1, (Ip 

, d ) is a spheri
ally 
omplete generalized 

ultrametri
 spa
e. \e also defne a fun
tion f on Ip 

by setting f( ) = 0 if 

I and f( ) = 2-+, where o is the smallest integer su
h that there is an 

atom A E Bp 

with l(A) = o, I= A and I I= A. Finally, we defne a fun
tion 

u on Ip 

by u( ) = max{f( 

' ), d ( \ 

' , I \ I 

' )}, where 

' , for any E Ip 

, 

is restri
ted to the predi
ate symb o l s whi
h are not in Neg p 

* , and we defne a 

distan
e fun
tion f by 

f(J, ) = sup{d(J, ), u (J), u ( )} = max{d(J, ), u (J), u ( )}. 

5.4.1 Proposition (Ip 

, f ) is a spheri
ally 
omplete dislo
ated generalized ultra-
metri
 spa
e. 

Proof: (Ui), (Uiii) and (Uiv) follow from Proposition 3.4.4. For spheri
al 
om-
pleteness let (B+) b e a 
hain of nonempty balls in X with midpoints J+. Let J 

be the set of all atoms whi
h a r e eventually in J+, i.e. the set of all A E Bp 

su
h 

that there exists some p with A E J+ 

for all o 2 p. It is easy to see that for ea
h 

ball B2-1 
in the 
hain we have d(Jf, J ) : 2-f and hen
e J is in the interse
tion 

of the 
hain. • 

The proof of the next proposition is analogous to [Fit94, Lemma 7.1 and 

Proposition 7.1]. 

5.4.2 Proposition Let P be < 

*-a

essible with respe
t to a level mapping l and 

a model I. Then for all J, E Ip 

with J = we have f(Tp 

(J), T p 

( )) 
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f(J, ). In parti
ular we h a ve the following, where for any E Ip 

we denote by 

' the set restri
ted to the predi
ate symb o l s whi
h are not in Neg p 

* : 

(J) 

' ' ) ' (i) d(Tp 

(J) \ Tp 

, I \ I  d(J \ J , I \ I 

' ). 

(ii) f(Tp 

( ) 

' )  f (J, ). 

(iii) d(Tp 

(J), T p 

( ))  f (J, ). 

Proof: By symmetry, it suÆ
es to prove properties (i), (ii) and (iii). For 
onve-
nien
e, we again identify Neg 

* with the subset of Bp 


ontaining predi
ate symb o l s p 

from Neg 

* . p 

(i) First note that d(Tp 

(J) \ Tp 

(J) 

' , I \ I 

' ) = d(Tp 

-(J), I \ I 

' ) sin
e these 

' values only depend on the atoms in Neg 

* 

p 

. Let d(J \ J , I \ I 

' ) = 2-+. \e show 

that d(Tp 

-(J), I \ I 

' ) : 2-(++1). So we know that J \ J 

' and I \ I 

' agree on all 

ground atoms of level less than o and difer on an atom of level o. It suÆ
es to 

show now that Tp 

-(J) and I \ I 

' agree on all ground atoms of level less than or 

equal to o. 

Let A be a ground atom in Neg 

* with l(A) : o and suppose that Tp 

-(J) and p 

I \ I 

' difer on A. Assume frst that A E Tp 

-(J) and A E I \ I 

' . Then there must 

be a ground instan
e A + L1, . . . , L m 

of P 

- su
h that J \ J 

' I= L1, . . . , L m. Sin
e 

I \ I 

' is a fxed point of Tp 

- and A E Tp 

-(J), there must also b e a k su
h that 

Lk 

E I \ I 

' , and l(Lk) l(A) by Defnition 5.0.4. So we obtain I \ I 

' I= Lk 

but 

J \ J 

' I= Lk 

with l(Lk)  o whi
h is a 
ontradi
tion to the assumption that J \ J 

' 

and I \ I 

' agree on all atoms of level less than o. N o w assume that A E I \ I 

' and 

A E Tp 

-(J). It follows that there is a 
lause A + L1, . . . , L m 

in P 

- su
h that 

I \ I 

' I= L1, . . . , L m 

and l(A) > l(L1), . . . , l (Lm) by Defnition 5.0.4. But then 

' ' ' J \ J I= L1, . . . , L m 

sin
e J \ J and I \ I agree on all atoms of level less than o 

and 
onsequently A E Tp 

-(J). This establishes (i). 

(ii) Assume f(J, ) = 2 

-+. \e show that f(Tp 

( ) 

' ) : 2-(++1), for whi
h in 

turn we h a ve to sh o w that for ea
h A E Tp 

( ) not in Neg 

* , i.e . A E Tp 

( ) 

' , with p 

' ) 

' l(A) : o we have A E I 

' . Assume that A E I for su
h an A. Sin
e A E Tp 

( , 

there is a ground instan
e A + L1, . . . , L m 

of a 
lause in P with I= L1, . . . , L m, 

and note that A is not in Neg 

* . Sin
e A E I 

' , we have A E I and there must p 

also b e a k with Lk 

E I and l(A) > l(Lk) by Defnition 5.0.4. If Lk 

belongs to 

Neg 

* then, sin
e and I agree on all atoms in Neg 

* of level less than o, we p p 

obtain I= Lk 

whi
h 
 o n tradi
ts I= L1, . . . , L m. If Lk 

does not belong to Neg 

* 

p 

then it is an atom and sin
e f( 

' ) : 2-+, we obtain I I= Lk, whi
h is again a 


ontradi
tion. 

(iii) Let f(J, ) = 2-+, and let A E Bp 

with l(A) : o. It suÆ
es to show 

that A E Tp 

( ) if and only if A E Tp 

(J). \e 
onsider two 
ases. 

Case 1 A E Neg 

* . Sin
e f(J, ) : 2-+ , we know that J , and I agree on p 

all atoms in Neg 

* of level less than o. Now if A E I, then there is a 
lause p 

A + L1, . . . , L m 

in ground(P 

-) with I I= L1, . . . , L m 

and by Defnition 5.0.4 we 

obtain J I= L1, . . . , L m 

and I= L1, . . . , L m, hen
e A E Tp 

( ) n Tp 

(J). If A E I 

then for all 
lauses A + body in ground(P ) there is some L in body with I I= L 
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and l(L) o, and 
onsequently J I= L and I= L. \e 
on
lude that A is 

neither inTp 

(J) nor in Tp 

( ) a s required. 

Case 2 A E Neg 

* . Sin
e f(J, ) : 2-+, we know that J , and I agree on all p 

atoms in Neg 

* of level less than o, and that for ea
h B E (J ) not in Neg 

* 

p p 

with l(B)  o we have B E I. Now suppose A E I with l(A) : o. Then there is 

a 
lause A + body in ground(P ) w ith I I= body and l(B)  ofor all B o

urring 

in body. Consequently, we obtain J I= body and I= body, so A E Tp 

(J) 

and A E Tp 

( ). Assuming A E I, we know that for ea
h 
lause A + body in 

ground(P ) there is a literal L in body su
h that I I= L and l(L)  o. It suÆ
es 

to show now that J I= L and I= L. Now if L is in Neg 

* , we obtain J I= L and p 

I= L. If L is not in Neg 

* , then sin
e I I= L we obtain J I= L and I= L whi
h p 

suÆ
es. • 

5.4.3 Theorem Let P be < 

*-a

essible. Then P has a unique supported model. 

Proof: By Proposition 5.4.2, Tp 

is stri
tly 
ontra
ting with respe
t to f, whi
h 

in turn is a spheri
ally 
omplete dislo
ated generalized ultrametri
. By Theorem 

1.5.1, the operator Tp 

must have a unique fxed p o i n t whi
h yields a unique 

supported model for P . • 

By the proof of Theorem 1.5.1 given in Se
tion 3.4, together with the al-
ternative proof of the PrieB-Crampe and Ribenb o i m theorem in the version of 

Theorem 1.3.9, we 
an furthermore obtain the unique model by 
onstru
ting the 

sequen
e ff(0) as in the proof. It remains to investigate how to obtain ff(0) in 

the 
ase that p is a limit ordinal. To this end, we employ the 
onstru
tion from 

the proof of Proposition 5.4.1, i.e. we set ff(0) to be the set of all A E Bp 

whi
h 

are eventually in (f+(0))+kf. 

5.5 �-A

essible Programs 

Given a <-a

essible program P , w e defne a dislo
ated generalized ultrametri
 on 

Ip 

whi
h will again allow us to apply the dislo
ated PrieB-Crampe and Ribenboim 

theorem, Theorem 1.5.1. 

In the following, P is a <-a

essible program whi
h satisfes the defning 
on-
ditions with respe
t to a model I and a level mapping l : Bp 

- I. A s before, we 

let r = {2-+ I o : I} be ordered as above and denote 2-1 by 0, and for J, E Ip 

we defne the generalized ultrametri
 d on Ip 

to be the generalized ultrametri
 d1 

indu
ed by l. 

\e note that Tp 

is in general not stri
tly 
ontra
ting with respe
t to d for 

<-a

essible programs, even if it is defnite. 
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5.5.1 Program Let P b e the following program. 

p(s 

2(x)) + p(x) 

p(0) + 

p(s 

4(0)) + p(s5(0)) 

p(s 

2(0)) + p(s 

3(0)) 

For = {s5(0)} and J = {s3(0)} we obtain d(J, ) = 2-3 . However 

d(Tp 

( ), T p 

(J) = 2 

-2), so Tp 

is not stri
tly 
ontra
ting. 

\e now defne  

f(J, ) = max {d(J, I ), d (  ,I )}  

for all J, E Ip 

. 

5.5.2 Proposition (X , f ) is a spheri
ally 
omplete generalized dislo
ated ultra-
metri
 spa
e. 

Proof: If follows from Proposition 3.4.5 that f is a d-gum. Spheri
al 
ompleteness 

follows from the fa
t that every nonempty ball 
ontains I. • 

5.5.3 Proposition Let P b e <-a

essible. Then Tp 

is stri
tly 
ontra
ting with 

respe
t to f. 

Proof: Let J, E Ip 

and assume that f(J, ) = 2 

-+. Then J, , I agree on all 

ground atoms of level less than o. \ e show that Tp 

(J) and I agree on all ground 

atoms of level less than or equal to o. A similar argument s h o ws that Tp 

( ) and 

I agree on all ground atoms of level less than or equal to o, a n d this suÆ
es. 

Let A E Tp 

(J) with l(A) : o. Then there must b e a 
lause A + L1, . . . , L n 

in ground(P ) su
h that J I= L1 

Ln. Sin
e I and J agree on all ground 

atoms of level less than o, 
ondition (ii) of Defnition 5.0.4 
annot hold, be
ause 

if I I= Li 

with l(A) > l(Li), then J I= Li 

and 
onsequently J I= L1 

Ln, 

whi
h is a 
ontradi
tion. Therefore, 
ondition (i) of Defnition 5.0.4 holds and so 

A E Tp 

(I) = I. Hen
e, A E I. 

Conversely, suppose that A E I. Sin
e I = Tp 

(I), there must b e a 
lause 

A + L1, . . . , L n 

in ground(P ) su
h that I I= L1 

Ln. Thus, 
ondition (i) 

of Defnition 5.0.4 must hold, and so we 
an assume that A + L1, . . . , L n 

also 

satisfes l(A) > l (Li) for i = 1 , . . . , n . Sin
e I and J agree on all ground atoms of 

level less than o, w e have J I= L1 

Ln 

and hen
e A E Tp 

(J) as required. • 

5.5.4 Theorem Ea
h <-a

essible program P has a unique supported model. 

Proof: Sin
e P is <-a

essible, the distan
e fun
tion f as defned above is a 

spheri
ally 
omplete d-gum. By Proposition 5.5.3, Tp 

is stri
tly 
ontra
ting, hen
e 

has a unique fxed p o i n t b y Theorem 1.5.1. • 
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se
tion 
lass of programs spa
e theorem 

5.1 a
y
li
 metri
 1.2.2 

5.1 lo
ally hierar
hi
al gum 1.3.4 

5.2 a

eptable d-metri
 1.4.6 

5.3 < 

* -a

essible d-metri
 1.4.6 

5.4 < 

*-a

essible d-gum 1.5.1 

5.5 <-a

essible d-gum 1.5.1 

Table 5.1: Chapter overview: Classes of programs and applied theorems. 

Figure 5.1: Dependen
ies between 
lasses of programs. If a 
lass is depi
ted lower 

in the diagram, this indi
ates that it is more general. 

The proof of Theorem 1.5.1 furthermore yields f(N ,N ) = 0 for the unique 

fxed point N of Tp 

. Sin
e the only point o f X whi
h has non-zero distan
e from 

itself is I, we 
on
lude that I = N is the unique supported model of P . This is 

somewhat unfortunate sin
e I was needed in order to 
onstru
t f. 

5.6 Summary and Further Work 

Chapter 5 
 a n be 
onsidered the 
entral 
hapter in this thesis, with the previous 


hapters providing appli
able results, and the subsequent 
hapters fo
ussing on 

a deeper study of the 
lasses of programs and 
on
epts presented in this 
hapter. 

Table 5.1 gives a summary of whi
h fxed-point theorems were applied to whi
h 


lass of programs. Figure 5.1 displays dependen
ies between the 
lasses des
ribed 

in this 
hapter. Note that we h a ve not shown yet that every <*-a

essible program 

is <-a

essible, whi
h we will do in Chapter 6, Theorem 6.5.3. 

The fundamental 
onstru
tion used in this 
hapter is the generalized ultra-
metri
 d1 

indu
ed by a level mapping l, in the 
hara
terization of Proposition 
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5.1.6. All generalized metri
 stru
tures employed in this 
hapter make use of it, 

and refne it. Investigations remain to be done 
on
erning the possibilities of ex-
tending this approa
h to other semanti
 operators, probably even operators on 

many-valued logi
s as in Se
tion 4.3. Some other questions whi
h arise out of the 

results in this 
hapter will be addressed in the rest of this thesis. 
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Chapter 6  

Fitting-style Semanti
s  

In this 
hapter, we will analyze and 
hara
terize unique supported model 
lasses 

by means of 
ertain three-valued logi
s. In parti
ular, in Se
tion 6.1 we will in-
trodu
e three diferent three-valued logi
s and their asso
iated 
onsequen
e op-
erators, and study the relationships b e t ween them. In Se
tions 6.2 and 6.3, we 

will 
hara
terize a

eptable and lo
ally hierar
hi
al programs by means of the 

b e h a viour of these operators. \e will also give alternative 
onstru
tions of their 


anoni
al level mappings. Prompted by the studies of a

eptable and lo
ally hi-
erar
hi
al programs, we will defne two 
lasses of programs denoted by [<*] and 

[<], whi
h will later on turn out to 
oin
ide with the 
lasses of all <*-a

essible, 

respe
tively, <-a

essible programs. \e study these 
lasses in Se
tions 6.4 and 

6.5. Moreover, we w i l l s h o w that the 
lass [<*] is 
omputationally adequate under 

SLDNF-resolution. 

Many-valued logi
s have been employed in several studies of the semanti
s of 

logi
 programs. In parti
ular, they have b e e n used to assign spe
ial truth val-
ues to atoms whi
h possess 
ertain 
omputational b e h a viour su
h as b e i n g non-
terminating [Fit85, My
84], b e i n g ill-typed [Nai98], b e i n g foundering [And97], 

or failing when ba
ktra
king [BFMS98]. The motivation for the defnitions of the 

three-valued logi
s we will be using in the sequel 
omes from a 
ouple of sour
es. 

Primarily, these logi
s are formulated in order to allow for easy analysis and 


hara
terization of the programs or 
lasses of programs in question by using the 

logi
 to mimi
 the defning property of the program or 
lass of programs. This 

idea is akin to some of those 
onsidered in the papers just 
ited, and is a 
om-
ponent of work presented in Se
tion 5.2 where a program transformation whi
h 

outputs a lo
ally hierar
hi
al program, when input an a

eptable one, is used in 

the 
hara
terization of a

eptable programs. Natural questions, partly answered 

here, then arise as to the diferent w ays that diferent 
lasses of programs 
an be 


hara
terized. On the other hand, some of the work in this 
hapter 
an also b e 

viewed as a 
ontribution to the asymmetri
 semanti
s proposed in [FBJ90] where 

it is noted that 
ertain diferen
es between Pas
al, LISP and Prolog, for example, 

are easily des
ribed in terms of three-valued logi
. Thus, [FBJ90] is also a sour
e 

of motivation for our defnitions. However, we note that all programs analyzed 

in this 
hapter do have unique supported models, therefore the third truth value 
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undefned will only be used for obtaining the unique supported two-valued model. 

Hen
e, interpretations of undefned from the p o i n t of view of 
omputation (su
h 

as non-halting) are not a
tually ne
essary in this 
hapter. 

All semanti
al 
onsiderations presented in this paper are with respe
t to ar-
bitrary preinterpretations. 

6.1 Three-valued Logi
s 

A three-valued interpretation of a program P is a pair (T , F ) of disjoint sets 

T, F Bp 

. Note that the notation used here is diferent from the one of Se
tion 

4.3, but is easily seen to b e equivalent. Given su
h an interpretation I = ( T , F ), 

a ground atom A is true (t) in I if A E T , false (f) in I if A E F , and undefned 

(u) otherwise; -A is true in I if and only if A is false in I, -A is false in I if and 

only if A is true in I and -A is undefned in I if and only if A is undefned in I. 

-Given I = (T , F ), we denote T by I+ and F by I . Thus, I = (I+ , I 

-). If 

I+ -I = Bp 

, we 
all I a total three-valued interpretation of the program P . 

Total three-valued interpretations 
an b e identifed with elements of Ip 

. 

Given a program P , the set IpP 3 

of all three-valued interpretations of P forms a 


omplete partial order (in fa
t, 
omplete semi-latti
e) with the ordering : defned 

by 

I+ + - -I : if and only if and I 

with least element ( 0, 0) whi
h w e will denote by l. Noti
e that total three-valued 

interpretations are maximal elements in this ordering. 

In our present 
 o n text, it will be suÆ
ient t o g i v e truth tables for 
onjun
tion 

and disjun
tion, and we will make use of three diferent three-valued logi
s whi
h 

we are now going to defne. It should b e noted here that the truth tables for 

disjun
tion are the same in all three logi
s and that disjun
tion is 
ommutative. 

The frst logi
, whi
h we will denote by £1, evaluates 
onjun
tion as in Fit-
ting's Kripke-Kleene semanti
s [Fit85] (in fa
t, as in Kleene's strong three-valued 

logi
, see [FBJ90]). This work built on [My
84] and was subsequently studied in 

the literature e.g. in [Kun87, AP93, Nai98]. Disjun
tion will be evaluated difer-
ently though, as indi
ated by the truth table in Table 6.1. 

The se
ond three-valued logi
, £2, will b e used for studying a

eptable pro-
grams and is non-
ommutative under 
onjun
tion. It will be suÆ
ient t o e v aluate 

u f to u instead of f and leaving the truth table for £1 

otherwise un
hanged. 

This way of defning 
onjun
tion was employed in [And97] and [BFMS98], see 

also the dis
ussion of LISP in [FBJ90]. The truth table is again given in Table 

6.1. 

The third logi
, £3, will b e used for studying lo
ally hierar
hi
al and a
y
li
 

programs. For this purpose, we use a 
ommutative v ersion of £2 

where we e v aluate 

f u to u instead of f, see the dis
ussion in [FBJ90] of Kleene's weak three-valued 

logi
 in relation to Pas
al. The truth table is shown in Table 6.1. 

Let P b e a normal logi
 program, and let £i 

denote one of the three-valued 

logi
s above, where i = 1 , 2 o r 3 . Corresponding to ea
h of these logi
s we defne 
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p q 

Logi
 £1 

p q p V q 

Logi
 £2 

p q p V q 

Logi
 £3 

p q p V q 

t t t t t t t t 

t u u u u u u u 

t f f t f t f t 

u t u u u u u u 

u u u u u u u u 

u f f u u u u u 

f t f t f t f t 

f u f u f u u u 

f f f f f f f f 

Operator <p P 1 

= < p 

<p P 2 

<p P 3 

Table 6.1: Truth tables for the logi
s £1, £2, and £3. 

an operator Fp 

on IpP 3 

as follows. For I E IpP 3, let Fp 

(I) = (T , F ) where T 

denotes the set 

{A E Bp 

I there is A + body E ground(P ) s.t. body is truei 

in I}, 

and F denotes the set 

{A E Bp 

I for every A + body E ground(P ), body is falsei 

in I}. 

Of 
ourse, truei 

and falsei 

here denote truth respe
tively falsehood in the logi
 

£i. Noti
e that if A is not the head of any 
lause in P , then A is false in Fp 

(I) 

for any I. 

It is 
lear that Fp 

is monotoni
 in all three 
ases. \e set Fp 

t0 = l, 

Fp 

to = Fp 

(Fp 

t(o - 1)) for o a su

essor ordinal, and  
Fp 

to = Fp 

tp for o a limit ordinal. 

fk + 

Sin
e Fp 

is monotoni
, it has a least fxed point b y the Knaster-Tarski theorem 

1.1.7 whi
h is equal to Fp 

t o for some ordinal o 
alled the 
losure ordinal of P 

(for the 
hosen logi
 £i). 

Throughout the sequel, we will denote Fp 

by <pP 1, <pP 2 

or <pP 3 

if the 
hosen 

logi
 is 
orrespondingly £1, £2 

or £3. The appropriate symbol is also in
luded in 

Table 6.1 for ease of referen
e. Note that the behaviour of ea
h of these operators 

depends only on the evaluation of 
onjun
tion. In fa
t, <pP 1 

is the very same 

operator as used in [Fit85]. \e will also denote this operator by <p 

. 

6.1.1 Proposition If we evaluate impli
ation su
h that the partial truth table 

in Table 6.2 is satisfed, then for ea
h i = 1, 2, 3, <p Pi 

is a lo
al 
onsequen
e 

operator. 
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p q 

t t 

t u 

t f 

u u 

u f 

f f 

p + q 

t 

t 

t 

t 

t 

t 

Table 6.2: Desired impli
ation properties for 3-valued logi
s. 

Proof: Immediate by Defnitions 4.3.7 and 4.3.10. • 

6.1.2 Proposition Let P b e a normal logi
 program and let I, I 

' , I 

'' E IpP 3 

be 

su
h that I : I 

' : I 

'' . Then we have 

'' ).<pP 3(I) : <pP 2(I 

' ) : <pP 1(I 

Proof: The following observations are 
lear from the given truth tables, and 

indeed suÆ
e. If a b o d y of a 
lause is true (false) in £3, then it is true (false) in 

£2. I f it is true (false) in £2, then it is true (false) in £1. • 

\e investigate the relationship b e t ween <p 

and Tp 

for a given program P , 

extending some results in [AP93]. 

6.1.3 Lemma Let P be a normal logi
 program, let I E Ip 

and let be a partial 

+ 
 
interpretation for P with I 

-. Then <p 

( )+ Tp 

(I) <p 

( )-. 

+ 
 )+Furthermore, if = I = 

-, so that is total, then <p 

( = Tp 

(I) =  


<p 

( )-.  

Proof: Let A E <p 

( )+ . Then A must b e the head of a 
lause A +  

A1, . . . , A ki 

, -B1, . . . , -Bk2 

in ground(P ) with Ai 

E 

+ and Bj 

E 

- for all  

i = 1 , . . . , k 1 

and j = 1 , . . . , k 2. By assumption, it follows that for these values of  

i and j, Ai 

E I and Bj 

E I, and hen
e A E Tp 

(I).  

For the se
ond in
lusion, it suÆ
es to show that <p 

( )- 
Tp 

(I). Let A E  

<p 

( )-. Then, for every 
lause A + A1, . . . , A ki 

, -B1, . . . , -Bk2 

in ground(P ),  

-we have some Ai 

E or some Bj 

E 

+. Hen
e, for every su
h 
lause, we have 

some Ai 

E I or some Bj 

E I, whi
h implies that A E Tp 

(I). 

For the last statement, it suÆ
es to note that a 
onjun
tion L1 

Ln 

of literals 

is true in if and only if it is true in I if and only if it is not false in . • 

The following straightforward 
orollary provides the essential link b e t ween 

the <-operator, the single-step operator Tp 

and 
onvergen
e in Q. Intuitively 

speaking, iterates of Tp 

are �squeezed b e t ween" the iterates of <p 

. 

6.1.4 Corollary Let In 

= T 

n(0) and let = t n. Then, for all n E N , we p n 

<p 

+ 
 -obtain n 

In 

. n 
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The following now easily 
arries over from [AP93], and is in fa
t a dire
t 


onsequen
e of Lemma 6.1.3. 

6.1.5 Proposition Let P b e a normal logi
 program and let I = ( I+ , I 

-) be a 

total interpretation for P . Then I is a fxed p oin t of <p 

if and only if I+ is a 

fxed point of Tp 

. Furthermore, if <p 

has exa
tly one total fxed p o i n t N , then 

N+ is the unique fxed point o f Tp 

. 

-Proof: Let I b e a fxed p o in t of <p 

. Then I+ I+ 
I and by Lemma 6.1.3 

-we obtain I+ = < p 

(I)+ Tp 

(I+) 


<p 

(I)- = 


I = I+. Conversely, let I+ be 

-a fxed point of Tp 

. By Lemma 6.1.3, we obtain <p 

(I)+ = Tp 

(I+) = I+ = 


I = 


<p 

(I)-, and therefore <p 

(I)+ = I+ and <p 

(I)- = I-. The last statement now 

follows immediately. • 

Colle
ting together the previous results now yields 
onvergen
e in Q of iterates 

of Tp 

. 

6.1.6 Proposition Let P be a normal logi
 program and assume that N = < p 

t 

w is total. Then T 

n(0) 
onverges in Q to N+, and N+ is the unique supported p 

model Np 

of P . 

Proof: Using the notation from Corollary 6.1.4, we obtain N+ = 

+ and n 

N- -= . Sin
e N is total, we obtain from Propositions 4.2.2 and 6.1.5 that n 

N+ is the limit in Q of the sequen
e In. Sin
e totality of <p 

t w implies that it 

is the unique fxed p o in t o f < p 

, it therefore equals (N+ ,N 

-), so that N+ is the 

unique fxed p o in t o f Tp 

by Proposition 6.1.5. • 

6.1.7 Proposition Let P b e a normal logi
 program, let Fp 

denote <p Pi 

, for 

i = 1, 2, 3, and assume that N = Fp 

t o is total, where o is the 
orresponding 


losure ordinal of P . Then N+ is the unique two-valued supported model of P . 

Furthermore, the transfnite sequen
e (Fp 

tp)f 


onverges in the atomi
 topology 

to N+ . 

Proof: By totality of N , Propositions 6.1.2 and 6.1.5 we obtain N+ as a fxed 

point of Tp 

. Sin
e N is the least fxed p oin t of Fp 

and is maximal in IpP 3, it is 

the unique fxed p oin t of Fp 

. The 
onvergen
e results follows as in Proposition 

6.1.6. • 

Given a ground atom A whi
h o

urs as the head of an element A + C  
of ground(P ), we form the pseudo 
lause, or simply 
lause, A + iCi 

whose  
body Ci 

is the (possibly infnite) disjun
tion of the b o d i e s Ci 

of all 
lauses in i  
ground(P ) whose head is A; we 
all A the head of the pseudo 
lause A + Ci.i

The set of all su
h pseudo 
lauses will b e denoted by P 

* . It will b e 
onvenient  
to assign �truth" values to Ci, relative to the logi
s £i 

by in fa
t assigning i

truth values to arbitrary disjun
tions of literals and then employing the same 

sort of abuse for �disjun
tions" of ground literals whi
h was established earlier 
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for 
onjun
tion. This is done as follows: Ci 

will b e assigned value true (t) if i

and only if at least one Ci 

is true and none are undefned; it will b e assigned 

value undefned (u) if and only if at least one Ci 

is undefned; it will be assigned 

value false (f) if and only if all the Ci 

are false. These defnitions are the natural 

extension to possibly infnite disjun
tions of the values given iteratively to fnite 

disjun
tions by the truth t a b l e s i n T able 6.1. 

Letting Fp 

denote any one of the <p Pi 

, for i = 1, 2, 3, we defne an operator 

Fp 

* on IpP 3 

as follows. For I E IpP 3, set Fp 

* (I) = (T , F ), where T is the set of 

all ground atoms whi
h o 
 
 u r as the head of a pseudo 
lause in P 

* whose b o d y 

is true in I, and F is the set of all ground atoms whi
h o

ur as the head of a 

pseudo 
lause whose body is false in I. As before, <p 

*Pi 

will denote Fp 

* when the 


hosen logi
 is £i, i = 1 , 2, 3. Note that Fp 

* is again monotoni
 for any 
hoi
e of 

underlying logi
. Ordinal p o wers Fp 

* t o are defned as for Fp 

. \e will denote 

the operator <p 

*Pi 

also by <* 

p Pi 

, and < 

* 

pP 1 

by <* 

p 

. 

6.1.8 Example \e give an example illustrating the program transformation P 

* . 

Let P b e the (propositional) program 

a + b 

a + 
 

b + 


 + 
 

then P 

* is 

a + b V 
 

b + 


 + 
 

Let I be the three-valued interpretation ({b}, 0). Then <pP 1(I) = ( {a, b}, 0), whi
h 

is also the least fxed point of <pP 1. However, sin
e 
 is undefned in I, we have 

<p 

*P1(I) = ( {b}, 0), whi
h is the least fxed point o f < p 

*P1. The diferen
e between 

<pP 1 

and <p 

*P1 

results from the way in whi
h disjun
tion is defned, see the fol-
lowing proposition, Proposition 6.1.10. In fa
t, in this 
ontext it is worth noting 

an observation made by one of the referees of [HS99a], as follows. In 
lassi
al 

two-valued logi
, the programs (a + b) (a + 
) and a + (b V 
) are equivalent 

simply be
ause of the distributive laws and De Morgan's law that -b �- 
 and 

-(b V 
) are equivalent. In the Logi
s £i, i = 1 , 2, 3, -b �- 
 and -(b V 
) are not 

equivalent as 
an easily b e verifed by, for example, taking b to b e true and 
 to 

be undefned. In fa
t, the rule a + (b V 
) with disjun
tive b o d y i s w eaker (leaves 

more undefned) than the two separate rules a + b and a + 
. 

6.1.9 Proposition If we evaluate impli
ation su
h that the partial truth table 

in Table 6.2 is satisfed, then for ea
h i = 1, 2, 3, <* is a lo
al 
onsequen
e p Pi 

operator. 

98  



 

 

 

CHAPTER 6. FITTING-STYLE SEMANTI
S  

Proof: Immediate by Defnitions 4.3.7 and 4.3.10. • 

6.1.10 Proposition Let P b e a normal logi
 program and let I, I 

' , I 

'' E IpP 3 

be 

su
h that I : I 

' : I 

'' . Then we have 

'' ),<p 

*P3(I) : <p 

*P2(I 

' ) : <p 

*P1(I 

and for F denoting any of the <i, for i = 1 , 2, 3, we have 

Fp 

* (I) : Fp 

(I) and Fp 

* (I) 

- = Fp 

(I) 

-. 

Proof: The proof is along the same lines as the proof of Proposition 6.1.2 noting 

that in a disjun
tion Ci 

whi
h is true, no Ci 

is undefned. •i

6.2 A

eptable Programs 

\e are able to 
hara
terize a

eptable programs by means of the operator <p 

*P2, 

and we do this next. \e will need the following proposition. 

6.2.1 Proposition Suppose that P is a

eptable with respe
t to a level mapping 

l. Then Np 

= < pP 1 

tw is total, N+ is the unique supported model of P and P is p 

a

eptable with respe
t to l and N+ . p 

Proof: The frst statement 
arries over dire
tly from [AP93], where it was shown 

for Herbrand preinterpretations. The se
ond statement was shown in Theorem 

5.2.12. • 

6.2.2 Lemma Let P b e a

eptable. Then N = < p 

*P2 

t w is total. Furthermore, 

N = < pP 2 

tw, and N+ is the unique supported model N+ of P . p 

Proof: Let l b e a l e v el mapping with respe
t to whi
h P is a

eptable. By Propo-
sition 6.2.1, P is a

eptable with respe
t to l and N+ . Assume that there is a p 

ground atom A whi
h is undefned in N . \ithout loss of generality we 
an as-
sume that l(A) is minimal. Then by defnition of £2, there is pre
isely one pseudo 


lause in P 

* of the form A + Ci 

in whi
h at least one of the Ci, say C1, is i

undefned. Thus, there must o

ur a left-most ground body literal B in C1 

whi
h 

is undefned in N , and this ground literal is to the left in C1 

of the frst ground 

literal whi
h is false in N . Hen
e, all ground literals o

urring to the left of B 

must b e true in N . Sin
e N : Np 

by Proposition 6.1.10, all these ground lit-
erals must also be true in N+. By a

eptability of P we therefore 
on
lude that p 

l(B) l(A), 
ontradi
ting the minimality of l(A). By Proposition 6.1.10, the 

se
ond statement holds. The last statement follows from Proposition 6.1.7. • 
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6.2.3 Defnition Let P b e a

eptable. Defne the mapping lp 

as follows: lp 

(A) 

is the lowest ordinal o su
h that A is not undefned in <p 

*P2 

t(o 1). 

6.2.4 Proposition Let P b e a

eptable. Then lp 

is an w-level mapping and 

P is a

eptable with respe
t to lp 

and Np 

. Furthermore, if l is another level 

mapping with respe
t to whi
h P is a

eptable, then lp 

(A) : l(A) for all A E Bp 

. 

In parti
ular, lp 

is exa
tly the 
anoni
al a

eptable-level mapping defned in 

Constru
tion 5.2.16. 

Proof: By Lemma 6.2.2, lp 

is indeed an w-level mapping. 

Let A b e t h e head of a ground 
lause C in P with lp 

(A) = n. Then the b o d y 

Ci 

of the 
orresponding pseudo 
lause in P 

* is either true or false (i.e. is not i

undefned) in N = < p 

*P2 

tn. If Ci 

is true, ea
h Ci 

evaluates to true or false in i

N . If Ci 

evaluates to true in N (and at least one must), then all ground literals 

in Ci 

are true in N , and therefore have level less than or equal to n - 1. If Ci 

evaluates to false in N , then there must be a ground literal in Ci 

whi
h is false in 

N su
h that all ground literals o

urring to the left of it are true in N . Moreover 

all these ground literals are not undefned in N and hen
e have l e v el less than or 

equal to n - 1. A similar argument applies if Ci 

is false in N . Sin
e N : Np 

,i

it is now 
lear that the 
lause C satisfes 
ondition (5.1) of a

eptability given in 

Defnition 5.0.2 with respe
t to lp 

and Np 

. 

Now let l b e another level mapping with respe
t to whi
h P is a

eptable. 

By Proposition 6.2.1, P is a

eptable with respe
t to l and Np 

. Let A E Bp 

with l(A) = n. \e show by indu
tion on n that l(A) 2 lp 

(A). If n = 0 , then A 

appears only as the head of unit 
lauses, and therefore lp 

(A) = 0. Now le t n > 0. 

Then in every 
lause with head A, the left prefx of the 
orresponding body, u p t o 

and in
luding the frst ground literal whi
h is false in Np 

, 
ontains only ground 

literals L with l(L) n. By the indu
tion hypothesis, lp 

(L) n for all these 

ground literals L and, 
onsequently, lp 

(A) : l(A) by defnition of lp 

. 

The last statement follows from Theorem 5.2.21, where it is shown that the 

given minimality property 
hara
terizes lp 

. • 

\e are now in a position to 
hara
terize a

eptable programs. 

6.2.5 Theorem Let P b e a normal logi
 program. Then P is a

eptable if and 

only if N = < p 

*P2 

tw is total. 

Proof: By Lemma 6.2.2 it remains to show that totality o f N implies a

eptabil-
ity. Defne the w-level mapping lp 

for P as in Defnition 6.2.3. Sin
e N is total, 

lp 

is indeed an w-level mapping for P . \e will show that P is a

eptable with 

respe
t to lp 

and N . 

Arguing as in the proof of the previous proposition, let A b e the head of a 

ground 
lause C in P with lp 

(A) = n. Then the 
orresponding body C evaluates 

to true or false in N = <p 

*P2 

t n. If it evaluates to true in N , then all ground 

literals in C are true in N , and therefore have l e v el less than or equal to n - 1. If 

it evaluates to false in N , then there must be a ground literal in C whi
h is false 
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in N su
h that all ground literals o

urring to the left of it are true in N . Again, 

all these ground literals are not undefned in N and hen
e have l e v el less than or 

equal to n - 1. Sin
e N : , the 
lause C satisfes the 
ondition of a

eptability 

given in Defnition 5.0.2. • 

In [Mar96], it was shown that the 
lass of programs whi
h terminate under 

Chan's 
onstru
tive negation [Cha88] 
oin
ides with the 
lass of programs whi
h 

are a

eptable with respe
t to a model based on a preinterpretation whose do-
main is the Herbrand universe and 
ontains infnitely many 
onstant and fun
tion 

symbols, 
f. Se
tion 5.2. \e therefore obtain the following result. 

6.2.6 Theorem A normal logi
 program P terminates under Chan's 
onstru
-
tive negation if and only if <p 

*P2 

tw is total, where <p 

*P2 

is 
omputed with respe
t 

to a preinterpretation whose domain is the Herbrand universe and 
ontains in-
fnitely many 
onstant and fun
tion symb o l s . 

\e are also able to 
hara
terize a

eptability a s follows. 

6.2.7 Proposition A normal logi
 program P is a

eptable if and only if there 

exists an w-level mapping l for P and a model I for P su
h that the following is 

satisfed: Condition (5.1) of Defnition 5.0.2 holds and whenever I I= body for all 


lauses A + body in ground(P ), we have I I= A. 

Proof: Let P be a program whi
h is a

eptable with respe
t to a level mapping l 

and a model I. Then P is a

eptable with respe
t to its unique supported model 

N and l by Theorem 5.2.12, so 
ondition (5.1) is satisfed with respe
t to N . 

Sin
e N is supported, the additional 
ondition is also satisfed with respe
t to 

N . 

Conversely, let l and I be su
h that 
ondition (5.1) and the additional 
ondi-
t i o n i n t h e statement of the proposition are satisfed. Sin
e I is a model and the 

additional 
ondition holds, we obtain that I is a supported model. So I, restri
ted 

-to the predi
ate symb o l s in Neg 

* , is a supported model of P whi
h suÆ
es. • p 

6.3 Lo
ally Hierar
hi
al Programs 

\e will now give a new 
hara
terization of lo
ally hierar
hi
al and a
y
li
 pro-
grams along the lines of Theorem 6.2.5, using the operator <p 

*P3. 

6.3.1 Lemma Let P b e lo
ally hierar
hi
al with respe
t to the level mapping l 

and let A E Bp 

b e su
h that l(A) = o. Then A is true or false in <p 

*P3 

t(o 1). 

In parti
ular, there exists an ordinal op 

su
h that <p 

*P3 

top 

is total. 

Proof: The proof is by transfnite indu
tion on o. The base 
ase follows dire
tly 

from the fa
t that if o = 0, then A appears as head of unit 
lauses only. N o w l e t 

o = p 1 be a su

essor ordinal. Then all ground literals appearing in bodies of 
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lauses with head A have level less than or equal to p. By the indu
tion hypothesis, 

they are all not undefned in <p 

*P3 

t(p 1) and therefore A is either true or false 

in <p 

*P3 

t(o 1). If o is a limit ordinal, then all ground literals o

urring in bodies 

of 
lauses with head A have level stri
tly less than o. Hen
e, by the indu
tion 

hypothesis and sin
e o is a limit ordinal, all these ground b o d y literals are not 

undefned in <p 

*P3 

to, and therefore A is true or false in <p 

*P3 

t(o 1). • 

6.3.2 Corollary Let P b e a lo
ally hierar
hi
al program with level mapping 

l : Bp 

- o and let N = < pP 1 

t o. Then N is total and Np 

= N+ is the unique 

supported model of P . 

Proof: By Propositions 6.1.2 and 6.1.10, we have <p 

*P3 

t p : <pP 3 

t p : <pP 1 

t p 

for all ordinals p. Sin
e <p 

*P3 

t o is total by Lemma 6.3.1, the given statement 

holds using Proposition 6.1.7. • 

6.3.3 Defnition Let P b e lo
ally hierar
hi
al. Defne the level mapping lp 

for 

P as a fun
tion lp 

: Bp 

- op 

where lp 

(A) is the least ordinal o su
h that A is 

true or false in <p 

*P3 

t(o  1 ). 

6.3.4 Proposition Let P be lo
ally hierar
hi
al with respe
t to some level map-
ping l. Then lp 

is a level mapping for P and, for all A E Bp 

, w e have lp 

(A) : l(A). 

Furthermore, lp 


oin
ides with the 
anoni
al lh-level mapping of Constru
tion 

5.1.1. 

Proof: The mapping lp 

is indeed a level mapping by Lemma 6.3.1. Let A E Bp 

with l(A) = o. \ e show the given minimality statement b y transfnite indu
tion 

on o. If o = 0, then A appears as the head of unit 
lauses only, and so lp 

(A) = 0. 

If o = p 1 is a su

essor ordinal, then all ground literals L o

urring in bodies of 


lauses with head A have level l(L) : p. By the indu
tion hypothesis, we obtain 

lp 

(L) : p for all those ground literals, and so lp 

(A) : o = l(A) by 
onstru
tion 

of lp 

. If o is a limit ordinal, then all ground literals L o

urring in bodies of 


lauses with head A have level l(L)  o. S in 
e lp 

(L) : l(L) and sin
e o is a limit 

ordinal, we obtain that all these ground literals L are not undefned in <p 

*P3 

t o 

and therefore lp 

(A) : o = l(A) as desired. 

The last statement follows sin
e the minimality property just proved 
hara
-
terizes the 
anoni
al lh-level mapping as was shown in Proposition 5.1.4. • 

Note that it is an easy 
orollary of the previous results that if a program P is 

a
y
li
, then <p 

*P3 

tw is total. 

6.3.5 Theorem A normal logi
 program P is lo
ally hierar
hi
al if and only if 

<p 

*P3 

to is total for some ordinal o. I t is a
y
li
 if and only if <p 

*P3 

tw is total. 

Proof: Let P b e a normal logi
 program su
h that <p 

*P3 

to is total for some o. 

\e defne a mapping lp 

: Bp 

- o as in Defnition 6.3.3. From the defnition of 
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the logi
 £3 

it is now o b vious that P is indeed lo
ally hierar
hi
al with 
anoni
al 

lh-level mapping lp 

. The reverse was shown in Lemma 6.3.1. The statement for 

a
y
li
 programs now follows similarly. • 

6.4 �
:-A

essible Programs 

Our investigations of a

eptable and lo
ally hierar
hi
al programs suggest we 

defne a 
lass of programs by the property that <p 

*P1 

to is total for some ordinal 

o. \e will do this next, show that this 
lass 
ontains exa
tly the <*-a

essible 

programs, and also that this 
lass is 
omputationally adequate. 

6.4.1 Defnition \e defne the 
lass [<*] of normal logi
 programs as follows. A 

normal logi
 program P is 
ontained in [<*], if <p 

*P1 

to is total for some ordinal 

o. 

6.4.2 Theorem Every program in [<*] has a unique supported model. Further-
more, this 
lass 
ontains all a

eptable and all lo
ally hierar
hi
al programs. 

Proof: Immediate by Propositions 6.1.7 and 6.1.10. • 

6.4.3 Defnition The 
anoni
al level mapping wrt. < 

* for a given program in 

[<*] is denoted by l* and defned as follows. For every A E Bp 

, set l*(A) = o, 

where o is the minimal ordinal su
h that A is true or false in <p 

*P1 

t(o 1). 

The following is immediate by Proposition 6.1.10. 

6.4.4 Proposition If P is a

eptable or lo
ally hierar
hi
al with 
anoni-

al a

eptable-level mapping, respe
tively 
anoni
al lh-level mapping, lp 

, then 

l*(A) 2 lp 

(A) for all ground atoms A. 

6.4.5 Proposition Let P b e a normal logi
 program. Then P is 
ontained in 

[<*] if and only if the following property holds for some model I and some level 

mapping l for P : For ea
h 
lause A + L1, . . . , L n 

in ground(P ), we either have 

I I= L1 

Ln 

and l(A) > l (Li) for all i = 1 , . . . n , or there exists i E { 1, . . . , n } 

su
h that I I= Li, I I= A and l(A) > l(Li). Furthermore l*(A) : l(A) for every 

A E Bp 

. 

Proof: The frst statement f o l l o ws immediately from the defnition of the logi
al 


onne
tives in the logi
 £1, using a proof by transfnite indu
tion. 

The minimality property o f l* is shown by transfnite indu
tion along the same 

lines as in the proofs of the Propositions 6.2.4 and 6.3.4. • 

6.4.6 Corollary [<*] 
ontains exa
tly all <*-a

essible programs. 
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Proof: The proof is analogous to the proof of Proposition 6.2.7, using Proposition 

6.4.5. • 

It was shown in Se
tion 5.1 that the 
lass of all lo
ally hierar
hi
al programs 

is 
omputationally adequate in the sense that every partial re
ursive fun
tion 


an b e 
omputed with su
h a program if the use of safe 
uts is allowed. For <* -
a

essible programs, the 
ut need not b e used, and we will show this next. The 

proof basi
ally shows that given a partial re
ursive fun
tion, there is a defnite 

program as given in [Llo88] w h i 
 h 
omputes that fun
tion. This program will turn 

out to be a < 

*-a

essible program. 

6.4.7 Theorem Let f be a partial re
ursive fun
tion. Then there exists a defnite 

< 

*-a

essible program whi
h 
omputes f . 

Proof: \e will make use of the defnite program P, 

given in [Llo88, Theorem 9.6], 

and we refer the reader to the proof of this theorem for details. It is easily seen 

that we have to 
onsider the minimalization 
ase only. In [Llo88], the following 

program P, 

was given as an implementation of a fun
tion f whi
h is the result 

of applying the minimalization operator to a partial re
ursive fun
tion g, whi
h 

is in turn implemented by a predi
ate pg. \e abbreviate X1, . . . , X n 

by X. 

p, 

(X , } ) + pg(X, 0, U ), r (X, 0, U , } ) 

r(X , }, 0, } ) + 

r(X , } , s (V ), ) + pg(X , s (} ), U ), r (X , s (} ), U , ) 

This program is not <*-a

essible. However, we 
an repla
e it with a program P 

' 

, 

whi
h has the same pro
edural behaviour and is <*-a

essible. In fa
t, we repla
e 

the defnition of r by 

r(X , }, 0, } ) + 

r(X , } , s (V ), ) + pg(X , s (} ), U ), r (X , s (} ), U , ), lt (}, ), 

where the predi
ate lt is in turn defned as 

lt (0, s (X)) + 

lt (s(X), s (} )) + lt (X , } ) 

and is obviously <*-a

essible. By a straightforward analysis of the original pro-
gram P, 

, it is 
lear that the addition of lt (y, z ) in the se
ond defning 
lause of 

r does not alter the pro
edural b e h a viour of the program. Sin
e lt and pg 

are 

< 

*-a

essible, it is now easy to see that r is <*-a

essible, and so therefore is P 

' . , 

• 

It is worth noting that negation is not needed here in order to obtain full 


omputational power, so Theorem 6.4.7 strenghtens the result of [Llo88] referred 

to in the proof. By 
ontrast, as already noted, defnite lo
ally hierar
hi
al pro-
grams seem not to provide full 
omputational power. Regardless of some known 
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drawba
ks in SLDNF-resolution, it is interesting to know that relative to it the 


lass of all <*-a

essible programs has full 
omputational p o wer neither the 


lass of a
y
li
 nor even the 
lass of a

eptable programs has this property. 

6.5 �-A

essible Programs 

\e 
arry over our methods to the study of <-a

essible programs. 

6.5.1 Defnition Let P b e a normal logi
 program. Then P is 
ontained in [<] 

if and only if <p 

to is total for some ordinal o. 

6.5.2 Defnition Let P b e in [<]. For ea
h A E Bp 

, let lp 

(A) denote the least 

ordinal o su
h that A is not undefned in <p 

t (o 1). \e 
all the resulting 

mapping lp 

the 
anoni
al level mapping for P wrt. <. 

6.5.3 Theorem The 
lass [<] 
ontains exa
tly the <-a

essible programs. 

Proof: Let P b e in [<], let lp 

b e its 
anoni
al level mapping wrt. <, let o be 

its 
losure ordinal wrt. <p 

and let Np 

= < p 

t o+ b e its unique supported (two-
valued) model. 

(a) Let A E Np 

and lp 

(A) = p. By defnition of lp 

and <p 

there exists a 
lause 

A + L1, . . . , L n 

in ground(P ) su
h that the L1, . . . , L n 

are true in < t p, and 

hen
e are also true in Np 

. A g a in b y defnition of lp 

we obtain lp 

(A) > l p 

(Li) for 

all i. 

(b) Let A E Np 

and lp 

(A) = p. By defnition of lp 

and <p 

we obtain that for 

any 
lause A + L1, . . . , L n 

in ground(P ) w e m ust have that L1 

Ln 

is false 

in <p 

tp. So there mu st b e so m e i su
h that Li 

is false in <p 

tp and l(Li)  pby 

defnition of lp 

, and hen
e lp 

(A) > lp 

(Li). Thus, P is <-a

essible with respe
t 

to Np 

and lp 

. 

Conversely, let P be <-a

essible, so that P satisfes 
onditions (i) and (ii) of 

Defnition 5.0.4 with respe
t to a model I and a level mapping l. \e show by 

indu
tion on p that any A E Bp 

with l(A) = p is not undefned in <p 

t (p  1) 

and, furthermore, that I and <p 

t(p 1) agree on A. 

If l(A) = 0, then A must b e the head of a unit 
lause or does not appear in any 

head. In the frst 
ase, A is true in <p 

t 1, and in the se
ond 
ase, A is false 

in <p 

t 1. Note that in the frst 
ase A is also true in I sin
e 
ondition (i) of 

Defnition 5.0.4 applies and I is a m odel of P . Also, in the se
ond 
ase, A is also 

false in I sin
e 
ondition (ii) of Defnition 5.0.4 applies. 

Now let l(A) = p. If there is no 
lause in ground(P ) with head A, th en A is false 

in <p 

t1 : <p 

t(p 1) and also false in I sin
e 
ondition (ii) of Defnition 5.0.4 

applies. So assume there is a 
lause in ground(P ) with head A. By defnition of 

<-a

essibility, either 
ondition (i) or 
ondition (ii) of Defnition 5.0.4 applies. 

If 
ondition (i) applies, then there is a 
lause A + L1, . . . , L n 

in ground(P ) 

su
h that l(L1), . . . , l (Ln)  l (A) and therefore, by the indu
tion hypothesis, the 

L1, . . . , L n 

are not undefned in <p 

t p and I agrees with <p 

t p on them. Now, 
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sin
e I is a model of P and I I= L1, . . . , L n, w e obtain that A is true in I and by 

defnition of <p 

also in <p 

tp. 

If 
ondition (ii) applies, then for ea
h 
lause A + L1, . . . , L n 

in ground(P ) th ere 

is some i su
h that l(A) > l (Li) and Li 

is false in I. Hen
e we obtain that Li 

is 

false in <p 

t p by the indu
tion hypothesis and it follows that A is false in both 

I and <p 

t(p  1 ). • 

6.5.4 Theorem Let P b e <-a

essible with unique supported model N . Then 

N is minimal as a t wo-valued model. 

Proof: Let N be a model of P , and let l be the 
anoni
al level mapping of 

P wrt. <. Assume that there exists some A E N \ . \ithout loss of generality, 

we 
an assume that A is 
hosen su
h that l(A) is minimal. By Defnition 5.0.4 we 

obtain that there is a 
lause A + B1, . . . , B k, -Bk+1, . . . , -Bm 

in ground(P ) with 

head A and l(Bi)  l (A) for all atoms Bi 

in the body. Sin
e Bk+1, . . . , B m 

E N , w e 

obtain Bk+1, . . . , B m 

E . By minimality o f l(A) w e also obtain B1, . . . , B k 

E . 

Now, sin
e is a model of P , we must have A E whi
h is a 
ontradi
tion to 

our assumption. • 

6.5.5 Program Theorem 6.5.4 
annot b e generalized to all programs with 

unique supported models: the program 

q + p 

p + p, q 

p + -p, -q 

has a unique supported model {p, q}, but {q} is also a model (though not sup-
ported), and so {p, q} is not minimal as a t wo-valued model. 

Not also that for <*-a

essible programs the unique supported model is in 

general not least as a two-valued model as 
an be seen from the program 
onsisting 

of the single 
lause p + q. 

6.5.6 Theorem The defnite programs in [<] are exa
tly the defnite programs 

with unique supported models. 

Proof: This follows immediately from [Fit85, Proposition 7.3]: for a defnite pro-
-gram P with least fxed p oin t (I+ , I 

-) of <p 

, b oth I+ and Bp 

\ I are fxed 

-points of the single-step operator Tp 

, and in fa
t I+ is the least and Bp 

\ I is 

the greatest supported model of P . Sin
e P has only one supported model we 

-obtain I+ = Bp 

\ I and therefore P E [<]. • 
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6.6 Summary and Further Work  

\e h a ve p r o vided alternative 
 hara
terizations of the 
lasses of programs studied 

in Chapter 5, using operators on diferent three-valued logi
s. These logi
s turn 

o u t t o b e v ery 
losely related, and the novelty of this approa
h lies in the fa
t that 

the truth value undefned is employed in order to mirror aspe
ts of the programs 

whi
h are denotational, and not operational. 

\ith this approa
h it was possible to 
hara
terize a

eptable programs, i.e. 

programs whi
h are terminating under SLDNF-resolution, and it is obvious to ask 

whether this approa
h 
an be 
arried over to termination analysis with respe
t to 

other resolution methods, or to other semanti
s whi
h are based on many-valued 

logi
s, as referred to in the introdu
tion of this 
hapter. 
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Chapter 7 

Stable Model Semanti
s 

The stable model semanti
s and the supported model semanti
s share the prop-
erty that a program may have several meanings under these semanti
s, whi
h is 

not the 
ase under other semanti
s su
h a s t h e w ell-founded [GRS91] or the weakly 

perfe
t model semanti
s [PP90]. The ambiguity of the stable model semanti
s, 

however, whi
h at frst sight seems to b e an undesirable feature of it, has b e e n 

put to use in a programming paradigm 
alled answer set programming, whi
h has 


urrently b e e n implemented in several forms, see [MT99] for an overview. 

Stable models are always supported but not vi
e versa, so the stable model 

semanti
s 
an b e viewed as a refnement of the supported model semanti
s. In 

this 
hapter, we will dis
uss some issues relating the two, and an appli
ation of 

the multivalued Kleene theorem 2.4.6. 

In Se
tion 7.1, we employ our results on <*-a

essible programs and a theorem 

due to [Fag91] in order to des
ribe a 
lass of programs for whi
h their stable and 

their supported models 
oin
ide. Se
tion 7.2 
on
erns the stable model semanti
s 

for disjun
tive programs and how to relate it to the non-disjun
tive 
ase. Finally, 

in Se
tion 7.3, we apply Theorem 2.4.6 in order to obtain stable models for a 


ertain 
lass of extended disjun
tive programs, related to [KM98]. 

In this 
hapter, we will work over Herbrand interpretations only. 

\e will frst give some preliminary defnitions and results that will be needed 

in presenting our own results; they 
an all b e found in [GL91, KM98], and in 

[GL88] for the non-disjun
tive 
ase. For most of this 
hapter, we will work with 

disjun
tive programs, so we will shortly introdu
e them and their stable model 

semanti
s. 

7.0.1 Defnition Let Lit be the set of all ground literals in a frst-order language 

£. A rule r is an expression of the form 

(L1 

V V Ln 

+ Ln+1 

Lm 

�ot Lm+1 

�ot Lk) 

where Li 

E Lit for ea
h i. Rules are usually written as 

L1, . . . , L n 

+ Ln+1, . . . , L m, �ot Lm+1, . . . , �ot Lk. 
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Given su
h a rule r, we set Head(r) = {L1, . . . , L n}, Pos(r) = {Ln+1, . . . , L m} 

and Neg(r) = {Lm+1, . . . , L k}. A rule r is said to b e disjun
tive if n 2 2, and 

non-disjun
tive otherwise. An extended disjun
tive program is a 
ountable set of 

disjun
tive rules. If all the rules are non-disjun
tive, the program is said to b e 

non-disjun
tive. The term extended refers to the use of two kinds of negation, 

one being 
lassi
al negation, o

urring in the literals of the 
lause, the other one 

being the negation , w h i 
 h 
an b e interpreted as negation as failure. �ot

As an example of an extended disjun
tive program we re
all a version of the 

famous �Tweety" s
enario. 

7.0.2 Program 

fies(X) + bird(X), p en gu in ( X)�ot 

abnormal(X), fies(X) + bird(X) 

- fies(X) + p en gu in ( X) 

bird(X) + p en gu in ( X) 

penguin(tweety ) + 

bird(bob) + 

The intended meaning of this program is that tweety is a penguin and a bird, 

does not fy, and is abnormal. But b o b is a bird whi
h does fy, sin
e there is no 

eviden
e that bob is a penguin. Also, we h a ve no eviden
e that bob is abnormal. 

This meaning is 
aptured in the stable model semanti
s, introdu
ed b e l o w. 

Note that if P is a normal logi
 program, then ground(P ) is an extended 

disjun
tive logi
 program, whi
h is in fa
t non-disjun
tive a n d 
 o n tains only one 

kind of negation. Sin
e negation, -, in the 
ase of normal logi
 programs 
an b e 

understood from a pro
edural point of view as negation as failure, we i n terpret the 

o

urren
e of ea
h negation - in ground(P ) as an instan
e of . S o g ro u n d ( P ),�ot

viewed as an extended disjun
tive program, is non-disjun
tive a n d 
ontains only 

the negation �ot, so that all literals o

urring in ground(P ) are from this point 

of view in fa
t positive, i.e. atoms. As is 
ustomary in the literature, we will 


ontinue to use the symb o l - in this 
ase to indi
ate negation as failure. Note that 

we assume that extended disjun
tive programs are already given in ground form, 

while non-disjun
tive programs may 
ontain variable symbols. The identif
ation 

of a program P with ground(P ) does not pose any diÆ
ulties in the 
ontext of 

our dis
ussion. 

In order to des
ribe the answer set semanti
s, or stable model semanti
s, for 

extended disjun
tive programs, we frst 
onsider programs without negation, �ot. 

Thus, let I denote a disjun
tive program in whi
h Neg(r) is empty for ea
h rule 

r E I. A subset X of Lit, i.e. X E 2��� , is said to b e 
losed by rules in I if, 

for every r E I su
h that Pos(r) X, we have that Head(r) n X = 0. The set 

X E 2��� is 
alled an answer set for I if it is a minimal subset of Lit su
h that 

the following two 
onditions are satisfed. 
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1. If X 
ontains 
omplementary literals, then X = Lit. 

2. X is 
losed by rules in I. 

\e denote the set of answer sets of I by o(I). If I is non-disjun
tive, then 

o(I) is a singleton set, i.e. I has only one answer set. However, if I is disjun
tive, 

then o(I) may 
 o n tain more than one element. 

Now suppose that I is a disjun
tive program that may 
 o n tain �ot. F or a set 

X E 2��� , 
onsider the program Ix defned as follows. 

1. If r E I is su
h that Neg(r) nX is not empty, then we remove r i.e. r E Ix . 

2. If r E I is su
h that Neg(r) n X is empty, then the rule r 

' belongs to Ix , 

' ' ' ' where r is defned by Head(r ) = Head(r), Pos(r ) = Pos(r) and Neg(r ) = 0. 

The program transformation (I, X ) - Ix is 
alled the Gelfond-Lifs
hitz 

transformation of I with respe
t to X. G )
It is 
lear that the program Ix does not 
ontain �ot and therefore o Ix G )

is defned. \e say that X is an answer set or stable model of I if X E o Ix . 

So, answer sets are fxed p o i n ts of the operator GL introdu
ed by Gelfond and G )
Lifs
hitz in [GL91], where GL(X) = o Ix . \ e note that the operator GL is in 

general not monotoni
, and 
all it the Gelfond-Lifs
hitz operator. 

In the 
urrent and the following 
hapter, we will also make slight use of the 

well-founded semanti
s, and we refer to [GRS91] for defnitions and preliminary 

results. 

7.1 Unique Supported and Stable Models 

Sin
e there exist many diferent semanti
s for logi
 programs, it is natural to ask 

when these semanti
s 
oin
ide. \e will see in Theorem 8.2.3, that <-a

essible 

programs are well-behaved from this p o i n t of view sin
e all major semanti
s 

turn out to be the same for these programs. In this se
tion, we will investigate a 


ondition, in the non-disjun
tive 
ase, under whi
h the stable models of a program 

are exa
tly the supported models of the program. 

7.1.1 Proposition There is a program P whi
h has a unique supported model 

but no stable model, and whose well-founded model is not total. 

Proof: Consider the following program P : 

p + p 

p + -p 

\e obtain Tp 

({p}) = {p} and Tp 

(0) = {p}, so {p} is the unique supported model 

of P . H o wever, the Gelfond-Lifs
hitz transformation using {p} deletes the se
ond 


lause and keeps the frst. The resulting program has minimal model 0, so {p} 
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is not a stable model. Sin
e totality of the well-founded model implies that the 

well-founded model is stable [GRS91], we obtain that P does not have a total 

well-founded model. • 

\e defne well-supported Herbrand models following [Fag91, Fag94]. 

7.1.2 Defnition An interpretation I of a program P is 
alled well-supported if 

there exists a stri
t well-founded partial ordering - on I su
h that for any atom 

A E I there exists a (ground) 
lause A + B1, . . . , B n, -C1, . . . , -Cm 

su
h that 

I I= B1 

Bn 

�- C1 

�- Cm 

and Bi 

- A for ea
h i = 1 , . . . , n . 

The following theorem was given in [Fag91, Theorem 2.1]. 

7.1.3 Theorem For a normal logi
 program P , the well-supported models of P 

are exa
tly the stable models of P . 

Given a program P , w e will denote by P 

' the program whi
h is obtained from 

P as follows: P 

' is the set of all 
lauses A + A1, . . . , A n 

for whi
h there is a 


lause A + A1, . . . , A n, -B1, . . . , -Bm 

in P . T hus P 

' denotes the program whi
h 

is obtained by omitting all negative literals in all the 
lauses in P , and we note 

that P 

' is defnite. 

\e 
an now 
hara
terize a 
lass of programs for whi
h stable and supported 

models 
oin
ide. Re
all that all stable models are supported. 

7.1.4 Theorem Let P b e a program su
h that P 

' is <*-a

essible. Then the 

supported models of P are exa
tly the stable models of P . 

Proof: Let N b e a supported model of P . \ e show that N is well-supported. 

(1) N is a supported model of the Gelfond-Lifs
hitz transformation P 

M of 

P with respe
t to N . In order to show this, let A + body b e a 
lause in P 

M , 

and assume that body is true in N . Then the b o d y of a 
orresponding 
lause in 

ground(P ) is also true with respe
t to N by defnition of P 

M , and hen
e A is true 

with respe
t to N . So N is a model of P 

M . T o show supportedness, assume that 

A E N . Then there is a 
lause A + body in P with N I= body. By defnition of 

P 

M we obtain that there is a 
orresponding 
lause in P 

M whose b o d y is true in 

N . So N is supported as a m odel of P 

M . 

(2) Sin
e P 

' is <*-a

essible, it has a unique supported model . \e show 

that N . Assume that this is not the 
ase, i.e. that there is A E N \ 

with l(A) minimal. Sin
e N is a supported model of P 

M , we know that there is 

a 
lause A + body in P 

M with N I= body. B ut body is also the body of a 
lause 

in P 

' with head A. So by < 

*-a

essibility o f P 

' , and sin
e A E by assumption, 

there exists a literal B in body with l(B) l(A) and I= B, and sin
e P 

' is 

defnite, we obtain B E N and B E whi
h 
ontradi
ts minimality of l(A) in 

our 
hoi
e of A. So N . 

(3) \e show now that N is well-supported as a model of P . L et A E N . Sin
e 

N is a supported model of P there exists a 
lause A + B1, . . . , B n 

-C1, . . . , -Cm 

in ground(P ) su
h that the b o d y of this 
lause is true in N . From the in
lusion 
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N it follows that B1, . . . , B n 

E . Now sin
e P 

' is <*-a

essible we obtain 

l(A) > l (Bi) for all i = 1 , . . . , n . Therefore, the stri
t ordering - on N defned by 

B - C if and only if l(B)  l (C) establishes that the model N is well-supported. 

• 

The result in Theorem 7.1.4 
annot b e generalized by repla
ing <* with <: 

there exists a program P su
h that P 

' is <-a

essible and su
h that P has a 

supported model whi
h is not a stable model. In order to see this, let P b e the 

program given in the proof of Proposition 7.1.1. Then P 

' has a unique supported 

model N = {p} and is <-a

essible. So N is indeed a supported model of P but 

not a stable model of P . 

7.2  Stable Models and Supported Models in the 

Disjun
tive Case 

\e study stable and supported models in the disjun
tive 
ase. In parti
ular, we 

will provide a framework for 
asting disjun
tive programs into non-disjun
tive 

ones, and study relationships b e t ween the models before and after the transfor-
mation. \e will work with disjun
tive logi
 programs, i.e. with extended disjun
-
tive programs where all literals o

urring in the program are in fa
t positive, i.e. 

atoms. Moreover, �ot will be taken to mean 
lassi
al negation, -. One immediate 

efe
t of this imposition that Head(r) 
an only 
ontain positive literals (whether 

or not the restri
tion on �ot is imposed) is to restri
t the elements of an answer 

set to be positive literals also, as shown by the following lemma. 

7.2.1 Lemma Suppose that the head of ea
h 
lause in a disjun
tive program I 


ontains only positive literals. Then any answer set for I 
ontains only positive 

literals. 

Proof: Suppose that X is a set of literals whi
h is 
losed by rules in Iz for 

some E 2��� . Let } denote the set whi
h results by removing from X all the 

negative literals in X. Then } is 
losed by rules in Iz . To see this, suppose 

that r E I and that Pos(r) } is true. Then Pos(r) X is also true, and so 

Head(r) n } = Head(r) n X = 0. 

Therefore, by minimality, a n a n s w er set of I 
an only 
ontain positive literals. 

• 

Noti
e that this lemma makes redundant the 
ondition 1. 
on
erning 
omple-
mentary literals in the frst part of the Defnition 7.0.1 of an answer set. 

Thus, for the rest of this se
tion, the most general form of rule r that we shall 


onsider in this se
tion is the following 

A1, . . . , A n 

+ Bn+1, . . . , B m, -Bm+1, . . . , -Bk, 

where all Ai, B j 

are atoms. Therefore, we h a ve Head(r) = {A1, . . . , A n}, Pos(r) = 

{Bn+1, . . . , B m} and Neg(r) = {Bm+1, . . . , B k}. 
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In fa
t, the members of the 
lass of disjun
tive programs thus defned are 

pre
isely the disjun
tive databases 
onsidered in [Prz88]. \e will 
ontinue to use 

the notation I for a typi
al disjun
tive program even with this restri
tion in 

pla
e. Hen
e, I denotes a possibly infnite set of rules of the sort just des
ribed. 

Normal Derivatives of Disjun
tive Logi
 Programs 

The Lemma 7.2.1 fo
uses attention on the sets of positive ground literals in the 

frst order language £ underlying I i.e. on the p o wer set Ir 

of the Herbrand 

base Br 

of I. \e intend to relate answer sets to supported models of normal 

logi
 programs asso
iated with I, and Lemma 7.2.1 will assist us in doing this. 

Therefore, typi
al elements of Ir 

will be denoted either by I or by X, depending 

on the 
ontext. The frst step in the dire
tion we want to go is provided by the 

following defnition, and it will be 
onvenient to write a typi
al rule r in I in the 

form Hr 

+ body . r 

7.2.2 Defnition Suppose that I is a disjun
tive logi
 program. The single-step 

operator Tr 

asso
iated with I is the multivalued mapping from Ir 

to the p o wer 

set 21r of Ir 

defned by: J E Tr(I) if and only if the following 
onditions are 

satisfed. 

(i) For ea
h rule Hr 

+ body in I su
h that I I= body , there exists an A in r r

Hr 

su
h that A E J . 

(ii) For all A E J , there exists a rule Hr 

+ body in I su
h th a t I I= body and r r 

A belongs to Hr. 

Noti
e that this defnition redu
es to the usual defnition of the single-step 

operator Tp 

in 
ase that I is a normal logi
 program P . 

7.2.3 Theorem Suppose that I is a disjun
tive logi
 program. Then we have 

I E Tr(I), i.e. I is a fxed point o f Tr, if and only if the following 
onditions are 

satisfed. 

(a) I is a model for I, i.e. for every rule Hr 

+ body in I su
h that body is r r 

true with respe
t to I, we have that Hr 

is also true with respe
t to I. 

(b) For every A E I, there is a rule Hr 

+ body in I su
h that body is true r r 

with respe
t to I and A E Hr. 

By analogy with the non-disjun
tive 
ase, we 
all an interpretation I (i.e. an 

element o f Ir) whi
h fulflls 
ondition (b) above a supported interpretation. T hus, 

I E Tr(I) if and only if I is a supported model for I. 

Proof: Suppose that I E Tr(I) and let Hr 

+ body b e a rule in I su
h that r 

body is true with respe
t to I. F or (a), it remains to show that there is an atom r 

A in Hr 

su
h that A E I, whi
h is the 
ase by 
ondition (i) of Defnition 7.2.2. 

Condition (b) follows dire
tly from (ii) of Defnition 7.2.2. 
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Conversely, suppose that 
onditions (a) and (b) are satisfed by I. \e have 

to show that I E Tr(I), i.e. that 
onditions (i) and (ii) of Defnition 7.2.2 are 

satisfed for I = J . Both however follow dire
tly from 
onditions (a) and (b), 

respe
tively. • 

\e study next how to derive a normal program from a disjun
tive one. 

7.2.4 Defnition Suppose that I is a disjun
tive logi
 program. A normal 

derivative P of I is defned to be a (ground) normal logi
 program P 
onsisting 

of possibly infnitely many 
lauses whi
h satisfes the following 
onditions. 

(a) For every rule Hr 

+ body in I there exists a 
lause A + body in P su
h r r  

that A belongs to Hr.  

(b) For every 
lause A + body in P there is a rule Hr 

+ body in I su
h that r r  

A belongs Hr.  

Note that 
ondition (b) simply states that all 
lauses in P have to b e derived 

from rules in I by 
ondition (a). 

7.2.5 Theorem Let I b e a disjun
tive logi
 program and let I E Ir. Then 

J E Tr(I) if and only if J = Tp 

(I) f o r some normal derivative P of I. 

Proof: Let P be a normal derivative of I and suppose that J = Tp 

(I). \e have 

to show that J E Tr(I) i.e. that J satisfes 
onditions (i) and (ii) of Defnition 

7.2.2. 

For (i), let Hr 

+ body be a rule in I su
h that body is true with respe
t to r r 

I. By 
ondition (a) of the previous defnition, there exists a 
lause A + body in r 

P su
h that A belongs to Hr. B y defnition of Tp 

, we have A E J as required. 

For (ii), let A be in J . Then there exists a 
lause A + body in P su
h that 

body is true with respe
t to I. By 
ondition (b) of the previous defnition, there 

exists a rule H + body in I su
h that A belongs to H as required. 

Conversely, suppose that J E Tr(I) i.e. that J satisfes 
onditions (i) and (ii) 

of Defnition 7.2.2. \e have to show that there exists a normal derivative P of 

I su
h that J = Tp 

(I). To do this, we defne the ground normal program P as 

follows. 

(1) Let Hr 

+ body b e a rule in I su
h that body is true with respe
t to I. r r 

Then by 
ondition (i) there is an atom A in Hr 

su
h that A E J . Let P 
ontain 

all 
lauses A + body for su
h A. r 

(2) For every rule Hr 

+ body in I su
h that body is not true with respe
t r r 

to I, w e 
 hoose an atom A in Hr 

arbitrarily. Let P 
ontain all 
lauses A + bodyr 

thus defned. 

(3) P 
ontains only 
lauses defned by (1) and (2).  

Obviously, P is a normal derivative o f I .  

Now let A E J . Then by (1) there exists a 
lause A + body in P su
h  

that body is true with respe
t to I. Consequently, A E Tp 

(I). Conversely, let 

A E Tp 

(I). Then there is a 
lause A + body in P su
h that body is true with 
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respe
t to I. By (1) and (3) there exists a rule H + body in I su
h that A 

belongs to H, and by (1) again, we obtain A E J as required. • 

The previous theorem allows us to 
on
lude the existen
e of supported mod-
els for any given disjun
tive program I provided any normal derivative o f I h a s 

su
h a model. In parti
ular, if any normal derivative of I is a

eptable, or lo
ally 

hierar
hi
al, or lo
ally stratifed1, or defnite, then I has at least one supported 

model. Conversely, i f a g i v en disjun
tive program I has a supported model, there 

exists a normal derivative of I whi
h has a supported model. This fa
t is impor-
tant from our p o i n t o f view sin
e we are fo
ussing on normal derivatives of I in 

the belief that they simplify the study of I. 

A disjun
tive database I is a fnite disjun
tive logi
 program 
onsisting of 

nr 

E N (ground) rules. \e 
all nr 

the order of I. 

7.2.6 Proposition Let I be a disjun
tive database of order nr 

= n E N 
onsist-
ing of the rules r1, r 2, . . . , r n. For every k E { 1, . . . , n }, let dk 

denote the numb e r G ) nof disjun
tions o

urring in the head of rk. Then I has at most k=1 

2dk - 1 nr 

G )
normal derivatives. Therefore, for any I E Ir 

we have ITr(I)I : k=1 

2dk - 1 . 

Proof: Let rk 

b e a rule in I. Every normal derivative P of I 
ontains at least G )
one and at most dk 


lauses generated by rk. Consequently, there are 

dk 

m = m=1 dk( G )) G ) 

dkdk 

m - = 2 - 1 possibilities for 
lauses in P derived from rk, and m= dk dk

the frst statement in the 
on
lusion follows immediately from this. The se
ond 

part of the 
on
lusion now follows from Theorem 7.2.5. • 

For any disjun
tive database whi
h happens to b e a normal logi
 program, 

the bound in the previous 
orollary turns out to be 1, so that this bound is sharp. 

Normal Derivatives and the Answer Set Semanti
s 

\e n o w return to answer set semanti
s, and the fnal results of this se
tion bring 

together the ideas developed thus far by relating answer sets of I and supported 

models of normal derivatives of I. 

7.2.7 Theorem Suppose that I is a disjun
tive logi
 program in whi
h Head(r) 


ontains only positive literals for ea
h rule r E I, and in whi
h �ot denotes 


lassi
al negation. Then given an answer set X E 2��� for I, there is a normal 

derivative P of I su
h that Tp 

(X) = X. 

Proof: \e have X E o(Ix ). Consider Ix and the following normal derivative P 

of I whi
h w e 
onstru
t by referen
e to the step by step 
onstru
tion of Ix . Let r 

be a rule in I and suppose for ease of notation that r takes the form Hr 

+ body . r 

First, suppose that Neg(r)nX = 0, so that r E Ix . \ e 
 hoose an atom, A say, 

from the head Hr 

of r arbitrarily and in
lude the 
lause A + body in P . Sin
e r 

1 Cf. Chapter 8. 
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Neg(r) n X = 0 we see that X I= body , and therefore this 
lause 
ontributes r

nothing to Tp 

(X). 

Now suppose that Neg(r) n X = 0. Then the rule r 

' belongs to Ix , where r 

' 

is defned by Head(r 

' ) = Head(r), Pos(r 

' ) = Pos(r) and Neg(r 

' ) = 0. Sin
e X is 

an answer set for Ix , we have the statement Pos(r 

' ) X � Head(r 

' ) n X = 0 

holding true. The frst sub
ase of this 
ase is when Pos(r 

' ) X. Again, we sele
t 

an atom A in Head(r 

' ) = Head(r) arbitrarily and in
lude the 
lause A + bodyr 

in P . Sin
e Pos(r) = Pos(r 

' ) X, we have X I= body on
e more. Therefore, r 

this 
lause also 
ontributes nothing to Tp 

(X). 

Finally, 
onsider the sub
ase of the previous 
ase in whi
h Pos(r 

' ) X, so 

that Pos(r) = Pos(r 

' ) X. For ea
h atom A E Head(r 

' ) n X = Head(r) n X 

in
lude the 
lause A + body in P , not in
luding repetitions of this 
lause. Sin
e r 

Pos(r) X and Neg(r) n X = 0, we have X I= body . Thus, Tp 

(X) in
ludes all r

the A E Head(r) n X for ea
h rule r su
h that Pos(r) X. Therefore, we have 

Tp 

(X) X, and P is a normal derivative o f I b y 
onstru
tion. Thus, it remains 

to show that Tp 

(X) = X. 

Suppose it is the 
ase that Tp 

(X) c X i.e. that there is an x E X su
h that 

for ea
h rule r in Ix with Pos(r) X we have x E X n Head(r). \e show that 

this supposition leads to the 
ontradi
tion that } = X \ { x} c X is an answer 

set for Ix . Indeed, if r is a rule in Ix su
h that Pos(r) } , then Pos(r) X 

and so Head(r) n } = Head(r) n X = 0. Thus, } is 
losed by rules in Ix . But 

this 
ontradi
ts the minimality o f X and 
on
ludes the proof. • 

As an immediate 
orollary of our results, we 
an re
over the result of [GL91] 

that an answer set for I is a model for I (and hen
e the name answer set 

semanti
s or stable model semanti
s). 

7.2.8 Corollary Suppose that I is a disjun
tive logi
 program. Then any a n s w er 

set X for I is a model for I. 

Proof: By Theorem 7.2.7, there is a normal derivative P of I su
h th a t Tp 

(X) = 

X. Therefore, we have X E Tr(X) by Theorem 7.2.5. It now follows that X is a 

supported model for I by Theorem 7.2.3. • 

The following result is a frst step towards a 
onverse of Theorem 7.2.7. 

7.2.9 Proposition Suppose that I is a disjun
tive logi
 program whi
h satisfes 

the hypothesis of Theorem 7.2.7. Suppose also that X E 2��� and that P is a 

xnormal derivative o f I su
h that Tp 

(X) = X. Then X is 
losed by ru les in I . 

Proof: Let r 

' E Ix b e an arbitrary rule. Then there is a rule r in I of the form 

Hr 

+ body su
h that Neg(r) n X = 0, Head(r 

' ) = Head(r) and Pos(r 

' ) = Pos(r).r 

Suppose that Pos(r 

' ) X. Then Pos(r) X and therefore X I= body , sin
e r

Neg(r) n X = 0. But P is a normal derivative of I and therefore there must b e 

a 
lause in P of the form A + body , where A E Head(r). By defnition of the r

single-step operator Tp 

, we have A E Tp 

(X) and hen
e we have A E X sin
e 
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Tp 

(X) = X. Therefore, Head(r 

' ) n X = Head(r) n X = 0. Thus, X is 
losed by 

rules in Ix as stated. • 

Proposition 7.2.9 raises the problem of 
hara
terizing those normal derivatives 

whose fxed points are answer sets for I. Indeed, the same problem 
an b e put 

for all the other semanti
s whi
h have b e e n proposed for disjun
tive programs 

and databases. 

7.3 Signed Semi-disjun
tive Programs 

As already mentioned, the multivalued Knaster-Tarski theorem 2.1.4 was applied 

in [KM98] in order to fnd answer sets for a 
ertain 
lass of extended disjun
tive 

programs, see Lemma 7.3.2 and Theorem 7.3.3 b e l o w. In this se
tion, we will 

defne a sub
lass of these programs to whi
h the multivalued Kleene theorem 

2.4.6 
an be applied instead. 

Re
all, that the operator GL is in general not monotoni
. However, for non-
disjun
tive programs it is antimonotoni
 in that we have G L( X) 2 GL(} ) when-
ever X } . This fa
t is used in order to obtain a monotoni
 operator by applying 

the operator GL twi
e. For this purpose, we partition a given program, if possible, 

into two suitable subprograms, following [KM98]. 

7.3.1 Defnition An extended disjun
tive logi
 program I is said to b e signed 

if there exists S E 2��� , 
alled a signing, su
h that every rule r E I satisfes one 

of the following 
onditions. 

1. If Neg(r) n S is empty, then Head(r) S and Pos(r) S. Let I3 

b e the 

subprogram of I 
onsisting of those rules whi
h satisfy this 
ondition. 

2. If Neg(r)nS is not empty, then Head(r)nS = Pos(r)nS = 0 and Neg(r) S. 

Let I 33 

b e the subprogram of I 
onsisting of those rules whi
h satisfy this 


ondition, where 

SS denotes the set Lit \ S. 

Clearly, the programs I3 

and I 33 

are disjoint and I = I3 

I 33. A signed 

program I is said to be semi-disjun
tive if there exists a signing S su
h that I3 

is non-disjun
tive. 

\e b o r r o w from [KM98] that, for signed semi-disjun
tive programs, the op-

erator T : 2 

33 - 22
 s

defned by   
+(rg )T (X) = o I 33

is monotoni
 with respe
t to the ordering 2 whi
h is the dual of the order of 

subset in
lusion, . In fa
t, for the remainder of this se
tion we will be 
on
erned 

with de
reasing orbits, and w-
ontinuity with respe
t to de
reasing orbits et
. So, 

let us note that 2��� is a 
omplete latti
e with respe
t to , and therefore the 
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ordering 2 on 2��� turns this set into an w-
po (with bottom element). Sin
e it 

is natural to think of the ordering on 2��� , rather than its dual, the notions 

and results of this se
tion will b e formulated with respe
t to . But, in fa
t, 

we will later on apply the dual version of the multivalued Kleene theorem 2.4.6, 

where the notions of monotoni
ity, w-
ontinuity a n d w-
po will be taken to mean 

the duals of the 
orresponding notions introdu
ed in Se
tion 2.4, see for example 

Lemma 7.3.2. 

The following lemma, [KM98, Lemma 2], establishes the dual of the hypothesis 

(2.1) on T whi
h was used in Theorem 2.1.4. 

7.3.2 Lemma \ith the notation already established, let I b e a signed semi-
3disjun
tive program, let (Xf) b  e a de
reasing orbit of T in 2 

3
and let X denote 

SXf. Then there exists S su
h that E T (X) and X.f 

From this lemma, it follows by the multivalued Knaster-Tarski theorem 2.1.4 

that the operator T has a fxed point. The proof of the next theorem from [KM98] 

was based on this observation. 

7.3.3 Theorem Let I be a signed semi-disjun
tive program whi
h i s safe2 with 

respe
t to the partition (I3, I33), where S is a signing for whi
h I3 

is non-
disjun
tive. Then I has a 
onsistent answer set i.e. an answer set whi
h d o e s n o t 


ontain any 
omplementary literals. 

The proof of this result utilizes only the single fa
t from Lemma 7.3.2 that a 

fxed point o f T 
an be found (by applying Theorem 2.1.4). So, if a fxed point o f 

T 
an be found by other means, the proof of Theorem 7.3.3, as given in [KM98], 

is still valid. 

Now, if I is a program as in Theorem 7.3.3 and, in addition to this, T is 

w-
ontinuous (using the notion dual to the one from Defnition 2.4.5), then we 

obtain the fxed point of T from the proof of Theorem 2.4.6 using no more than 

w iterations. \e will see that a fniteness 
ondition together with an a
y
li
ity 


ondition suÆ
es to a
hieve this. 

7.3.4 Defnition A program I is said to b e of fnite type if, for ea
h L E Lit, 

the set of rules in I with L in their head is fnite3. A program I is 
alled a
y
li
 

if there is a (level) mapping l : Lit - N , su
h that l(L) = l(-L) for ea
h literal 

L and, for every rule r in I and for all L in Head(r) and all L 

' in Pos(r) Neg(r), 

we have l(L) > l (L 

' ). 

The 
ondition on a program that it is of fnite type was used in [Sed95] in 

order to establish Theorem 4.2.6 
on
erning 
ontinuity, in the atomi
 topology, 

of the immediate 
onsequen
e operator of a normal logi
 program i.e. of a non-
disjun
tive program. Later on it was shown in [Sed97] that 
ontinuity in the 

2 This 
on
ept is defned in [KM98], but it will not be needed here. 

3 When working with non-ground programs, a suÆ
ient 
ondition to obtain this for the 

ground instantiation of the program is the absen
e of lo
al variables. See also Example 7.3.8. 
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atomi
 topology is 
losely related to 
ontinuity in quasimetri
 spa
es. Thus, in 

the light of Se
tion 2.4, it is not surprising that programs of fnite type make a n 

appearan
e again in our present setting. Cf. also Defnition 4.3.11. 

\e now indu
tively defne the following sets for a signed semi-disjun
tive 

program with signing S. 

X = Lit, G )
Ixi}i 

= o ,3 G )
Xi+1 

E o I_
3
i with Xi+1 

Xi,3  
X = Xi, 

iEN 

} = }i. 

iEN 

IxiIndeed, these sets are well-defned sin
e I3, and therefore , is non-3 ( )
gi+ r 

disjun
tive for ea
h i, and sin
e the operator T , where T (Xi) = o I 33 

as above, is monotoni
. \ith this notation, we have the following lemma. 

7.3.5 Lemma Let I b e a signed semi-disjun
tive program with signing S su
h 

that I 33 is of fnite type. Then the following hold with respe
t to the ordering 

on 2��� . 

(i) The sequen
e Xi 

is de
reasing. \e set X = Xi. 

(ii) The sequen
e Ixi of programs is in
reasing with respe
t to set-in
lusion, 3 

Ixi 

xand 3 

= I 3 

. 

(iii) The sequen
e }i 

is in
reasing. \e set } = }i. 

(iv) The sequen
e I_i of programs is de
reasing with respe
t to set-in
lusion, 33 

I_i 

_and 3 = I 3 . 

3 3 G )
(v) } = o Ix .3 

(vi) X is 
losed by rules in I_
3 .3 

(vii) For ea
h L in X, there is a rule r in I_
3 with L E Head(r) su
h that the 

3 

following two 
onditions are satisfed. 

(vii.1) Pos(r) X. 

(vii.2) For any literal L 

' E Head(r) w ith L 

' = L, we have L 

' E X. 

Proof: (i) This follows immediately from the defnition of the Xi. 

(ii) This follows from (i), (iii) follows from (ii), and (iv) follows from (iii). G )
Ixi(v) If L E } , then there is i E N su
h that L E }i 

= o for all i 2 i .3 
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Sin
e the sequen
e Ixi of programs is in
reasing with respe
t to set-in
lusion and 3 G ) G )
Ixi Ix for ea
h i, we obtain L E o Ix and therefore } o Ix . Now let 3 3 3 3 

r b e a 
lause in Ix . If Pos(r) } , then there is i E N su
h that Pos(r) }i.3 

But ea
h }i 

is 
losed by rules in Ix
3 

i and Ixi is non-disjun
tive for ea
h i, hen
e 3 

we obtain that Head(r) E }i. So Head(r) E } and it follows that } is 
losed by 

rules in Ix
3 3. Sin
e answer sets of Ix are sets whi
h are minimally 
losed by rules G ) G )

in Ix and sin
e } o Ix , we obtain that } = o Ix .3 3 3 

(vi) This was shown in [KM98]. 

(vii.1) Let L E X be a literal. \e k n o w th a t L E Xn 

for all n. B ut Xn 

is minimally 


losed by rules in I_
3
n , therefore we also know that, for ea
h n, there must b e 

3 

a rule r in I_
3
n with L E Head(r) and Pos(r) Xn. Sin
e I 33 is of fnite type, 

3 

we also know that there are only fnitely many rules r in I_
3
n with L E Head(r).

3 

I_iBut I_
3
i+1 

3 for all i, so it follows that there must b e a rule r in I_ 

3 with 

3 3 

3 

L E Head(r) su
h that Pos(r) Xi 

for all i. Hen
e Pos(r) X. 

(vii.2) Let r1, . . . , r n 

b e all the rules in I_ 

3 with L E Head(ri) and Pos(ri) X,
3 

noting that I_ 

3 is of fnite type so that there exist only fnitely many su
h rules. 

3 

There must now b e a j E N su
h that, for all j 2 j , we have that ea
h ri 

is 

fa rule in I
_
3 with Pos(ri) Xj 

by (vii.1). Now, for ea
h i = 1, . . . , n , suppose 

3 

that there is a literal Li 

= L in Head(ri) with Li 

E X. T hen we have Li 

E Xj 

for 

fall j 2 j . It is now easy to see that Xj 

\ { L} is 
losed by rules in I
_
3 , whi
h 

3 

f
ontradi
ts the fa
t that Xj 

is minimally 
losed by rules in I
_
3 . • 

3 

If the program I 3 additionally satisfes the a
y
li
ity 
ondition, then X is3 

already a fxed point of T , as we show next. 

7.3.6 Theorem Let I be a signed semi-disjun
tive program with signing S su
h 

that I 33 is of fnite type and is a
y
li
. Let (Xn) b e a de
reasing w-orbit of T in 

32 

3
and let X = Xn. Then X E T (X).n 

Proof: \e k n o w from Lemma 7.3.2 that there is X with E T (X). Assume 

' ' = X \ = 0. Sin
e I_ 

3 is a
y
li
, there must b e an L E of minimal level. 

3 

But L E X so, by Lemma 7.3.5 (vii), there must b e a rule r whi
h satisfes 


onditions (vii.1) and (vii.2). By (vii.1) and minimality of the level of L, we 

obtain Pos(r) and sin
e is 
losed by rules in I_ 

3 , there must b e a literal 

3 

L 

' E Head(r) with L 

' E . But X, so we obtain L 

' E X and L 

' = L by 

(vii.2), and therefore L E 
ontradi
ts L E . • 

As already mentioned above, the proof of Theorem 7.3.3 now 
arries over 

dire
tly from [KM98], so that ea
h signed semi-disjun
tive program whi
h is safe 

with respe
t to the partition (I3, I33), where S is a signing for whi
h I 3 

is non-
disjun
tive and I 33 is of fnite type and a
y
li
, has a 
onsistent a n s w er set. From 

the proof of Theorem 7.3.3 together with Theorem 7.3.6, this answer set turns 

out to b e } X, with notation as defned in the paragraph pre
eding Lemma 

7.3.5. The novelty of this theorem lies in the fa
t that the answer set 
an be found 

by applying the operator T no more than w times. 
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\e 
on
lude with two examples whi
h show that the 
onditions of being 

a
y
li
 and of fnite type are indeed ne
essary. \e will use the notation from 

Lemma 7.3.5. 

7.3.7 Program Let I b e the ground instantiation of the following program, 

where x denotes a v ariable and 0 a 
onstant. 

p(x) + q(x)�ot 

q(s(x)) + p(x)�ot 

r(0) + q(x), p(x)�ot 

The program I is signed with signing S = {p(sn(0)) I n E N } and is trivially 

semi-disjun
tive. Note, however, that I 3 is not of fnite type but is a
y
li
. \e 3 

now make t h e following 
al
ulations: 

X = Lit, 

} = 0,  

Xi 

= {r(0)} { q(s 

n(0)) I n 2 i} for i 2 1,  

}i 

= {p(s 

n(0)) I n = 1 , . . . , i } for i 2 1. 

As expe
ted, the set X = Xi 

= {r(0)} is not a fxed p oin t of T nor isi 

X i 

}i 

= {r(0)} { p(sn(0)) I n E N } an answer set of I. However, taking 

X +1 

= T (X ) = 0, whi
h is a fxed p o in t of T , we obtain {p(sn(0)) I n E N } as 

answer set of I. 

The following example shows that the a
y
li
ity 
ondition on I 3 
annot e3 

b 

dropped. 

7.3.8 Program Let I b e the ground instantiation of the following program, 

where x is a variable and a 
onstant s y m bol 0 is added to the language underlying 

I. 

t(x) + t(x) 

p(x) + q(x)�ot 

q(s(x)) + p(x)�ot 

r(x) + q(x), p(x)�ot 

r(x) + r(s(x)), t(x)�ot 

The program I is signed with respe
t to the signing S = {p(sn(0)), t (sn(0)) I n E 

N } and is trivially semi-disjun
tive. Note, however, that due to the last 
lause 

in the above program, I 3 is not a
y
li
 but is of fnite type. \e now make the 3 

following 
al
ulations: 

X = Lit, 

} = 0, 

Xi 

= {q(s 

n(0)) I n 2 i} { r(s 

n(0)) I n E N } for i 2 1, 

}i 

= {p(s 

n(0)) I n = 0 , . . . , i - 1} for i 2 1. 
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As expe
ted, the set X = = {r(sn(0)) I n E N } is not an answer set of I 3i 

Xi 3 

nor is X }i 

= {r(sn(0)) I n E N } { p(sn(0)) I n E N } an answer set of I. i 

However, if we keep on iterating and 
al
ulate G )
Ixw} +1 

= o = {p(s 

n(0)) I n E N }, and3 

X +1 

= T (X ) = 0 

we obtain X +1 

as fxed point of T and {p(sn(0))} as answer set of I. 

7.4 Summary and Further Work 

\e have dis
ussed relationships b e t ween the stable model semanti
s and the 

supported model semanti
s, and applied a fxed-point theorem from Chapter 1 to 

the Gelfond-Lifs
hitz operator for extended disjun
tive programs. \e note that 

our methods of obtaining normal programs from disjun
tive ones as in Se
tion 7.2 


orrespond to relationships b e t ween the multivalued fxed-point theorems from 

Chapter 2 and the respe
tive single-valued theorems from Chapter 1. 

Stable models 
an b e understood in the framework of default theories due to 

R. Reiter, and are important for the 
urrently emerging programming paradigm 


alled answer set programming. Domain-theoreti
 investigations of the stable 

model semanti
s have been undertaken in [ZR97a, ZR97b, ZR98, RZ98], where 

disjun
tive programs were treated using Smyth p o werdomains instead of mul-
tivalued mappings. Relationships to the work presented in this 
hapter suggest 

themselves but remain to b e w orked out. 

\e fnally note that there is a subtle diferen
e between programs P and their 

ground instantiations ground(P ). Every program P 
an b e 
ast into a possibly 

infnite ground program by asso
iating it with ground(P ). However, a 
ount-
ably infnite ground program 
annot in general b e 
onverted into a fnite pro-
gram 
ontaining variables. \hile this does not 
ause any restri
tions 
on
erning 

the denotational analysis of these programs, there is 
ertainly a diferen
e when 

talking about operational aspe
ts, e.g due to the presen
e of foundering under 

SLDNF-resolution. \e w ould also like to mention [Fer94], where 
lasses of models 

are 
hara
terized in topologi
al terms. This work is based on (possibly infnite) 

ground programs, and, due to our observations above, 
an not b e 
arried over 

without modif
ations to the 
ase of fnite programs with variables. 
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Chapter 8 

Perfe
t and Weakly Perfe
t 

Model Semanti
s 

The perfe
t model semanti
s was proposed in [Prz88] as a suitable semanti
s for 

lo
ally stratifed programs, introdu
ed below, whi
h are a 
ommon generalization 

of both lo
ally hierar
hi
al and stratifed programs [AB\88]. It turned out to be 

too restri
tive, however, and the approa
h was generalized in [PP90] to the so-

alled weakly stratifed programs, resulting in the weakly perfe
t model semanti
s. 

In Se
tion 8.1, we will study the perfe
t model semanti
s for lo
ally stratifed 

programs from an iterative p o i n t of view, inspired by an approa
h followed in 

[AB\88] for stratifed programs. In Se
tion 8.2, we i n vestigate <-a

essible pro-
grams from the point of view of the weakly perfe
t model semanti
s and show, 

that all major semanti
 approa
hes 
oin
ide for these programs. 

\e will work over Herbrand interpretations only. 

8.1 Lo
ally Stratifed Programs 

\e frst defne stratifed programs due to [AB\88]. 

8.1.1 Defnition Let P denote a normal logi
 program. Then P is said to b e 

stratifed if there is a partition P = P1 

Pm 

of P su
h that the following 

two 
onditions hold for i = 1 , . . . , m : 

(1) If a predi
ate symbol o

urs positively in a 
lause in Pi, then its defnition is 


ontained within j<i 

Pj. 

(2) If a predi
ate symb o l o 
 
 u r s negatively in a 
lause in Pi, then its defnition 

is 
ontained within jk i 

Pj. 

\e adopt the 
onvention that the defnition of a predi
ate symb o l p o

urring 

in P is 
ontained in P1 

whenever its defnition is empty. Thus, ea
h predi
ate 

symbol o

urring in P is defned but it may h a ve empty defnition; in parti
ular, 

P1 

itself may b e empty. 

123  



   
�

  

 

  

    

CHAPTER 8. PERFE
T AND WEAKLY PERFE
T MODEL SEMANTI
S  

In order to treat non-monotoni
 operators, the powers of an operator T map-
ping a 
omplete latti
e into itself were defned in [AB\88] as follows: 

T t0(I) = I 

T t(n 1)(I) = T (T tn(I)) T tn(I) 

T tw(I) = 

:
T tn(I). 

n= 

Of 
ourse, T tn(I) is not equal to T 

n(I) unless T is monotoni
 and I T (I). 

Indeed, the sequen
e (T t n(I))n 

is always monotoni
 in
reasing. However, this 


on
ept 
an be used to 
onstru
t a minimal supported model Np 

for any stratifed 

program P as follows: put N = 0,N 1 

= Tpi 

tw(N ), . . . ,N m 

= Tpm 

tw(Nm-1). 

Finally, l e t Np 

= Nm. T h i s 
onstru
tion is due to [AB\88]. 

\e next defne lo
ally stratifed programs due to [Prz88] whi
h generalize 

b o t h stratifed and lo
ally hierar
hi
al programs. 

8.1.2 Defnition A normal logi
 program P is 
alled lo
ally stratifed if there 

exists a level mapping l : Bp 

- I for P su
h that for every 
lause A + 

A1 

, . . . , A m, -B1 

, . . . , -Bn 

in ground(P ) we have l(A) 2 l(Ai) and l(A) > l(Bj) 

for all i and j. 

\hile the defning 
onditions for lo
ally hierar
hi
al programs prevent the 

o

urren
e of re
ursion, the 
onditions for lo
ally stratifed programs prevent only 

re
ursion through negation, hen
e allow to 
ontrol the negation whi
h o

urs 

in the program, as we will see b e l o w, without restri
ting the use of re
ursion 

otherwise. In parti
ular, ea
h defnite program is lo
ally stratifed. 

\e will now 
arry over the above mentioned treatment of stratifed programs 

to the 
ase of lo
ally stratifed programs. 

8.1.3 Defnition Let P denote a normal logi
 program and let l : Bp 

- I 

denote a level mapping, where I > 1. For ea
h n satisfying 0 n : I, let PTn] 

denote the set of all 
lauses in ground(P ) in whi
h only atoms A with l(A)  n
o

ur, and re
all the notation £n 

for the set of all atoms A of level l(A) less than 

n. \e defne TTn] 

: (£n) - (£n) by TTn](I) = Tp[nJ 

(I). The mapping TTn] 

is 


alled the immediate 
onsequen
e operator restri
ted at level n. 

Thus, the idea formalized by this defnition is to �
ut-of" at level n. 

8.1.4 Constru
tion Let P b e a lo
ally stratifed program and let l : Bp 

- I 

denote a level mapping, where I > 1. \e 
onstru
t the transfnite sequen
e 

(In)nE1 

indu
tively as follows. For ea
h m E N , we put IT1Pm] T1] 

(0) and set= T 

m

:I1 

= m= IT1Pm]. If n E I, where n > 1, is a su

essor ordinal, then for ea
h m E N 

:we put ITnPm] 

= T 

m
](In-1) and set In 

= ITnPm]. If n E I is a limit ordinal, weTn m= 

put In 

= Im. Finally, w e put ITp ] 

= In.mkn nk1

The main te
hni
al lemma we need is as follows. For its proof, whi
h is by 

transfnite indu
tion, it will b e 
onvenient to put ITnPm] 

= In 

for all m E N 
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whenever n is a limit ordinal; thus statement (b) in the lemma makes sense for 

all ordinals n. 

8.1.5 Lemma Let P b e a normal logi
 program whi
h is lo
ally stratifed with 

respe
t to the level mapping l : Bp 

- I, where I > 1. Then the following 

statements hold. 

(a) The sequen
e (In)nE1 

is monotoni
 in
reasing in n. 

(b) For every n E I, where n 2 1, the sequen
e (ITnPm]) is monotoni
 in
reasing 

in m. 

(
) For every n E I, where n 2 1, In 

is a fxed point of TTn]. 

(d) If l(B)  n and B E In, where B E Bp 

, then for every m E I with n m we 

have B E Im 

and hen
e B E ITp ]. In parti
ular, if l(B)  nand B E ITn+1Pm] 

for some m E N , then B E In 

and hen
e B E ITp ]. 

Proof: It is immediate from the 
onstru
tion that the sequen
e (In)nE1 

is mono-
toni
 in
reasing in n, and this establishes (a). 

The main work is in establishing (b) and ( 
), whi
h w e treat simultaneously. T o 

do this, we need to note the te
hni
al fa
t that, for ea
h n E I, w e 
an partition 

PTn+1] 

as PTn] 

P (n), where P (n) denotes the subset of ground(P ) 
onsisting of 

those 
lauses whose head has level n. Thus, TTn+1](I) = TTn](I) Tp (n)(I) for any 

I E Ip 

; note that if A E Tp (n)(I), then l(A) = n. 

Let (n) be the proposition, depending on the ordinal n, that (ITnPm]) is mono-
toni
 in
reasing in m and that In 

is a fxed point o f TTn]. Suppose that (n) holds 

for all n o, where o : I is some ordinal. \e must show that (o) holds. 

Indeed, (1) holds sin
e PT1] 

is a defnite program and the 
onstru
tion of I1 

is 

simply the 
lassi
al 
onstru
tion of the least fxed p o i n t o f TT1], and therefore we 

may assume that o > 2. It will be 
onvenient to break up the details of the 
ase 

when o is a su

essor ordinal into a sequen
e of steps. 

Case 1. o = k 1 is a su

essor ordinal. Thus, (k) holds. 

Step 1. \e establish the re
ursion equations: 

ITk+1P ] 

= Ik 

ITk+1Pm+1] 

= Ik 

Tp (k)(ITk+1Pm]) 

and the frst is immediate. Putting m = 0, w e have ITk+1P1] 

= TTk+1](Ik) = TTk](Ik) 

Tp (k)(Ik) = Ik 

Tp (k)(Ik) = Ik 

Tp (k)(ITk+1P ]), using the fa
t that Ik 

is a fxed point 

of TTk]. Now suppose that the se
ond of these equations holds for some m > 0. 

Then ITk+1P(m+1)+1] 

= TTk+1](ITk+1Pm+1]) = TTk](ITk+1Pm+1]) Tp (k)(ITk+1Pm+1]) = 

TTk](Ik 

Tp (k)(ITk+1Pm])) Tp (k)(ITk+1Pm+1]), and it suÆ
es to show that TTk](Ik 

Tp (k)(ITk+1Pm])) = Ik. So suppose that A E TTk](Ik 

Tp (k)(ITk+1Pm])). Thus, 

there is a 
lause in PTk] 

of the form A + A1, . . . , A , -B1, . . . , -B1i 

whereki 

A1, . . . , A E Ik 

Tp (k)(ITk+1Pm]) and B1, . . . , B E Ik 

Tp (k)(ITk+1Pm]). But then ki 

1i 

level 
onsiderations and the hypothesis 
on
erning P imply that A1, . . . , A ki 

E Ik 
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and B1, . . . , B 1i 

E Ik. Therefore, A E TTk](Ik) = Ik 

and we have the in
lusion 

TTk](Ik 

Tp (k)(ITk+1Pm])) Ik. The reverse in
lusion is demonstrated in like fash-
ion, showing that the se
ond of the re
ursion equations holds with m repla
ed by 

m 1 and hen
e, by indu
tion on m, that it holds for all m. 

Step 2. \e have the in
lusions Tp (k)(Ik) Tp (k)(Ik 

Tp (k)(Ik)) Tp (k)(Ik 

Tp (k)(Ik 

Tp (k)(Ik))) . . . 

These in
lusions are established by methods similar to those we have just em-
ployed and we omit the details. 

It is now 
lear from this fa
t and the re
ursion equations in Step 1 that 

(ITk+1Pm]), or (IT+Pm]), is monotoni
 in
reasing in m. Sin
e monotoni
 in
reasing 

sequen
es 
onverge to their union in Q, and ITk+1Pm] 

is an iterate of Ik, it now 

follows by Theorem 4.2.5 that Ik+1 

is a m odel for PTk+1]. 

Step 3. If B E Bp 

and l(B)  k, then B E Ik+1 

if and only if B E Ik. 

Indeed, if B E Ik, then it is 
lear from the re
ursion equations of Step 1 that 

B E Ik+1. On the other hand, if B E Ik, then it is equally 
lear from the re
ursion 

equations and level 
onsiderations that, for every m E N , B E ITk+1Pm] 

and hen
e 

that B E Ik+1, a s required. 

Step 4. Ik+1 

is a supported model for PTk+1]. 

To see this, suppose that A E Ik+1 

= 

: ITk+1Pm]. Then there is m E N su
h m= 

T 

m+1that A E ITk+1Pm+1] 

= (Ik) for all m 2 m . Thus, A E TTk+1](T 

m0 (Ik)) = Tk+1] Tk+1]

TTk+1](ITk+1Pm0]). Hen
e, there is a 
lause A + A1, . . . , A ki 

, -B1, . . . , -B1i 

in PTk+1] 

su
h that ea
h Ai 

E ITk+1Pm0] 

and no Bj 

E ITk+1Pm0]. But l(Bj) k for ea
h j 

sin
e P is lo
ally stratifed. Sin
e Bj 

E ITk+1Pm0], we now see from the re
ursion 

equations that Bj 

E Ik. From the result in Step 3 we now dedu
e that, for ea
h 

j, Bj 

E Ik+1. Sin
e it is obvious that ea
h Ai 

belongs to Ik+1, we obtain that 

A E TTk+1](Ik+1). Thus, Ik+1 

TTk+1](Ik+1) and therefore Ik+1 

is a supported 

model for PTk+1], or a fxed p o in t o f TTk+1], as required. 

Thus, (o) holds when o is a su

essor ordinal. 

Case 2. o is a limit ordinal. 

In this 
ase, it is trivial that (IT+Pm]) is monotoni
 in
reasing in m. T hus, we have 

only to show that I+ 

is a fxed point o f TT+] 

i.e. a supported model for PT+], and we 

show frst that I+ 

is a model for PT+]. L et A E TT+](I+). Then there is a 
lause A + 

A1, . . . , A ki 

, -B1, . . . , -B1i 

in PT+] 

su
h that A1, . . . , A ki 

E I+ 

and B1, . . . , B 1i 

E 

I+. Indeed, by the defnition of PT+] 

and the hypothesis 
on
erning P , there is n 

o su
h that the 
lause A + A1, . . . , A , -B1, . . . , -B1i 

belongs to PTn0]. Sin
e the ki 

sequen
e (In)nE1 

is monotone in
reasing and I+ 

= In, there is n1  osu
h nk+

that A1, . . . , A ki 

E Ini 

and B1, . . . , B 1i 

E Ini 

. Choosing n2 

= max{n , n 1}, we 

have A + A1, . . . , A ki 

, -B1, . . . , -B1i 

E PTn2] 

and also A1, . . . , A ki 

E In2 

and 

B1, . . . , B 1i 

E In2 

. Therefore, on using the indu
tion hypothesis we have A E 

TTn2 

](In2 

) = In2 

I+. Hen
e, TT+](I+) I+, as required. 

To see that I+ 

is supported, let A E I+. By monotoni
ity o f ( In)nE1 

again and 

the identity I+ 

= In, there is a su

essor ordinal n 2 1 su
h that A E Innk+

for all n su
h that n : n o. In parti
ular, we have A E In0 

= 

: 

m= ITn0Pm]. 

Therefore, there is m1 

E N su
h that A E ITn0Pmi+1] 

= TTn0](T 

mi (In0-1)). Con-Tn0]
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sequently, there is a 
lause A + A1, . . . , A ki 

, -B1, . . . , -B1i 

in PTn0] 

su
h that 

E T 

miA1, . . . , A ki Tn0]
(In0-1) = ITn0Pmi] 

In0 

I+ 

and B1, . . . , B ki 

E ITn0Pmi 

]. But 

l(Bj)  n - 1 for ea
h j and so no Bj 

belongs to In0-1 

by Step 3 of the previous 


ase. Therefore, by this step, no Bj 

belongs to In0 

and by iterating this we see 

that, for every m E N , no Bj 

belongs to In0+m. Therefore, no Bj 

belongs to I+. 

Hen
e, we have A E TTn0 

](I+) TT+](I+) or in other words that I+ 

TT+](I+), as 

required. 

It now follows that (n) holds for all ordinals n, and this 
ompletes the proof 

of (b) and (
). In parti
ular, we see that the re
ursion equations obtained in Step 

1 hold for all ordinals k, and we re
ord this fa
t in the 
orollary below. Indeed, all 

that is needed to establish these equations is the fa
t that ea
h Ik 

is a fxed point 

of TTk], and to note that the proof just given shows also that ITp ] 

is a fxed point 

of Tp 

. In turn, (d) of the lemma now follows from this observation by iterating 

Step 3. 

The p r o o f o f t h e lemma is therefore 
omplete.  • 

It 
an b e seen here, and it will b e seen again later, that the importan
e of 

(d) is the 
ontrol it gives over negation in the manner illustrated in the proof 

just given that Ik+1 

is a supported model for PTk+1]. It is also worth noting that 

the 
onstru
tion produ
es a monotoni
 in
reasing sequen
e by means of a non-
monotoni
 operator, and that Lemma 8.1.5 plays a role here similar to that played 

by [AB\88, Lemma 10]. 

8.1.6 Corollary Suppose the hypotheses of Lemma 8.1.5 all hold. Then: 

(1) For all ordinals n and all m E N we have the re
ursion equations 

ITn+1P ] 

= In 

ITn+1Pm+1] 

= In 

Tp (n)(ITn+1Pm]). 

(2) If P is in fa
t lo
ally hierar
hi
al, then for  every ordinal n 2 1 we have 

ITn+1Pm] 

= In 

Tp (n)(In) for all m E N , where P (n) is defned as in the proof 

of Lemma 8.1.5, and therefore the iterates stabilize after one step. 

Proof: That (1) holds has already been noted in the proof of Lemma 8.1.5. 

For (2), it suÆ
es to prove that Tp (n)(In) = Tp (n)(In 

Tp (n)(In)). So sup-
p o s e therefore that A E Tp (n)(In 

Tp (n)(In)). Then there is a 
lause A + 

A1, . . . , A ki 

, -B1, . . . , -B1i 

in P (n) su
h that A1, . . . , A ki 

E In 

Tp (n)(In) and 

B1, . . . , B ki 

E In 

Tp (n)(In). From these statements and by level 
onsiderations, 

we have A1, . . . , A E In 

and B1, . . . , B ki 

E In. Therefore, A E Tp (n)(In) so that ki 

Tp (n)(In 

Tp (n)(In)) Tp (n)(In). The reverse in
lusion is established similarly to 


omplete the proof. • 

Statement (2) of this 
orollary makes the 
al
ulation of iterates very easy to 

perform in the 
ase of lo
ally hierar
hi
al programs. 
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8.1.7 Theorem Suppose that P is a normal logi
 program whi
h is lo
ally strat-
ifed with respe
t to the level mapping l : Bp 

- I. Then ITp ] 

is a minimal 

supported model for P . 

Proof: That ITp ] 

is a supported model for P follows from the proof of 

Lemma 8.1.5, and so it remains to show that ITp ] 

is minimal. To do this, we 

establish by transfnite indu
tion the following proposition: �if J ITp ] 

and 

Tp 

(J) J , then In 

J for all n E I, where n 2 1", and this 
learly suÆ
es. 

Indeed, TT1](J) Tp 

(J) J and therefore J is a model for PT1]. But, as already 

noted in proving Lemma 8.1.5, I1 

is the least model for PT1] 

by 
onstru
tion, sin
e 

PT1] 

is defnite. Therefore, I1 

J and the proposition holds with n = 1. 

Now assume that the proposition holds for all ordinals n o for some ordinal 

o E I, where o > 1; we show that it holds with n = o.  

Case 1. o = k 1 is a su

essor ordinal, where k > 0.  

\e have Ik 

J . \e sh o w b y indu
tion on m that ITk+1Pm] 

J for all m. Indeed,  

with m = 0 we have ITk+1P ] 

= Ik 

J . Suppose, therefore, that ITk+1Pm0] 

J for  

some m > 0. Let A E ITk+1Pm0+1] 

= TTk+1](T 

m0 (Ik)). Then there is a 
lause A + Tk+1] 

, . . . , A , , . . . , in PTk+1] 

su
h that A1, . . . , A E T 

m0 ) = A1 ki 

-B1 -B1i 

ki Tk+1](Ik ITk+1Pm0] 

and B1, . . . , B 1i 

E ITk+1Pm0]. But l(Bj)  kfor ea
h j. Applying Lemma 8.1.5 (d) 

we see that no Bj 

belongs to ITp ] 

and 
onsequently no Bj 

belongs to J be
ause 

J ITp ]. Sin
e ITk+1Pm0] 

J by assumption, we have A1, . . . , A E J . Therefore, ki 

A E TTk+1](J) Tp 

(J) J , and from this we obtain that ITk+1Pm0+1] 

J as  

required to 
omplete the proof in this 
ase.  

Case 2. o is a limit ordinal.  

In this 
ase, I+ 

= In 

and In 

J for all n o by hypothesis. Therefore,  nk+

I+ 

J as required. 

Thus, the result follows by transfnite indu
tion. • 

The following defnition is due to [Prz88]. Indeed it was shown in [Prz88] that 

ea
h lo
ally stratifed program has a unique perfe
t model. Our proof in Theorem 

8.1.9 below, using our previously obtained results, however, is more 
onstru
tive. 

8.1.8 Defnition Suppose that P is a lo
ally stratifed normal logi
 program, 

and let l denote the asso
iated level mapping. Given two d i s t i n 
 t m o d e l s N and 

N for P , w e say that N is preferable to N if, for every ground atom A in N \ N , 

there is a ground atom B in N \ N su
h that l(A) > l (B). Finally, w e say that 

a model N for P is perfe
t if there are no models for P preferable to N . 

Noti
e that the requirement l(A) > l(B) is dual to the requirement A B 

relative t o the priority relation defned in [Prz88]. 

8.1.9 Theorem Suppose that P is a normal logi
 program whi
h is lo
ally strat-
ifed with respe
t to a level mapping l : Bp 

- I, where I is a 
ountable ordinal. 

Then ITp ] 

is a perfe
t model for P and indeed is the only perfe
t model for P . 

Proof: Suppose that there is a model N for P whi
h is preferable to ITp ] 

(and 

therefore distin
t from ITp ]); we will derive a 
ontradi
tion. 
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First note that N \ ITp ] 

must be non-empty, otherwise we have N ITp ]. But 

this in
lusion for
es equality of N and ITp ] 

sin
e ITp ] 

is a minimal model for P , 

and therefore N and ITp ] 

are not distin
t. This means that there is a ground atom 

A in N \ ITp ], whi
h 
an b e 
hosen so that l(A) has minimum value; let B be a 

ground atom in ITp ] 

\ N 
orresponding to A in a

ordan
e with Defnition 8.1.8, 

and whi
h satisfes l(A) > l (B). 

Next we note that TT1](N) Tp 

(N) N , sin
e N is a model for P . Hen
e, 

N is a model for PT1], whi
h implies that I1 

N sin
e I1 

is the least model 

for the defnite program PT1]. Therefore, B 
an b e 
hosen so that B E In0 

\ N , 

with minimal n > 1. Now n 
annot b e a limit ordinal, otherwise we would 

have In0 

= mkn0 

Im, from whi
h we would 
on
lude that B E Im 

\ N for some 

m n 
ontrary to the 
hoi
e of n . Thus, n must b e a su

essor ordinal and, 

therefore, B 
an b e 
hosen so that B E ITn0Pm0 

] 

\ N , where m is su
h that 

ITn0 

Pmi] 

\ N = 0 whenever m1  m, ; indeed, sin
e I1 

N , we must have n > 1 

and m 2 1 also. Consequently, B E TTn0](ITn0Pm0 

-1]) \ N showing that there is 

a 
lause B + C1, . . . , C , -D1, . . . , -D1i 

in PTn0] 

with the property that ea
h ki 

Ci 

E ITn0Pm0 

-1] 

and no Dj 

E ITn0Pm0-1]. S in 
e l(Dj)  n- 1 for ea
h j, w e see that 

none of the Dj 

belong to ITp ] 

by Lemma 8.1.5 (d). But all the Ci, if there are any, 

must belong to N by t h e 
 hoi
e of the numbers n and m . Moreover, there must 

b e at least one Dj 

and indeed at least one belonging to N . For if there were no 

Dj 

or we had ea
h Dj 

E N , then we would have B E Tpn0 

(N) Tp 

(N) N , 

using again the fa
t that N is a model for P . But this leads to the 
on
lusion that 

B E N , whi
h is 
ontrary to B E ITp ] 

\ N . Thus, there is a D = Dj 

E N \ ITp ], 

for some j, satisfying l(D)  l (B)  l(A). Sin
e A was 
hosen in N \ ITp ] 

to have 

smallest level, we have a 
ontradi
tion. 

This 
ontradi
tion shows that ITp ] 

must be a perfe
t model for P as required. 

The last statement in the theorem 
on
erning uniqueness of ITp ] 

now follows from 

[Prz88, Theorem 4]. • 

Sin
e it is shown in [Prz88] that perfe
t models are independent of the lo
al 

stratif
ation, we also have the following result. 

8.1.10 Corollary If P is a normal logi
 program whi
h is lo
ally stratifed with 

respe
t to two level mappings l1 

and l2, then the 
orresponding models ITpi] 

and 

ITp2] 

are equal. 

8.1.11 Program Sin
e lo
ally stratifed programs are a generalization of lo
ally 

hierar
hi
al programs it is 
lear that ea
h lo
ally hierar
hi
al program has a 

unique perfe
t model. This does not hold, however, for <*-a

essible programs. 

Indeed, the program 

p + -q 

q + r, -p 

is <*-a

essible (even a

eptable) with respe
t to the unique supported model 

N = {p}. However, I = {q} is also a model of this program and while I is 
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preferable to N , N in turn is also preferable to I, so P does not have a perfe
t 

model. 

It also follows from [Prz88, Theorem 4] and Theorem 8.1.9 above that ITp ] 


oin
ides with the model Np 

of [AB\88] when P is stratifed. However, for 

the sake of 
ompleteness we next present a proof of this fa
t using the methods 

established thus far. To do this, it will b e 
onvenient to introdu
e the 
on
ept 

T 1 n(I) for a mapping T : Ip 

- Ip 

and I E Ip 

. In fa
t, T 1 n(I) is defned 

indu
tively as follows: 

T 10(I) = I 

T 1(n 1)(I) = T (T 1n(I)) I 

T 1w(I) = 

: 

T 1n(I). 

n= 

8.1.12 Theorem Let P b e a stratifed normal logi
 program. Then ITp ] 

= Np 

. 

Proof: As usual, we take the stratif
ation to b e P = P1 

. . . Pm 

and we will 

show by indu
tion that Ik 

= Nk 

for k = 1 , . . . , m and that Ik 

= Nm 

for k > m . 

From this we 
learly have ITp ] 

= Nm 

= Np 

as required. 

\ith the defnition of the level mapping we are 
urrently using and with 

the 
onventions we have made regarding the stratif
ation, we note frst that the 

equalities PTk] 

= ground(P1 

P2 

. . . Pk) and P (k - 1) = ground(Pk) both hold 

for k = 1 , . . . , m , where P (k) i s a s defned in the proof of Lemma 8.1.5. 

Now PT1] 

= ground(P1) is defnite, even if empty, and so it is immediate 

that Tpi 

1 i(N ) = Tpi 

t i(N ) for all i and that I1 

= N1. So suppose next 

that Tpk+i 

1 i(Nk) = Tpk+i 

t i(Nk) for all i and that Ik+1 

= Nk+1 

for some 

k > 0. Then Tpk+2 

1 0(Nk+1) = Nk+1 

= Tpk+2 

t 0(Nk+1) and also ITk+2P ] 

= 

Ik+1 

= Nk+1 

= Tpk+2 

t 0(Nk+1). So now suppose that Tpk+2 

1 m(Nk+1) = Tpk+2 

t 

m(Nk+1) and that ITk+2Pm] 

= t m(Nk+1) for some m > 0. Then Tpk+2 

1Tpk+2 

(m  1 )( Nk+1) = Tpk+2 

(Tpk+2 

1 m(Nk+1)) Nk+1 

and Tpk+2 

t (m 1)(Nk+1) = 

t m(Nk+1)) t m(Nk+1), and it is 
lear that Tpk+2 

1 (mTpk+2 

(Tpk+2 

Tpk+2 

1)(Nk+1) t(m 1)(Nk+1). For the reverse in
lusion, we note that under Tpk+2 

our present h ypotheses we h a ve Tpk+2 

t(m 1)(Nk+1) = Tpk+2 

1m(Nk+1))(Tpk+2 

Tpk+2 

1m(Nk+1) (Tpk+2 

11m(Nk+1) and so it suÆ
es to show that Tpk+2 

Tpk+2 

m(Nk+1)) Nk+1 

or in other words that ITk+2Pm] 

Tp (k+1)(ITk+2Pm]) Ik+1. Sin
e 

this latter set is equal to ITk+2Pm+1] 

by the re
ursion equations of Corollary 8.1.6, 

the in
lusion we w ant follows from the monotoni
ity of the sets ITk+2Pm] 

relative t o 

m. \e 
on
lude, therefore, that Tpk+2 

1(m 1)(Nk+1) = t(m  1)( Nk+1).Tpk+2 

Finally, ITk+2Pm+1] 

= Ik+1 

Tp (k+1)(ITk+2Pm]) = Nk+1 

tm(Nk+1)) = Tpk+2 

(Tpk+2 

Nk+1 

1m(Nk+1)) = Tpk+2 

1(m 1)(Nk+1) = t(m 1)(Nk+1),Tpk+2 

(Tpk+2 

Tpk+2 

by the 
on
lusions of the previous paragraph. Therefore, ITk+2Pm+1] 

= Tpk+2 

t 

(m 1)(Nk+1). From this we obtain, by indu
tion, the equality ITk+2Pm] 

= Tpk+2 

t 

m(Nk+1) for all m and with it the equality Ik+2 

= Nk+2 

as required. • 

The details of the indu
tion proof just given also establish the following propo-
sition. 
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8.1.13 Proposition Let P = P1 

. . . Pm 

be a stratifed normal logi
 program. 

Then we have Tpk+i 

1 i(Nk) = t i(Nk) for all i and k = 0 , . . . , m - 1.Tpk+i 

8.2 Weakly Perfe
t Model Semanti
s 

\hen studying various 
lasses of programs, the question naturally arises as to 

how su
h 
lasses relate to other 
lasses known in the literature. From the defni-
tion, it follows immediately that the unique supported model 
lass of all lo
ally 

hierar
hi
al programs is 
ontained in the 
lass of all lo
ally stratifed programs. 

In this se
tion, we will relate the 
lass of all <-a

essible programs to the notion 

of weak stratif
ation. 

It was pointed out in [BF91, Remark 5.3] that the original defnition of weakly 

stratifed programs in [PP90] is ambiguous sin
e the two 
onditions 

(a) All strata of a program P 
onsist of trivial 
omponents only. 

(b) All layers of a program P are defnite programs. 

whi
h were originally used for defning weakly stratifed programs are not equiv-
alent. \e will 
all a program weakly stratifed-a if 
ondition (a) holds, and weakly 

stratifed-b if 
ondition (b) holds. For a dis
ussion of this, see [BF91, Se
tion 5], 

and we refer to the same publi
ation for notation 
on
erning weakly stratifed 

programs. 

In [PZ98], it was shown that ea
h a

eptable program [AP93] is weakly 

stratifed-a. From [GRS91, Corollary 4.3], we immediately obtain that ea
h <-
a

essible program has a total well-founded model, ie. is efe
tively stratifed 

[BF91]. Again from [BF91, Proposition 5.4], we obtain that a program whi
h 

is weakly stratifed-b, is also efe
tively stratifed. 

It is easy to see that a program whi
h is weakly stratifed-b, is also weakly 

stratifed-a. In the opposite dire
tion, we have the following result. 

8.2.1 Theorem If P is weakly stratifed-a and if there does not exist a 
lause 

A + body in ground(P ) with -A o

urring in body, th en P is weakly stratifed-b. 

Proof: Sin
e P is weakly stratifed-a, all minimal 
omponents are trivial. Let 

A + body be a 
lause in the bottom layer. \ithout loss of generality assume that 

body 
ontains some negative literal -B, ie. 

1 B  A, w ith A = B by assumption. 

Sin
e the 
omponent 
ontaining A is trivial, we obtain A > B and therefore we 

obtain a 
ontradi
tion. • 

It is 
lear from the last result that a lo
ally hierar
hi
al program is weakly 

stratifed-a if and only if it is weakly stratifed-b. This does in fa
t also hold for 

lo
ally stratifed programs. 

\e will now generalize a result from [PZ98], that all a

eptable programs are 

weakly stratifed-a. 

1 �<" denotes the dependen
y relation taken from the dependen
y graph of P [PP90]. 
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8.2.2 Theorem If P is <-a

essible, then P is weakly stratifed-a and the unique 

supported model Np 

of P is also its weakly perfe
t-a model. 

Proof: Let Np 

b e the unique supported model of P and let l b e its 
anoni
al 

level mapping wrt. <. \e 
an also assume without loss of generality that for ea
h 

level o there exists some A E Bp 

with l(A) = o. 

(1) \e f r s t s h o w that all 
omponents of the bottom stratum S(P ) of P are trivial. 

Assume that this is not the 
ase, i.e. that there exists a minimal 
omponent 

C S(P ) whi
h is not trivial. Then there must b e some A E C with l(A) 

minimal, and some A 

' E C with A = A 

' . Note that A A 

' and A 

' A [BF91, 

Defnition 5.1]. Let B b e an arbitrary atom o

urring in a ground 
lause with 

head A. Then B A 

' and therefore B A, and by minimality o f C we obtain 

B E C. So all atoms B o

urring in bodies of 
lauses in ground(P ) with head A 

belong to C. Sin
e P is <-a

essible, however, there must exist some 
hoi
e of B 

for whi
h we h a ve l(B)  l (A), and this 
ontradi
ts the minimality o f l(A). Note 

that the bottom stratum 
ontains all atoms of level 0, and hen
e is non-empty. 

(2) The model N of the bottom layer is 
ompatible with Np 

, i.e. if a literal is 

true, respe
tively false, in N , then it is true, respe
tively false, in Np 

. In order 

to see this, note that for every atom A in a minimal 
omponent, the bottom layer 

L(P ) 
 o n tains all 
lauses with head A and all 
lauses with head being any o f t h e 

body atoms of 
lauses in the bottom layer. Sin
e the program P is <-a

essible, it 

is easy to see that the subprogram formed by the bottom layer is also <-a

essible 

and has a unique supported model whi
h is 
ompatible with Np 

. 

Now let A b e an atom in L(P ) whi
h o

urs negatively in the b o d y of some 


lause. Sin
e all 
omponents are trivial, A must also b e the head of the same 


lause, i.e we h a ve A A . If B is another body atom in the same 
lause, then we 

obtain B  A and A B whi
h 
ontradi
ts triviality o f all 
omponents. Hen
e, 

if some atom A o

urs negatively in a 
lause in L(P ), then the 
lause is of the 

form A + -A. All models of L(P ) must therefore assign the truth value true 

to all atoms o

urring negatively in L(P ). The program whi
h is obtained from 

omitting all these 
lauses is defnite and has a least model whi
h agrees with Np 

. 

If we add to this model all atoms whi
h o

ur negatively in L(P ), we obtain the 

least model of L(P ). 

(3) \e show that P /N is <-a

essible (see [BF91]). This is indeed the 
ase sin
e 

(2) holds, and is easily seen by applying Theorem 6.5.3. 

(4) \e 
 a n n o w apply steps (1), (2) and (3) via transfnite indu
tion as in [PP90], 

whi
h yields that P is indeed weakly stratifed-a and that Np 

is the weakly 

perfe
t-a model of P . T h us, the proof is 
omplete. • 

8.2.3 Theorem Let P b e <-a

essible. Then P has a unique supported model 

Np 

whi
h is the unique stable model, the well-founded model, a minimal two-
valued model, and the weakly perfe
t-a model of P . 

Proof: \e know that Np 

= < p 

to for some ordinal o and that Np 

is total. By 

Theorem 6.5.4, we know that N+ is a minimal two-valued model of P , and by p 
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Theorem 8.2.2 we k n o w th a t Np 

is the weakly perfe
t-a model of P . By [GRS91, 

Corollary 4.3], Np 

= < p 

to is a subset of the well-founded model of P , and sin
e 

Np 

is total, it must 
oin
ide with the well-founded model. By [GRS91, Corollary 

5.6], totality o f the well-founded model implies that it 
oin
ides with the unique 

stable model of the program. This 
ompletes the proof. • 

8.2.4 Program A

eptable programs are not ne
essarily weakly stratifed-b, as 


an b e seen from the following program. 

p + 

p + q, -p 

The bottom layer 
ontains the 
lause p + q, -p and is therefore not a defnite 

program. 

8.2.5 Program On the other hand, there exist programs with unique supported 

models whi
h are not weakly stratifed-a. To see this, note that the following 

program 

p + -q 

q + -p 

p + -p 

has unique supported model {p}. H o wever, it has {p, q} as a minimal 
omponent 

whi
h is not trivial. 

8.3 Summary and Further Work 

\e h a ve provided an iterative approa
h to the perfe
t model semanti
s of lo
ally 

stratifed programs and lo
ated the 
lasses of programs dis
ussed in Chapters 5 

and 6 in the 
ontext of other standard semanti
s. Figure 8.1 on page 134 extends 

Figure 5.1 on page 91 in
orporating the results from Se
tion 8.2. 

Of 
ourse, the results in Se
tion 8.1 indi
ate possible resear
h 
on
erning 

the extent to whi
h iterative approa
hes 
an b e applied to other semanti
s. The 

results in Se
tion 8.2 
larify some relationships between 
lasses of programs known 

from the literature, whi
h also is a feld of further study. 
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Figure 8.1: Dependen
ies between 
lasses of programs. If a 
lass is depi
ted lower 

in the diagram, this indi
ates that it is more general. 
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Chapter 9  

Logi
 Programs and Neural 

Networks 

Logi
 Programs and Neural Networks are two important paradigms in Artif
ial 

Intelligen
e. Their abilities, and our theoreti
al understanding of them, however, 

seem to b e rather 
omplementary. Logi
 Programs are highly re
ursive and well 

understood from the point of view of de
larative semanti
s. Neural Networks 
an 

b e trained but yet la
k a de
larative reading. Re
ent publi
ations, for example 

[BDJ+99, HK94, HSK99, Zha99], suggest studying the relationships between the 

two paradigms with the long-term aim of merging them in su
h a way that the 

advantages of both 
an b e 
ombined. 

The results we wish to dis
uss draw h e a vily on the work of Holldobler, Kalinke 

and St orr [HK94, HSK99], whi
h w e will in part generalize. It will be 
onvenient 

to briefy review their approa
h and their results. For our investigations, it will 

b e suÆ
ient to 
onsider Herbrand interpretations only. 

In [HK94], a strong relationship b e t ween propositional logi
 programs, i.e. 

programs without variable or fun
tion symb o l s , and 3-layer feedforward and re-

urrent networks was established. For ea
h s u 
 h program P , a 3 -l a yer feedforward 

network 
an b e 
onstru
ted whi
h 
omputes the single-step operator Tp 

asso
i-
ated with P . To th is en d , ea
h atom in P is represented by one or more units in 

the network. If the program is su
h that iterates of Tp 

, for any initial value, 
on-
verge to a unique fxed point o f Tp 

, then the network 
an be 
ast into a re
urrent 

network whi
h settles down into a unique stable state 
orresponding to the fxed 

point. On the other hand, for ea
h 3-layer network a propositional logi
 program 

P 
an b e 
onstru
ted su
h that the 
orresponding operator Tp 

is 
omputed by 

the network. 

In [HSK99], an attempt was made to obtain similar results for logi
 programs 

whi
h are not propositional, that is, for programs whi
h a l l o w v ariables. The main 

obsta
le whi
h has to b e over
ome in this 
ase is that the Herbrand base is in 

general infnite; it is therefore not possible to represent an atom by one or more 

units in the network. The solution suggested in [HSK99] uses a general result 

due to Funahashi [Fun89], see Theorem 9.1.1, whi
h states that every 
ontinuous 
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fun
tion on a 
ompa
t subset of the real numbers 
an be uniformly approximated 

by 
ertain types of 3-layer neural networks. By 
asting the Tp 

-operator into su
h 

a fun
tion, approximating the single-step operator is shown to be possible. 

In order to obtain a 
ontinuous real-valued fun
tion from Tp 

, metri
s were 

employed in [HSK99]. For a
y
li
1 logi
 programs, a 
omplete metri
 
an b e 

obtained whi
h renders the single-step operator a 
ontra
tion, see Se
tion 5.1. By 

identifying the single-step operator with a mapping on the reals, a 
ontra
tive, and 

therefore 
ontinuous, real-valued fun
tion is obtained whi
h represents the single-
step operator. This fun
tion 
an in turn be approximated by neural networks due 

to the result of Funahashi mentioned above. For 
ertain kinds of a
y
li
 programs, 

namely su
h whi
h admit an inje
tive level mapping, the resulting network 
an 

then again b e 
ast into a re
urrent network whi
h settles down into a unique 

stable state 
orresponding to the unique fxed p o i n t o f t h e operator. 

In this 
hapter, we will investigate a more general approa
h to representing 

the single-step operator for (non-propositional) normal logi
 programs by neural 

networks. 

In Se
tion 9.1, we will use Theorem 4.2.6 whi
h 
hara
terizes 
ontinuity of 

the single-step operator in the atomi
 topology, and apply the approximation 

theorem of Funahashi in order to approximate single-step operators by neural 

networks. 

In Se
tion 9.2, we will show that for any given normal logi
 program, its as-
so
iated single-step operator 
an b e realized as a Borel-measurable real-valued 

fun
tion. An approximation theorem due to Hornik, Stin
h
omb e and \hite 

[HS\89], see Theorem 9.2.1, 
an then b e applied to show that ea
h single-step 

operator for any normal logi
 program 
an b e approximated arbitrarily well by 

neural networks in a metri
 fµ 

defned in measure-theoreti
 terms in Se
tion 9.2. 

Cantor Topology 

Re
all from Se
tion 4.2, that Ip 


an b e identifed with the p o werset of Bp 

, and 

that it 
an therefore also b e identifed with the set 2Bp of all fun
tions from Bp 

to {0, 1} (or to any other two-point spa
e). Using this latter identif
ation, the 

topology Q be
omes a topology on the fun
tion spa
e 2Bp , and is exa
tly the 

produ
t topology (of p o i n t-wise 
onvergen
e) on 2Bp if the two-point spa
e is 

endowed with the dis
rete topology. 

If we interpret Ip 

as the set of all fun
tions from Bp 

to {0, 2}, so that we 

now take the two-point spa
e as {0, 2}, we 
an identify Ip 

with the set of all 

those real numbers in the unit interval [0, 1] whi
h 
an be written in ternary form 

without using the digit 1; in other words we 
an identify Ip 

with the Cantor set. 

The produ
t topology mentioned above then 
oin
ides with the subspa
e topol-
ogy inherited from the natural topology on the real numbers, and the resulting 

spa
e is 
alled the Cantor spa
e C. Thus, the Cantor spa
e C is homeomorphi
 

1 These programs were 
alled re
urrent in [HSK99]. 
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to the topologi
al spa
e (Ip 

, Q ), and in the following l : Ip 

- C will denote a 

homeomorphism b e t ween Ip 

and C. It is well-known that the Cantor spa
e is 

a 
ompa
t subset of J, and we 
an defne l(x) = max{y E C : y : x} and 

u(x) = min {y E C : y 2 x} for ea
h x E [0, 1]. 

Neural Networks 

A 3-layer feedforward network (or single hidden layer feedforward network) 
on-
sists of an input layer, a hidden layer, and an output layer. E a
h layer 
onsists of 

fnitely many 
omputational units. There are 
onne
tions from units in the input 

layer to units in the hidden layer, and from units in the hidden layer to units 

in the output layer. The input-output relationship of ea
h unit is represented 

by inputs xi, output y, 
onne
tion weights Wi, threshold e, and a fun
tion < as 

follows:   
y = < Wixi 

- e . 

i 

The fun
tion <, whi
h w e will 
all the squashing fun
tion of the network, is usually 

non-
onstant, bounded and monotone in
reasing, and sometimes also assumed to 

b e 
 o n tinuous. \e will spe
ify the requirements on < that we assume in ea
h 
ase. 

\e assume throughout that the input-output relationships of the units in the 

input and output layer are linear. The output fun
tion of a network as des
ribed 

above is then obtained as a mapping f : J
r - J with   

f(x1, . . . , x r) = 
j< Wji 

xi 

- ej , 

j i 

where r is the number of units in the input layer and the 
onstants 
j 


orrespond 

to weights from hidden to output layers. 

\e refer to [Bis95] for ba
kground 
on
erning artif
ial neural networks. 

Measurable Fun
tions 

A 
olle
tion N of subsets of a set X is 
alled a a-algebra if (i) 0 E N ; (ii) if 

A E N then its 
omplement 


A E N ; (iii) if (An) is a sequen
e of sets in N , th en 

the union An 

E N . The pair (X ,N ) is 
alled a measurable spa
e. A fun
tion 

f : X - X is said to b e measurable with respe
t to N if f-1(A) E N for ea
h 

A E N . 

If N is a 
olle
tion of subsets of a set X, then the smallest a-algebra a(N) 


ontaining N is 
alled the a-algebra generated by N . In this 
ase, a fun
tion 

f : X - X is measurable with respe
t to a(N) if and only if f-1(A) E a(N) 

for ea
h A E N . If B is the subbase of a topology T , and B is 
ountable, then 

a(B) = a(T ). If B is a subbase of the natural topology on J, then a(B) is 
alled 

the Borel-a-algebra on J, and a fun
tion whi
h is measurable with respe
t to this 

a-algebra is 
alled Borel-measurable. A measure on (J, a (B)) is 
alled a Borel-
measure. 
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\e refer the reader to [Bar66, Bau92] for ba
kground 
on
erning elementary 

measure theory. 

9.1  Approximating Continuous Single-Step Op-

erators by Neural Networks 

Under 
ertain 
onditions, given in Theorem 4.2.6, the single-step operator asso-

iated with a logi
 program is 
ontinuous in the atomi
 topology. B y identifying 

the spa
e of all interpretations with the Cantor spa
e, a 
ontinuous fun
tion on 

the reals is obtained whi
h 
an be approximated by 3 -l a yer feedforward networks. 

\e investigate this next. 

The following Theorem 
an b e found in [Fun89, Theorem 2]. 

9.1.1 Theorem Suppose that < : J - J is non-
onstant, bounded, monotone 

in
reasing and 
ontinuous. Let J
n b e 
ompa
t, let f : - J b e a 
on-

tinuous mapping and let E > 0. Then there exists a 3-layer feedforward network 

with squashing fun
tion < whose input-output mapping fS : - J satisfes 

maxxEK 

d(f(x), fS(x)) E, where d is a metri
 whi
h indu
es the natural topol-
ogy on J. 

In other words, ea
h 
ontinous fun
tion f : - J 
an be uniformly approx-
imated by input-output fun
tions of 3-layer networks. 

\e already know that the Cantor spa
e C is a 
ompa
t subset of the real 

line and that the topology whi
h C inherits as a subspa
e of J 
oin
ides with 

the Cantor topology on C. Also, the Cantor spa
e C is homoeomorphi
 to Ip 

endowed with the atomi
 topology Q, see Theorem 4.2.4. Hen
e, if the Tp 

-operator 

is 
ontinuous in Q, we 
an identify it with a mapping l(Tp 

) : C - C : x -
l(Tp 

(l-1(x))) whi
h is 
ontinous in the subspa
e topology of C in J. 

9.1.2 Theorem Let P b e a normal logi
 program. If, for ea
h I E Ip 

and for 

ea
h A E Bp 

with A E Tp 

(I), either there is no 
lause in P with head A or 

there is a fnite set S(I, A ) = {A1, . . . , A k, B 1, . . . , B k 

} of elements of Bp 

satis-
fying the properties (i) and (ii) of Theorem 4.2.6, then Tp 

(more pre
isely l(Tp 

)) 


an be uniformly approximated by input-output mappings of 3-layer feedforward 

networks. 

In parti
ular, this holds for the operator Tp 

if P does not 
ontain any lo
al 

variables or is a
y
li
 with inje
tive level mapping. 

Proof: Under the 
onditions stated in the theorem, the single-step operator Tp 

is 
ontinuous in the atomi
 topology. Using a homeomorphism l : Ip 

- C, the 

resulting fun
tion l(Tp 

) i s 
 o n tinuous on the Cantor spa
e C, w h i
 h is a 
ompa
t 

subset of J. Applying Theorem 9.1.1, l(Tp 

) 
an b e uniformly approximated by 

input-output fun
tions of 3-layer feedforward networks. 

Now if P does not 
ontain any lo
al variables, then Tp 

is obviously 
ontinuous 

in Q by Theorem 4.2.6. Now l e t P be a
y
li
 with inje
tive l e v el mapping and let 
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A E Bp 

\Tp 

(I) for some I E Ip 

. Sin
e the level mapping is fnite, there exist only 

fnitely many atoms whi
h o

ur in bodies of 
lauses with head A, whi
h suÆ
es 

by Theorem 4.2.6. • 

9.2  Approximating the Single-Step Operator by 

Neural Networks 

By Theorem 9.1.1, 
ontinuous fun
tions 
an be uniformly approximated by input-
output fun
tions of 3-layer feedforward networks. It is also possible to approxi-
mate ea
h measurable fun
tion on J, but in a mu
h w eaker sense. \e w ill in ves-
tigate this in the present se
tion. 

The following was given in [HS\89, Theorem 2.4] 

9.2.1 Theorem Suppose that < is a monotone in
reasing fun
tion from J onto 

(0, 1). Let f : J
r - J b e a Borel-measurable fun
tion and let µ be a probability 

Borel-measure on J
r . Then, given any E > 0, there exists a 3-layer feedforward 

network with squashing fun
tion < whose input-output fun
tion fS : J
r - J 

satisfes 

fµ(f , fS) = inf{Æ > 0 : µ{x : If(x) - fS(x)I > Æ }  Æ}  E. 

In other words, the 
lass of fun
tions 
omputed by 3-layer feedforward neural 

nets is dense in the set of all Borel-measurable fun
tions f : J
r - J relative to 

the metri
 fµ 

defned in Theorem 9.2.1. 

\e h a ve already noted that the operator Tp 

is not 
ontinuous in the topology 

Q in general, nor is it 
ontinuous in the S
ott topology on Ip 

in general. \e 

pro
eed to show next that the single step operator has the pleasing property t h a t 

it is measurable with respe
t to a(Q) for arbitrary programs, and therefore that 

it 
an always b e extended to a Borel-measurable fun
tion on J. 

9.2.2 Proposition Let P be a normal logi
 program and let Tp 

be its asso
iated 

single-step operator. Then Tp 

is measurable on (Ip 

, a (Q)) = (Ip 

, a (Q)). 

Proof: \e need to show that for ea
h subbasi
 set Q(L), we have T 

-1(Q(L)) E p 

a(Q). 

First, let L = A be an atom. If A is not the head of any 
lause in ground( P ), 

then T 

-1(Q(A)) = 0 E a(Q). If A is the head of a 
lause in ground(P ), then there p 

are at most 
ountably many 
lauses 

A + Ai1, . . . , A iki 

, -Bii 

, . . . , -Bi1i 

in ground(P ) with head A, and we obtain 

T 

-1(Q(A)) = Q(Ai1, . . . , A iki 

, -Bii 

, . . . , -Bi1i 

)p 

i 
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whi
h is indeed in a(Q). 

Now suppose that L = -A is a negative literal. If A is not the head of any 


lause in ground(P ), then T 

-1(Q(-A)) = Ip 

E a(Q). So assume that A is the p 

head of some 
lause in ground(P ). If there is a unit 
lause with head A, then 

T 

-1(Q(-A)) = 0 E a(Q). So assume that none of the 
lauses in ground(P ) with p 

head A is a unit 
lause. Then there are at most 
ountably many 
lauses 

A + Ai1, . . . , A iki 

, -Bii 

, . . . , -Bi1i 

in ground(P ) with head A. \e then obtain 

T p 

-1(Q(-A)) = Q(-Ai1) Q (-Aiki 

)  Q(Bii 

)  Q(Bi1i 

) 

i 

whi
h is indeed in a(Q). • 

By means of Proposition 9.2.2, we 
an now view the operator Tp 

as a mea-
surable fun
tion l(Tp 

) on C by identifying Ip 

with C via the homeomorphism l. 

Sin
e C is measurable as a subset of the real line, this operator 
an be extended2 

to a measurable fun
tion on J and we obtain the following result. 

9.2.3 Theorem Given any normal logi
 program P , the asso
iated operator Tp 

(more pre
isely l(Tp 

)) 
an b e approximated in the manner of Theorem 9.2.1 by 

input-output mappings of 3-layer feedforward networks. 

This result is somewhat unfortunate sin
e the approximation stated in Theo-
rem 9.2.1 is only almost everywhere, i.e. p o i n twise with the ex
eption of a set of 

measure zero. The Cantor set, however, is a set of measure zero. Nevertheless, we 

are able to strengthen this result a bit by giving an expli
it extension of Tp 

to 

the real line. \e defne a sequen
e (Tn) of measurable fun
tions on J as follows, 

where l(x) and u(x) are as defned earlier, and for ea
h i E N we set 

3i -i 

2 

Di 

= [(2k - 1)3 

-i , 2k 3 

-i], 

k=1 

and for ea
h i 2 2 we defne 

  l(Tp 

)(x) if x E C    l(Tp 

)(0) if x 0 

T (x) =  l(Tp 

)(1) if x > 1    
0 otherwise 

;(Tp 

)(u(x))-;(Tp 

)(1(x))l(Tp 

)(l(x)) 

u(x)-1(x) 

(x - l(x)) if x E D1
T1(x) = 

0 otherwise 

;(Tp 

)(u(x))-;(Tp 

)(1(x))l(Tp 

)(l(x)) 

u(x)-1(x) 

(x - l(x)) if x E Di
Ti(x) = 

0 otherwise. 

2 E.g. as a fun
tion T : � - � with T (x) = t(T� 

(t�1 (x))) if x  C  and T (x) = 0 otherwise. 
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\e defne the fun
tion T : J - J by T (x) = supi 

Ti(x) and obtain T (x) = 

l(Tp 

(x)) for all x E C and T (l(I)) = l(Tp 

(I)) for all I E Ip 

. Sin
e all the fun
tions 

Ti, for i 2 1, are pie
ewise linear and therefore measurable, the fun
tion T is also 

measurable. Intuitively, T is obtained by a kind of linear interpolation. 

If i : Bp 

- N is a bije
tive mapping, then we 
an obtain a homeomorphism 

l : Ip 

- C from i as follows: we identify I E Ip 

with x E C where x written in 

ternary form has 2 as its i(A)th digit (after the de
imal p o i n t) if A E I, and 0 

as its i(A)th digit if A E I. If I E Ip 

is fnite or 
ofnite3, then the sequen
e of 

digits of l(I) in ternary form is eventually 
onstant 0 (if I is fnite) or eventually 


onstant 2 (if I is 
ofnite). Thus, ea
h su
h interpretation is the endpoint of a 

linear pie
e of one of the fun
tions Ti, and therefore of T . 

9.2.4 Corollary Given any normal logi
 program P , its single-step operator 

Tp 

(more pre
isely l(Tp 

)) 
an b e approximated by input-output mappings of 

3-layer feedforward networks in the following sense: for every E > 0 and for 

every I E Ip 

whi
h is either fnite or 
ofnite, there exist a 3-layer feedforward 

network with input-output fun
tion f and x E [0, 1] with Ix - l(I)I  Esu
h that 

Il(Tp 

(I)) - f(x)I  E . 

Proof: \e use a homeomorphism l whi
h is obtained from a bije
tive mapping 

i : Bp 

- N as in the paragraph pre
eeding the Corollary. \ e 
an assume that the 

measure µ from Theorem 9.2.1 has the property that µ{[x, x E]} : E for ea
h 

x E J. Let E > 0 and I E Ip 

be fnite or 
ofnite. Then by 
onstru
tion of T there 

Eexists an interval [l(I), l (I) Æ] with Æ 

2 

(or analogously [l(I) - Æ, l (I)]) su
h 

Ethat T is linear on [l(I), l (I) Æ] and IT (l(I))-T (x)I 

2 

for all x E [l(I), l (I) Æ]. 

By Theorem 9.2.1 and the previous paragraph, there exists a 3-layer feedforward 

network with input-output fun
tion f su
h that fµ(T , f ) Æ, that is, µ{x : 

IT (x) - f(x)I > Æ}  Æ. By our 
ondition on µ, there is x E [l(I), l (I) Æ] with 

EIT (x)-f(x)I : Æ 
2 

. \ e 
an 
on
lude that Il(Tp 

(I))-f(x)I = IT (l(I))-f(x)I : 

IT (l(I)) - T (x)I IT (x) - f(x)I  Eas required. • 

It would be of interest to strengthen this approximation for sets other than the 

fnite and 
ofnite elements of Ip 

, a lth o u g h it is in teresting to note that the fnite 

interpretations 
orrespond to 
ompa
t elements in the sense of domain theory, 

see [SHLG94] and Defnition 1.1.4. 

9.3 Summary and Further Work 

There are two aspe
ts to this work. On the one hand, one 
an 
onsider the problem 

of approximating the Tp 

operator, asso
iated with logi
 programs P , by means 

of input-output fun
tions of multi-layer neural networks, as we have done here. 

This, in detail, involves relating properties of the network to 
lasses of programs 

for whi
h the approximation is possible. It also involves the 
onsideration of what 

3 I I� 

is 
ofnite if B� 

\ I is fnite. 
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mathemati
al notions of approximation are useful and appropriate. Here we h a ve 

dis
ussed two w ell-known ones: uniform approximation on 
ompa
ta, and a notion 

of approximation 
losely related to 
onvergen
e in measure. Both these strands 

need further investigation, and this se
tion is an a

ount o f w ork to date whi
h i s 

at an early stage of development. In the other dire
tion, and we h a ve not dis
ussed 

this at all here ex
ept in passing, is to view logi
 programs as fundamental and to 

view the approximation pro
ess as a means of giving semanti
s to neural networks 

based on the de
larative semanti
s of logi
 programs. There is 
onsiderable point 

in doing this in that the semanti
s of logi
 programming is well understood whilst 

that of neural networks is not, but is something to be taken up elsewhere, probably 

in
luding work on quantitative logi
 programming as in [Mat99]. 

At the detailed mathemati
al level, the mapping P - Tp 

is not inje
tive. So, 

although the single-step operator 
an basi
ally b e used to represent a program 

semanti
ally, diferent programs may have the same single-step operator. This 

fne tuning is lost by our representation of logi
 programs by neural networks. 

However, passing to 
lasses of programs with the same single-step operator is 

something that is often done in the literature on semanti
s and in fa
t is ex-
a
tly the notion of subsumption equivalen
e due to [Mah88]. Moreover, there 

exist un
ountably many homeomorphisms l : Ip 

- C; for example, every bije
-
tive mapping from Bp 

to N gives rise to su
h a homeomorphism as observed in 

the paragraph pre
eeding Corollary 9.2.4. So there is a lot of fexibility in the 


hoi
e of l and therefore in how one embeds Ip 

in J. The homeomorphism used 

in [HSK99] employed the quaternary numb e r system. 

In [HSK99], as mentioned in the beginning of this 
hapter, the neural network 

obtained by applying the approximation theorem of Funahashi was 
ast into a 

re
urrent network whi
h settled down in a unique stable state 
orresponding to 

the unique fxed point of the single-step operator of the underlying program P . 

Strong assumptions had to be pla
ed on P to make this possible: P was required 

to be a
y
li
 with an inje
tive l e v el mapping. A
y
li
ity of the program yields the 

existen
e of a 
omplete metri
 on Ip 

with respe
t to whi
h its single-step operator 

is a 
ontra
tion, see Se
tion 5.1. For larger 
lasses of programs, su
h as the <* -
a

essible programs, we have seen that it is also possible to fnd metri
s su
h 

that the single-step operator is a 
ontra
tion: In Se
tion 5.3 we h a ve seen how t o 


onstru
t a 
omplete d-metri
 f for a given <* -a

essible program P , and sin
e 

Tp 

i s a 
 o n tra
tion with respe
t to f, see Proposition 5.3.4, it is also a 
ontra
tion 

with respe
t to the 
omplete metri
 d asso
iated with f as in Proposition 3.1.11. 

It turns out, however, that the metri
 d thus obtained 
annot in general b e 

topologi
ally imb e d d e d into the real line. In order to see this, note that for the 

d-metri
 f asso
iated with a <* -a

essible program there may be an un
ountable 

numb e r of interpretations su
h that f(  , ) = 0, namely for example all 

with I. Ea
h su
h , however, be
omes an isolated p o i n t with respe
t 

to the topology indu
ed by d, i.e. the singleton set 
ontaining is open and 


losed in this topology. Now, if (Ip 

, d ) 
ould b e topologi
ally imb e d d e d in the 

real line using an imbedding l, then for ea
h as above we would have that 
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{l( )} is open and 
losed in the topologi
al subspa
e l(Ip 

) of the real line, i.e. 

that there is an open interval J c J su
h that J n { l(Ip 

)} = {l( )}. Assuming 

un
ountably many isolated p o i n ts in (Ip 

, d ), we 
ould therefore 
onstru
t a 

partition of J into un
ountably many intervals, whi
h is impossible by a well-
known result from general topology. Hen
e we 
on
lude that (Ip 

, d ) 
annot in 

general be topologi
ally imb e d d e d into the real line. 

From the 
onsiderations just presented we 
on
lude that alternative metri
s 

or even methods have to b e investigated in order to 
arry over the result from 

[HSK99] mentioned above for a
y
li
 programs with inje
tive level mappings to 

more general 
lasses. 
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Chapter 10 

Con
lusions 

There are many aspe
ts to this work, whi
h are in fa
t 
losely inter
onne
ted. \e 

want to 
on
lude with a short dis
ussion of diferent p o i n ts of view from whi
h 

the work in this thesis 
an b e put into a more general perspe
tive. 

Logi
 Programming and Non-monotoni
 Reason-

ing 

The denotational aspe
ts of logi
 programming with negation are still not suÆ-

iently understood. \e 
ontribute to this general line of resear
h by using topo-
logi
al methods for the analysis of fxed-point semanti
s. Re
ently, some studies 

of topologi
al approa
hes to indu
tive logi
 programming have b e e n undertaken 

[GNAJBD00] whi
h is a feld of further study. 

Knowledge Representation and Reasoning 

Logi
 programming 
an also b e understood as a simple model of reasoning, and 

the behaviour of the single-step operator as an indu
tive perspe
tive on it. Sin
e 

many of our results were 
on
erned with understanding the dynami
s of this op-
erator, they 
an b e understood as an approa
h to understand the dynami
s of 

reasoning, as motivated for example in [BDJ+99]. Extensions, e.g. to quantita-
tive logi
 programming paradigms whi
h in
orporate probabilisti
 or fuzzy logi
 

stru
tures, suggest themselves. 

Comparison and Integration of Paradigms 

The single-step operator obtains its iterative b e h a viour from a relatively simple 

set of rules, has a very 
omplex dynami
s whi
h is diÆ
ult to understand, and 

sometimes produ
es meaningful results as limits of the iterations. From this per-
spe
tive, analogies to 
haos theory and topologi
al dynami
al systems 
ome into 
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view, and indeed some few investigations along these lines have already been un-
dertaken. They also open up 
onne
tions to other paradigms like artif
ial neural 

networks, as in Chapter 9. 

Denotational Semanti
s and Domain Theory 

In re
ent years, quantitative aspe
ts of domain theory, using generalized met-
ri
s, have been studied intensively. The study of denotational logi
 programming 

semanti
s from a generalized metri
 p o i n t of view 
an b e understood as a 
on-
tribution to this general area of resear
h. It is not surprising, for example, that 

inje
tivity o f l e v el mappings has made its appearan
e in several 
hapters, sin
e the 

fnite and 
ofnite interpretations 
orrespond to the notion of 
ompa
t elements 

in domain theory. 

Investigations 
on
erning domain theory in logi
 programming have also been 

undertaken by Rounds and Zhang [ZR97a, ZR97b, R Z 9 8 , Z R 9 8 ], and relationships 

b e t ween their approa
h and the results in this thesis remain to be worked out. The 

topologi
al perspe
tive o f o u r w ork gives a 
ontinuous point of view on the dis
rete 

logi
 programming paradigm and should also be transferable to quantitative logi
 

programming paradigms as mentioned above. 

Topology (in Computer S
ien
e) 

General topology allows one to naturally build a bridge between the dis
rete and 

the 
ontinuous, whi
h is an important line to investigate sin
e 
omputing is in-
herently dis
rete while the world, whi
h 
omputing is supposed to model, is often 

per
eived as 
ontinous. The results in this thesis 
ontribute to this dis
ussion by 

providing a 
ontinous framework for the study of the dis
rete logi
 programming 

paradigm, as it was also suggested in [BDJ+99]. \e have also 
ontributed to some 

topologi
al aspe
ts of domain theory and to the study of fxed-point theorems in 

general. 

The author hopes that his results 
onstitute valuable 
ontributions to the 

above mentioned areas of resear
h. 
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