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Generalized microscopic reversibility implies that the apparent rate of any catalytic
process in a complex mechanism is paralleled by substrate desorption in such a way that
this ratio is held constant within the reaction mechanism [Whitehead (1976) Biochem. J.
159, 449-456]. The physical and evolutionary significances of this concept, for both
polymeric and monomeric enzymes, are discussed. For polymeric enzymes, generalized
microscopic reversibility of necessity occurs if, within the same reaction sequence, the
substrate stabilizes one type of conformation of the active site only. Generalized micro-
scopic reversibility suppresses the kinetic co-operativity of the slow transition model
[Ainslie, Shill & Neet (1972) J. Biol. Chem. 247, 7088-7096]. This situation is obtained if
the free-energy difference between the corresponding transition states of the two enzyme
forms is held constant along the reaction co-ordinate. This situation implies that the
'extra costs' of energy (required to pass each energy barrier) that are not covered by the
corresponding binding energies of the transition states vary in a similar way along the
two reaction co-ordinates. The regulatory behaviour of monomeric enzymes is discussed
in the light of the concept of 'catalytic perfection' proposed by Albery & Knowles [(1976)
Biochemistry 15, 5631-5640]. These authors claim that an enzyme will be catalytically 'per-
fect' when its catalytic efficiency is maximum. If this situation occurs for a monomeric
enzyme obeying either the slow transition or the mnemonical model, it can be shown that
the kinetic co-operativity disappears. In other words, kinetic co-operativity of a mono-
meric enzyme is 'paid for' at the expense of catalytic efficiency, and the monomeric
enzyme cannot be simultaneously co-operative and catalytically very efficient. This is
precisely what has been found experimentally in a number of cases.

Kinetic co-operativity, that is the seemingly
co-operative or antico-operative kinetic behaviour of
enzymes, is the consequence of subunit interactions
and (or) of the occurrence of several closed loops
involving the substrate in the reaction mechanism.
With this operational definition, a monomeric
enzyme can exhibit co-operativity (Rabin, 1967;
Frieden, 1970; Ainslie et al., 1972; Ricard et al.,
1974b; Meunier et al., 1974; Shill & Neet, 1975;
Ricard et al., 1977; Buc et al., 1977; Storer & Cornish-
Bowden, 1977; Monneuse-Doublet et al., 1978) and a
polymeric enzyme must, as a rule, exhibit a kinetic
co-operativity that is not adequately expressed by its
substrate-binding isotherm (Whitehead, 1970; Wong
& Endrenyi, 1971; Endrenyi et al., 1971; Ricard
et al., 1974a).
Whitehead (1976) has discussed the possibility that

constraints between rate constants could limit or even
suppress the kinetic co-operativity of several enzyme
systems. In particular, he has examined the possibility
that, for several enzyme forms from which both

Vol. 175

substrate desorption and catalysis can occur, the
ratio of these two rate constants can be invariant,
and has coined the term generalized microscopic
reversibility to express the view that, under non-
equilibrium conditions, some constraints might exist
between rate constants that would alter enzyme
co-operativity. The first aim of the present paper is to
discover some physical bases of generalized micro-
scopic reversibility in both polymeric and monomeric
enzymes.
Cornish-Bowden (1976a,b), Brocklehurst & Corn-

ish-Bowden (1976), Brocklehurst (1977), as well as
Albery & Knowles (1976), have discussed quanti-
tatively how an enzyme that obeys simple Michaelis-
Menten kinetics can improve its catalytic efficiency
during its evolution. Indeed, one may wonder whether
there is a connection between the occurrence of
generalized microscopic reversibility and the asymp-
totic approach to a 'catalytic perfection' (Albery &
Knowles, 1976) during evolution. To answer this
question is the second aim of the present paper.
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Theory

The concept of generalized microscopic reversibility
for polymeric enzymes

Classical microscopic reversibility is algebraically
formulated, in most cases, as a relation occurring
between equilibrium constants within a closed loop
of a reaction mechanism. This constraint is simply a
consequence of the fact that the free-energy change
is a state function. As we shall see in this section, it is
thermodynamically possible, under certain circum-
stances, to extend microscopic reversibility to
individual rate constants under non-equilibrium
conditions of the reactants.

Let us consider first the sequential binding of a
substrate on a polymeric enzyme. Each step of the
reaction process involves substrate binding, substrate
desorption and catalysis (Scheme 1). This situation
is obviously a limiting case in which both product
concentration is negligible (initial steady-state
conditions) and the rate of product desorption is
much faster than catalysis. Therefore the concen-
tration of enzyme-product(s) complexes can be
neglected. In the general case where substrate
release or catalysis requires conformation change,
the free energy of activation (AG$ , and AG*) of each
of these steps can be partitioned into four different
contributions (Ricard et al., 1974a): an intrinsic
component that corresponds to the activation free
energy of the step apart from the effects of confor-
mation changes and subunit interactions (this
component will correspond to AG$ and AG** in
eqn. 1); an intrinsic transconformation component
that corresponds to the contribution of a protomeric
conformation change on the process, apart from
energy contributions of substrate binding, substrate
release or catalysis (this component will correspond
to -tAG" and -tAG"* in eqn. 1); the contribution of
the various types of subunit interactions to the
energy associated with substrate release and catalysis
without taking into account the conformation change
[this contribution will correspond to the two terms
,(-SAG*InS) and E(cAG*inI.) in eqn. I]; the contri-
bution of the various types of subunit interactions
to the energy of the conformation change of the
polymeric enzyme associated with substrate release

fk' 0+ 1)k+(t+l)

( - + I)k+Sj I (a-

____ F-1-1 I

ik- E (I + O)k-(i+i)
Scheme 1. Sequential binding ofa substrate on a multi-

meric enzyme
n represents the numberofsteps.The value ofeach rate
constant is multiplied by a corresponding statistical
factor.

and catalysis [this contribution will correspond to
the same term :E(-'AGUfnl.) in eqn. 1].

Since, in the model of Scheme 1, every desorption
step of the substrate is paralleled by a catalytic
process leading to the same conformation state of the
enzyme, one conformation change at the most is
associated with these two processes. If the node
compression is justified (which implies that product
concentration is very small), and if the simplest
version of the transition-state theory can be applied
to enzyme systems, one has:

AG$ S = AG$ + (-tAG$*) + I (-SAG Int.)
+ 2(-t/5Gt int.)

AG$ =- AG* + (-tAGt*) + E (OAG tint.)
+ tE(At&GUnt.)

(la)

(lb)
The subscript and superscript letters -s and c refer to
substrate release and catalysis. Superscript -t refer
to the conformation change occurring in the back-
ward (substrate release and catalysis) direction. It is
worth noting that, although complicated, this
symbolism is -the simplest one that takes account of
the present situation. Eqns. (la) and (lb) are still
valid if a binding process occurs without confor-
mation change. One has simply to drop the corres-
ponding terms in eqns. (la) and (lb).

Moreover, ifm different states are accessible to any
protomer within the polymeric enzyme, one will
have:

m m
(-A\G tint.) = n,, (-AG tint.)

i=l j=i

c(cG tint.) = : : nij (cAG* int.)
i=Ij=i

2 (t'AG tint) =
int.(-tAG$ )

i=l J=l

(2a)

(2b)

(2c)

where ngj represent the numbers of interactions be-
tween state i and state ] within the polymer. The
intrinsic energy terms (those marked with a star in
eqns. Ia and Ib) allow one to define an intrinsic rate
constant for each process (substrate release and
catalysis). One has thus:

k*k=h exp {- [AG* + (-'AG$*)]/RT}-!-h -s (3a)

kBT
kc = h exp {- [AGt* + (-tAGt*)]/RT} (3b)

where kB, h, Tand R are the Boltzmann constant, the
Planck constant, the absolute temperature and the
gas constant. Similarly, from the interaction energy
terms between two identical conformations A and A
in eqns. (la) and (lb) one obtains the definition of
interaction coefficients. Thus:

(-SaAA) = exp {-(-sCGAit)/RT}
(COAA) = exp {-(CAG*'nt )IRT}

(-taAA) = exp {-(-'AGAnAt-)/RT}

(4a)
(4b)
(4c)
1978
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and one could define in the same way the interaction
coefficients between any types of conformation. All
the interaction coefficients are dimensionless para-
meters that equal 1 when the corresponding
interaction energies are zero. Having defined in
thermodynamic terms the three intrinsic rate con-
stants and all the interaction coefficients, eqns.
(la) and (lb) become equivalent to:

m m
k-. = k-* H H {('cafj)(-tca')}"is

=1 j=i
m m

kc = k* H H{(Ij)alr)('a)}uI"h
i=lJi

(5a)

(a) k+j1 2k2

O 2k+I[S) k+21SJ

k-I ~~~~~2k-2

k-, k_2
k.l k42

(b)

(5b)

In this form, it is clear that the intrinsic rate constants
correspond to what the rate constants for substrate
release and catalysis would be if the enzyme did not
display any subunit interaction. Similarly, the a
coefficients express the effect of various types of
subunit interactions on the rate of substrate release
and catalysis, as well as on the conformation changes
associated with these processes.
A very interesting situation is observed if subunit

interactions do not affect the final geometry of the
active site, but simply increase or decrease the rate of
its conformational transition, thus exerting only an
indirect effect on the rate constants of substrate
release and catalysis. Then:

9j (-sA&G *1nt-) =0
1 (c&G tint.) = 0

(6a)
(6b)

which implies:
m m
H H ('5ar)"i = 1
1=1Ij=i
m m
HI1 Hl (Cot")n". = 1
i1( j=i

(7a)

(7b)

and eqns. (5a) and (5b) become:
m m

k.S = k5 H H(II t)N., (8a)
i=I j=i
m m

kc= k* H H (-t,ai)f"l (8b)
i=1 j=i

If these expressions are applied to the model of
Scheme 1, one sees that:

+ .kk+(+l) (fori=12, v..
n-1) (9)

k-. k.(f+ l)
which corresponds precisely to the formulation of
generalized microscopic reversibility. Therefore the
condition of generalized microscopic reversibility is
compulsory for polymeric enzymes if subunit
interactions are such that eqns. (6) and (8) are fulfilled.
It is then of cardinal importance to discuss the
physical significance of eqns. (6) and (8) for some
simple models of subunit interactions.
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(c)

> k+ k 2k4 2

2k k+[S] kk;22

k.., 2k-2
) ~~k+j 2k+2

/1-1~ ---/1r
2k00 S' k_12'a_t

k_, k-2
_ =kk+t k2

(d) k;, 2k+2

Oo k+, - k+21Sk
I k-k+I 21c-2 / s2s7

kLI k..2
k. 4

Scheme 2. Generalized microscopic reversibility and some
models of subunit interactions for dimeric enzymes

(a) Simple sequential model. (b) Fully concerted se-
quential model. (c) Partially concerted sequential
model with three states accessible to a protomer. (d)
Partially concerted sequential model with four differ-
ent states accessible to a protomer.

Scheme 2 shows four of these models. Model 1 can
be defined as simple sequential (Koshland et al.,
1966; Ricard et al., 1974a). Two states (the circle and
the square) are accessible to the protomers. The
association of the subunits is assumed to be loose
enough so that the occupancy of the first site by the
substrate has no effect on the geometry of the other
subunit. Application of the above conditions to this
model shows that generalized microscopic revers-
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ibility is compulsory. Model II is defined as fully
concerted (Ricard et al., 1974a). It is an 'all-or-none'
model. The subunits are so tightly associated that
any change in the conformation of a subunit is
followed by a similar conformation change in the
other. As with model I, two states are accessible to
the protomers. Again, generalized microscopic
reversibility must, of necessity, apply to this model.
Model III is intermediary between the two previous
ones. Three states are accessible to the protomers and
generalized microscopic reversibility must apply. In
model IV four states are accessible to the protomers.
Contrary to the previous Schemes the geometry of the
enzyme-substrate complex is variable depending on
whether the enzyme is half-saturated or fully saturated
by its substrate. Whereas eqns. (6) and (7) apply to
models I, II and III they do not to model IV, and
therefore the requirement for generalized micro-
scopic reversibility is not satisfied in this case. This
conclusion can be formulated in two different ways.
(1) When, in a reaction sequence, the conformation
of a protomer saturated by its substrate is not
changed by different subunit interactions, generalized
microscopic reversibility must, of necessity, apply.
(2) If generalized microscopic reversibility applies
within a reaction sequence, then only one conforma-
tion state is accessible to any protomer that has
already bound its substrate.

Models of Scheme 3 are based on the concept of
induced fit in the strict sense given by Koshland
(1970) (the enzyme has to change its conformation to
bind the substrate). They use the node compression
already present in Scheme 1 and widely used in other
papers (see Whitehead, 1976). Moreover the same
type of reasoning would apply if conformation
change and substrate binding were occurring as two

distinct steps, as considered in the model proposed by
Monod et al. (1965).

Generalized microscopic reversibility for monomeric
enzymes

Let us consider now the case of a monomeric
enzyme occurring in two conformation states (the
circle and the rhombus). Substrate is assumed to
bind to the conformation state inducing a confor-
mation change. Catalysis and product desorption are
also assumed to be accompanied by conformation
changes of the enzyme. The step of product desorp-
tion is set as irreversible because the model is analysed
under initial steady-state conditions. All the enzyme
forms are assumed to be interconvertible (Scheme 3).
This model, which I shall designate by the term
'general', can lead to two interesting special cases
(Scheme 4). The slow-transition model differs fromthe
'general model' in that it involves only two different
conformation states of the enzyme and no enzyme-
product interconversion; co-operativity would ap-
pear as the consequence of a shift of a pre-existing
equilibrium. The simple mnemonical model, on the
other hand, does involve induced-fit processes (in
the strict meaning used by Koshland, 1970), but
stresses two important ideas: only one geometry of
the active site is able to effect catalysis; secondly, the
product stabilizes one of the conformation states
(enzyme memory). Obviously, the slow-transition
model and the simple mnemonical model do not
derive from each other because they use different
basic concepts, but they both derive from the
same 'general model'.
The 'general model' of Scheme 3 can be symboli-

cally expressed as shown in Scheme 5. The free-energy

A0

k+2(Sj k-

k~e

k+3

-2

k+,s
k-5- (t

l+C

I I k-4

Scheme 3. 'General' model of the kinetic co-operativity exhibited by

k+,[S]

product monomeric enzyme
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_ D

( ) k+21S] k-2 k.., k+1[SJ

(3) k_(

(A)

k+3

k-3,

SI k (P)

(B)

Scheme 4. The slow-transition model (a) and the mnemonical model (b) for a one-substrate, one-product monomeric enzyme

difference within each transition-state pair aAGT,
i5AG-, 6AG- (where the lower case indices es etc.
refer to transition states) along the reaction co-
ordinate allows the definition of a destabilization
coefficient (t):

6-= e-6AG;- RT
6G=eAIGRT

AG-=e5AG¢IRT

(lOa)
(lOb)
(lOc)

All of these destabilization coefficients are dimension-
less and equal to 1 if the corresponding free-energy
difference is zero. In addition to classical microscopic
reversibility, which imposes:

k+1 k+4 k+3 k+2
k-I k_4 k_3 k_2 (1 la)

k+c k+s k+4k'+ (Illb)
k-c k-5 k_4k '-'c

the following conditions can easily be derived from
Scheme 5:

k+l a_=k+3
k+2 ek-3
k-, ,&e k+c

~7es~

k_2 c5- k+c
k 1 k+4 k+c k+4-- =- andk ex=-
k-2 ek-4 an

+kc xk-4
k-c 35p kd

k-,c = k+5 and kd 6- k+5k-1=-5 an - ---

(12a)

(12b)

(12c)

(12d)

(12e)

AG t3

AG2

/ G-5 (I

AGCO+-

Et

\AG
vEo

-+ E,S'

AG1

ES) \ACGZ SKIDGS

Eo X1 JAG.r

0

/
aGS

EoX5

AGc

(EP) s\

CED
Scheme 5. Activation free energies connecting the various

enzyme forms in the 'general' model
3AG-, 5AG-, 6AG;p represent the free-energy differ-
ences between the various transition states. The fiee
enzyme forms Eoand Eo areassumed to becomplemen-
tary to the transition states X5 and X5' respectively.
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Except for the expression involving k+5 and k-5 the
above equations obviously apply also to the slow-
transition model. Two interesting conclusions can be
drawn from eqns. (12): first, if the free-energy
difference between the first two transition states is
equal to the free-energy change between the two free
enzyme forms (6i; = k+3/Lk3), the two on-constants
k+1 and k+2 will be equal; secondly, if the free-energy
difference within each transition-state pair is held
constant along the reaction co-ordinate, eqns. (12b)
and (12d) become:

k-I k+c (I13a)k1 k+c
k_c kd (13b)

and, as shown below, are algebraic formulations of
generalized microscopic reversibility. The thermo-
dynamic conditions that generate these equalities
are thus:

6AG;s = 6AG-j = 6AG- (14)

In Scheme 4 it has been assumed that the two free
enzyme forms Eo and Eo are complementary to the
corresponding transition states XI and XI', whereas
they are more or less 'strained' (Jencks, 1975) in all the
other enzyme-ligand complexes. A typical energy
profile that fulfils these conditions of generalized
microscopic reversibility is shown in Fig. 1. These
energy profiles must take account of the Hammond

c

,)

s +

postulate (Jencks, 1969), which implies that the
transition states of the fastest and thus energetically
more-favoured process will occur earlier along the
reaction co-ordinate. This postulate imposes a
shifting of the transition states of each pair (d;, d;,
d; in Fig. 1) along the reaction co-ordinate. If, for
instance, Eo is the fastest enzyme form, the transition
state S$ will resemble the unstrained substrate S more
closely than the other transition state St'. A similar
situation will apply to the other transition states
V or Pt. Moreover, the reaction profile of Fig. 1
takes account of the well-known idea that the free-
energy difference is lower in the transition states than
in the enzyme-substrate and enzyme-product
strained complexes.

It is commonly considered (Wolfenden, 1969;
Secemski & Lienhard, 1971; Lienhard et al., 1972)
that the free enzyme has a higher affinity for the
transition state, XV, than for the substrate or the
product. This is based on the assumption made long
ago by Haldane (1930) that the geometry of the active
site is more complementary to the transition state X*
than to the substrate itself. This statement gives
support to the strain theories (Lumry, 1959) of
enzyme action, which postulate that the driving force
for overcoming the energy barrier comes in part from
the enzyme itself, which attains its unstrained
conformation at the top of the barrier. It would then
be of great interest to express eqn. (14) in terms of
binding energies of the various transition states to the
enzyme. This would allow one to link generalized
microscopic reversibility with a more or less tight

Reaction co-ordinate

Fig. 1. Thermodynamic conditions for the suppression of co-operativity in the slow-transition model
Theenzyme exhibiting this free-energy profile will follow generalized microscopic reversibility because 3AGi. = 65AG;j =
6AGi-p.
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complementarity between the free enzyme and the
transition states.

This new formulation can be set up with the help of
'thermodynamic boxes' (Lienhard et al., 1972),
as shown in Scheme 6. It must be understood that the
boxes represent ideal thermodynamic situations and
not reaction processes that actually occur during
substrate binding and catalysis. The basic idea of the
Schemes is simply to split the free-energy change
between the initial state and any enzyme-transition
state complex into three ideal contributions: (a) the
free-energy change required to bring the initial
substrate to the level of any transition state (for
example AGt, AG*, AG$p in Scheme 6), (b) the
free-energy change required to bring the enzyme from
its initial state to the state complementary to any
transition state (for example AGO,, AGj2 in Scheme
6), and (c) the free binding energy of any transition
state to the complementary enzyme form (-AG'S,
-AGx, -AGG in Scheme 6). The same set of definitions
will obviously apply to the two reaction profiles of
Fig. 1; moreover, as in strain theory (Jencks, 1975),
the two free enzyme forms Eo and Eo are assumed to be
complementary to X$ and X$' respectively. In this
way one has:

AG* = -AGe + AGoT + AG;-= eSS (I5a)

AG* + AG*- AG* 1=-AGiB+AGX = E- (15b)

AGI + AG* + AGd*- AGt1_- AG*c = AGB
+AGo2 + AG =E8 (15c)

These expressions imply that part of the free energy
required to go from the initial to any transition state
along the reaction co-ordinate is 'paid for' by the
corresponding binding energy. The 'extra costs' that
are not 'paid for' by these binding energies are the
e terms of eqns. (15). These 'extra costs', E, are thus
the algebraic sum of two terms; the free energy of
activation required to reach any transition state from
the initial state, and the apparent, or real, binding
energy of the transition states to the free enzyme.
Since, as shown in the thermodynamic boxes of
Scheme 6, the free enzyme cannot be complementary
to the substrate- and product-transition states, the
productive binding process thus requires the proper
conformation change of the active site (energy terms
AGol and AGI). The apparent binding energies of
the substrate- and product-transition states are thus:

-AGe =-AGB + AGoT (16a)

-AG?=-AG + AGO2 (16b)

S AGT
-EA+S$GLEl+

(a) Eo+S - Eo+Ss I
E1+SI

AG3

E_+S "G b

E1S$

IAG

ElsS$'Eo+SS GOI I E +S -/ I

AGE+S* Eo+X G Xa o,(b) E0+ S ~5±~ EoXt

1 [AG3
Eo+ S -)x $ - St'Eo+ I EoX

&Gt- $ aGo$T 3O
(c) Eo +S - o---+ Eo +P'

0

E2 +P' I E2P'

[AG3

E1+ S AG-- Eo+ pt AG02 tt
AG

t2+P' E2P

Scheme 6. Thermodynamic boxes allowing the formulation of generalized microscopic reversibility in terms of binding
energies of the various transition states by using the 'general' model ofScheme 3

The enzyme forms Eo and Eo are assumed to be complementary to the transition states X* and Xt' respectively (for
further details see the text).
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and represent what is left after part of the real binding
energy has been used to produce the enzyme con-
formation change.
The condition represented by eqn. (14) that implies

the occurrence of generalized microscopic revers-
ibility can be rewritten as:

AGt - AGt 1 = AG*'-AG2
AGt AG-.C-AG=t'-AG$GC

Algebraic manipulation of eqns. (15) gives:

AGt-AG1 1 = -- 8
AGc - AG_C = E-

In the same way one could show that:

AGt' - AG2 = ES - Es

p-C= Sx

and eqns. (17) can be rewritten as:
, ,

ES- =ES-= --ESP-E x = Sp Sx

E0)0)
0

(17a)
(17b)

(18a)
(18b)

(19a) >

(19b) 0

0

U.

(20a),
(20b)

Therefore generalized microscopic reversibility re-
quires that the difference between any two consecu-
tive 'extra costs' of energy along one reaction
co-ordinate be the same as the corresponding
difference on the other reaction co-ordinate. This is
shown in the free-energy profiles of Fig. 2.
As stated above, the slow-transition model (Ainslie

et al., 1972) implies that the enzyme-product com-
plexes are not interconvertible and that the enzyme
does not change its conformation along the reaction
co-ordinate. The thermodynamic equilibria of
Scheme 6 then contract to those of Scheme 7. As
before, the conditions that allow eqns. (13) to be
fulfilled are still eqns. (14), and thenecessarycondition
for generalized microscopic reversibility is still
represented by eqns. (20). The physical significance of
these equations is unaffected in the slow-transition
model, the only difference with respect to the 'general
model' being that the apparent binding energies have
been replaced by real binding energies since binding
energy is not used (Scheme 7) to promote conform-
ation change of the enzyme.
The mnemonical model is another limiting case of

the 'general model' in which one of the free enzyme
forms must be complementary to the transition
state X*, whereas the other one must be comple-
mentary to the product and to its transition state, PV.
The thermodynamic equilibria of Scheme 6 then
contract to those shown in Scheme 8. A typical energy
profile of a mnemonical enzyme is shown in Fig. 3.
Clearly eqns. (14) cannot apply to this situation. An
interesting condition that, as will be seen below,
controls the kinetic co-operativity of a mnemonical

s.

EsI
S I__

Reaction co-ordinate

-p

Reaction co-ordinate
Fig. 2. Relations between the consecutive 'extra costs' of
energy that allow generalized microscopic reversibility to

be fulfilled
The model considered is the 'general' model of
Scheme 3. It is noteworthy that the conditions:

Lxi SsLx sx ss
ESX-ES-S =frh-dss

are fulfilled (for further details see the text).

enzyme can easily be derived from the 'thermo-
dynamic boxes' of Scheme 8. One has:

and

therefore,j

then:

and convei

AG' = AGSt + AGT - AG'
AGt = AG$-'+ AGo' - AG?'

AGf + 3AG- = AG3 + AG2
if:

t5AG- > AG3

AG2 > AG*
rsely, if:

6AG- < AG3
then:

AG2 < AGt

(21a)
(21b)

(22)

(23)

(24)

(25)

(26)
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E+S - SS E+Ss G- ES$

[AG3 A-G

*j [AG3 +x*'-AG.' I

E'+S - , E+S l E'S

-AG,r

E+S A3G E+X' EX$

1 [AG3 AsAGd

E'+S s tE'+ sX" E'Xs'

AG- -AG--

E+S so,- E+P' ^ EPS

lAG3 | AGp

E'+S ^' E'+PSI USEPt
Scheme 7. Thermodynamic boxes allowing the formulation of generalized microscopic reversibility in terms of binding

energies of the various transition states by using the slow-transition model of Scheme 4(a)
The conformation of the two enzyme forms E and E' are assumed not to change during the binding of the transition
states. See the text for further details.

E +S A Eo+St 01 - E +sSt s E

AG^3 Jl i-c
TI I

AGS' ' AGo, S -AG-E~~~~~ S A-E1S1+S SS Eo+ Ss' Gt E' AG IS

Eo+S G- E$'E0S E0+X

| tAG3 1 |AG3

1 AAG j[GG'

EO+S spfEo+pt EP

AG
~'

E'+ S %E+Ps
Scheme 8. Thermodynamic boxes allowing the formulation of generalized microscopic reversibility in terms of binding

energies of the various transition states by using the mnemonical model ofScheme 4(b)
The free enzyme Eo is assumed to be complementary to the transition state X$', whereas the other enzyme form Eo is
more or less complementary to both product P and its transition state P$. See the text for further details.
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E

AGI < AGI (Negative co-operation)
X AG3 positive

aii EeS'ULI AGt
E6o+ S I Eo
E + S E + P

ES
EOP

Reaction co-ordinate

AGt > AGS (positive co-operation)
c . S | \ AG3negative
0 Et~ES

ES EE+P
E0P

Reaction co-ordinate

Fig. 3. Thermodynamic conditions that control positive or
negative co-operation for a mnemonical enzyme

This Figure clearly illustrates the view that the sign of
the free-energy change of the enzyme's confor-
mational transition (AG3) is linked with the sign of
the co-operation.

The significance of these results will be discussed in
the next section. It is interesting to note that the
respective values of AG$ and AG* are linked with the
sign of the free-energy change of the conformational
transition of the free enzyme. This is a consequence
of the Hammond postulate and of the view that a
transition state ES$ must have a structure midway
between those of E + S and ES. Therefore the free-
energy difference between the two transition states

ES$ and E'S$ must be smaller than that between Eo
and E'. This is exemplified in Fig. 3. If:

'AGI > AGt (27)

then:

AG3 < 0 (28)

and if:

AG* <AIG2 (29)
then:

AG3 > 0 (30)

Indeed these conclusions would not hold if substrate
binding and induced transconformation occurred in
two distinct steps instead of one (Ricard et al., 1977).

Constraint between rate constants and the kinetic
co-operativity of enzymes
As already suggested by Whitehead (1976) the fact

that generalized microscopic reversibility holds may
reduce the degree of some of the rate equations
describing the kinetic behaviour of polymeric
enzymes. This point has already been discussed by
Whitehead (1976) and need not be developed any
further here. The discussion will be centred mostly on
the kinetic co-operativity that may, or may not, be
generated by the slow-transition model (Ainslie
et al., 1972).

This model is formally represented in Scheme 9(a).
From graph theory, a node compression (Whitehead,
1976; Berge, 1957) can be effected in this reaction
scheme so that it can be expressed as shown in
Scheme 9(b). In this condensed version of the slow-
transition model:

[ES*] = [ES] + [EP]
[E'S*] = [E'S] + [E'P]

(31a)
(31b)

(a)
k-3

E" E

k4 i kkt3

E'P k+2SJ] k-2 k-I 14,[I EP
k- k-.e

k k-4 k+.
E'S ES

k+4

(b)
k_,

I s k+3

i1 0- 1 F

E'S k ES*
k'S4

Scheme 9. Node compression in the slow-transition model
(a) Slow-transition model. (b) Slow-transition model after node compression.
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and the k* are apparent rate constants:

k* = k-1 (kd + k-a) k* - k.2 (k' + k (32a)
kd+ k+c + k-c 2 k +ck -ckkddk+,+.. k'k

l kd + k+ck4kkk2 =k'j+ k' (32b)

- k+4(4kd + k-) k k-4k (k'+kLC) (32c)

By using the method of Botts & Morales (1953) one
can determine the non-trivial condition that contracts
the slow-transition model to one that predicts
Michaelis-Menten kinetics. This condition is:

k'* k4*k+2 k+1 (33)

which corresponds to generalized microscopic
reversibility. Eqn. (33) can be rewritten as:

k+ckd k'k'k+k = c,d (34)
k- (k-c + kd) k-2 (k_c + ka)

Ifthe condition represented by eqn. (34) is satisfied the
slow-transition model cannot predict any co-
operativity. It is of interest to note that eqns. (13a)
and (13b) are precisely equivalent to this condition.

In the case of the mnemonical model, the departure
from Michaelis-Menten behaviour can be quantita-
tively expressed by what we have defined (Ricard
et al., 1974b) as the extent of co-operation, r,
between the two free enzyme forms, namely:

r= 2k3k2(k+2-k+l) (35)k+1k+22
and the kinetic co-operativity is suppressed if
k+1 = k+2. Conversely, kinetic co-operativity is nega-
tive if k+1 > k+2 and positive if k+1 < k+2.

Kinetic co-operativity of monomeric enzymes and
their evolution toward 'catalytic perfection'

Albery & Knowles (1976) have recently developed
a formalism that allows one to express quantitatively
the 'catalytic perfection' of a monomeric enzyme.
The occurrence of 'catalytic perfection' implies that
substrate and product diffuse freely to the active site
and that the free-energy differences, within the
internal states, between the maxima and the minima
along the reaction co-ordinate are very small. If so, the
rate constants associated with the internal states will
be kinetically insignificant.

In the slow-transition model, thermodynamics
requires that:

k+1 k+, kd k+2 k+, k(
k.. k-.. k-d k.2 kLCk' d

If, as is assumed in the concept of 'catalytic per-
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fection', substrate and product diffuse freely to the
active site, the above expression contracts to:

k+, kd k+c kd
k.. k-c k-2k_c (37)

The concept of 'catalytic perfection' applied to two
free enzyme forms implies that:

k.1 k-2
k+j k+, k+2 k+C

(38)

If k+1 and k+2 are both diffusion-controlled, eqn. (38)
contracts to:

k... k..2k_ = k_
k+c k+c (39)

Combining eqns. (39) and (37) precisely gives eqn.
(34), the condition that suppresses kinetic co-
operativity.
The important conclusion is thus that a monomeric

enzyme obeying the slow-transition model cannot
simultaneously display a kinetic co-operativity and be
catalytically perfect. The same conclusion applies to a
monomeric enzyme obeying the simple mnemonical
model (Fig. 3). If such an enzyme had reached
'catalytic perfection', the two rate constants k+1 and
k+2 would be both diffusion-controlled and thus have
identical values leading to a F value equal to zero.
Therefore the regulatory power of a monomeric
enzyme is exerted at the expense of its catalytic
efficiency.

Discussion

The fact that subunit interaction within a poly-
meric enzyme can increase or decrease the rate of a
given chemical process can be assigned to two
different types of events: a deformation of the active
site that makes substrate binding, product release and
(or) catalysis more, or less, efficient; an effect on the
rates of the conformational transitions associated
with the above processes. The present work has
shown that, if different types of subunit interactions
do not induce different geometries of the liganded
active site, then generalized microscopic reversibility
must apply. The view that there exists only one
conformation of the liganded active site within a
reaction sequence has been implicitly postulated by
Monod et al. (1965), Koshland et al. (1966), Dalziel
(1968) and Ricard et al. (1974a). It must be stressed
again that, if this condition holds, then each catalytic
process (with rate constants k+a and k+, for instance)
must be paralleled by substrate dissociation (with
rate constants k-. and k_p) in suchaway that k+/k_ =
k+ip/k_pO. As alreadystated by Whitehead (1976), when
this condition is satisfied, the system, although in a
steady state, behaves exactly as if it were under
pseudo-equilibrium conditions, and therefore the
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degree ofthe steady-state rate equation must be identi-
cal with that of the substrate-binding function.
Indeed this does not mean that these two expressions
are similar. Usually they are not, but they are of the
same degree. One of the novel results of this study has
been the finding that the physical reason for general-
ized microscopic reversibility is that different intra-
molecular constraints within the quaternary structure
do not change the absolute geometry of the liganded
active site, but only the rate of the conformation
changes.
When this concept of generalized microscopic

reversibility is applied to a monomeric enzyme that
follows the slow-transition model, the enzyme's
kinetic co-operativity is lost. The physical reason for
the occurrence of a constraint condition between rate
constants that suppresses kinetic co-operativity is
that the free-energy difference between the corres-
ponding transition states is kept constant along the
reaction co-ordinate. This situation implies that the
'extra costs' of energy (required to pass each energy
barrier) that are nQt covered by the corresponding
binding energies of the transition states vary in a
similar way along the two reaction co-ordinates.
Obviously violation of generalized microscopic
reversibility does not imply violation of classical
microscopic reversibility.

Indeed, the concept of generalized microscopic
reversibility cannot be applied to the mnemonical
model. The slow-transition model and the mnemon-
ical model are not derived from each other, although
they are both derived from a general model ofenzyme
conformation change. The mnemonical model
presents an interesting characteristic. If the kinetic
co-operativity of the enzyme is positive, the free-
energy change between the form stabilized by the
product (the rhombus in Fig. 3) and the other state
must be negative. Conversely, if the kinetic co-
operativity is negative, the free-energy change
between the two free enzyme forms (the rhombus,
and the circle) must be positive. In other words, the
sign of the kinetic co-operativity is tightly associated
with a shift of the transconformation equilibrium
between the two free enzyme species. Moreover,
the enzyme form that reacts faster with the sub-
strate is the one that is in smaller amount. Indeed
this conclusion is valid only if substrate binding and
enzyme transconformation occur in only one step.
Albery & Knowles (1976) have discussed on a

quantitative basis the idea that, by natural selection,
enzymes of higher and higher efficiency have evolved.
Since the biosynthesis of an enzyme is expensive in
free-energy terms- an organism that does the same
chemical work at the same rate with less enzyme will
have a selective advantage. Albery & Knowles (1976)
have stressed the view that the selection tends to
adjust the intemal states of the free-energy profile in
such a way that these internal states become 'kineti-

cally insignificant'. Since the height of the energy
barriers corresponding to substrate and product
binding cannot be lowered below the diffusion-
controlled limit, the proper adjustment of internal
states represents the only possibility left to natural
selection for increasing the performance of an
enzyme. Then, an enzyme will have reached the upper
limit of its possible evolution, called 'catalytic
perfection', if substrate and product freely diffuse to
the active site and if the internal states are 'kinetically
insignificant'. Albery & Knowles (1976) have claimed
that triose phosphate isomerase has very nearly
reached this 'catalytic perfection'.

If a monomeric enzyme follows the slow-transition
model, its 'catalytic perfection' implies of necessity
the occurrence of generalized microscopic revers-
ibility. Therefore, the regulatory power of a mono-
meric enzyme is 'paid for' by the catalytic efficiency
of the enzyme. The same conclusion obviously
applies to a mnemonical enzyme. If a monomeric
enzyme exhibiting memory phenomena has reached
'catalytic perfection' by evolutionary pressure, the
bimolecular rate constants k+1 and k+2 of the
mnemonical model will be identical and equal to
the diffusion-controlled limit. Therefore the extent
of co-operation (Ricard et al., 1974a,b), 1, will
be equal to zero and the enzyme will not exhibit
any kinetic co-operativity. The important idea
of this development is thus that a monomeric
enzyme cannot simultaneously be efficient and
co-operative.

If 'catalytic perfection' implies generalized micro-
scopic reversibility in the slow-transition model it is
obvious that the converse is not necessarily true. Ifwe
consider for instance the limiting case where the
'extra costs', E, are equal and constant along the
reaction co-ordinate, this represents an obvious
selective advantage because, once the enzyme-
substrate transition state is formed, the system does
not require any additional energy to effect catalysis.
Although it may be efficient, this device is not
necessarily close to catalytic perfection and still
exhibits, of necessity, generalized microscopic
reversibility. This reasoning can probably be extra-
polated to other situations. In their general evolu-
tionary trend monomeric enzymes obeying the
slow-transition model may well exhibit generalized
microscopic reversibility long before they have
reached 'catalytic perfection'.
The view developed above, that the regulatory

power of a monomeric enzyme is antagonistic to its
efficiency receives support from several concrete
experimental facts. For instance, monomeric wheat-
germ hexokinase LI, which exhibits interesting regula-
tory properties (Meunier et al., 1974), is a poor cata-
lyst when compared with other phosphotransferases.
Similarly, yeast hexokinase in its dissociated mono-
meric form and its optimum pH (8.5) is a very
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efficient enzyme and does not exhibit any atypical
behaviour (Colowick, 1973). However, as soon as the
pH is decreased to more 'physiological conditions'
(pH6.5-7) its specific activity sharply decreases, but
then the monomeric dissociated form presents a
regulatory behaviour (Kosow & Rose, 1971; Shill &
Neet, 1975). Similar examples might also be found in
the literature.
When, in recent years, it became evident that

regulatory properties were not strictly limited to
polymeric enzymes, but were already present in
several monomeric proteins, it was possible to ask the
following seemingly anthropomorphic question:
why did Nature evolve polymeric regulatory enzymes
through neo-Darwinian selection? From the pre-
ceding discussion one obtains an obvious and
attractive answer: polymeric enzymes represent the
simplest device able to exhibit both regulatory power
and catalytic efficiency.

Part of this paper was written during a stay at the
University of Oxford. I am indebted to Wolfson College
and to the Department ofBiochemistry for their hospitality
and library facilities. I am grateful to Dr. K. Dalziel,
F.R.S., Dr. G. Noat and Dr. F. Schuber for friendly and
stimulating discussions. I thank Mrs. Grossman for
carefully reading the manuscript.
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